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ABSTRACT
In this paper, we present epitome transform coding, an approach to
joint compression of a set of images. The first step of the epitome
transform coding is to construct a compact epitome image repre-
sentation for an image collection, where each image block extract-
ed from each image in the collection has a corresponding prototype
block in the epitome. Then the indices of the prototype in the epit-
ome image as well as the residue (a.k.a, the difference between the
image block and its corresponding prototype) are compressed, re-
spectively. As demonstrated by our extensive experimental evalua-
tion, the proposed epitome transform coding can effectively exploit
the repetitive patterns and hence redundancies across the images in
the collection for better compression. To date, such cross image
redundancy has not been effectively used to improve compression.
To the best of our knowledge, the epitome transform coding rep-
resents the first of its kind for joint compression of a collection
of images. When compared with JPEG, which compresses each
image independently, the epitome transform coding shows clearly
improvement in terms of rate-distortion when compressing a col-
lection of images.

Categories and Subject Descriptors
I.4.9 [Image processing and Computer Vision]: Applications;
I.4.5 [Image processing and Computer Vision]: Reconstruction;
E.4 [Coding And Information Theory]: Data Compaction and
Compression

General Terms
Algorithm, Experimentation, Performance

Keywords
Image Compression, Image Epitome, Reconstruction, Residual

1. INTRODUCTION
In this era of digital Big Data, over 1.8 billion photos are upload-

ed every day in 2014 [12], via social networking platforms such as
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Instagram and Facebook, which urgently motivates efficient image
compression for bandwidth saving and economic storage for trans-
mitting. A large portion of the photos shared on the Internet, con-
tain highly similar textured regions, including the lawn, the sky,
and the facade of skyscrapers, etc. For example, the photos cap-
tured by tourists in famous landmarks from different perspectives,
contain the similar objects and people. Thus it becomes favorable
to efficiently exploit the similarity and repetition within and across
them, for obtaining better compression. Based on this motivation,
we present an epitome transforming coding towards joint compres-
sion of a collection of images, by taking advantage of the spatially
textural re-occurrences and redundancies among them.

Our proposed image compression method, is developed based
on epitome transform coding. It starts with the construction of a
single compact and generative epitome of all the images in the col-
lection [6, 9], where each fixed-size rectangular image patch, ex-
tracted from each image in the collection, is transformed to a cor-
responding prototype block in the epitome. Then the indices of
the prototype in the epitome, as well as the residual (i.e., the differ-
ence between the image block and its corresponding prototype), are
further compressed via lossy and/or lossless compression schemes.
Specifically, in the first step of our approach, the Expectation Max-
imization (EM) algorithm is applied to learn a condensed epito-
me, which contains high-order statistics of the texture and shape
properties of the images in the collection. During learning, a patch
extracted from the training images, is mapped into (i.e., appears)
somewhere in the epitome with a local maximal probability, and
the probability and the associated transform map are iteratively up-
dated, respectively. After finishing epitome learning, those images
are reconstructed directly from the epitome and transform maps.
To achieve good compression ratio for our method, the residues
is encoded via appropriate compression techniques. To sum up,
our approach based on epitome transform coding, first learns the
epitome and the associated transform mapping, then implements
reconstruction, and encodes and decodes epitome, transform map-
s, and residuals, in order to gain a good performance evaluated by
rate-distortion.

Traditional compression techniques still focus on a single im-
age compression. For example, JPEG [19] and JPEG2000 [18]
have demonstrated great performance when compressing a single
image. Since they only focus on the local self-similarity with-
in one image, they cannot provide superiority when compressing
a set of similar image, compared with a single image. Unlike
JPEG and JPEG2000, which compress each image independent-
ly, our method exploits the similarity across a set of images to gain
better joint compression ratio. For video compression techniques,
like MPEG, exploit block-based motion vectors between succes-
sive frames to make a prediction from frame-to-frame. However,
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Figure 1: Learning the epitome E of a collection of images {Ii}, and doing the reconstruction via the epitome and the associated transform
map {Φi}. Then the entropy-encoded quantized bitstream of epitome, transform maps, and residuals, can be transmitted for the following
rendering after decoding.
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Figure 2: The transmitted bitstream of the epitome, transform maps, as well as the residuals, will be decoded for rendering final reconstruc-
tions.

via learning epitome through a collection of training image patch-
es, our epitome-based method is able to combine all the repetition
in texture and shape at once, thus works well on the prediction.

