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Abstract—Crowdsourced ranking algorithms ask the crowd
to compare the objects and infer the full ranking based on the
crowdsourced pairwise comparison results. In this paper, we
consider the setting in which the task requester is equipped
with a limited budget that can afford only a small number
of pairwise comparisons by the crowd. We consider the non-
interactive crowdsourcing setting in which the task requester
assigns the tasks to the crowd only once. This is different from
most of the existing crowdsourced ranking work that consider the
interactive setting in which the task requester keeps on assigning
the tasks to the crowd and collecting the workers’ feedback
in a continuous fashion. Based on the transitive property of
pairwise comparisons, we design solutions that enable the task
requester to obtain a good-quality full ranking from a small
number of pairwise preferences. Our approach consists of two
steps, namely task assignment and result inference. For the task
assignment step, we design efficient algorithms that generate
fair pairwise comparison tasks that enable to construct a full
ranking from a small number of pairwise preferences with high
probability. For the truth inference step, we leverage the truth
discovery algorithm to aggregate the possibly conflicting pairwise
preferences with the workers’ quality taken into consideration.
We also design both exact and heuristic algorithms to find
the best full ranking from the pairwise preferences. By using
simulated datasets and real-world crowdsourcing preference data
collected from Amazon Mechanical Turk, we demonstrate that
our approach can construct good-quality full rankings from non-
expert crowd in the non-interactive fashion.

I. INTRODUCTION

Crowdsourcing has emerged over the last few years as
an important new tool for a variety of tasks, ranging from
micro-tasks on Amazon’s Mechanical Turk (AMT) to big
innovations such as Netflix Challenge [1]. Among various
crowdsourcing platforms, AMT establishes a marketplace that
coordinates the supply and demand of tasks that require human
intelligence to complete. It is an online labor market where
employees (called workers) are recruited by employers (called
requesters) for the execution of tasks (called HITs, acronym
for Human Intelligence Tasks) in exchange for a wage (called
a reward). Typical tasks on AMT include relevance feedback,
document labeling, and some other small tasks that would be
challenging for the computers to accomplish. It enables faster
task completion and cheaper cost than in-house solutions.

Among various types of crowdsourcing tasks, ranking
objects according to a specific criteria have witnessed many
applications (e.g., image processing and data cleaning). The
setting is as follows: given a set of n objects O, the requester

wishes to get a full ranking of O, i.e., a total order of
O, from the ranking preferences collected from the crowd.
Crowdsourced ranking has been widely used in many real-
world applications where the objects are rather hard to be
compared by machines but easy for human. An example of
such applications is to rank images based on their subjective
image quality [2].

There are two widely-used ways to generate the full rank-
ing. The first approach is rating-based ranking, which asks the
crowd to assign a rate for each object. Then the full ranking is
generated by aggregating the rates and sorting the aggregated
rates in a particular order. The second approach is pairwise
comparison based ranking, which asks the crowd to compare
pairs of objects and choose the preferred one. The full ranking
is aggregated from the pairwise comparison results. The rating-
based method has some weakness, e.g., it is difficult for the
crowd to assign an accurate rate. Thus the rating-based method
usually has a lower accuracy than the pairwise comparison
method [3]. Therefore, in this paper, we focus on the pairwise
comparison based approach.

To collect the pairwise preferences, a straightforward so-
lution is that the task requester asks the crowd to compare
all
(
n
2

)
pairs of n objects. However, in practice, the requester

may be equipped with a limited budget that is not able to
afford all pairwise comparisons. Therefore, the requester has
to select ` <

(
n
2

)
pairs for comparison, where ` is decided by

the budget.

We assume that the requester has no ground truth of the
final ranking of O. Therefore, the requester desires that by
harnessing fewer pairwise preferences, he still can obtain a
ranking result that is reasonably good. However, the crowd
may return noisy and conflicting pairwise preferences. There-
fore, one of the challenges is to infer a trustworthy full ranking
by identifying reliable workers. There has been growing inter-
est from both the theory and machine learning communities
in developing algorithms and techniques to compute accurate
ranking results while minimize the set of unreliable crowd
judgment. Simple solutions typically use heuristic methods
such as majority voting or weighted majority voting [4].
However, these methods do not consider the reliability of dif-
ferent workers and they treat all judgments as equally reliable.
More sophisticated methods such as heuristic-based solutions
(e.g., [5], [6]) and learning-based methods (e.g., [7], [8])
are designed to integrate the workers’ quality with the result
inference. Most of these work focus on continuous, interactive



crowdsourcing; the task requester keeps on assigning the tasks
to the crowd and collecting the workers’ feedback, until either
the crowdsourcing budget is used up or the aggregated ranking
result reaches the expected accuracy [9]. However, for time-
sensitive tasks (e.g., traffic monitoring, location-aware surveys,
and points-of-interest suggestions), the task requester has strict
time constraints to finish the task, and thus cannot perform
crowdsourcing in the continuous fashion. Instead, the requester
releases the tasks to the crowd only once, and accepts the
results generated from the collected answers. We call this
setting as the non-interactive crowdsourcing.

Compared with the interactive setting, the non-interactive
crowdsourced ranking is more challenging as the task requester
has to maximize the probability of obtaining a good ranking
result by one single round of crowdsourcing. This is possible
when the ranking preferences have the transitive property (i.e.,
if the object Oi is preferred to Oj , and Oj is preferred
to Ok, then it can be inferred that Oi is preferred to Ok).
The transitivity property can save the unnecessary comparison
between Oi and Ok, as long as the comparison results between
Oi and Oj , as well as Oj and Ok, have high quality.

In this paper, we consider the non-interactive crowdsourced
ranking setting that allows transitive pairwise comparisons.
Most existing crowdsourcing ranking solutions employ a two-
step strategy. The first step (called task assignment) selects `
object pairs and generates HITs to crowdsource the pairwise
comparisons of these objects to the crowd. The second step
(called result inference) infers the ranking based on the pair-
wise comparison results collected from the crowd. We follow
this two-step strategy and make the following contributions.

