

Matching-space Stereo Networks for Cross-domain Generalization

Changjiang Cai¹, Matteo Poggi², Stefano Mattoccia², Philippos Mordohai¹ ¹Stevens Institute of Technology, ²University of Bologna **Code**: https://github.com/ccj5351/MS-Nets

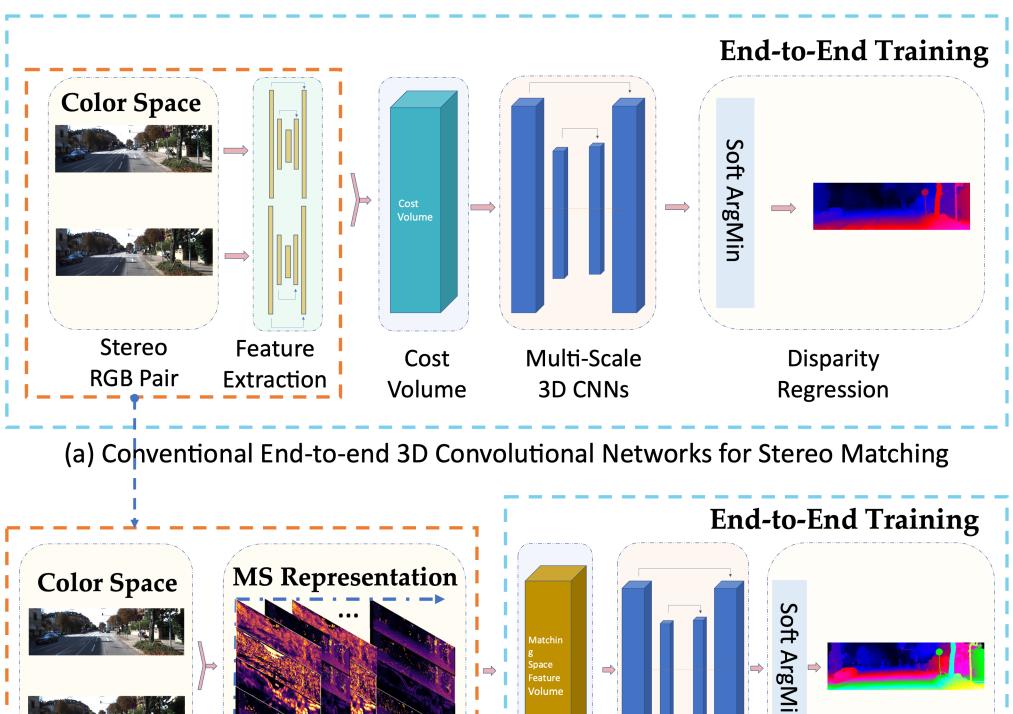
1. Motivation

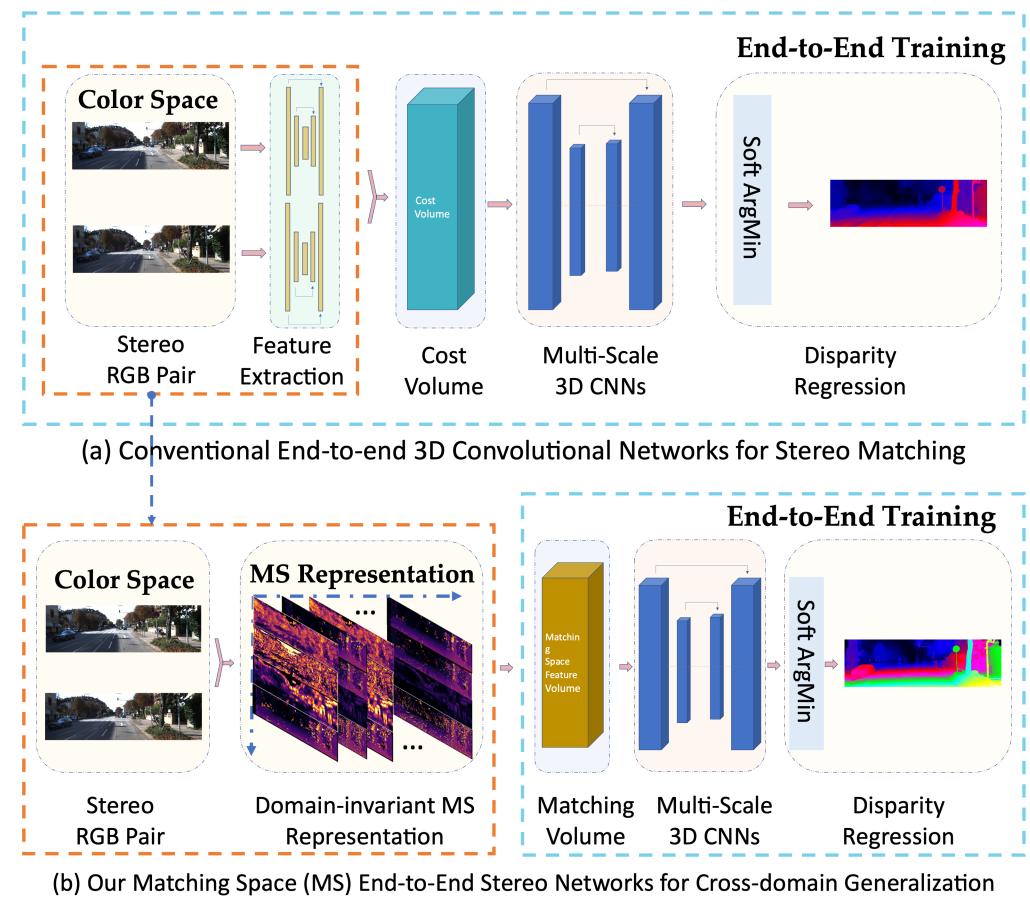
- Annotated data for stereo matching is challenging to collect
 - Expensive LiDAR, Stereo Camera Rig
 - Ground truth depth is sparse
- SOTA deep networks generalize poorly to unseen domain
- > E.g., PSMNet suffers large accuracy drops moving from synthetic (pretrained on Scene Flow) to real scenes (KT15)