Multi-image compression by exploiting the redundance is being
popular among researchers in this field. One typical kind of ap-
proach involves fractal compression, where iterated function sys-
tems are employed to reconstruct an image as the attractor of a
group of recursive transformations in geometry and color [5,16,20].
An image cluster compression using a multi-image fractal parti-
tioned iterated function systems, is proposed to compress a group
of images by building a special eigenimage library for extracting
principal component based on similarities between images [14].
In [13], Karhunen-Loeve compression algorithm was extended to
multiple images. In order to utilize textural redundancy among a
group of images, the algorithm proposed in [15] extracts textured
regions from an image, and merges those textures with similar tex-
ture data from other images. Another type of approach based on

sparse coding has been introduced in [1], to extract epitome-like
signatures from images using sparse coding and dictionary learn-
ing. In [2], structured dictionaries are learned from an epitome,
or a set of epitomes, to provide sparse image decompositions with
shift-invariance properties.

Another category of multi-image compression involves epitome-
based techniques. The epitome, as well as appropriate inference
algorithms, has been extensively applied in the field of image seg-
mentation, denoising, recognition, texture synthesis, video super-
resolution and video interpolation [4, 8]. Recently some epitome-
based image compression algorithms have been proposed, and pro-
vide state-of-the-art solutions. Wang et al. [20] presented a method
of factoring the repeated content within and among images, which
obtains better performance the JPEG2000 at high compression rates.
Without considering the residuals between the input and the epito-
mic reconstruction, the quality of the finally rendered imagesuffers
from lower Peak Signal-to-Noise Ration (PSNR). Instead, our ap-



proach incorporates the residues, therefore achieves a good recon-
struction quality (PSNR ≈ 37) when the compression rate is large
than 0.8 bits per pixel (bbp).

The overall framework is illustrated in Figure 1 and Figure 2.
Specifically, it begins with generating a condensed epitome, which
contains many of the shape and texture characteristics within and
among those similar images, and the associated transform maps,
so that each image can be efficiently reconstructed via them. Then
based on the epitomic reconstruction, the residuals are calculated,
encoded/decoded, and transmitted, together with the epitome and
the transform mapping, to the codec for rendering the output im-
ages.

The contributions of this work are summarized as follows:

• Our proposed epitome transform coding represents the first
of its kind for joint compression of a collection of images,
which share highly similar textured regions.

• A dataset is constructed, currently including 5 categories of
photos, containing both similar textures and distinctive ones.

• A detailed and systematic parametric configuration is tested
to guarantee a better compression performance.

• An end-to-end comparatione between the proposed approach
and JPEG, evaluated via rate-distortion, are provided to show
the superiority of our method, when compressing a collection
of similar images.

The remainder of this paper is organized as follows. The overall
work flow and the essential technique of our epitome transform
encoding approach, towards joint compression of a set of images,
are demonstrated in section 2. After that, in section 3 different
variants of our approach are testified in a series of experiments,
and finally the results are shown and compared with that of JPEG
in section 4, in terms of rate-distortion.

