

Matching-space Stereo Networks for Cross-domain Generalization

Changjiang Cai

Matteo Poggi

Stefano Mattoccia

Philippos Mordohai

Code: https://github.com/ccj5351/MS-Nets

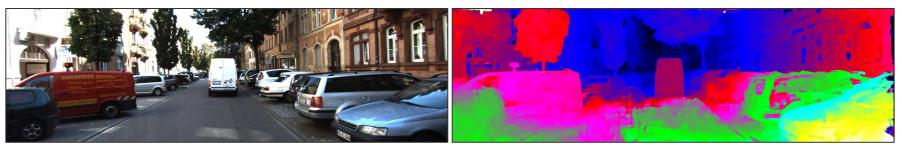
Motivation

- Annotated data for stereo matching is challenging to collect
 - Expensive LiDAR and Stereo Camera Rig
 - Ground truth depth is **sparse**

- SOTA deep networks generalize poorly to unseen domain
 - Specialize on specific domains when enough data are available for training
 - Less effective at generalization to very different domains or with high variety of image content
- Domain generalization is a solution
 - To tackle the domain shift problem, two main strategies are involved
 - synthetic data by graphics engines
 - domain adaptation

Challenges in Synthetic-to-Real

- The large domain gap between synthetic and realistic data still pose difficulties
 - Reflective surfaces, sensor noise and illumination conditions have not been modeled well in the simulators
- Deep stereo networks suffer large accuracy drops moving from synthetic to real scenes
 - > E.g., PSMNet pretrained on Scene Flow produces bad disparity results of KITTI15



Left Image

Disparity Map by PSMNet

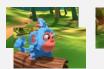
Challenges in Domain Adaptation

- Domain adaptation requires annotated data from the target domain
- Solutions: unsupervised learning (not in this talk) or methods that generalize well without adaptation
- An advantage of methods that generalize well
 - they can be effective in continuously changing environments, e.g. autonomous driving, without re-training or adaptation
 - being this possibility more appealing for practical applications
- Goal: sacrifice as little accuracy as possible to attain generalization

Target Domains

Domain Generalization

Source Domain: Scene Flow



Monkaa

FlyingThings3D

Driving

Generalize

without finetuning or adaptation

Target 1&2: KITTI 2012&2015

Target 3: Middlebury 2014

Target 4: ETH3D Low-res two view

Domain Generalization

Source Domain: Scene Flow Monkaa Generalize without FlyingThings3D finetuning or adaptation Driving

Target 1&2: KITTI 2012&2015

Target 3: Middlebury 2014

Target 4: ETH3D Low-res two view

Domain Generalization

Source Domain: Scene Flow

Monkaa

FlyingThings3D

Driving

without finetuning or adaptation

Target 1&2: KITTI 2012&2015

Target 3: Middlebury 2014

Target 4: ETH3D Low-res two view

Target Domains

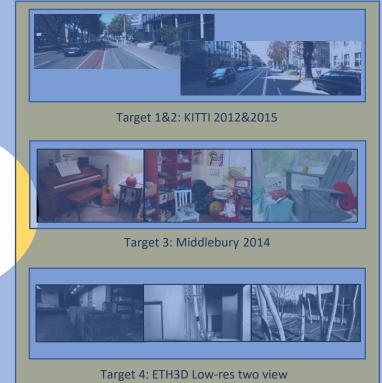
Domain Generalization

Source Domain: Scene Flow

Monkaa

FlyingThings3D

Driving



Target Domains

Over-specialization to Color Space

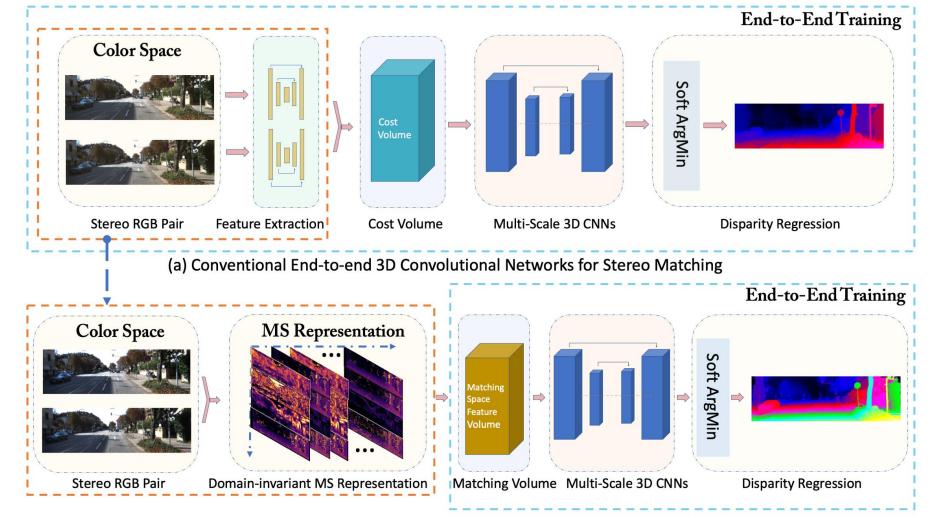
- The lack of generalization, or over-specialization, is caused by the learning process being driven by image content
 - Learn how to match pixels by strongly relying on appearance properties
 - Suffer accuracy drops when such content differs from the training data

