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Abstract

End-to-end deep networks represent the state of the art
for stereo matching. While excelling on images framing en-
vironments similar to the training set, major drops in ac-
curacy occur in unseen domains (e.g., when moving from
synthetic to real scenes). In this paper we introduce a
novel family of architectures, namely Matching-Space Net-
works (MS-Nets), with improved generalization properties.
By replacing learning-based feature extraction from im-
age RGB values with matching functions and confidence
measures from conventional wisdom, we move the learn-
ing process from the color space to the Matching Space,
avoiding over-specialization to domain specific features.
Extensive experimental results on four real datasets high-
light that our proposal leads to superior generalization
to unseen environments over conventional deep architec-
tures, keeping accuracy on the source domain almost unal-
tered. Our code is available at https://github.com/
ccj5351/MS-Nets.

1. Introduction
The rising availability of stereo imagery with ground

truth depth [8, 23, 29, 32] has enabled the development of
machine learning based stereo matching algorithms. The
first attempts to exploit machine learning for dense cor-
respondence focused on matching [1, 7, 20, 45] or other
stages [2, 9, 26, 27, 33] of the stereo pipeline [30] and were
combined with conventional components. As in other ar-
eas of computer vision, end-to-end methods [21] soon be-
came the dominant paradigm. They can be distinguished
in two categories according to network architecture: 2D
[19, 21, 24, 35, 42] and 3D [5, 17, 44, 46] convolutional
networks. The latter reason about geometry by build-
ing a matching volume, either correlating or concatenating
learned features from the images. 3D convolutions enable
these methods to consider context beyond a fixed disparity
value (a slice of the matching volume) for higher accuracy.

Although end-to-end models excel at specializing on
specific domains when enough data are available for train-
ing, e.g. autonomous driving [8, 23], they are less effec-
tive at generalization to very different domains or with high
variety of image content. Strong evidence supporting this
emerges by browsing online benchmarks: while on KITTI
2012 [8] and 2015 [23] end-to-end networks dominate the
leaderboards, very few of them appear on the Middlebury
2014 leaderboard [29] and typically achieve lower accu-
racy than hand-designed algorithms [36] deploying ma-
chine learning on individual steps [45] of the pipeline. This
is due to the diversity of the Middlebury dataset.

Poor generalization is a cause for concern, since gath-
ering annotated data may be too expensive or infeasible in
practical applications. We argue that this lack of general-
ization, or over-specialization, is caused by the learning
process being driven by image content, i.e. the network
learns how to match pixels by strongly relying on appear-
ance properties. When such content differs substantially
from the one observed in training, end-to-end approaches
suffer large accuracy drops. Usually large amounts of la-
belled images, often generated in synthetic environments
[21], are used to improve generalization and mitigate this
effect. On the other hand, domain shifts still pose difficul-
ties [25, 37, 40], in particular when moving from synthetic
to real imagery affected by reflective surfaces, sensor noise
and illumination conditions, which have not been modeled
in the simulators. Anyway, there is evidence in literature
that this effect can be soften by moving the learning pro-
cess to different representations [1] or parts of the pipeline
[31]. We claim that better generalization can be achieved by
choosing a representation insensitive to common variations
of the input images. Instead of augmenting the dataset to
guide the network to achieve certain invariances, one could
design a hybrid approach in which some invariances are
learned from the data while others are imposed by the de-
sign. For example, if we wish the network to be invariant to
affine transformations of image intensity or color, we would
use normalized cross correlation (NCC) in a conventional
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Figure 1: Generalization across domains. (a) and (b) Challenging stereo pair from the KITTI dataset. (c) Disparity map estimated by
PSMNet [5]. (d) Disparity map estimated by our MS-PSMNet. Both networks are trained on the same synthetic data.

stereo algorithm. In an end-to-end trainable algorithm, we
could either achieve this invariance via augmenting the data
by affinely transforming one of the images, or by using an
NCC-like abstraction in the representation of the images.

In this paper, we propose a new family of end-to-end ar-
chitectures designed to have invariant properties that make
them robust to domain shifts. Our networks learn to rea-
son about stereo matching in the domain of matching func-
tions by combining four matching functions and associated
confidence scores [15, 28]. Stacking multiple of these cues
results in a 4D tensor compatible with matching volumes
processed by 3D networks. This way, the network is never
exposed to image appearance and is forced to learn in the
Matching Space (MS) only, avoiding over-specialization.

We demonstrate the effectiveness of the proposed repre-
sentation by implementing two 3D convolutional architec-
tures based on the above principle. Specifically, we repli-
cate two popular, but different, 3D convolutional networks,
GCNet [17] and PSMNet [5], replacing their matching vol-
ume, which is based on deep image features, with the pro-
posed MS representation. Extensive experiments show that
our MS-Nets generalize better to data from domains that
differ substantially from the training one. We believe that
the reason for this is that our approach learns to reason on
relationships in the matching volume without being affected
by image appearance, which our networks never observe di-
rectly. Figure 1 shows disparity estimation by both PSMNet
and its MS variant on a challenging stereo pair from KITTI,
after being trained on synthetic images only. In particular,
we can notice large changes of illumination between the two
frames, possibly never observed during training. Estimated
disparity maps show that such perturbations drive PSMNet
to totally unreliable estimations. Conversely, MS-PSMNet
learned a robust representation leading to accurate results.