First, for the task assignment step, we design a graph model
to represent the pairwise comparison tasks as a task graph, and
the workers’ preferences as a preference graph. The preference
graph can be considered as a directed, weighted instance of the
task graph. The reachability relation of the preference graph
constructs its transitive closure. A full ranking of objects is
equivalent to a Hamiltonian path (HP) of the transitive closure
of the preference graph. We design an efficient task assignment
scheme that constructs the pairwise comparison tasks that
guarantee: (1) fairness, meaning that each object has equal
probability to be at any position in the HP; (2) high HP-
likelihood, meaning that it is highly likely that there exists at
least one HP in the transitive closure of the preference graph;
and (3) budget-conscious, i.e., the number of edges in the task
graph is decided by the given budget.

Second, we split the result inference step into the following
four sub-steps: (1) Infer the direct pairwise preferences by
aggregating the (possibly conflicting) pairwise preferences by
the crowd; (2) Smooth the direct pairwise preferences to ensure
there is at least one HP (i.e., a full ranking); (3) From the
smoothed direct preference, compute the indirect pairwise
preferences that are inferred by transitivity, and aggregate both
direct and indirect pairwise preferences; and (4) Compute
the preference of the full rankings aggregated from pairwse
preferences, and pick the full ranking of the highest preference
as the final output. For Step (1), we design a truth discovery
method that combines the estimation of workers’ quality and
the inference of true pairwise preference together to resolve
(possible) conflicts among the workers. For Step (2), we apply
preference smoothing to adjust the direct pairwise preferences

based on the workers’ pairwise preferences as well as their
estimated quality by Step (1). For Step (3), we design an effi-
cient preference propagation method that computes the indirect
pairwise preferences inferred by preference transitivity. For
Step (4), we design both exact and heuristic methods to find
the full ranking of the highest preference. The exact solution
uses an early-termination condition so that it can find the full
ranking of top-1 probabilistic preference without examining
all paths. The heuristic method utilizes simulated annealing to
approximate the global optimal probabilistic preference.

Last but not least, we perform an extensive set of ex-
periments by using pairwise preferences collected from the
workers on Amazon Mechanical Turk (AMT) as well as from
the simulated setting. The results show that the ranking accu-
racy of our method is reasonably good; the ranking accuracy
is at least 0.89 (out of 1) for 100 objects when only 10%
pairwise comparisons are picked. It can achieve 0.95 when
the number of objects grows to 1000 (the same 10% selection
ratio). Furthermore, the ranking accuracy of our method shows
higher accuracy and faster rank inference than the interactive
crowdsourcing setting when it requires to rank a large number
of objects by low-quality workers with small budgets.

The paper is organized as follows. Sec. II discusses the
preliminaries. Sec. III introduces the graph model. Sec. IV
discusses the task generation approach. Sec. V discusses the
result inference algorithms. Sec. VI presents our experimental
results. Sec. VII discusses the related work. Sec. VIII con-
cludes the paper.

II. PRELIMINARIES
Ranking Setting. In this paper, we consider the ranking
problem as finding a full ranking (permutation) π of a set
of n objects O, by combining ` input pairwise preferences,
where ` <

(
n
2

)
. No tie is allowed in π. Each pairwise

preference specifies that either Oi is preferred to Oj (denoted
as Oi ≺ Oj), or vice versa. Oi is ranked before Oj if Oi ≺ Oj .
We assume that the preference ranking is transitive, i.e., if
Oi ≺ Oj and Oj ≺ Ok, then Oi ≺ Ok.

Crowdsourcing Setting. The requester creates a number of
human intelligence tasks (HITs) T off-line, and assigns T to
m > 1 workersW via a crowdsourcing platform (e.g., Amazon
Mechanic Turk). Each HIT T ∈ T consists of c ≥ 1 pairwise
comparisons. There are ` unique pairwise comparisons in total
in T . For each pairwise comparison (Oi, Oj), we assume the
workers vote for either Oi ≺ Oj or Oj ≺ Oi. The workers’
preferences may be inconsistent, e.g., the worker wi votes that
Oi ≺ Oj , while the worker wj votes that Oj ≺ Oi. The same
pairwise comparison may appear in multiple HITs. To increase
the accuracy, each HIT is assigned to w > 1 workers, where
w ≤ m. We assume that the ground truth of ranking is not
available to the requester.

The workers receive a reward for their ranking. In this
paper, we assume that each pairwise comparison receives a
reward r, which is the same for all workers. We assume that the
requester has a budget B for crowdsourcing, where B cannot
afford all pairwise comparisons of O. Since each pairwise
comparison is performed by w workers, the total number of
unique pairwise comparison tasks equals ` = [ Bwr ].

In this paper, we assume that the HIT assignment is a one-
time process, meaning that the task requester crowdsources
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P of G̃P

(edge weight not specified)
Fig. 1: An example of task graph & preference graph

the tasks only once, and accepts the ranking result from the
collected answers, even if the ranking result may not be of high
accuracy. Such one-time setting applies to many time-sensitive
crowdsourcing tasks, e.g., time-sensitive Web image ranking
[10]. This setting is fundamentally different from most of the
existing crowdsourced ranking work (e.g. [11], [12]), which
consider an interactive setting in which the task requester is
allowed to assign the tasks to the crowd iteratively, until either
the budget runs out or the ranking result is sufficiently good.
Compared with the interactive setting, our task assignment
problem is more challenging as the task requester has to
maximize the probability of obtaining a good ranking result
by one single round of crowdsourcing.