2. APPROACH
Our approach utilizes the similarity among a set of similar im-

ages via epitome transform coding, to achieve high joint compres-
sion ratio. This section describes the overall framework and core
techniques used in the approach. For a collection of images I = {Ii}.
The first step is to construct a compact epitome and do image re-
construction, followed by encoding the epitome, transform maps,
and the residuals, i.e., the difference between the original input im-
ages and their corresponding epitomic reconstructions. Figure 1
and Figure 2 illustrate the overall work flow of our approach as
follows:

• To construct a condensed epitome E of a set of images{Ii},
which contains many of the shape and texture characteristics
within and among those similar input images;

• For each image Ii, to learn transform map φi, consisting of
the (row, column) coordinates of each transformed image
patch in the epitome E, so that each image is efficiently re-
constructed via {φi} and E;

• To generate epitome bitstream by encoding the epitome E
and transform maps {φi};

• Based on input images and the prediction reconstructed from
the decoded epitome bitstream, to generate, decode, and trans-
mit the residual bitstream {Ri};

• Decoding the bitstream of epitome E, {φi} , and residuals
{Ri}, for rendering the final output images;

• Appropriate quantization and compression methods are em-
ployed, in order to gain better performance in terms of recon-
struction quality and compression ration, evaluated by PSNR
and bbp, respectively.

2.1 Epitome Learning and Reconstruction
Following the formulas of the epitome model in [6,9], a brief re-

view is provided. For a collection ofN images, denoted as {In}Nn=1

, a set of overlapping training patches {Xi}Pi=1 are extracted. Each
image patch Xi is interpreted as a function x(k) on the image do-
main K (i.e., the set of all the pixels in the image). k, as a 2-D
vector representing the (r, c) coordinate of the pixel in Xi, equals,

k = (r, c)T (1)

where, r and c are the row and column indices of the pixel in image
patch Xi. Thus a 3-channel color image patch Xi, of the size s×s,
is expressed as

Xi = x(k) = (xr(k), xg(k), xb(k))T (2)

where k ∈ K. The He ×We epitome E is actually a mixture of
HeWe Gaussian distribution, notated as

{Norm(µj,Σj)}HeWe
j=1 (3)

where µj is the mean, and Σj is the covariance matrix. The hidden
transform mapping Φi (only simple translational mapping is con-
sidered here), will translate each image patch Xi into some position
e = Φi(k) in epitome E, with the maximal posterior probability
P (Φi|Xi,E). Given Φi and E, the original images can be effi-
ciently reconstructed. All the parameters are learned iteratively by
EM algorithm [3], and in our experiments we run EM for 10 itera-
tions.

2.1.1 Initial Epitomic Configuration
Due to each image patch Xi, an s × s matrix composed of 3 −

D vector x(k) = (xr(k), xg(k), xb(k))T , thus we consider the
gaussian distribution of 3-D random variables, and for simplicity
x(k) is denoted as x,

P (x) =
1√

(2π)3 |Σ|
e−

1
2

(x−µ)T Σ−1(x−µ) (4)

where, µ = (µr, µg, µb)
T , and Σ = σ2

r 0 0

0 σ2
g 0

0 0 σ2
b


This Gaussian distribution is interpreted as the multiplication of

three independent Gaussian ones of 1-D variable, i.e.,

P (x) ∝ P (xr)P (xg)P (xb) (5)

and for each channel xt ∈ {xr , xg , xb},

P (xt) ∝
1√

2π |σt|
e−

1
2

(xt−µt)2σ−1
t (6)

where, t ∈ {r, g, b}.
ForHe×We epitome E, we separately configure the parameters

of each color channel as follows:

• The variances are initialized as 1s’, i.e., σr = σg = σb =
1.0;



Table 1: EM algorithm for learning the epitome E, and the trans-
form map Φ

EM algorithm for epitome learning and image reconstruc-
tion.
Input: a number of patches {Xi}Pi=1 extracted out of the
image set {In}Nn=1