Our claim is supported by extensive experimental results
on five popular datasets: SceneFlow [21], KITTI 2012 [8],
KITTI 2015 [23], Middlebury 2014 [29] and ETH3D [32].
In particular, we study a variety of training protocols in-
volving both large and limited amounts of labelled images
in order to dig deeper into the relationship between train-
ing data and model performance, an aspect that has been
largely ignored in previous works [5, 17, 19, 21, 35, 42].
Our MS-Nets are able to generalize much better than GC-
Net and PSMNet with minor loss of accuracy in the source
domain. The main contributions of this paper are:

• The observation and testing of the hypothesis that not

exposing CNNs directly to image appearance leads to
better generalization properties;

• A novel family of architectures, MS-Nets, and one of
its possible implementations built on conventional wis-
dom [1] and popular 3D networks [17, 5];

• An extensive set of experiments highlighting the be-
havior of both 3D and MS-Nets under domain shift.

2. Related Work
The problem of disparity estimation from stereo image

pairs has been studied for decades. We refer readers to sur-
vey papers [8, 16, 28, 30]. In this section, we review deep
learning based stereo methods, broadly divided into match-
ing cost learning and optimization and end-to-end dense
disparity regression.
Matching cost learning and optimization. Convolu-
tional Neural Networks for predicting the matching costs
were first introduced by [45]. The outputs of the MC-CNN
network were refined according to the non-learned tradi-
tional pipeline [22, 30] to generate disparity maps. [20]
substituted an inner product layer for the fully connected
layer in MC-CNN [45] to alleviate the expensive com-
putational burden. [34] presented a network for match-
ing cost computation, utilizing a highway network with
multi-level weighted residual shortcuts. A deep embed-
ding model presented by [7] was learned from a multi-scale
ensemble framework, which fuses feature vectors learned
at different scales. [33] used CNNs to learn the penalty-
parameters of the Semi-Global Matching (SGM) algorithm
[13] and proposed a new parameterization of the same al-
gorithm discriminating between positive and negative dis-
parity changes. In contrast, our method, combining con-
ventional matching functions and confidence measures as
matching cost, can be trained end-to-end.
End-to-end disparity regression. Mayer et al. [21] were
the first to propose an end-to-end stereo network, namely
DispNet, with an encoder-decoder architecture for dispar-
ity estimation trained on a large synthetic dataset created
by them. This synthetic dataset enabled the development
of end-to-end deep stereo networks. [17] presented GC-
Net to exploit contextual information for disparity regres-
sion, via 3D-convolution on the matching volume using
deep unary features and a differentiable soft-argmin oper-
ation. Chang and Chen put forward PSMNet [5] consist-
ing of spatial pyramid pooling for unary feature extraction,
and stacked 3D hourglasses for matching volume regular-
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ization. StereoDRNet [4] extends PSMNet [5] by replacing
the spatial pyramid pooling [12] with vortex pooling [41]
in feature extraction, and by utilizing 3D dilated convolu-
tions in cost volume filtering. [44] learned cost aggregation
via a two-stream network for generation and selection of
cost aggregation proposals. In parallel, more architectures
built on DispNet have been proposed, leveraging cascade
residual learning [24] or deploying multi-task learning by
jointly learning disparity estimation together with edge de-
tection [35] or semantic segmentation [42]. [19] incorpo-
rated matching cost calculation and aggregation, disparity
estimation and refinement into one network, ranking first
at the Robust Vision Challenge 20181. [11] constructed
the matching volume by group-wise correlation of features
which were split into multiple groups along the channel
dimension. Zhang et al. [46] proposed GA-Net, a deep
guided aggregation network, including semi-global aggre-
gation (SGA) and local guided aggregation (LGA) layers
for efficient end-to-end stereo matching. Our proposed net-
works, never exposed to RGB values, are trained end-to-end
from the matching space to final disparity maps.
Deep learning for domain transfer. Most deep stereo
models are particularly data dependent and their perfor-
mance drops considerably when dealing with unseen do-
mains different from those observed during training [37,
38]. To tackle the domain shift problem, two main strate-
gies are involved: image synthesis [6, 14, 18], and un-/self-
supervised adaptation [3, 10, 25, 37, 38, 39, 40, 48, 49].
In contrast, our method aims at being transferred without
adaptation to different domains, being this possibility more
appealing for practical applications.

3. Approach

Deep learning methods [5, 17, 21, 45, 48] work ex-
tremely well on disparity estimation when sufficient data
with ground truth are available. However, they have been
proven vulnerable to out-of-distribution data. When dealing
with unseen environments quite different from those em-
ployed to train the network, the accuracy may rapidly de-
crease. By moving the learning process to Matching Space,
we force the neural network to learn a more general rep-
resentation, avoiding over-fitting to specific image appear-
ance statistics that are characteristic of the training domain
and thus to be more robust to such decreases.