III. GRAPH MODEL

Task graph. Given n objects O and ` pairwise comparison
tasks T , T can be modeled as a task graph, which is a un-
weighted, un-directed graph GT that consists of n vertices and
` edges: (1) each object O ∈ O corresponds to a vertex v ∈
GT ; (2) each pairwise comparison (Oi, Oj) ∈ T corresponds
to an edge (vi, vj) ∈ GT , where vi and vj correspond to Oi
and Oj . The degree of the vertex vi ∈ GT is the total number
of edges incident to vi. Figure 1 (a) shows an example of the
task graph GT ; each vertex has degree 2.

Preference graph. We model the crowd’s ranking preferences
by the preference graph. Formally, given n objects O and `
pairwise preferences, its corresponding preference graph is a
weighted, directed graph GP that consists of n vertices and `
edges such that: (1) each object O ∈ O corresponds to a vertex
v ∈ GP ; (2) each preference Oi ≺ Oj corresponds to an edge
vi → vj in GP , where vi and vj correspond to the objects
Oi and Oj . Each edge vi → vj is associated with a weight
wij ∈ (0, 1], indicating the truth confidence of Oi ≺ Oj . How
to calculate wij will be explained in Section V-A. We must
note that when wij = 0, there is no edge (vi, vj) ∈ GP . We
say a node v ∈ GP is an in-node (out-node, resp.) if v only has
incoming edges (outgoing edges, resp.). Figure 1 (b) shows an
example of the preference graph GP . In this graph, the vertex
v2 is an in-node.

Due to the transitive property of pairwise comparisons, a
new edge (vi, vj) can be added to GP if there exists a path
P (vi, . . . , vj) in GP . As we focus on the full ranking of the
n objects, we only consider the paths in the preference graph
whose length is no more than n− 1. We use G̃P to represent
GP after preference smoothing (i.e., all edges of weights 1
are converted to the edges with smoothed weights), and G∗P
to denote the transitive closure (i.e., the reachability relation)
of G̃P . How to construct G̃P from the preference graph GP
will be explained in Section V. Figure 1 (c) shows an example
of G̃P by smoothing of GP in Figure 1 (b), and Figure 1 (d)

shows an example of G∗P constructed from G̃P in Figure 1
(c).

Hamiltonian path v.s. full ranking. Given a set of objects
O, a preference graph GP of O, and the transitive closure
G∗P of GP , apparently any Hamiltonian path (HP) (i.e., a
path that visits each vertex exactly once) of G∗P corresponds
to a full ranking of O. Each HP P is associated with a
preference probability Pr[P ] that measures the preference of
the full ranking that is represented by P . How to compute the
preference probability of HPs will be discussed in Section V.
We pick the HP that is of the highest preference probability,
and construct the object ranking accordingly.

From task graph to preference graph. For each edge
(vi, vj) ∈ GT , it has three possible permutations in GP ,
vi → vj , vi ← vj , and vi ⇀↽ vj (i.e., with inconsistent
preferences). Therefore, GP can be considered as a possible
weighted instance of GT , in which each edge has a cor-
responding edge in GT , whose direction takes one of the
three aforementioned permutations. Therefore, given a GT that
contains ` edges, the number of possible instances of GP that
can be constructed from GT is:

N = 3`. (1)

Consider the task graph shown in Figure 1 (a), it has 34 = 81
possible instances of the preference graphs. Figure 1 (b) shows
one such possible instance.

IV. TASK ASSIGNMENT

A. Task Assignment Requirements
Our goal is to generate the pairwise comparison tasks that

guarantee: (1) fairness, meaning that every object has equal
probability to be at any position in the HP; (2) high HP-
likelihood, meaning that it is highly likely a full ranking can
be constructed from the pairwise preferences, i.e., an HP exists
in the transitive closure of the preference graph. First, we
formally define task fairness and high HP-likelihood.

1) Fairness: Apparently, in-nodes and out-nodes in the
preference graph GP are special compared with other nodes,
since the positions of their corresponding objects in the rank-
ings are determined. In particular, any in-node (out-node, resp.)
represents an object that should be ranked the last (the first,
resp.) in the ranking. For example, consider the vertex v2 in
Figure 1 (b). It must be ranked as the least preferred object in
the full ranking. Careless task assignment may lead to some
objects that have higher probability to be in-/out- nodes in
GP . For instance, consider the task graph GT in Figure 2 (a).
The vertices v2 and v3 have higher probability to be in-/out-
nodes than the vertex v1 (the details of how to calculate the
probability will be found in Example 4.1). Therefore, to ensure
that each node has a fair ranking, we define fair tasks.



Definition 4.1: [Task Fairness] Given n objects O
and ` pairwise comparison tasks T of O, let GT be the
corresponding task graph. We say T is fair if for each vertex
in GT , it has equal probability to be an in-/out- node in the
preference graph GP of GT .

v1 v2

v3

v1 v2

v3

(a) Unfair task (b) Fair task

Fig. 2: An example of (un)fair tasks

Next, we compute the probability that a given node vi ∈
GP is an in-node/out-node. Let di be the degree of vi in GT .
Given GT that contains ` edges, there are 3` possible GP
instances of GT (Equation 1). If vi is an in-node, all possible
instances that contain vi only has in-edges connected with vi.
Therefore, there are 3`−di possible instances of GT in which
vi is an in-node. The same reasoning also holds for the out-
nodes. Therefore, the probability that vi is either an in-node
or an out-node, denoted as Prob(vIOi ), is:

Prob(vIOi ) = 2 ∗ 3`−di

3`
=

2

3di
. (2)

Example 4.1: Consider the task graph in Figure 2 (a),
following Formula (2), we can compute that Prob(vIO1 ) = 2

9 ,
while Prob(vIO2 ) = Prob(vIO3 ) = 2

3 . Consider the task graph
in Figure 2 (b), all three vertices have the same probability 2

9
of being in-/out-nodes.

From Equation 2, we have the following theorem.
Theorem 4.1: (Fair Task) : Given n objects O and `

pairwise comparison tasks T of O, let GT be the correspond-
ing task graph. Then T is fair if all vertices in GT have the
same degree.