Output: a condensed He × We epitome E, composed of
mixture of HeWe Gaussian components, and the associated
transform map Φ = {Φi}Pi=1.
01: Initialization: set the variances as 1s’, and the means
was randomized with Gaussian noise, whose mean and vari-
ance is determined by the mean and the standard deviation
of all pixel values in the same channel of the images.
02: for 10 times EM iteration
03: for n = 1 : N, i.e., each image In
04: for i = 1 : P, i.e., each image patch Xi
05: calculate posterior for each channel
06: find Φi based on maximal posterior
07: end for
08: to sum up posterior through 3 channels
09: to normalize posterior
10: to accumulate posterior information
11: end for
12: update epitome E for next EM iteration
13: end EM
14: Image reconstruction based on E and Φ

• The means µr , µg , µb are initialized according to another
Gaussian distribution, whose mean and variance equal the
mean and variance of all values in the same channel.

For one category image, named as ed-5 shown in Table 2, the means
µr , µg , µb are initialized with three Gaussian distribution, µ =
0.397, 0.34, 0.157, and σ = 0.246, 0.248, 0.137 , respectively.

2.1.2 EM Algorithm in Epitome Learning
EM algorithm iteratively maximize the log-probability [6,7,10],

L(E) =

P∑
i=1

log(
∑

Φj∈Φ

ρ(Φj)p(Xi|Φj , E)) (7)

that image patches {Xi}Pi=1 were generated from the epitome E,
according to the posterior distribution over the transform mapping
Φj ,

p(Φj |Xi, E) =
ρ(Φj)p(Xi|Φj , E)∑

Φj∈Φ ρ(Φj)p(Xi|Φj , E)
(8)

which will be calculated in the current E step of EM, and be used
for the next EM iteration. The EM flowchart is illustrated in Ta-
ble 1.

2.2 Epitome Encoding
During the epitome learning, all the parameters are represented

by a 64-bit floating number between 0 and 1 for calculation. But in
order to reduce the overhead of our approach, after the computing,
the epitome is encoded and compressed with different techniques,
such as JPEG and PNG. In our experiments, we have tested that
the epitome, multiplied by 255, can be encoded using 8-bit integers
and compressed by JPEG, has small file size and the almost same
reconstruction quality evaluated via PSNR, compared with that en-
coded by 64-bit floating numbers saved in the YML file, as shown
in Table 2.

Table 2: comparison between 8-bit 64-bit epitomes

epitome
size

64-bit
double

8-bit
integer

YML file
size/KB

PSNR
/dB

JPEG file
size/KB

PSNR
/dB

64*64 330 28.6783 4 28.5643
128*128 1320 29.9399 14 29.771
256*256 5000 31.3099 58 31.0858

2.3 Transform Map Encoding
After the epitome construction in section 2.1, the image patch-

es are mapped into the epitome. Due to the highly repeating tex-
ture and shape within and between them, a large number of patches
will be transformed to nearby or even the same position in epito-
me. Therefore the transform maps themselves are spatially redun-
dant, similar to the input images, shown in Figure 3. In addition,
the transform maps contain the row and column coordinates of the
transformed patches in the epitome model. They can also be uni-
formly quantized to some extend, without obvious loss of the epit-
omic reconstruction quality, shown in Figure 4.

To sum up, the transform map is highly redundant both spatially
and numerically. So it is quantized to some extend and entropy
encoded, even at the cost of some reconstruction error. How to
effectively encode those column and row indices is essential to the
final compression ration. Encoding those indices with less bits, will
not only result in efficient storage, but also affect the reconstruction
quality. Therefore, there exists a tradeoff between the transform
map compression and the epitomic image reconstruction quality. A
large transform map, generating high quality of reconstruction, will
have large file size, and thus reduce the compression ratio, and vice
versa.

(a) Input 616 X 408 (c)77 X 51

(b)77 X 51

Figure 3: The transform maps, consisting of (a) column indices,
and (b) row indices, are spatially redundant and similar to the input
image (a).

2.4 Residual Processing and Encoding
As another key part of our proposed method, how to encode and

compress the residual between the original images and the epit-
omic reconstructions, plays an important role of achieving large
compression ration, and at the same time, retaining the high recon-
struction quality. Those procedures are involved as below.