For one possible implementation of MS-Nets, we select
a subset of the CBMV features [1], which have shown good
generalization across distinct datasets with respect to neu-
ral networks [45] when used to learn a matching function.
In contrast to existing end-to-end networks, which are di-
rectly exposed to raw image intensities (or RGB values)
[5, 17, 21, 45, 48], the proposed MS-Nets, leveraging fea-

1http://www.robustvision.net/leaderboard.php?benchmark=stereo

tures that encode geometric constraints and prior knowl-
edge, can be transferred without adaptation to different do-
mains. The general architecture of the proposed family of
networks is shown in Fig. 2.

As base architectures, we have chosen PSMNet [5] and
GCNet [17]. Both belong to the 3D CNN category, but
they have different architectures and parameter configura-
tion. Specifically, PSMNet has 3.3M (63.5%) parameters
in the unary feature extraction modules, versus only 1.9M
(36.5%) in the 3D CNN layers for cost volume regulariza-
tion. On the other hand, GCNet has the opposite configu-
ration, i.e. 0.3M (11.5%) parameters for feature extraction
and 2.3M (88.5%) parameters in the 3D CNNs. We will
show how these differences impact generalization.

3.1. Matching-Space Features and Volume

We follow the notation of [1] in this section. Given a
rectified stereo pair comprising the left and right image, IL
and IR, a matching hypothesis (xL, xR, y) represents a po-
tential correspondence between a pixel pL(xL, y) in IL and
a pixel pR(xR = xL − d, y) in IR, with disparity d de-
fined as d = xL − xR. For each disparity, we adopt eight
features, consisting of the raw matching cost and likelihood
for four matchers. The matchers used are: the normalized
cross correlation (NCC), the zero-mean sum of absolute dif-
ferences (ZSAD), the census transform (CENSUS) and the
absolute differences of the horizontal Sobel operator (SO-
BEL). Unlike [1], we only use the left-to-right-likelihood
for each matcher to keep memory and processing require-
ments manageable.

According to [15] and [1], the likelihood, a confidence
measure of all disparities of a given pixel pL, is obtained by
converting its cost curve to a probability density function
for disparity d under consideration. Using ZSAD (z in short
in Eq. 1) as an example, with the left image IL as reference
and the right image IR as the matching target, the likelihood
is defined as:

Lz(xL, y, d) =
exp

(
− (Cz(xL,y,d)−Cz,min)

2

2σ2
z

)
∑
i exp

(
− (Cz(xL,y,di)−Cz,min)2

2σ2
z

) (1)

where Cz,min denotes the minimum cost of ZSAD for the
left pixel pL, and σz is a predefined hyper-parameter that
depends on the corresponding matching algorithm.
Matching Volume. Given the above features extracted
from a stereo image pair at size H × W , we generate a
4D matching volume of dimensionality D ×H ×W × F ,
across each disparity level, where F is the number of fea-
tures (i.e., F = 8 in this case). The matching values for
CENSUS, ZSAD, SOBEL and NCC are normalized to [0, 1]
before being fed into the subsequent multi-scale 3D CNN
encoder-decoder layers.
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Figure 2: Architecture overview. (a) shows a conventional end-to-end 3D convolutional network for stereo matching. (b) illustrates our
end-to-end MS-Nets architecture. The orange dashed boxes show the different feature extractors of the two architectures. The blue dashed
boxes show the part of each network that is trained end-to-end. Feature extractors in MS-Nets are fixed and isolate the network from RGB.

3.2. Multi-Scale 3D CNN Encoder-Decoder

The generated 4D matching volume is too noisy to di-
rectly predict disparity maps in Winner-Take-All fashion,
due to textureless or reflective regions among other chal-
lenges. Hence, the matching volume is regularized via 3D
multi-scale encoder-decoder architectures [5, 17] for effec-
tive disparity optimization. 3D networks [5, 17] perform
this after such a volume has been derived from earlier sub-
networks exposed to image appearance, thus prone to over-
fitting and poor generalization. In our case, the volume it-
self is the input to the first layers of the networks, that starts
the entire learning process in the Matching Space and thus
prevents exposing the networks to image appearance. We
present two variants of 3D networks for matching volume
regularization based on GCNet and PSMNet.

