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Abstract—Crowdsourced ranking algorithms ask the crowd
to compare the objects and infer the full ranking based on
the crowdsourced pairwise comparison results. In this paper,
we consider the setting in which the task requester is equipped
with a limited budget that can afford only a small number of
pairwise comparisons. To make the problem more complicated,
the crowd may return noisy comparison answers. We propose
an approach to obtain a good-quality full ranking from a
small number of pairwise preferences in two steps, namely fask
assignment and result inference. In the task assignment step, we
generate pairwise comparison tasks that produce a full ranking
with high probability. In the result inference step, based on the
transitive property of pairwise comparisons and truth discovery,
we design an efficient heuristic algorithm to find the best full
ranking from the potentially conflictive pairwise preferences. The
experiment results demonstrate the effectiveness and efficiency of
our approach.

I. INTRODUCTION

Crowdsourcing has emerged over the last few years as an
important new tool for a variety of tasks, as it enables faster
task completion and cheaper cost than in-house solutions.
Among various types of crowdsourcing tasks, ranking objects
based on the pairwise comparison results from the crowd has
witnessed many applications (e.g., image processing and data
cleaning). In practice, the requester may only have a limited
budget that is not able to afford all pairwise comparisons.

Despite the economical highlight, there are several major
challenges related to ranking aggregation from crowdsourcing.
First, the crowd may return noisy and conflicting pairwise pref-
erences. Second, in the non-interactive setting, the requester
releases the tasks to the crowd only once, and accepts the
results generated from the collected answers. Therefore, the
requester is not aware of the quality of the workers beforehand.
Last but not least, even given a set of accurate pairwise
preferences, it is computationally expensive to find the full
ranking of the highest preference.

In this paper, we leverage the transitive property of pair-
wise comparisons to infer the preferences for the pairs that
are not assigned to any worker. Based on the answers collected
from the crowd, we estimate the quality of each worker and the
true preference, named fruth, of every pairwise comparison.

In particular, we consider the non-interactive crowdsourced
ranking setting that allows transitive pairwise comparisons.
The first step (called task assignment) generates a small
number of pairwise comparisons from whose answers we
can obtain a full ranking with high probability. The second
step (called result inference) infers the ranking based on
the transitivity and truth estimation. We design an efficient
algorithm to find the full ranking. The experiment results
demonstrate the efficiency and effectiveness of our approach.

1063-6927/17 $31.00 © 2017 IEEE
DOI 10.1109/ICDCS.2017.102

 Montclair State University

IEEE
2567 computer
@ psoue

! Lehigh University
Bethlehem, PA
ting@cse.lehigh.edu

Montclair, NJ
dongb@montclair.edu

II. PRELIMINARIES

Ranking Setting. Given a set of n objects O = {O;,...,0,},
a full ranking 7 is a permutation of {1,...,n}, such that O;
is preferred to Oy [;41) (denoted as Oyp;) < On[iy1))- For each
pairwise comparison task 7" = (O;, O;), a worker may vote for
either O; < O; or O; < O;. Note that the workers’ preferences
may be inconsistent, e.g., a worker votes that O; < O;, while
another worker votes that O; < O;.

Crowdsourcing Setting. The requester is equipped with a
limited budget B that can only afford ¢ < (}) comparison
tasks. To increase the accuracy, each task is assigned to c
workers, where c¢ is a constant value. We assume that the
ground truth of ranking is not available to the requester.

III. APPROACH DESIGN
A. Task Assignment

Given n objects O and £ pairwise comparison tasks 7, T
can be modeled as a task graph, which is a un-weighted, un-
directed graph G that consists of n vertices and ¢ edges: (1)
each object O € O corresponds to a vertex v € Gr; (2) each
pairwise comparison (O;,0;) € T corresponds to an edge
(vi,v;) € Grp. Based on the pairwise preferences collected
from the workers, we can construct a weighted, directed graph
Gp such that each edge v; — v; is associated with a weight
w;; € (0,1], indicating the confidence of O; < O;. We say
anode v € Gp is an in-node (out-node, resp.) if v only has
incoming edges (outgoing edges, resp.).

A nice feature of pairwise preference is the transitive
property, ie, if O; < O; and O; < Oy, then it can be inferred
that O; < Oj. Following this, a new edge (v;,v;) can be
inserted if there exists a path P(v;,...,v;) in Gp. As we
focus on the full ranking of the n objects, we only consider
the paths in the preference graph whose length is no more than
n — 1. Let G’ be the transitive closure (i.e., the reachability
relation) inferred, apparently, any Hamiltonian path (HP) (i.e.,
a path that visits each vertex exactly once) of G corresponds
to a full ranking of O.

We use Pr(G7) to denote the probability that the transitive
closure G has an HP. In the task assignment procedure, our
objective is to design the tasks 7 (and thus Gp) that is of
high HP-likelihood, i.e., it maximizes Pr(G%) for any Gp
constructed from Gr.

Theorem 3.1: Given a task graph Gr, let Gp and G’ be
any preference graph and transitive closure constructed from
G, there is no HP in G if: (1) G does not have an HP; or
(2) G has at least two in-nodes or out-nodes.