Left Image

Disparity Map by PSMNet

Domain generalization


- > A method that generalizes well without adaptation is a solution
- \succ Effective in continuously changing environments, e.g. autonomous driving, without re-training or adaptation
- Goal
 - Sacrifice as little accuracy as possible to attain generalization


2. Over-specialization to Color Space

- Learning process is driven by image content ۲
- Better generalization can be achieved by choosing a representation **insensitive** to common variations of RGBs

3. Matching Space Stereo Networks

- Replace learning-based feature extraction from RGB with matching functions and confidence measures
- Move learning from color space to Matching Space (MS), avoiding overspecialization to domain specific features
- Modify GCNet and PSMNet architectures to accept MS inputs
 - PSMNet allocates 63.5% of parameters to unary feature extraction
 - ➢ GCNet allocates 88.5% of parameters to 3D convolutions

4. Matching Functions and Confidences

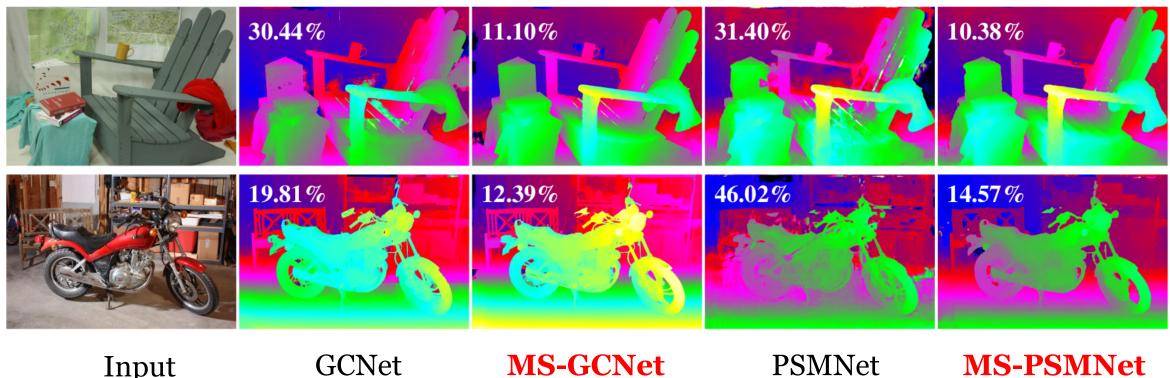
- \bullet
- \bullet
- In normalized cross correlation (NCC)
- census transform (CENSUS)
- absolute differences of the horizontal Sobel operator (SOBEL)
- Confidence scores
 - each matcher's likelihood, a confidence measure of each disparity for a given pixel
- obtained by converting the cost curve to a probability density function for each disparity under consideration

 $L_z($

- Four matching functions and the associated confidence scores Matchers include
- zero-mean sum of absolute differences (ZSAD)

$$(x_L, y, d) = \frac{\exp\left(-\frac{(C_z(x_L, y, d) - C_{z, min})^2}{2\sigma_z^2}\right)}{\sum_i \exp\left(-\frac{(C_z(x_L, y, d_i) - C_{z, min})^2}{2\sigma_z^2}\right)}$$

5. Experimental Results


Target domains	Models (Sim2Real)							
	GCNet	MS-GCNet(Ours)	PSMNet	MS-PSMNet(Ours)				
KT12	6.22	5.51	27.02	13.97				
KT15	14.68	6.21	26.62	7.76				
MB	30.42	18.52	26.92	19.81				
ETH3D	8.03	8.84	18.91	16.84				

Madala		All-D1 %		Noc-D1 %				
Models	bg	fb	all	bg	fg	All		
S-GCNet(Ours)	2.58	6.83	3.29	2.19	5.59	2.75		
GC-Net	2.21	6.16	2.87	2.02	5.58	2.61		
-PSMNet(Ours)	2.15	5.01	2.63	1.99	4.52	2.41		
PSM-Net	1.86	4.62	2.32	1.71	4.31	2.14		

MS

MS-

Qualitative Results on Middlebury

Input

Comparison with SOTA 2D and 3D architectures

Target Domains	MAD- Net	Disp- Net	CRL	iRes- Net	Seg- Stereo	Edge- Stereo	GWC- Net	GA- Net	HD3	DSM- Net	MS- GCNet	MS- PSMNet
KT12	39.17	12.54	9.07	7.90	12.80	12.27	20.20	10.10	23.60	6.20	5.51	13.97
KT15	43.98	12.88	8.88	7.42	11.23	12.47	22.70	11.70	26.50	6.50	6.21	7.76

UNIVERSITA DI

Domain Generalization Training and Evaluation

> Networks are trained in source domain Scene Flow Evaluated in target domains (KITTI 2012&2015, Middlebury 2014 and ETH3D Low-res two view datasets) without finetuning or adaptation

Sim2Real (sf-all \rightarrow real)

Evaluation on Real Benchmark KITTI 2015

(Ours)

(Ours)