MS-GCNet variant. We adopt the regularization sub-
network of GCNet [17], and feed the MS matching volume
to it for end-to-end disparity estimation. Specifically, given
a stereo pair of size H × W and disparity range D, we
first extract the features from the image pair, after down-
sampling by a factor of 2, to compute a matching volume of
size D/2 × H/2 ×W/2 × F . Then the generated match-
ing volume is regularized through a 4-level down-sampling
(via 3D convolution with stride 2) in the encoder, and a
corresponding 4-level up-sampling (via 3D transposed con-
volution with stride 2) in the decoder. The 4-level down-
sampling, together with the input images, down-sampled
by a factor of 2 (for feature extraction), results in a total of
32-times enlarged receptive field in order to exploit context

information. In our implementation the matching volume is
encoded into a D/32×H/32×W/32× 16F volume, and
then decoded to D/2×H/2×W/2×4F . In order to make
the best use of ground-truth disparity maps at the original
resolution, we apply another 3-D transposed convolution
(with stride 2) and a single feature (i.e., the channel dimen-
sion) output resulting in the final regularized D ×H ×W
matching volume, essential for dense disparity estimation
in the original input dimensions.

MS-PSMNet variant. We also implement a variant of
PSMNet [5] by replacing the spatial pyramid pooling lay-
ers in charge of extracting deep features directly from RGB
images with matching volumes from the Matching Space.

The initial D/2×H/2×W/2×F 4D volume, obtained
as for MS-GCNet, is down-sampled to quarter resolution
by means of two 3× 3× 3 convolution layers, the first with
stride 2, in order to reduce the computational burden, then
is processed by two more 3×3×3 layers extracting 32 fea-
tures each. Then, following [5], we regularize the 4D vol-
ume through a stacked-hourglass architecture, built of three
encoding-decoding blocks made of four 3× 3× 3 convolu-
tion layers, with strides respectively 2, 1, 2 and 1, and two
3 × 3 × 3 transposed convolution layers restoring the in-
put resolution. Each hourglass generates a regularized vol-
ume, from which an intermediate disparity is obtained, and
is implemented exactly as in the original paper [5] (which
we refer the reader to for the sake of space) to ensure a fair
comparison. While at training time the loss function is com-
puted on all three intermediate results, at test time only the
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one obtained from the last hourglass is used as output.

3.3. Disparity Regression

In both cases, we use the differentiable soft argmin as
proposed by [17] to regress the disparity from the regu-
larized matching volume. This enables end-to-end training
and continuous disparity maps as output. The cost curve Cd
for a given pixel pL is first converted to a probability of each
disparity d ∈ [0, D], via the softmax operation σ(·). Then
the predicted disparity d̂ is calculated as the expected value
(i.e., the probability-weighted average) of random variable
d ∈ [0, D], defined as

d̂ =

D∑
d=0

d× σ(−Cd) (2)

3.4. Loss Function

Our network is trained end-to-end, via supervised learn-
ing using datasets with ground truth disparities. The loss is
evaluated and averaged only over the valid pixels (i.e., with
ground truth disparity). For the MS-GCNet variant, we fol-
low the authors of GCNet and use the L1 loss, defined as:

L(d, d̂) =
1

N

N∑
i=1

||di − d̂i||1 (3)

where N is the number of valid pixels.
For MS-PSMNet, we adopt the smooth L1 loss, as in

PSMNet.

Ls(d, d̂) =
1

N

N∑
i=1

smoothL1
(di − d̂i)

smoothL1
(x) =

{
0.5x2 if |x| < 1

|x| − 0.5 otherwise
(4)

with s = 0, 1, 2 for the three intermediate outputs. The total
loss is defined as the weighted sum of the three intermediate
losses with weights 0.5, 0.7, and 1.0, respectively.

4. Experimental Results
In this section, we evaluate our algorithms in a domain

transfer setting on five datasets: Scene Flow (SF) [21],
KITTI 2012 (KT12) [8], KITTI 2015 (KT15) [23], Middle-
bury 2014 (MB) [29], and the ETH3D stereo benchmark
(ETH3D) [32]. From now on, we use domain and dataset
interchangeably. For convenience, we adopt the notation
S → T to describe that the model, trained in source domain
S, is transferred without adaptation to a different target
domain T .

• Scene Flow is a large synthetic dataset which con-
tains 3 subsets - Driving (sfD), Monkaa (sfM), and

FlyingThings3D (sfF) totaling more than 39000 stereo
frames with dense ground truth disparity maps (35454
for training, and 4370 for testing) at 960 × 540 pixel
resolution. In our experiments, Scene Flow is used to
train networks from scratch.

• KITTI is a real-world dataset with two versions:
KT12 (including 194 training and 195 testing stereo
pairs) and KT15 (including 200 training and 200 test-
ing stereo pairs), both approximately at 1240 × 376
pixel resolution. Compared to KT12, KT15 provides
more dense ground truth disparity for cars and wind-
shields. We use the training sets to evaluate all net-
works, but not for training.

• Middlebury 2014 consists of 15 training and 15 test-
ing stereo pairs, as well as 12 additional stereo pairs
with available ground truth. The ground truth for the
test set is withheld. We use the half-resolution images
of the training set to evaluate all networks.

• ETH3D Low-res two-view provides 27 training and
20 testing stereo pairs. As above, we use the training
set as test data.

