PlaneMVS: 3D Plane Reconstruction from Multi-View Stereo
Jiachen Liu ${ }^{1,2}$ Pan Ji ${ }^{1}$ Nitin Bansal ${ }^{1}$ Changjiang Cai ${ }^{1}$ Qingan Yan ${ }^{1}$ Xiaolei Huang ${ }^{2}$ Yi Xu 1 ${ }^{1}$ OPPO US Research Center, InnoPeak Technology, Inc. ${ }^{2}$ The Pennsylvania State University

Key Idea

> Existing learning-based 3D plane reconstruction methods rely on single-view regression;
suffer from depth scale ambiguity.
> We propose the first end-to-end framework to reconstruct planes from multi-view stereo

- apply slanted plane hypothesis to regress planes in plane MVS branch
- decouple the problem into a plane detection branch and a plane MVS branch, associating them with the proposed loss for joint optimization.

$>$ The homography between the two views can be determined with the plane parameter $\left(\boldsymbol{n}_{\boldsymbol{i}}, e_{i}\right)$ with known camera poses

$$
H_{i}\left(\boldsymbol{n}_{\boldsymbol{i}}, e_{i}\right) \sim \boldsymbol{K}\left(\boldsymbol{R}-\frac{\boldsymbol{t} \boldsymbol{n}_{\boldsymbol{i}}^{T}}{e_{i}}\right) \boldsymbol{K}^{-\mathbf{1}}
$$

Then we can regress $\left(\boldsymbol{n}_{\boldsymbol{i}}, e_{i}\right)$ with an MVS framework with a set of slanted plane hypothesis.
\rightarrow For plane detection branch, we adopt state-of-the-art plane detection algorithm, PlaneRCNN, to predict plane masks.
$>$ We propose a soft-pooling loss to build association between plane detection and plane geometry through the supervision of reconstructed planar depth map for joint optimization
$>$ For joint optimization on multiple tasks, we further apply the learnable uncertainty on different losses, and apply convex upsampling to retain the fine-grained geometric details