2.4.1 Thresholding
Since the epitome reconstruction is a good prediction of the input

images, a majority of pixels in the sparse residuals have small inten-
sities. After analyzing their histograms, an appropriate threshold is
able to be set up, to ignore the rarely occurring intensities below



(b) PSNR = 28.0524

(d) PSNR = 28.0245
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Figure 4: Do different level uniform quantization to the transfor-
m maps (higher value meaning less loss), and their corresponding
epitome reconstructions evaluated by the PSNR.

the threshold, and thus to encode the residual values with few bits.

2.4.2 Quantization and Compression
After appropriate threshold processing, those dense intensities in

residuals are then transmitted to quantizers for further compression.
Quantizing the residual in different levels will generate a series of
reconstruction qualities (i.e., PSNR) and compression ratio (i.e.,
bbp). The quantized residuals will be further entropy-compressed,
the same as what the JPEG or JPEG2000 do. In our experiments,
we apply JPEG2000 to do the lossless compression to the quantized
residuals after thresholding.

3. EXPERIMENTS

3.1 Datasets
Experiments are performed on our own dataset consisting of nat-

ural images in several categories, where all the images are kept in
the format of BMP. It contains 5 categories, i.e., Edwin, Howe Cen-
ter, Empire State Building, Flower, and Lacrosse, showin in Fig-
ure 5 and illustrated in Table 3. And the dataset has considered the
following:

• Natural images All the images in our dataset are
natural images. Each category contains similar objects, cap-
tured from different perspectives.

• Similarity Since our method exploits the similarity
and repetition within and across the images, the images of
each category contain similar shape and textures.

edpg flo esbhc

Figure 5: Our dataset consists of 5 categories, and each category is
further classified into several sub classes due to the variety of image
number.

Table 3: 4 categories of datasets used in our experiments.

Category Abbreviation Sub-category
Empire State

Building esb esb-23

Edwin ed ed-5, ed-8, ed-50,
ed-155, ed-255

Howe Center hc hc-6, hc-80, hc-150
Flower flo flo-10, flo-20, flo-50

Lacrosse la la-10

• Variety To testify that our approach is capable of
compressing well a variety of images, the dataset includes
variant and irregular shapes and textures both in high-frequency
and low-frequency.p

In addition, each category above is further classified into differ-
ent subclasses due to the number of images they contain. So we
name each sub-category using its abbreviate name followed by the
image numbers, like ed-5. The reason why we set up so many cat-
egories of images, is that we want to demonstrate that our method
can achieve reliable compression result within a large range of im-
age categories.

3.2 Experimental setup
Different experiments have been performed. Appropriate set-

up of parameters for epitome learning, image reconstruction, and
transform map and residual encoding, is very essential to the final
compression result, which will be evaluated by the rate-distortion
curves. With a series of parametric configuration, a number of rate-
distortion curves are generated, from which the optimal ones will
be picked out.

3.2.1 Image patch extraction
Given a set of images, the criteria of image patch extraction can

determine how many patches will be generated for learning epitome
and transform maps. Take one image in ed-5 dataset for example,
shown in Figure 6, its dimension is 1024× 768, and the epitome is
256×256. During the epitome learning, 8×8 patches are collected,
with fixed extraction spacing, like, 4-pixel of spacing, so that a
large number of overlapping patches are extracted for training an
informative epitome. The file size of transform maps is determined
by the number of image patches involved in the inference. Thus for
the reconstruction or inference, a range of sizes of patch spacing,
e.g., 4-, 6- and 8- pixel, is used to generate different number of
image patches and then transform maps.

As shown in Figure 7, three transform maps with the size of
255× 191, 171× 128, and 128× 96, respectively, have been pro-
duced due to three extraction steps of 4-, 6-, and 8-pixel.