GCNet [17] and PSMNet [5] are the baselines. We im-
plement GCNet and MS-GCNet using PyTorch. The cor-
rectness of our GCNet implementation has been verified
via a D1-all (i.e., percentage of outliers in all pixels of the
reference frame with ground truth) error of 2.76% (versus
2.87% as reported by [17]) on the KT15 benchmark. The
PyTorch source code of PSMNet is provided by the au-
thors [5]. Therefore, we implemented MS-PSMNet using
their code as the starting point. For fair comparison with
the baselines, we adopt their training schemes. Specifically,
MS-GCNet is trained end-to-end with RMSProp and a con-
stant learning rate of 1×10−3, while MS-PSMNet is trained
using Adam (β1 = 0.9, β2 = 0.999), with a constant learn-
ing rate of 1× 10−3.

In both cases, we configure the hyper-parameters of the
CBMV features following [1], i.e., σNCC = 0.1, σZSAD =
100, σCENSUS = 8 and σSOBEL = 100. The matching
windows are 3 × 3, 5 × 5, 11 × 11 and 5 × 5 for NCC,
ZSAD, CENSUS and SOBEL, respectively. (Sensitivity to
the sizes of the matching windows is low and varying these
parameters is out of the scope of this paper. They remain
unchanged throughout.)

MS-GCNet and MS-PSMNet have fewer parameters
than their counterparts. Specifically, our networks have
2.3M and 1.9M parameters versus 2.6M and 5.2M of the
baselines. Parallelized matching feature generation is ef-
ficient and takes 289 msec for a 256 × 512 input image.
Therefore, network training is as fast as the baselines.

4.1. Domain Transfer Evaluation

In this section, we carefully analyze the performance of
our proposed MS-Nets in a domain transfer setting. The sf-
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Target domain T
KT12 (bad3-noc)% KT15 (bad3-all)% MB (bad2-noc)% ETH3D (bad1-noc)%

So
ur

ce
do

m
ai

n
S GCNet MS-

GCNet
GCNet MS-

GCNet
GCNet MS-

GCNet
GCNet MS-

GCNet
sf-all 6.22 5.51 14.68 6.21 30.42 18.52 8.03 8.84
sf-3k 7.40 6.51 17.43 7.77 34.73 21.82 15.57 14.81

sfD3k 8.50 10.50 13.68 12.15 42.56 25.59 17.64 19.29
sfM3k 8.29 7.98 9.51 8.79 28.05 24.21 11.17 14.4
sfF3k 8.48 7.78 37.32 9.11 41.30 20.77 20.87 17.41

(a) Generalization results for GCNet and MS-GCNet.
Target domain T

KT12 (bad3-noc)% KT15 (bad3-all)% MB (bad2-noc)% ETH3D (bad1-noc)%

So
ur

ce
do

m
ai

n
S PSMNet MS-

PSMNet
PSMNet MS-

PSMNet
PSMNet MS-

PSMNet
PSMNet MS-

PSMNet
sf-all 27.02 13.97 26.62 7.76 26.92 19.81 18.91 16.84
sf-3k 35.63 8.57 35.56 8.36 32.48 19.44 19.44 15.36

sfD3k 40.12 17.81 39.00 16.39 37.14 24.78 19.58 22.29
sfM3k 7.93 7.68 8.20 7.00 24.70 20.49 14.58 14.24
sfF3k 45.41 9.14 49.50 8.52 33.33 20.39 30.14 16.96

(b) Generalization results for PSMNet and MS-PSMNet.

Table 1: Generalization results for MS-Nets, GCNet and PSM-Net. The bad-x errors are evaluated on T after training on S without
any fine-tuning or adaptation to T , using the default error measure of T .

S source domain: sf-all
T target
domain

MADNet1

[40]
DispNet2

[21]
CRL2

[24]
iResNet2

[19]
SegStereo2

[42]
EdgeStereo2

[35]
GWC-Net3

[11]
GANet3

[46]
HD33

[43]
DSMNet3

[47]
MS-

GCNet
MS-

PSMNet
KT12 39.17 12.54 9.07 7.90 12.80 12.27 20.20 10.10 23.60 6.20 5.51 13.97
KT15 43.98 12.88 8.88 7.42 11.23 12.47 22.70 11.70 26.50 6.50 6.21 7.76

Table 2: Comparison between MS-Nets and state-of-the-art 2D and 3D architectures. All models are trained on sf-all and tested on
KITTI 2012 (top) and KITTI 2015 (bottom) training sets. Results obtained: 1using authors’ weights, 2from [35] or 3 from [47].

all entries in Table 1 (top row in each subtable) show the
bad-x2 error for domain transfer of GCNet, PSMNet and
their MS-Nets counterparts from Scene Flow to the other
datasets.

According to Table 4, PSMNet performs better than GC-
Net on the KITTI benchmark. However, in terms of gener-
alization performance, in most cases GCNet is better than
PSMNet (see also Table 1). We argue that it is due to GC-
Net having fewer parameters in feature extraction and hence
less vulnerability to overfitting to the RGB data. The table
highlights that in most cases MS-Nets are better when trans-
ferred without adaptation to different domains than GCNet
and PSMNet. The bad-x errors are evaluated on the target
datasets without any fine-tuning or adaptation once trained
on the source dataset. For fair comparison with the base-
lines, in order to test in the target domain, the model trained
on the source domain is chosen just according to its perfor-
mance on the validation set (still in the source domain).