• Better generalization can be achieved by choosing a representation insensitive to common variations of the input images

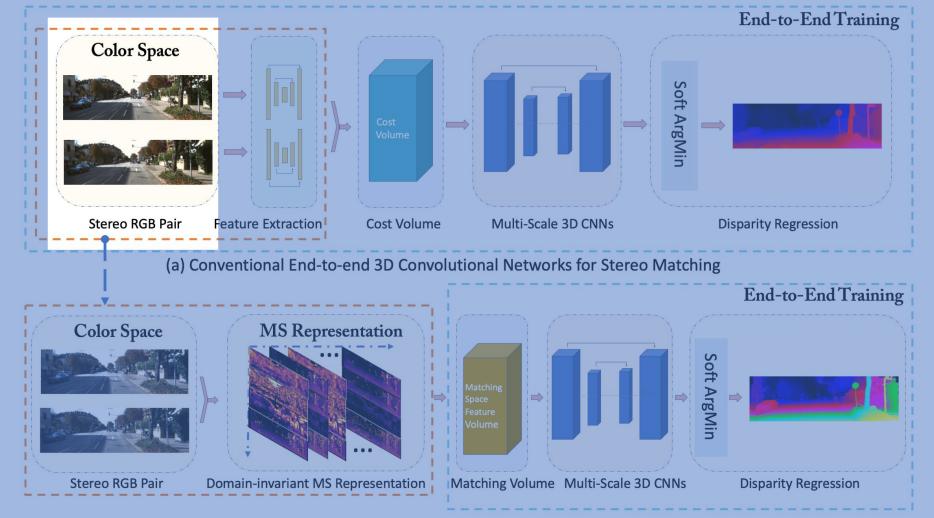
Matching Space Stereo Networks

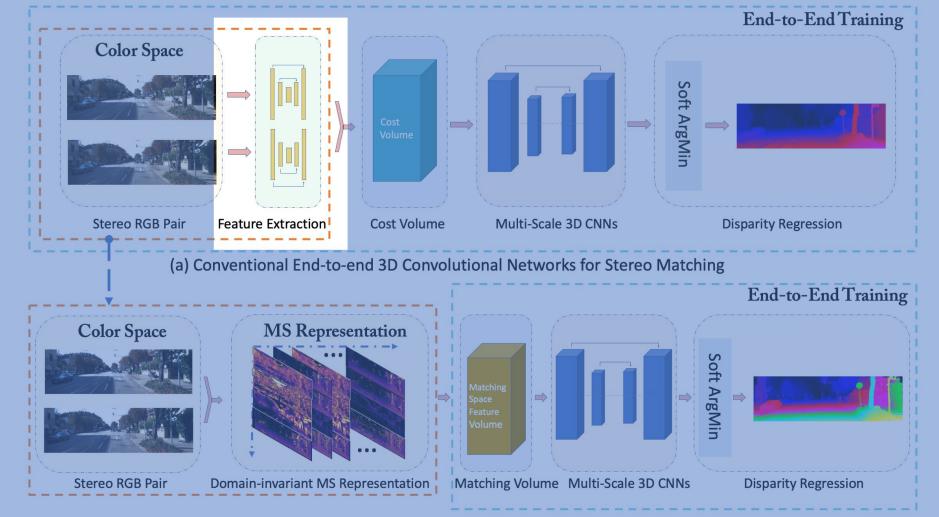
• Replace learning-based feature extraction from RGB with matching functions and confidence measures from conventional wisdom