Figure 8 compares the reconstruction from the 3 extraction steps.



Epitome, 256 X 256Input Image, 1024 X 768

Figure 6: A 1024 × 768 input image in ed-5, and the 256 × 256
epitome

Transform Map‐4, 255 X 191

Epitome Reconstruction‐4

Transform Map‐6, 
171 X 128

Transform Map‐8, 
128 X 96

Epitome Reconstruction‐8Epitome Reconstruction‐6

Figure 7: For image reconstruction, 3 kinds of extraction steps, 4-,
6- and 8- pixel, are used to generate different transform maps, in
order to find a better compression ratio.

Transform Map‐4, 255 X 191

Epitome Reconstruction‐4

Transform Map‐6, 
171 X 128

Transform Map‐8, 
128 X 96

Epitome Reconstruction‐8Epitome Reconstruction‐6

Figure 8: 3 kinds of extraction steps, 4-, 6- and 8- pixel, are used to
generate different epitome reconstruction.

Wherein, 4-pixel step, corresponding to the most dense patches ex-
traction, create the best reconstruction quality; In the reconstruction
of 8-pixel step, the blur boundary between the non-overlapping im-
age patches, is obvious. For 6-pixel step, it provides a good balance
between improving reconstruction quality and reducing the trans-
form maps’ size. Since the file size of transform maps and resid-
uals, and efficient encoding and/or compressing them, are the two
important factors affecting the compression ratio of our approach.
The rate-distortion results are evaluated for comparing those three
patch extraction methods, and choosing an optimal solution out of
them. In terms of PSNR and BBP, as shown in Figure 9, the 6-pixel
step achieves a better performance, compared with the other two
cases.

3.2.2 Parametric Configuration
As we have known before, the transform maps and residuals are

key factor for our approach’s pursuing higher PSNR and lower bit
rates for image compression. Thus reducing their file size itself,
and the appropriately designed compression technique can dramat-
ically improve the performance of our proposed method. In addi-
tion, some parameters not only determine the compression result,
but also the computational complexity, since an expensive com-
putation of convolution, fast fourier transform are involved. The
following will set up those specific parameters.

• Patch Size s We set up different strategies for s, since

Figure 9: The rate-distortion of our epitome-based impage com-
pression method on dataset ed-5, for three kind of extraction steps,
4-, 6- and 8- pixel.

32‐pixel patch4‐pixel patch 8‐pixel patch 16‐pixel patch

8‐pixel patch reconstruction4‐pixel patch reconstruction 32‐pixel patch reconstruction

Figure 10: 3 kinds of patch size are used to generate different re-
construction quality.

32‐pixel patch4‐pixel patch 8‐pixel patch 16‐pixel patch

8‐pixel patch reconstruction4‐pixel patch reconstruction 32‐pixel patch reconstruction

Figure 11: Image patch sizes affect the generating of epitome. S-
maller images will help training the details in the input images.

it affects the epitome learning and reconstruction differently.
During the learning stage, a sequent of size 4, 8, 16 of patch-
es are extracted for training the epitome. Smaller patch can
capture more details, but larger patch is useful to preserve the
completeness of the texture and shape occurring in the input
images. If only using the fixed s, as illustrated in Figure 10,
the reconstruction quality deteriorates greatly when the patch
size varies from 4 to 32. And in Figure 11, we can see the
image patch sizes affect the generating of epitome. Smaller
image patches is helpful for training the details in the input
images. Still the image patch can not be small enough, since
they will destroy the flat information existing in large image
blocks, and generate more transform maps. It will increase
the difficulty of encoding, and reduce the final compression
ratio of our method. Thus during the reconstruction process,
we find 8 × 8 patches work well in terms of reconstruction
quality and compression ratio.