Inspecting the top row of each subtable reveals that
MS-GCNet always outperforms GCNet except for sf-all→
ETH3D, while MS-PSMNet is more accurate than PSM-
Net by a wide margin. This different performances between
these two variants can be well explained by the fact that

2x is the default threshold specified by each dataset: i.e., 3 for KT12/15,
2 for MB, and 1 for ETH3D. The default setting of each benchmark regard-
ing occlusion is also applied, i.e. occluded pixels are considered in KT15.

GCNet and PSMNet have distinct parameter configuration
(see Section 3 and 4.2). These rows evaluate the case when
ample training data, 35,000 stereo pairs with ground truth
here, are available. In the next section, we investigate the
effects of data scarcity.

4.2. Generalization on Scarce Labeled Data

Most of the existing deep learning methods capture the
patterns and regularities of the training domain and can
make reliable predictions in new domains only after fine-
tuning on a sufficient amount of labeled data from the target
domain. We argue that by mixing in geometric constraints
and prior knowledge, MS-Nets can capture general proper-
ties which are suitable to both the source S and target T
domains, instead of being specific to the source domain S.
Therefore, we continue by analyzing the generalization of
our approach with scarce labeled data in the following set-
tings of sf-3k, sfD3k, sfM3k,and sfF3k3, shown in Table 1
after the first row of each subtable.

In general, the two 3D convolutional networks (and their
variants) behave differently. In particular, PSMNet counts
more parameters than GCNet (i.e., 3.3M versus 0.3M) in

3sf-all: all training data of SF; sf-3k: 3k-image subset of SF;
sfD/F/M3k: 3k-image subset of the Driving (sfD), Monkaa (sfM) or Fly-
ingThings3D (sfF) subsets.
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Target domain T
KT15 (bad3-all)% MB (bad2-noc)%

Sr
c

do
m

ai
n
S GCNet MS-GCNet PSMNet MS-PMSNet GCNet MS-GCNet PSMNet MS-PMSNet

sf-all 14.68 6.21 26.62 7.76 30.42 18.52 26.92 19.81
sf-all→KT12 4.05 3.57 2.92 4.17 33.34 25.63 20.46 18.24

sf-all→ETH3D 16.41 6.97 14.98 9.43 51.05 34.23 30.15 24.36
sf-all→KT12+ETH3D 4.29 4.42 3.11 3.57 23.34 20.45 20.19 18.65

Table 3: Results after specialization on real data for MS-Nets network, GCNet and PSM-Net. The bad-x errors are evaluated on T
after training on S without further fine-tuning or adaptation to T .

Models All-D1 % Noc-D1 %
bg fg all bg fg all

MS-GCNet 2.58 6.83 3.29 2.19 5.59 2.75
GC-Net 2.21 6.16 2.87 2.02 5.58 2.61
MS-PSMNet 2.15 5.01 2.63 1.99 4.52 2.41
PSM-Net 1.86 4.62 2.32 1.71 4.31 2.14

(a) Test results on KITTI 2015 Benchmark

Models > 3 px % > 5 px % Avg px
noc all noc all noc all

MS-GCNet 2.33 3.41 1.41 2.09 0.8 1.0
GC-Net 1.77 2.30 1.12 1.46 0.6 0.7
MS-PSMNet 3.52 4.26 1.98 2.48 0.9 1.0
PSM-Net 1.49 1.89 0.90 1.15 0.5 0.6

(b) Test results on KITTI 2012 Benchmark

Table 4: Results on KITTI 2015 and KITTI 2012 benchmarks.
Comparison among GCNet, PSM-Net and MS variants.

unary feature extraction, but less parameters (i.e., 1.9M ver-
sus 2.3M) in 3D CNN layers for cost matching regulariza-
tion, thus their vulnerability to overfitting to the color space,
and hence their capacity to generalize is much different,
e.g. PSMNet trained on sf-all performs worse than GCNet
on real images (Table 1).

The accuracy of GCNet drops, in most cases, when
trained on scarce labeled data in place of sf-all. Due to its
high capacity in deep feature extraction, PSMNet cannot be
trained effectively on approximately 12 times fewer train-
ing examples. This leads to large errors and unpredictable
behavior. For example, PSMNet produces surprisingly ac-
curate results for sfM3k→KT12/KT15, but performs poorly
in most other combinations.

Comparing GCNet with MS-GCNet, we see that the lat-
ter is typically more accurate, often by a wide margin, with
the exception of the ETH3D data, on which accuracy is un-
predictable. MS-PSMNet outperforms PSMNet on the real
test images with one exception on the ETH3D data. More-
over, MS-Nets exhibit more stable accuracy, which is desir-
able for potential deployment in the wild.