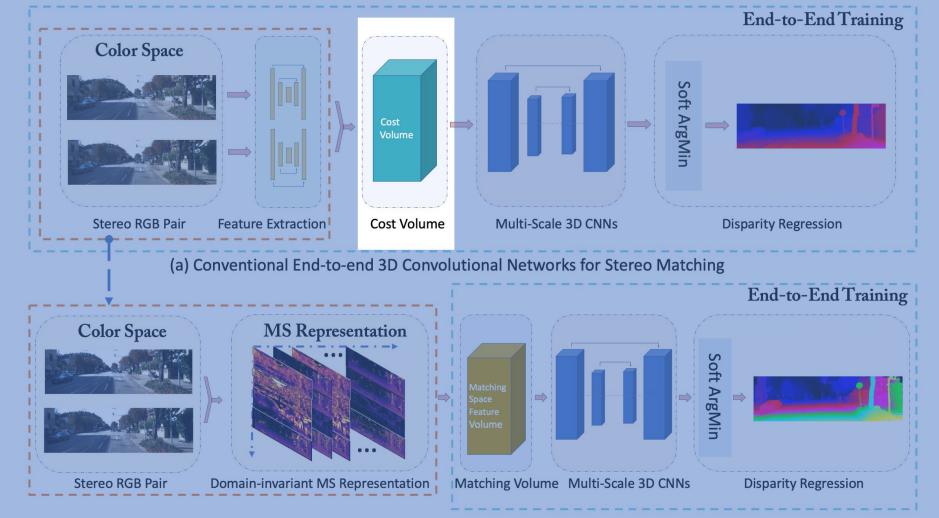
- Move learning process from color space to *Matching Space (MS)*, avoiding overspecialization to domain specific features
- Modify GCNet and PSMNet architectures to accept MS inputs
 - PSMNet allocates 63.5% of parameters to unary feature extraction
 - GCNet allocates 88.5% of parameters to 3D convolutions