The correctness of Theorem 4.1 is straightforward as the
probability of being in-/out- nodes is decided by the node
degree.

2) High HP-likelihood: Since the Hamiltonian path (HP)
corresponds to a full ranking, when we design the task graph
GT , we prefer that for any possible preference graph GP
constructed from GT , its transitive closure is highly likely to
have an HP. We use Pr(G∗P ) to denote the probability that the
transitive closure G∗P of a given preference graph GP has an
HP. Our goal is to design the tasks T (and thus GT ) that is
of high HP-likelihood, i.e., it maximizes Pr(G∗P ) for any GP
constructed from GT . First, we have the following theorem
to show that the existence of HPs in the task graph GT is a
necessary condition of the HP existence in G∗P .

Theorem 4.2: Given a task graph GT , if GT does not have
an HP, then for any preference graph GP constructed from GT ,
its transitive closure G∗P does not have any HP.
The correctness of Theorem 4.2 is straightforward. If GT does
not have an HP, there must exist at least a vertex that is not
reachable by other vertices. Note that the HPs in GT does not
guarantee HPs in G∗P .

Next, we analyze under which circumstances with a given
task graph GT that contains HPs, the transitive closure G∗P of
the preference graph constructed from GT does not have any
HP. We have the following theorem.

Theorem 4.3: If the graph G∗P has at least two in-nodes or
out-nodes, then it does not have any HP.
The correctness of Theorem 4.3 is based on the fact that for the
preference graph that contains at least two in-nodes (out-nodes,
resp.), the corresponding objects of these in-nodes (out-nodes,
resp.) must be ties, as they are at the last (first, resp.) position
in the ranking at the same time. Therefore, there does not exist
a full ranking of all objects.

Following Theorem 4.3, if G∗P has an HP, G∗P must contain
no more than one in-/out-node, given GT that contains HPs.
The following theorem shows the probability that G∗P contains
no more than one in-/out-node.

Theorem 4.4: Given a task graph GT of n nodes, let dmin
(dmax) be the minimal (maximal, resp.) node degree of GT .
Then the probability Pr that the transitive closure G∗P of any
preference graph GP constructed from GT does not contain
more than one in-nodes/out-nodes satisfies that Pr ≥ Prl,
where

Prl = (1− 2

3dmin
)n[1 +

2n

3dmax − 2
+

n(n− 1)

2(3dmax − 2)2
].

We omit the proof of Theorem 4.4 due to the limited space.
Based on Theorem 4.4, maximizing Prl can maximize the
likelihood that G∗P has at least one HP. Since Prl increases
when dmax decreases and dmin increases, the maximum of
Prl can be achieved when dmax reaches its minimum while
dmin reaches its maximum. Note that any given task graph
GT ,

∑
∀v∈GT

dv = 2`, where dv is the degree of the vertex v,
and ` is the number of edges of GT . Then it must hold that

dmin ≤
2`

n
≤ dmax (3)

Thus, Prl reaches its maximum when dmin = dmax = 2`
n .

We must note that although our preference smoothing step
(Section V-B) guarantees that there is an HP, the construction
of tasks of high HP-likelihood is still necessary, as it minimizes
the number of edges whose pairwise preferences have to be
smoothed.

B. HITs Generation

In this section, we discuss how to generate the pairwise
comparison HITs that are budget-constrained, fair, and of high
HP-likelihood. Following Theorem 4.1 and Equation 3, we
generate the HITs by the following approach. Let PS be the set
of vertices that have been selected, initialized as PS={}. Let
GT be a graph that is initialized with vertices only. Then we
randomly construct an acyclic path P that connects all vertices
of GT . Apparently P is an HP. Next, for each vertex v ∈ GT ,
we randomly pick ( 2`

n −dv) vertices V ⊆ GT −PS, where dv
is the current degree of v, which is updated dynamically during
the task generation. In this process, we insert v into PS once
dv reaches 2`

n , as the desired degree of node v is obtained.
The pseudo code of the task generation algorithm is shown
in Algorithm 1. The complexity of the graph construction
procedure is O(n). The output task graph GT contains `
pairwise comparisons, which satisfies the budget-constrained



requirement. Each node of GT has the same degree, while the
degree maximizes the HP-likelihood. Thus GT is fair and high
HP-likely.

Algorithm 1 HITs generation
Require: The objects O to be ranked
Ensure: Task assignment graph GT

1: for each object Oi ∈ O do
2: Construct a vertex vi ∈ GT

3: end for
4: Randomly draw a path P that connects all vertices in GT ;

Obviously P is a HP.;
5: for each vertex v ∈ GT do
6: Pick 2`

n
− dv vertices in GT (dv: current degree of v);

7: Add edge between v with these picked vertices;
8: end for

V. RESULT INFERENCE

Based on the collected pairwise preferences from the work-
ers, we compute the full ranking by the result inference step.
The result inference step consists of four steps: (1) Infer the
direct pairwise preference based on the comparison results by
the crowd; (2) Smooth the inferred direct pairwise preferences
of those edges of weight 1, so that there exist at least an
HP (i.e., a full ranking); (3) Compute the indirect pairwise
preferences that are inferred by transitivity, and aggregate both
direct and indirect pairwise preferences; and (4) Compute
the preference of full rankings by aggregating the pairwise
preferences, and pick the full ranking of the highest preference
as the final output. Next, we discuss the details of each step.

A. Step 1: Truth Discovery of Direct Pairwise Comparisons

It is challenging to infer the truth of the preference for
each assigned pairwise ranking task from the pairwise prefer-
ences that are possibly noisy and conflicting. As the workers
may produce the comparison results of different quality, the
accuracy of the aggregated preferences can be improved by
capturing the quality (i.e., reliability) of the workers. Intu-
itively, the pairwise preferences by the workers who are more
reliable should be considered as the truth. The challenge is that
workers’ reliability is usually unknown a priori in practice and
has to be inferred from the pairwise comparison results.