4.3. Comparison with State-of-the-art Networks

In addition to a comparative study with respect to their
direct 3D counterparts, we compare our MS-Nets with
eleven 2D and 3D state-of-the-art networks from the lit-
erature. To this aim, we follow the protocol of [35] and

compute the accuracy on KT12 and KT15 after training
on SceneFlow dataset (sf-all). Table 2 summarizes these
comparisons. MS-GCNet proves to be the best architecture
at generalization in both domains, outperforming models
that makes use of aggressive augmentation strategies (e.g.,
iResNet) as well as concurrent proposals based on domain-
normalization [47]. This confirms that learning disparity
estimation in Matching Space enables better generalization
in totally unseen environments compared to carrying out the
learning process in RGB space. MS-PSMNet is often out-
performed on KT12, while it is consistently more effective
than eight out of ten baselines on KT15, as already observed
in the previous experiments.

4.4. Generalization across Real Domains

In the next set of experiments, reported in Table 3, we
investigated the generalization of the networks pre-trained
on synthetic data and then specialized on real data from a
different domain. Specifically, we pre-trained all networks
on sf-all and then continued training for 300 more epochs
on KT12, ETH3D or both datasets.

One of the key observations from Table 3 is that GCNet
and PSMNet perform well on KT15, when data from KT12
are included in their training, but perform poorly otherwise
(see column 1 and 3). MS-Nets have more stable perfor-
mance even when the real domain used for specialization
changes. GCNet and PSMNet perform poorly on MB since
all the real domains on which they were trained have dis-
similar appearance to it. On the other hand, the MS-Nets
achieve higher accuracy on MB, considering that most end-
to-end networks fail on this dataset.

4.5. Evaluation on Source Domain Benchmark

It is critical to see our MS-Nets not only show better gen-
eralization to unseen domains, but also obtain comparable
performance to their counterparts, GCNet and PSMNet, on
the test set of the source domains. Following the same pro-
tocol as GCNet and PSMNet, our models are firstly trained
on synthetic data and fine-tuned on the KITTI 2015 and
KITTI 2012 training sets, before being evaluated on the re-
spective test sets. Table 4 and the KITTI leaderboards show
the test errors, with virtually no accuracy loss on KITTI
2015 and a moderate drop on KITTI 2012. These results

7



26.85% 8.59% 36.46% 14.71%

(a) (b) (c) (d) (e)
Figure 3: Qualitative results on KITTI 2015 [23] for networks trained on sf-all. Column (a) shows reference image and interpolated
ground truth, (b) to (e) disparity (top) and error (bottom) maps obtained with GCNet [17], MS-GCNet, PSMNet [5] and MS-PSMNet,
respectively. Bad3-all rates are superimposed on the error maps.

30.44% 11.10% 31.40% 10.38%

19.81% 12.39% 46.02% 14.57%

(a) (b) (c) (d) (e)
Figure 4: Qualitative results on Middlebury 2014 [29] for networks trained on sf-all. (a) Reference image, (b) to (e) disparity maps
obtained with GCNet [17], MS-GCNet, PSMNet [5] and MS-PSMNet, respectively. Bad2-noc rates are superimposed on the disparities.

demonstrate that the cost of obtaining a network that gener-
alizes well is small in terms of loss in specialization.

4.6. Qualitative Results

Figure 3 depicts an example from KITTI 2015 following
the protocol of Section 4.1. MS-GCNet and MS-PSMNet
produce almost smooth disparities on planar surfaces such
as roads, whereas PSMNet and GCNet fail at handling the
shift from the synthetic domain. For more examples in
outdoor environments, we refer readers to the supplemen-
tary video sequences comparing GCNet with MS-GCNet
and PSMNet with MS-PSMNet on KITTI raw sequence
2011 10 03 drive 0034 sync. Figure 4 shows how MS-
style models are much more accurate on Middlebury, better
preserving in both cases the overall structure of the scene.
For example, MS-PSMNet can recover small details such as
the cup on top of the armrest (top row) or the front wheel of
the motorcycle (bottom row) which are lost by PSMNet.

5. Conclusions

We have introduced a novel family of 3D convolutional
architectures for dense stereo matching, namely MS-Nets.
By learning to reason on relationships in matching space
without directly being affected by image appearance, our
models show superior generalization to unseen domains.

The matching space encodes invariant properties that have
been proven to be effective in conventional stereo match-
ing. Deep networks such as PSMNet, on the other hand,
are purely data-driven and are unable to learn all relevant
principles from their training data. Our approach strikes
a balance between the empirical modeling and data-driven
learning. Conversely to known approaches for tackling the
domain shift problem [25, 37, 40, 49], our method can be
transferred without the need for retraining or adaptation to
new domains, thus presenting an appealing alternative for
deployment in real applications.