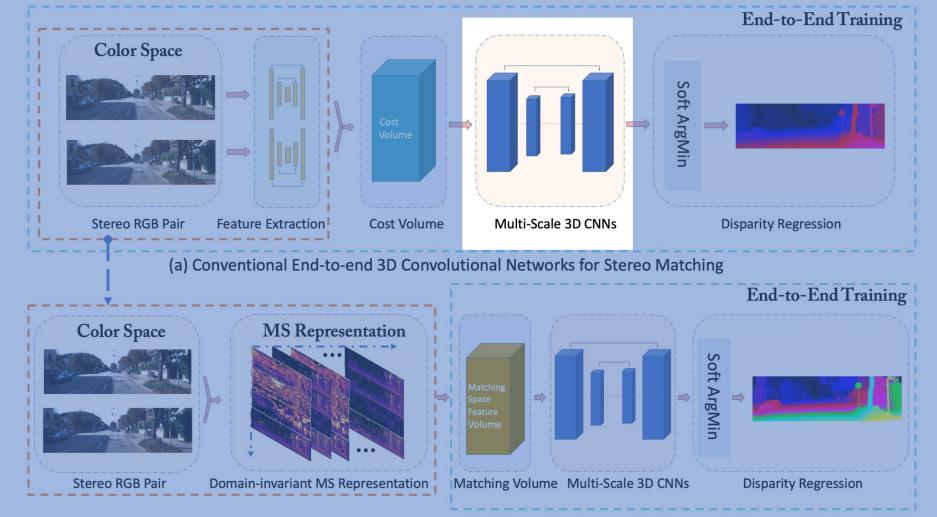


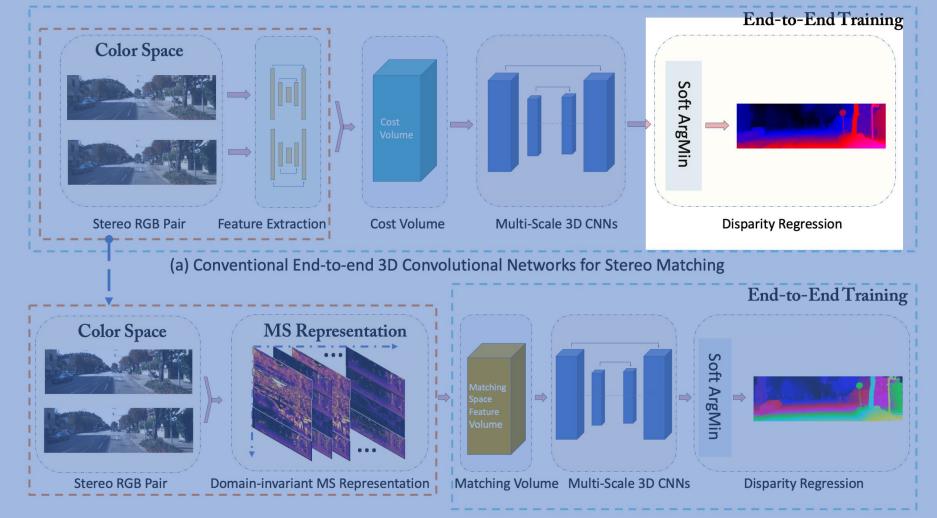


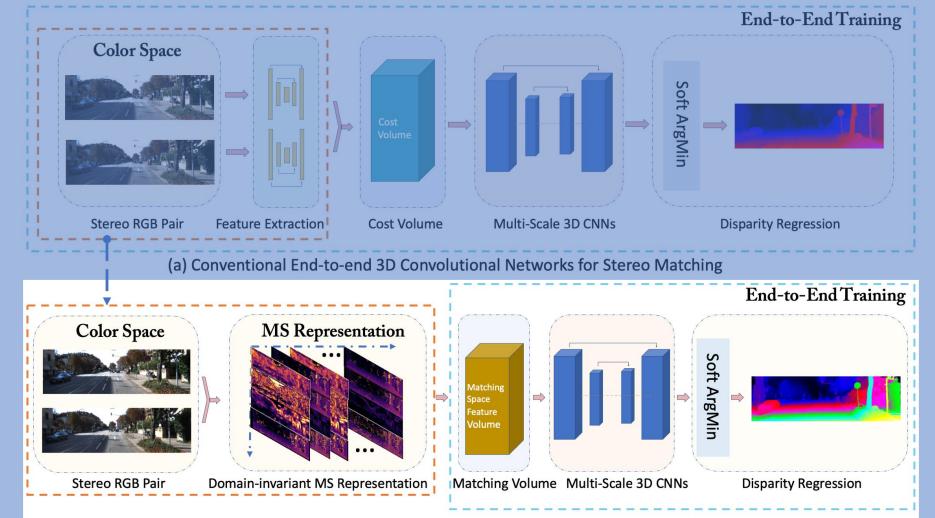


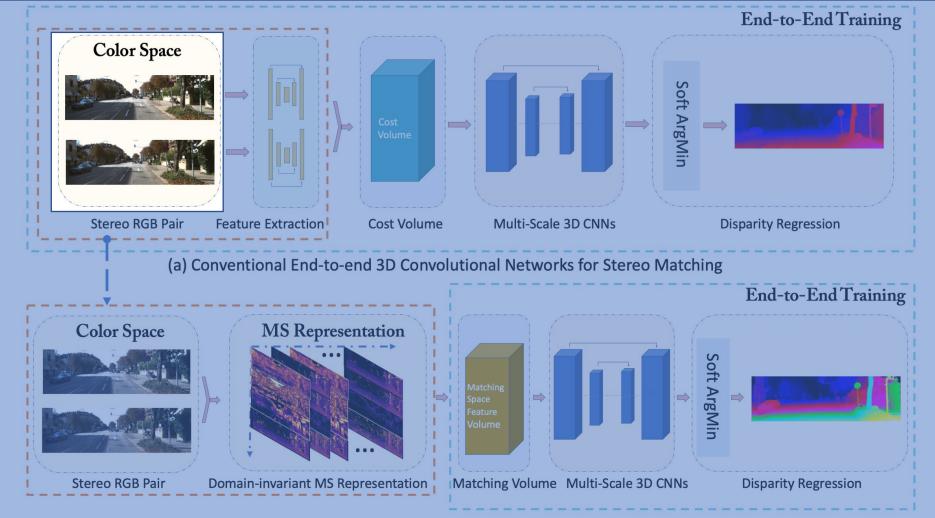


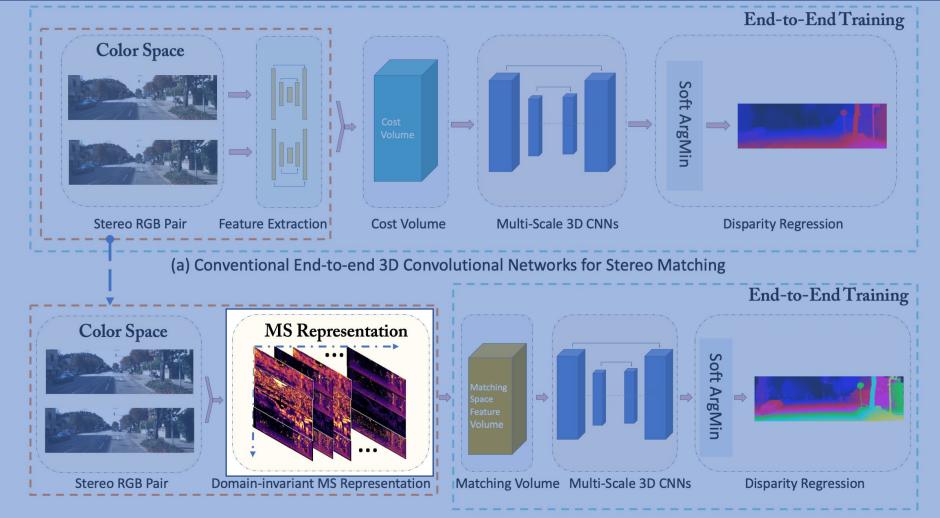


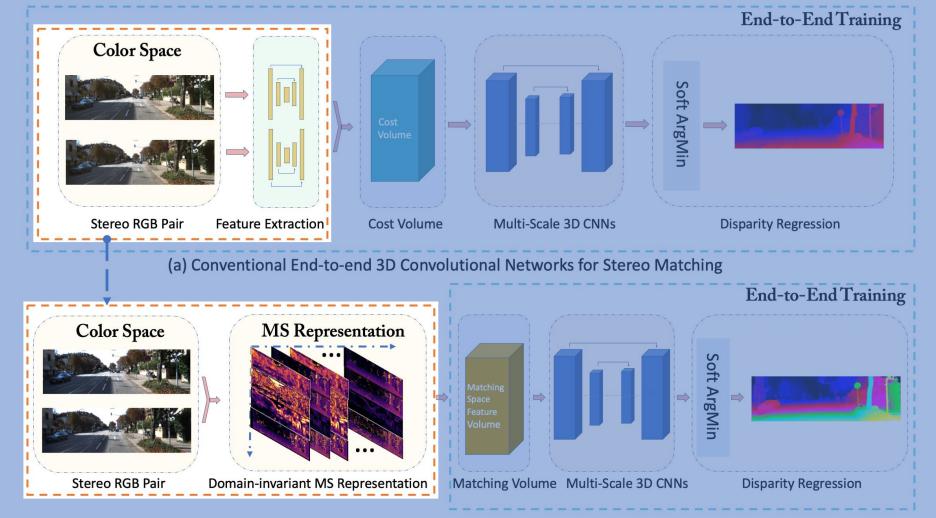


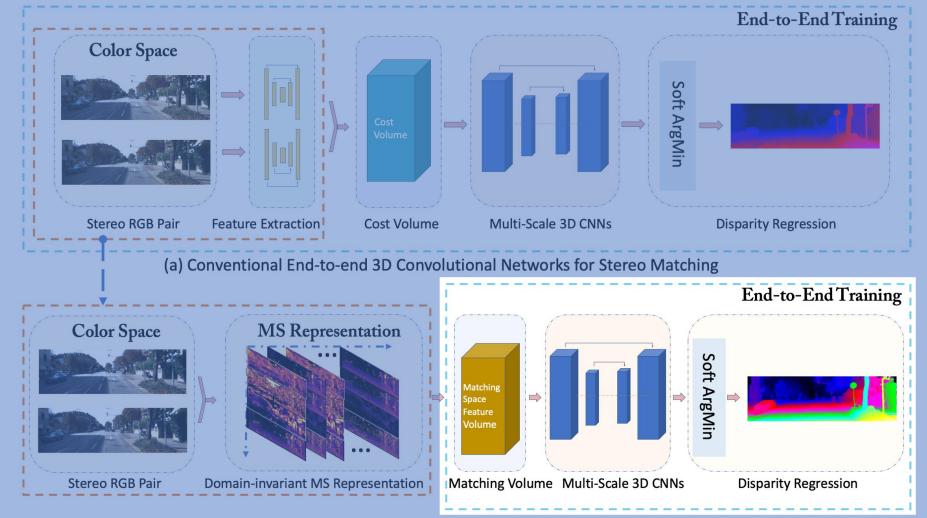












Matching Functions and Confidence Measures

- We adopt four matching functions and associated confidence scores
- Four matchers include
 - normalized cross correlation (NCC)
 - zero-mean sum of absolute differences (ZSAD)
 - census transform (CENSUS)
 - absolute differences of the horizontal Sobel operator (SOBEL)
- Four confidence scores
 - each matcher's likelihood, a confidence measure of each disparity for a given pixel