We observe that the workers’ quality and the inferred
truth are correlated: the workers who provide true pairwise
preferences more often will be assigned higher quality (i.e.,
reliability degrees), and the pairwise preference that is sup-
ported by reliable workers will be regarded as the truth.
Based on this observation, we estimate the workers’ quality
from their preference, and perform weighted aggregation of
the workers’ preferences based on their estimated quality. In
particular: (1) for any given pairwise comparison task T , if
the workers quality is high, then her preference is likely to
be the truth for T ; and (2) for any given worker W , if W
often answers tasks correctly, then W ’s quality is high. Based
on these intuitions, we develop an iterative approach, which
updates the pairwise preference and the workers’ quality until
it reaches convergence. Next, we discuss the details of the
iterative approach.

Formally, given a set of workers W , and a set of pairwise
comparison tasks T , for any worker Wk ∈ W , Let qk be
the quality of Wk, and Tk ∈ T be the set of tasks assigned

to the worker Wk. For any task T (Oi, Oj) ∈ T , let Wij

be the set of workers who perform it, and x̂ij be the true
preference of T (i.e., the probability that Oi ≺ Oj). Our
goal is to infer: (1) qk, for each worker Wk ∈ W; and (2)
x̂ij , for each task T (Oi, Oj) ∈ T . We require that both x̂ij
and qk are in the range [0, 1]. We call the inferred x̂ij the
direct pairwise preference, which will be used as the weight
preference wij on GP . We follow the same assumption in [12],
[13] that the workers’ error follows the normal distribution
εk ∼ N (0, σ2

k), where σk is the standard error deviation of
worker Wk. Intuitively, the lower σk is, the higher the worker’s
quality qk will be. We assume that the workers’ quality stays
stable across all the tasks.

First, we discuss how to model each worker’s pairwise
preference. Given a task T (Oi, Oj), we denote a worker Wk’s
preference input xkij as:

xkij =

{
1, Oi ≺ Oj ;
0, Oi � Oj .

Intuitively, each single pairwise preference is valued 0 or 1.
Next, we discuss how to aggregate these pairwise preferences
by the truth discovery approach.

Based on the worker’s preference result, we estimate the
true preference x̂ij on the task T (Oi, Oj). A commonly used
strategy is to compute the weighted average of the workers’
preferences, namely,

x̂ij =

∑
Wk∈Wij

xkij × qk∑
Wk∈Wij

qk
. (4)

Based on x̂ij , we update the workers’ quality. Intuitively, if
a worker provides reliable information more often, he has a
larger quality. In this paper, we adopt the weight estimation
introduced in [12]. Specifically, a source weight is inversely
proportional to its total difference from the estimated truth,
namely,

qk ∝
X 2(α/2, |Tk|)∑
tj∈Tk (xkij − x̂ij)2

, (5)

where α is a pre-defined value of the confidence interval, and
X 2(α/2, |Tk|) is the α

2 -th percentile of a X 2-distribution with
degree of |Tk|.

Using Equation (4) and (5), we propose an iterative al-
gorithm to update {qi} and {x̂ij}. Initially, we assign equal
quality to all the workers. Based on the collected workers’ pair-
wise preferences, we estimate the true pairwise preferences.
Then we update the workers’ quality based on the inferred
truth. We keep updating {qk} and {x̂ij} until convergence.
Since the truth inference takes an iterative approach, it could
be expensive to run until convergence. To alleviate this issue,
we allow the convergence condition to be either reaching a
certain number of iterations which is user-specified, or the
small change of {x̂ij} and {qk} (i.e., the difference between
{x̂ij} and {qk} in two consecutive iterations is smaller than a
user-specified threshold).

The iterative algorithm outputs: (1) the estimated direct pair
preferences {x̂ij}, which will be used for the following Step
2 - 4; and (2) the estimated workers’ quality, which will be
utilized for the next Step 2. The complexity is O(ym`+ n2),
where y is the number of iterations to reach convergence, m
is the number of workers, ` is the number of unique pairwise



comparison tasks, and n is the number of objects. Our ex-
periment results show that the algorithm achieves convergence
within 10 iterations for most of the testing cases. More details
can be found in Section VI.

B. Step 2: Preference Smoothing
Our task assignment scheme cannot guarantee the existence

of HP in GP (i.e., full rankings). In this step, we discuss how
to adjust the pairwise preferences inferred by Step 1 to ensure a
full ranking. Our key idea is to do smoothing over the pairwise
preferences of those edges that disable the HP traversal.

In principle, the smoothing is applied on the weights
of edges that involve at least one in-/out-nodes. Following
Theorem 4.3, the existence of in-/out- nodes in GP is the
main reason of HP failure. An important property of the in-
/out- nodes is that the edges connected with these nodes are
always of weight preference 1. We call those edges of weight
1 as 1-edges. Note that there is no edge of weight 0 in GP .
Each 1-edge (vi, vj) indicates the fact that all the workers
agree completely with the pairwise preference Oi ≺ Oj in
this round. There might be votings of Oj ≺ Oi if there is
more budget for additional rounds of crowdsourcing. Indeed,
the unknown preference Oj ≺ Oi is the main reason of HP
failure.

To ensure the existence of HP in GP (and its transitive
closure), our solution is to smooth the preference of each 1-
edge (vi, vj) by estimating the unknown preference on the edge
(vj , vi), such that wij < 1, wji > 0, while wij + wji = 1.
Let G̃P be the preference graph after smoothing. Figure 1
(c) shows an example of G̃P , the preference graph GP in
Figure 1 (a) after smoothing. An important property of G̃P
is that it is always a strongly connected graph. This is the
key to guarantee the existence of HP in the final inference
result (more details see Theorem 5.1). We must note that we
apply smoothing only on the 1-edges, aiming to minimize the
amounts of errors introduced by estimation.