According to Theorem 3.1, we infer that for any given
task graph G, if all the vertices have the same degree, the
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probability to have at least two in-nodes or out-nodes in G
is minimized, i.e., it is more likely that G has at least one
HP. We design the following procedures to generate the task
graph G that guarantees high probability of the existence of
HP in G%. First, we randomly construct an acyclic path P that
connects all vertices in G. Next, we randomly insert edges
so that the degree of each vertex reaches 2#, where ¢ is the
number of affordable comparison tasks.

B. Result Inference

Based on the pairwise preferences from the workers, we
compute the full ranking in the following four steps.

Step 1. Truth Discovery of Direct Pairwise Comparisons.
We observe that the workers’ quality and the inferred truth are
correlated: the workers who provide true pairwise preferences
more often will be assigned higher quality (i.e., reliability
degrees), and the pairwise preference that is supported by
reliable workers will be regarded as the truth. Based on this
intuition, given any task 7'(O;, O;), the true preference wj;; is
the weighted average of the workers’ preferences, namely,
ZWk,,ewiij wf] X gk
ey
ZWk eW;; qk
k

where W;; is the set of workers who perform the task, w;j; €
{0, 1} is the k-th worker’s preference, and gy, is the quality of
the k-th worker.

Wi5 =

We make the same assumption as [1] that the workers’
error follows the normal distribution €, ~ A(0,07), where
o} 18 the standard error deviation of worker Wy. Therefore,
having wj;;, we update the worker’s quality, namely,

X%(a/2,|Tk|)
qr X 3 < \2
then. (wij — i)
where « is a pre-defined value of the confidence interval, and
X?(r/2,|Ti|) is the $-th percentile of a X2-distribution with
degree of |Ty|.
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Using Equation (1) and (2), we keep updating the task
truth preference {w;; } and worker quality {gy }, until it reaches
convergence.

Step 2: Preference Smoothing. Our task assignment scheme
cannot guarantee the existence of HP in Gp (i.e., full rank-
ings). Following Theorem 3.1, the existence of in-/out- nodes
in G p is the main reason of HP failure. To ensure the existence
of HP in GGp (and its transitive closure), our solution is to
smooth the preference of each 1-edge (v;, v;) by estimating the
unknown preference on the edge (vj,v;), such that w;; < 1,
wj; > 0, while w;; + wy; = 1. In particular, given an
l-edge (0;,0;) € Gp, we apply smoothing on w;; and

YW, eW,; €T Tk

G , and
ij

wj; by the following: w;; = w;; —

2vwy,ew;; €Tk
KEWi,
Wii = Wi

I ji T |Wij

worker W, that follows the distribution of N'(0,02).

, where err, is the error of the

Step 3: Computation of Indirect Pairwise Preference. Given
a path P(v,,...,v;) whose length is larger than 1, the weight
of the indirect edge (v;,v;) inferred from the path P is
calculated as wf; = Hv(vz,vy) ep Way. Let wi; be the indirect
weight of (v;,v;), which is the sum of the weights of all paths
between v; and vj, the final preference is computed as

wij = Pwij + (1 — Bwy;, 3

where ( is a user-specified value that defines the weights on
the (in)direct preferences. We also normalize the weights so
that Wi + Wj; = 1.

We have the following theorem that shows there always
exists an HP in Gp.

Theorem 3.2: Given a preference graph Gp, let G} be its
transitive closure constructed by Step 1 - 3. Then there always
exists an HP in G.

Step 4: Find the Best Ranking. Among the multiple HPs
in G, we aim at picking the HP of the highest preference
probability. Due to the potentially large number of HPs, we
design an efficient algorithm, namely the simulated annealing
based path search (SAPS) algorithm that returns the heuristic
solution. In particular, we adapt the Simulated Annealing (SA)
algorithm to heuristically searching a solution P*. The key
idea is to generate a new HP by rotating, reversing and swap-
ping the current HP, and retain it with a probability based on
Boltzmann probability distribution if the preference probability
is not improved. After sufficient number of iterations, we can
find a global optimal solution with high probability.

IV. EXPERIMENTS

We compare our method with three baseline approaches
in terms of both ranking accuracy and time performance,
and report the result in Table I. The result suggests that our
method delivers good ranking accuracy, if not the best, at cheap
computational cost.

TABLE I: Comparison with Baselines

# of objects 100 200 300
Accu.| Time(s) Accu.| Time(s) Accu.| Time(s)
This Papaer | 89.2%| 0.363 | 92.9%| 1.464 | 94.2% 3.882
RC [2] 2.00%| 0.038 | 1.70%| 0.090 | 1.50%| 0.179
QS [3] 19.6%| 0.275| 23.1%| 0.654 | 19.6% 1.159
CrowdBT [4] 93.8% 3529 | 92.4% 14938| 89.1% 26012

V. CONCLUSION

In this paper, we study budget-conscious pairwise ranking
aggregation problem in the non-interactive crowdsourcing set-
ting. We design efficient algorithms that select a small number
of pairwise comparisons by the crowd, and construct the full
ranking from the workers’ pairwise preferences by taking the
workers’ quality into consideration. In the future, we plan to
investigate the top-k ranking problem in the same setting.
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