 - obtained by converting the cost curve to a probability density function for each disparity under consideration

Datasets: Sim2Real

- Scene Flow (SF)
 - synthetic dataset of 39k stereo pairs with dense ground truth
 - 3 subsets: Driving, Monkaa, and FlyingThings3D

• KITTI 2015 (KT15) & KITTI 2012 (KT12)

- a real dataset of street views, with sparse ground truth captured by LiDAR
- around 200 training and 200 testing stereo pairs
- Middlebury 2014 (MB)
 - Indoor scenes with high variability, with dense ground truth captured by structured light
 - 15 training, 15 testing and 12 extra stereo pairs
- ETH3D Low-res two view (ETH)
 - 27 training and 20 testing stereo pairs
 - Quasi-dense ground truth

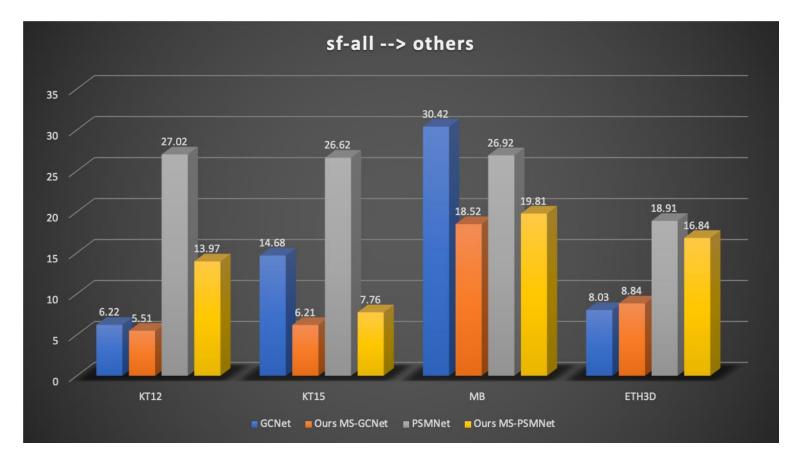
Scene Flow (SF)