Our idea of smoothing is to predict the unseen preferences
by incorporating the workers’ estimated quality with their pair-
wise preferences. Intuitively, as we assumed, given a worker
Wk with quality qk, the error of his pairwise preferences follow
the distribution of N (0, σ2

k). Given an 1-edge (Oi, Oj) ∈ GP ,
let its corresponding pairwise comparison task be T . Let W
be the set of workers that undertake T . We apply smoothing
on wij and wji by the following:

wij = wij −
∑
∀Wk∈W errk

|W |
,

and

wji = wji +

∑
∀Wk∈W errk

|W |
,

where errk is the error of the worker Wk that follows the dis-
tribution of N (0, σ2

k). As the higher quality qk is, the smaller
error probability errk will be. We value σk = −log(qk).

C. Step 3: Computation of Indirect Pairwise Preference

Due to the transitivity property, a hidden edge (vi, vj) is
added to the smoothed preference graph G̃P if there exists
a path P (vi, . . . , vj) exists in G̃P . We use G∗P to denote
the transitive closure (i.e., the reachability relation) of the
preference graph GP . In this section, we discuss how to

compute the indirect preference probability of these hidden
edges in G∗P that are constructed by the transitivity.

Given a path P (vi, . . . , vj) whose length is larger than 1,
the weight of the edge (vi, vj) inferred from the path P is
calculated as wPij =

∏
∀(vx,vy)∈P wxy . If there are k > 1

paths P1, . . . , Px between the vertices vi and vj (excluding
the direct edge (vi, vj) ∈ GP ), we assume that each path has
equal importance. Thus the indirect weight wij , denoted as
w∗ij , is aggregated as w∗ij =

∑k
x=1 w

Px
ij .

For any edge (vi, vj) ∈ G∗P , let wij be its direct preference
and w∗ij be its (possibly smoothed) indirect preference in G̃P ,
the final preference is computed as

w̌ij = αwij + (1− α)w∗ij ,

where α is a user-specified value that defines the weights on
the (in)direct preferences. w̌ij will be used as the edge weight
for Step 4 to find the best ranking. For simplicity, for later
discussions, w̌ij and wij are exchangeable.

Finally, to satisfy the probability constraint [14] (i.e., wij+
wji = 1), for any edge (vi, vj), the weight wij and wji are
normalized as follows:

wij =
wij

wij + wji
, wji =

wji
wij + wji

.

We have the following theorem that shows there always
exists an HP in G∗P .

Theorem 5.1: Given a preference graph GP , let G∗P be its
transitive closure constructed by Step 1 - 3. Then there always
exists an HP in G∗P .

The correctness of Theorem 5.1 is straightforward. Recall
that by Step 2 G̃P is a strongly connected graph. After Step
3, G∗P is guaranteed to be a complete graph. It is well known
that a complete graph with more than two vertices is always
Hamiltonian. Therefore, our algorithm always guarantees a full
ranking to be aggregated from the pairwise preferences.

D. Step 4: Find Best Ranking

Given the pairwise preferences computed by Step 1 -
3, next, we compute the preference probability of all HPs.
Formally, given a Hamiltonian path P (v1, . . . , vn), the pref-
erence probability Pr[P ] of P is measured as Pr[P ] =∏
∀(vi,vj)∈P wij . We pick the HP(s) of the highest prefer-

ence probability as the output full ranking. We design two
algorithms, namely the threshold-based path search (TAPS)
algorithm that returns the exact solution, and a simulated
annealing based path search (SAPS) algorithm that returns the
heuristic solution.

1) Exact Solution: The brute-force approach is to compute
the preference probability of every HP in G∗P , and pick
the HP of the highest probability. However, the brute-force
approach can be prohibitively costly. Thus we design an
efficient algorithm, named threshold-based path search (TAPS)
algorithm, that can find the HP of top-1 preference probability
with early termination. TAPS is adapted from the state-of-the-
art threshold algorithm (TA) [15]. Similar to TA, TAPS uses
a threshold to control the stop rule; the algorithm halts as soon
as the top k answers (in our case k = 1) have been accessed.
Next, we explain the TAPS algorithm.



TAPS algorithm first constructs n − 1 lists, with the i-
th list corresponding to the i-th edge in the HP. For each
list, its entries consisting of a tuple < pathID, edgeWeight>,
where pathID consists of ID of the path. Each list is sorted by
the value of edgeWeight in descending order. TAPS executes
the following two main steps on these lists. The output Y
is initialized as an empty set, and the highest preference
probability max is initialized as 0.

Step 1: Do sorted access in parallel to each of the n−1 sorted
lists Li, starting from the first entry. When a path P is seen
under sorted access in some list, do random access to the other
lists to find the weights of each edge of P in every list Li.
Compute the preference probability Pr[P ] of P . If Pr[P ] >
max, then update the output Y = {P}, and set max = Pr[P ].
Otherwise if Pr[P ] = max, then add P to Y . This ensures
to include all tie paths (i.e., the paths of the same preference
probability) in the output.

Step 2: For each list Li, let wi be the edge weight of the last
path seen under the sorted access. Define the threshold value
θ = Πn−1

i=1 wi. If max ≥ θ, then halt and output Y .

Given n objects, there are n! rows and 2(n−1) columns in
total in all lists. Thus the total space that TAPS algorithm needs
is n!(2n− 1). The time complexity of TAPS is O(n! n−1

√
1
n! ).

2) Heuristic solution: The complexity of TAPS is still high.
Therefore, we design a heuristic solution named simulated
annealing based path search (SAPS) algorithm. Recall that
our objective is to find the HP of the maximum probabilistic
preference. By making negative logarithm of the product of
weights wij , the equivalent problem is to look for an HP P
of minimum

∑
∀(vi,vj)∈P logw−1ij .

We adapt the Simulated Annealing (SA) algorithm to
heuristically searching a solution P ∗. Simulated annealing
(SA) [16] aims to approximate the global minimum solu-
tion by simulating the physical process whereby metal are
slowly cooled down. The key idea is to find a global optimal
solution with high probability by retaining worse solutions
with a probability based on Boltzmann probability distribution
P (E = k) ∝ exp

(
− k
T

)
, where T is temperature, and E is

energy.