• Spacing of Patch Extraction ∆s This parameter to-
gether with s, determines how and how many training patch-



es will be extracted out of the input images, and further the
file size of associated transform maps. In our experiments,
this parameter ranges from s

2
to s. Since we set patch size

s being 8 for image reconstruction, then accordingly ∆s e-
quals 4, 6, and 8. As we have discussed previously, 4-, 6- and
8-pixel steps will generate transform maps in different scales,
like the three mapping with the size of 255×191, 171×128,
and 128×96 shown in Figure 7. They can be transmitted sep-
arately to render multi-scale images. Or the specific parts of
the 255× 191 transform map will be transmitted separately,
generating the reconstruction from coarsely to finely.

• Epitome Size He In our experiments the epitome is
square, i.e., its height and width are identical. Thus for sim-
plicity, we only use its height when referring to its dimen-
sion. The height of epitome affects computational complex-
ity, reconstruction quality, and compression ratio. Since for
each convolutional calculation via FFT between the s × s
patch and the He ×He epitome E, the complexity for FFT
isO(H2

e log2 H
2
e ). Thus when the epitome size grows twice,

the complexity only for FFT will be increased by over three
times. In addition, large epitome, albeit beneficial for good
reconstruction, takes up much physical storage, and conse-
quently do not clearly improve the final compression ratio.
We consider a series of heights varying from 128 to 512
in our experiments. As Figure 12 shown, in terms of rate-
distortion, the performance for He = 512 is better than
the others. But considering the computational complexity,
He = 256 provides a good balance between the compression
performance and the time consuming for epitome transform
coding.

Figure 12: Rate-distortion curves calculated for 3 epitome sizes
128, 256, and 512, on images ed-5.

• Transformation Map Quantization How to effective-
ly encode/decode the indices is another factor, essential to
the final compression ration. Given the epitome model with
dimension of 256 × 256, the two translation coefficients of
(row, column) can be represented by 2× 8 = 16 bits inte-
gral numbers. In addition, the transform map Φ is itself high-
ly redundant both spatially and numerically. So it is quan-
tized to some extend and entropy encoded, even at the cost of
some reconstruction error. On one hand, the transform map
Φ compresses well due to its spacial coherence and numeri-
cal redundance. On the other hand, the map is quantized in
different quantization level, for lossy compression. In our ex-

periments, we set the quantization level as 100/100 (i.e., no
quantization loss), 60/100 (i.e., 40% loss), and 20/100(i.e.,
80% loss), to seek an optimal performance evaluated by the
rate-distortion curves. As shown in Figure 13, the 60/100
quantizer is able to achieve the best performance, although
nearly the same as that of the 60/100 one.

Figure 13: Compression performance evaluated via rate-distortion
curves, for 3 different quantization levels to transform maps, on
images ed-5.

• Image Number Our approach exploits the similarity
and repetition, within and across the images in the collec-
tion, to pursue a joint compression of them. Not only the
parameters discussed above, the number of the images in a
collection, determines the number of training image patches,
the epitome size, the epitomic reconstruction qualities, and
thus the compression performance of our epitome transform
coding approach. As shown in Figure 14, as the number of
images increase, the performance of our approach improves,
due to the fact that the epitome transform coding will "ab-
sorb" more repetition and similarity among the original input
images, and hence more accurately reconstruct them, after
learning more training image patches. For 5 images of ed-5,
our method exceeds JPEG for over 0.8 bits per pixel; but it
will have better performance than JPEG for ed-50 contain-
ing 50 images, no matter for low bit rates or high bit rates.
Although the expensive computation, the improvement com-
pared with JPEG, guarantees our approach has practical us-
age.

p

Figure 14: Rate-distortion curves vary due to the number of images
in Edwin category, including ed-5 and ed-50.