Target 1&2: KITTI 2012&2015

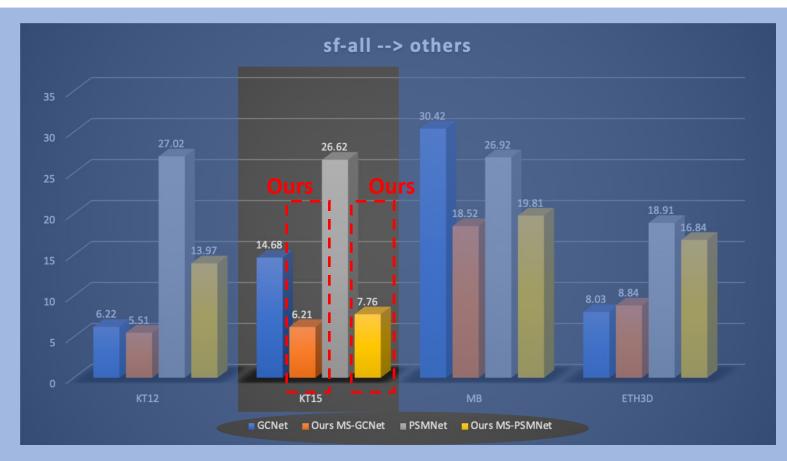
Target 3: Middlebury 2014

Target 4: ETH3D Low-res two view

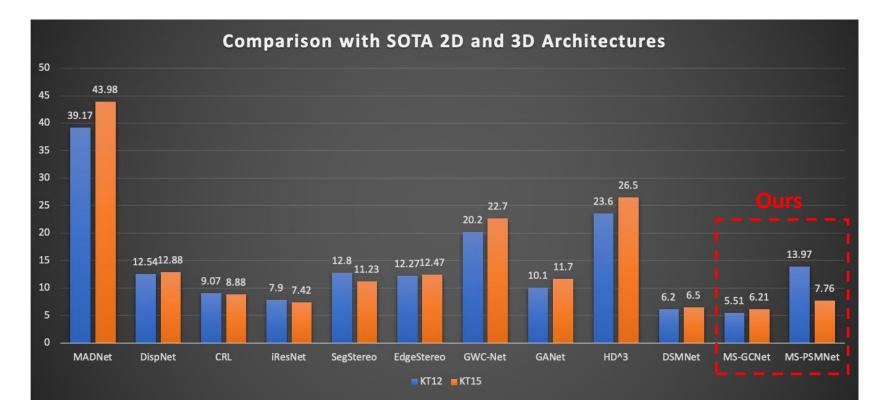
MSNets: Sim2Real (sf-all -> real)



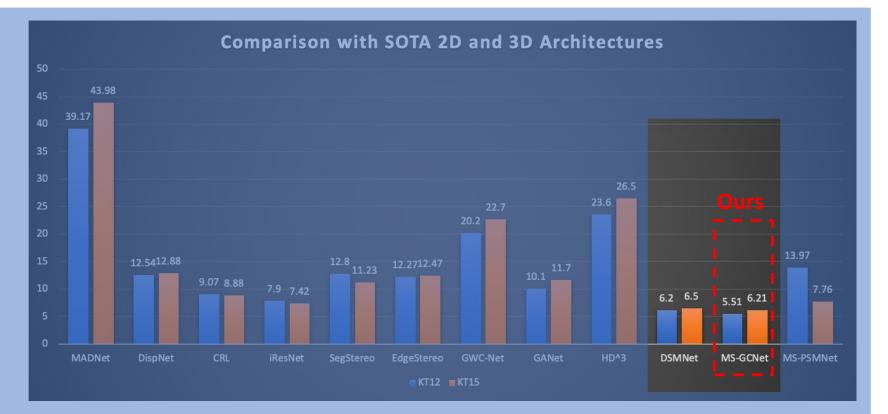
MSNets: Sim2Real (sf-all -> real)



MSNets: Sim2Real (VS SOTA Networks)



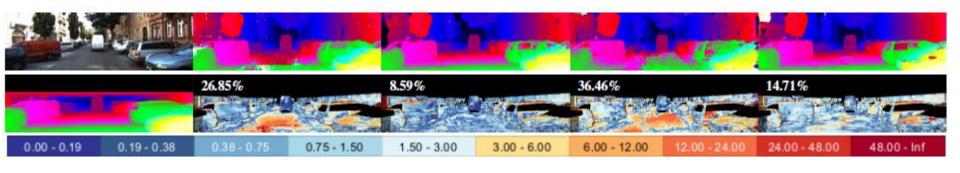
MSNets: Sim2Real (VS SOTA Networks)