Now we are ready to explain our simulated annealing based
path search (SAPS) algorithm. The pseudo code is shown in
Algorithm 2. Basically SAPS generates the next path in an
iterative way (Line 4 - 14). The next path can be generated
by three operations: (1) Rotate(P, first, middle, last) (Line 6):
rotates the nodes in the index range [first, last], in such a way
that the node labeled by middle becomes the new first element
of the new range and middle - 1 becomes the last element; (2)
Reverse(P, first, last) (Line 8): selects two random nodes and
reverse the nodes between them; and (3) RandomSwap(P, first,
last) (Line 10): selects a random pair of nodes and swap them.
Then the algorithm calls updateHP() function (Algorithm 3) to
decide whether the next path should be selected. In particular,
if the probability of the next path is better than the current
path, the next path is picked with probability 1 (Line 3 - 4).
Otherwise, the next path is selected with a probability that
follows Boltzmann probability distribution (Line 5 - 7). The
complexity of SAPS is O(Nn2 + n3 + n2log(n)), where n
is the number of vertices in GP , and N is the number of

Algorithm 2 SAPS Algorithm
Require: Transitive closure G∗P of preference graph GP , iteration #

N, temperature T, cooling rate c;
Ensure: An HP P ∈ G∗P that is of the maximum probabilistic

preference.
1: Initialize iteration index i = 0. Randomly pick Pi ∈ G∗P .

Compute di =
∑
∀(u,v)∈Pi

logw−1
uv . Initialize HP = Pi.

2: for all v ∈ V in G∗P do
3: Generate an initial path starting from vertex v, by selecting

the nearest neighbors, or by ranking the nodes based on the
difference of their out-/in- edge weights in G∗P .

4: while i < N do
5: // three heuristic path permutation methods;
6: Pi+1 ←− Rotate(Pi,first,middle, last);
7: HP←− updateHP(Pi, Pi+1) (Algorithm 3);
8: Pi+1 ←− Reverse(Pi,first, last);
9: HP←− updateHP(Pi, Pi+1) (Algorithm 3);

10: Pi+1 ←− RandomSwap(Pi,first, last);
11: HP←− updateHP(Pi, Pi+1) (Algorithm 3);
12: T ←− T · c;
13: i←− i+ 1;
14: end while
15: end for
16: return HP

Algorithm 3 HP updating function: updateHP(Pi, Pi+1)
Require: Two paths Pi and Pi+1;
Ensure: An HP of the maximum probabilistic preference so far.

1: Given Pi, compute di =
∑
∀(u,v)∈Pi

logw−1
uv .

2: Given Pi+1, compute di+1 =
∑
∀(u,v)∈Pi+1

logw−1
uv .

3: if di+1 < di then
4: Pi ←− Pi+1 // accept a better permutation with prob. 1;
5: else
6: // accept a worst permutation with a prob. pi;
7: Pi ←− Pi+1, with probability pi = exp[

−(di+1−di)

T
];

8: end if
9: return HP ←− Pi;

iterations (a user-specified parameter). When n is large enough,
the complexity of SAPS is O(n3).

VI. EXPERIMENTS
To evaluate the performance of our approach, we perform

an extensive set of experiments by using both simulated and
real crowdsourcing datasets. In this section, we explain the
details of our empirical study.

A. Setup
We execute the experiments on a testbed with 2.0 GHz

CPU and 64 GB RAM, running Windows OS. We implement
all the algorithms in C++.

1) Parameters: We change the settings of the following
parameters: (1) selection ratio r: the portion of pairwise com-
parisons that can be selected for crowdsourcing with regard to
the given budget. When r = 1 it is equivalent to the all-pair
ranking setting; (2) w: number of workers per HIT; and (3) n:
number of objects for ranking.

2) Baselines: We generate the baselines for both task
assignment and result inference steps. The baselines serve
different purposes for performance measurement.

Task Assignment. We generate the all-pair comparison
tasks that include all

(
n
2

)
pairwise comparisons of n objects.



In our experiments, the all-pair ranking baseline corresponds
to the setting where the selection ratio r = 1.

Result Inference. From the existing work, we pick three
categories that are most relevant to our problem, including:
(1) rank aggregation, (2) crowdsourced ranking, and (3) truth
discovery (more details of related work are in Sec. VII). For
each category, we pick one state-of-the-art algorithm as the
baseline:

Rank aggregation category: we pick the RepeatChoice
(RC) algorithm [17] that tries to minimize the sum of dis-
tances between the output and the individual rankings. It uses
Kendall-tau distance as the distance measurement.

Crowdsourced ranking category: we pick the QuickSort
(QS) algorithm [18] that models the ranking preferences by
the Condorcet graph. Unlike our graph model, its preference
is scored by majority voting.

Truth discovery category: we pick the CrowdBT algorithm
[7] that takes machine learning approach to combine the
workers’ quality with the Bradley-Terry Model [19] to estimate
the latent score. We must note that unlike our work, CrowdBT
is an algorithm for the interactive setting.

We will compare our ranking aggregation with these three
baseline approaches with regard to the ranking accuracy and
time performance.

3) Crowdsourcing Setting: We use Amazon Mechanical
Turk1 (AMT) for the crowdsourcing setting. We prepared a
set of image ranking HITs that include a number of celebrity
photos picked from the Public Figures Face Database 2. The
AMT workers are asked to rank the photos based on how much
the celebrity smiled in the photos. To test the robustness of
our approach, we only pick those photos that have conflicting
opinions. To do this, first, we use an image ranking algorithm
[20] to rank all 1, 800 images in the dataset. Then we pick
a number of images whose rankings are close - the ranking
difference of any two picked images that are next to each other
in the ranking never exceed 46. We prepared the 10-image
setting and the 20-image setting that includes 10 images and 20
images respectively. We must note that the ranking produced
by the algorithm cannot be considered as the ground truth; it
is well-known that the humans are better than the machines
for image processing.