Our experiments on two state-of-the-art 3D convolu-
tional architectures, GCNet and PSMNet, and their respec-
tive MS counterparts, trained on different amounts of syn-
thetic data, confirm that MS-Nets generalize better to dif-
ferent realistic image context, both indoors and outdoors.
Additional experiments comparing the generalization per-
formance of MS-Nets with that of ten additional state-of-
the-art CNNs for stereo matching show that MS-GCNet is
superior in accuracy on unseen data (Section 4.3).
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Supplement

In this supplementary document, we present additional
qualitative results on domain generalization (i.e., sf-all →
others), which are omitted in the main paper due to space
limits.

Qualitative results from sf-all→KT15 In Fig. 5 we pro-
vide more qualitative results on KITTI 2015 (KT15) [23]
for the networks trained on sf-all [21]. Every two rows cor-
respond to an example from the KT15 training set. Specifi-
cally, Fig. 5(a) shows the reference image and ground truth,
Fig. 5(b) to (e) show the disparity (top) and error (bottom)
maps obtained by baseline GCNet [17], our MS-GCNet,
baseline PSMNet [5] and our MS-PSMNet, respectively.
Please note the bad3-all rates are superimposed on the er-
ror maps.

Qualitative results from sf-all → MB Fig. 6 shows ad-
ditional qualitative results on Middlebury 2014 (MB) [29]
for the networks trained on sf-all. Each row corresponds
to an example from the MB training set. Fig. 6(a) shows
the reference image, Fig. 6(b) to (e) are the disparity maps
obtained by baseline GCNet [17], our MS-GCNet, baseline
PSMNet [5] and our MS-PSMNet, respectively. Bad2-noc
rates are superimposed on the disparity maps.

Qualitative results from sf-all → KT Raw We show
more qualitative results on KITTI (KT) raw sequence
2011 10 03 drive 0034 sync, for MS-GCNet (Fig. 7) and
MS-PSMNet (Fig. 8) trained on sf-all. Specifically, Fig.
7(a) is the input left frame, and Fig. 7(b) and (c) are the dis-
parity maps estimated by baseline GCNet [17] and our MS-
GCNet, respectively. Fig 8 provides the results for baseline
PSMNet [5] and our MS-PSMNet. Please note there is no
ground truth for KT raw sequences, so the error rates cannot
be calculated. Still, comparing the disparity maps in (b) and
(c), ours tend to predict more reliable and smooth disparities
rather than the noisy and bumpy ones by the baselines. For
more examples, please see our MS-GCNet video (https:
//youtu.be/Qr6WGsPX5P8) and MS-PSMNet video
(https://youtu.be/t9WPc3pxzc4). Each frame of
the videos shows the input left image (top), the disparity
map estimated by the baseline (middle), and the disparity
map by our MS counterpart (bottom).

10

https://youtu.be/Qr6WGsPX5P8
https://youtu.be/Qr6WGsPX5P8
https://youtu.be/t9WPc3pxzc4


38.57% 6.16% 40.51% 15.93%

3.04% 1.21% 8.33% 3.05%

23.98% 4.21% 25.46% 5.33%

94.16% 61.03% 99.69% 73.08%

22.42% 1.78% 24.66% 2.42%

24.07% 13.12% 29.43% 13.83%

32.67% 6.80% 39.06% 9.49%

28.87% 2.46% 28.28% 3.23%

26.99% 3.64% 27.80% 3.06%

(a) (b) (c) (d) (e)
Figure 5: Qualitative results on KITTI 2015 [23] for networks trained on sf-all. Every two rows correspond to one example in KITTI 2015
training set. (a) shows reference image and ground truth, (b) to (e) disparity (top) and error (bottom) maps obtained with GCNet [17],
MS-GCNet, PSMNet [5] and MS-PSMNet, respectively. Bad3-all rates are superimposed on the error maps.
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48.47% 20.10% 58.63% 52.72%

31.78% 19.91% 28.34% 23.34%

20.39% 10.86% 36.18% 26.42%

35.86% 19.0% 32.56% 43.69%

25.08% 13.51% 25.52% 13.84%

20.62% 5.07% 26.49% 15.39%

(a) (b) (c) (d) (e)
Figure 6: Qualitative results on Middlebury 2014 [29] for networks trained on sf-all. Column (a) shows reference image, (b) to (e) disparity
maps obtained with GCNet [17], MS-GCNet, PSMNet [5] and MS-PSMNet, respectively. Bad2-noc rates are superimposed on the disparity
maps.
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(a) (b) (c)

Figure 7: Qualitative results on KITTI raw sequence 2011 10 03 drive 0034 sync, for networks trained on sf-all. (a) Left input frame. (b)
Disparity map estimated by GCNet [17]. (c) Disparity map estimated by our MS-GCNet. Both networks are trained on the same synthetic
data sf-all.
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(a) (b) (c)

Figure 8: Qualitative results on KITTI raw sequence 2011 10 03 drive 0034 sync, for networks trained on sf-all. (a) Left input frame.
(b) Disparity map estimated by PSMNet [5]. (c) Disparity map estimated by our MS-PSMNet. Both networks are trained on the same
synthetic data sf-all.
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