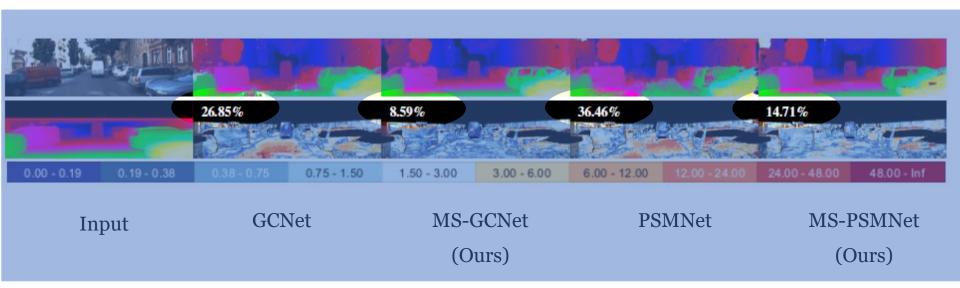
MSNets: Evaluation on Real Benchmark KITTI 2015

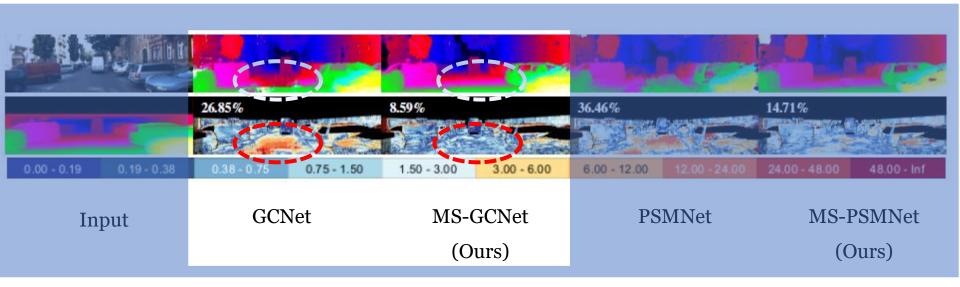
			11			11
Models	All-D1 %			Noc-D1 %		
	bg	fb	all	bg	fg	all
MS-GCNet (Ours)	2.58	6.83	3.29	2.19	5.59	2.75
GC-Net	2.21	6.16	2.87	2.02	5.58	2.61
MS-PSMNet (Ours)	2.15	5.01	2.63	1.99	4.52	2.41
PSM-Net	1.86	4.62	2.32	1.71	4.31	2.14

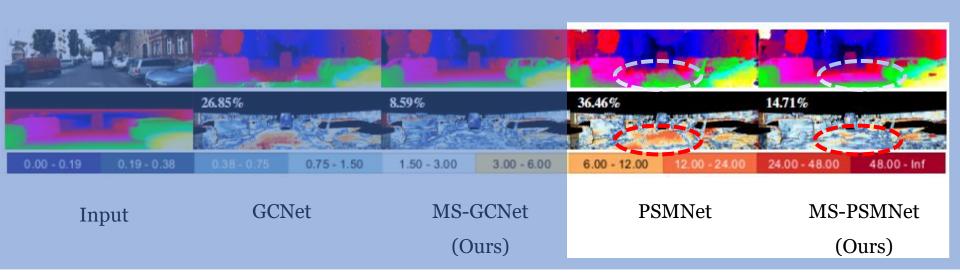
Test results on KITTI 2015 Benchmark

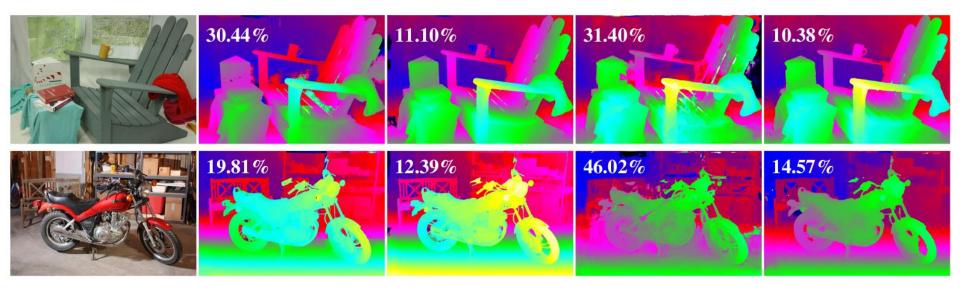


Input	GCNet	MS-GCNet	PSMNet	MS-PSMNet
		(Ours)		(Ours)