3.2.3 Residual Compression
After histogram-based thresholding, the residuals are uniform-

ly quantized with different quantization levels, and then be fur-
ther compressed by lossless compression techniques, like lossless
JPEG2000 or lossless PNG. For the input image and its epitomic
reconstruction in Figure 6, most pixels in the residual, which has
been normalized into the range of [0, 255] for visualization, occur
in a dominant intensity range, as shown in Figure 16-(a). And the
most dominant scaled intensities for R-G-B channels occur at 95,
79, and 82, respectively. The effective ranges are [67, 119], [54,
102], [57, 105], respectively. For appropriate threshold T , the triv-
ial pixels below T are neglected. In Figure 15, the rate-distortion
with 3 thresholds T = 0.001, 0.005, 0.01, are calculated, demon-
strating that T = 0.01 is too large to reduce the performance of our
approach in terms of PSNR.

After quantization with different quantization levels, of those
filtered ranges, the values in residuals get more concentrated, as
shown in Figure 16-(b).

Figure 15: The residual scaled into the range of [0 255], and its
histogram in this range.

Residual scaled into [0, 255] Histogram ranged in [0, 255]

Residual after 50/100 
quantization

reconstruction

Histogram after 50/100 
quantization

reconstruction

(a)

(b)

Figure 16: The residual scaled into the range of [0 255], and its
histogram in this range.

4. RESULTS
To testify the performance of our proposed epitome-based im-

ages compression approach, we have done a series of experiments
on our dataset. As demonstrated by our experimental evaluation,

the proposed epitome transform coding can effectively take advan-
tage of the repetitive patterns and hence redundancies across the
images in each image category, to obtain joint compression. When
compared with JPEG, which separately compresses each image in
the collection, thus does not utilize the similarity and repetition a-
mong the images, the epitome transform coding shows clearly im-
provement, evaluated via rate-distortion curves.

Based on the parametric configuration illustrated in section 3.2.2,
a number of experiments are finished, demonstrating that our ap-
proach achieves good practical application.

• Edwin Category
In this category, the rate-distortion curves are analyzed on
ed-5 and ed-50, with 3 patch extraction spacing, i.e., ∆s =
4, 6, 8, as shown in Figure 9 and Figure 17.

Figure 17: rate-distortion on ed-5, for epitome size of 512× 512.

• Howe Center Category
In this category, the rate-distortion curves are analyzed on
hc-6, with 3 patch extraction spacing, i.e., ∆s = 4, 6, 8, as
shown in Figure 18.

Figure 18: rate-distortion on hc-6, for epitome size of 256× 256.

• Empire State Building Category
In this category, the rate-distortion curves are analyzed on
esb-23, with 1 patch extraction spacing, i.e., ∆s = 6, as
shown in Figure 19.

• Flower category
In this category, the rate-distortion curves are analyzed on
flo-10, flo-20, flo-50, and flo-100, with 3 patch extraction
spacing, i.e., ∆s = 4, 6, 8, as shown in Figure 20.



Figure 19: rate-distortion on esb-23, for epitome size of 256×256.

Figure 20: rate-distortion on the Flower category, for epitome size
of 256× 256.

• Lacrose Category
In this category, the rate-distortion curves are analyzed on
la-10, with 3 patch extraction spacing, i.e., ∆s = 4, 6, 8, as
shown in Figure 21.

Figure 21: rate-distortion on the Lacrose category, for epitome size
of 256× 256.

5. SUMMARY AND FUTURE WORK
By exploiting the similarity and repetition of shape and texture

among a set of images, we have presented an effective multi-image
compression approach, which works well at high compression rates

for all the images in our dataset, and even at low bit rate for some
image categories in the dataset. Appropriate encoding and decod-
ing of the epitome and transform maps, makes our approach out-
perform JPEG when the compression bit rate is larger than 0.8-1.0
bits per pixel. When the number of images increase to some extend,
the compression performance will be also improved.

Our future work include:

• Improve the epitomic reconstruction quality, by introducing
a sophisticated transform in terms of intensity change and
geometric deformation [11, 17].

• More efficiently encoding the transform mapping.

• Accelerate the epitome learning.

• Extend our approach to video compression.
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