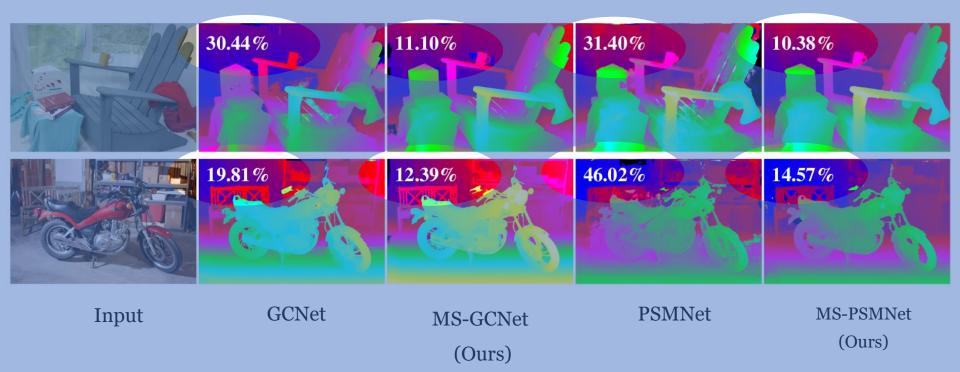


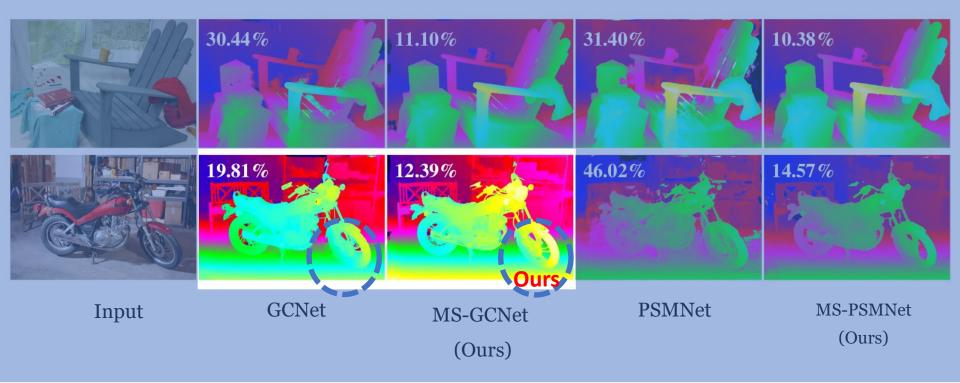


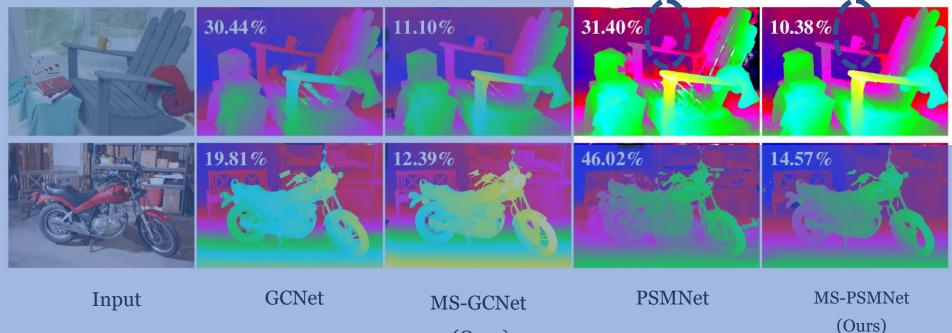




Input GCNet MS-GCNet PSMNet MS-PSMNet (Ours)

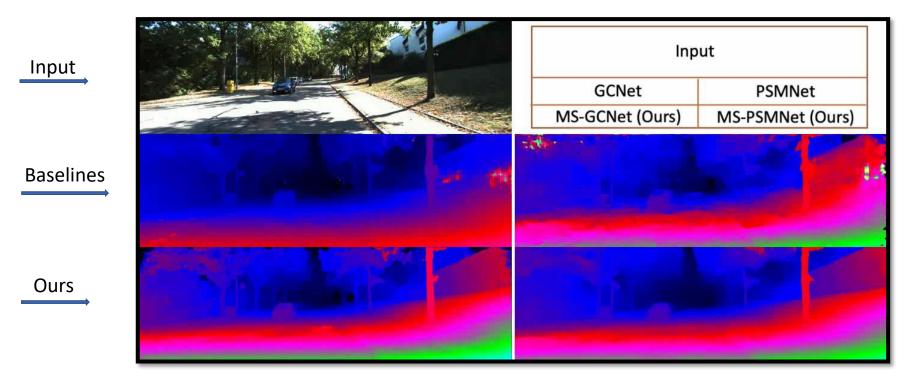






(Ours)

MSNets: Sim2Real (sf-all -> KT Raw)



Summary

- We show that not exposing CNNs directly to image appearance leads to better generalization properties
- A novel family of architectures, MS-Nets, and one of its possible implementations built on conventional wisdom and popular 3D networks
- An extensive set of experiments highlighting the behavior of both 3D and MS-Nets under domain shift
- Code is available at https://github.com/ccj5351/MS-Nets