For the HIT configuration, we vary the number of workers
per HIT (w=100, 125, 150, 200) and the crowdsourcing budget
to study their impact on the ranking result. We pay $0.025 for
each pairwise comparison. Different budgets lead to different
selection ratios. In our setting, we have the selection ratio r=
0.25, 0.5, 0.75, and 1.

4) Simulation Setting: We construct a number of preference
datasets at large scale to simulate the workers of different
quality.

Ground Truth. We design the following algorithm to simulate
the preferences. Given n nodes, we randomly generate a
permutation π, and consider π as the ground truth of their
ranking. For any two nodes vi and vj , we use ri and rj to
denote their positions in π.

1https://www.mturk.com/.
2http://www.cs.columbia.edu/CAVE/databases/pubfig/

Workers’ Quality. As in the previous work [21], we assume
that the worker Wk’s error follows the normal distribution εk ∼
N (0, σ2

k). Intuitively, the smaller σk is, the higher quality does
the worker have. In our experiments, we use two different
distribution settings of σk.
• Gaussian distribution: σk ∼ N (0, σ2

s), i.e., the standard
deviation of each worker’s error follows a normal distri-
bution. We set σs = 0.01, 0.1, 1 to simulate the scenario
where the workers have high, medium and low quality.
• Uniform distribution: σk follows a uniform distribution.

We set the range of the uniform distribution to be [0, 0.2],
[0.1, 0.3], and [0.2, 0.4] to simulate the workers who have
high, medium and low quality respectively.

Workers’ Preference We generate the directed edges in the
preference graph to simulate a worker’s preference. For any
task (Oi, Oj) assigned to worker Wk, the worker has εk
probability to make the wrong voting, where εk ∼ N (0, σ2

k).
Thus, we add an edge vi → vj with probability 1 − εk, and
the edge vj → vi with probability εk.

5) Accuracy Evaluation Metrics: We use the well-known
Kendall Tau distance metrics [22] to evaluate the accuracy of
the aggregated ranking. For the simulation setting, we assume
that the ground truth is available, and we measure the Kendall
Tau distance between the ground truth and the aggregated
ranking result by our algorithm. For the crowdsourcing setting
(image ranking), we do not have the ground truth. Thus we
measure the Kendall Tau distance between the ranking result
of TAPS and SAPS. For both settings, we report 1−d as the
accuracy, where d is the Kendall Tau distance. Intuitively, the
smaller d is, the higher is the accuracy.
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Fig. 3: Result inference time w.r.t. number of objects
(simulated setting: r = 0.5, medium worker quality)

B. Time Performance
Number of Objects. We measure the time performance of
the result inference algorithm SAPS with regards to various
number of objects as well as different selection ratios (i.e.,
different budgets). In Figure 3, we evaluate the scalability of
SAPS by varying the number of objects from 100 to 1000.
We witness that SAPS is fast. Even when the number of
objects reaches 1, 000, SAPS can finish in 2 minutes. This
demonstrates that SAPS can support efficient rank aggregation
on large number of objects. We also observe that different
worker quality distributions make little impact on the time
performance of SAPS. This is due to the fact that the time
complexity of SAPS is independent from the weights on the
edges.

Budgets. To simulate the different budgets for crowdsourcing,
we change the selection ratio r from 0.1 to 1. Intuitively, a
bigger budget leads to a larger r value. When r = 1, it is
equivalent to the all-pair comparison baseline. Our results are
reported in Figure 4. Overall, SAPS is very efficient. It only

http://www.cs.columbia.edu/CAVE/databases/pubfig/
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Fig. 4: Result inference time w.r.t. budgets
(simulated setting: n = 1000, medium worker quality)

takes around 15 seconds to rank 1000 objects, even for high
selection ratio. Furthermore, the time performance of SAPS
rises slightly with the increase of the selection ratio for both
worker quality distributions, since there are more pairwise
preferences to be aggregated. We further measure the time
consumed by each step of the result inference algorithm. The
first observation is that Step 4 (i.e. find the best ranking) takes
more time than the other three steps. Second, for the worker
quality of Gaussian distribution, Step 1 is faster than Step
2, while for the quality of Uniform distribution, Step 2 is
faster than Step 1. We measure the number of 1-edges for
both distributions. It turned out that for Gaussian distribution,
the number of 1-edges is much more than that for the uniform
distribution. This is not surprising as it is more likely to have
1-edges for the worker quality of Gaussian distribution, as the
workers of high- (low-, resp.) quality intend to vote for the
same correct (wrong. resp.) preferences.
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Fig. 5: Ranking accuracy w.r.t. number of objects and budgets
(simulated setting, medium worker quality)

C. Ranking Accuracy
We measure the accuracy of our result inference method

with regards to various parameters, including the number of
objects, the budget (i.e., selection ratio), and workers’ quality.

Number of Objects. We report the impact of the number
of objects n on ranking accuracy in Figure 5. Overall the
ranking accuracy is high (between [0.86, 0.99]), even for
small selection ratio as 0.1. Furthermore, the ranking accuracy
improves with the growth of the number of objects n. This
is because when n increases, more pairwise preferences can
be inferred by the transitive property, and thus lead to more
accurate ranking result. An interesting observation is that the
accuracy for the worker quality of Gaussian distribution is
higher than that of uniform distribution, as there are more high-
quality workers for the worker quality of Gaussian distribution.

Crowdsourcing Budgets. We vary the selection ratio r to sim-
ulate various budgets. Figure 5 reports the results. Intuitively,

with the growth of r, the ranking accuracy gets better. This
is not surprising as more pairwise comparisons leads to more
accurate ranking. However, we must note that even when r
is as small as 0.1 (i.e., only a tenth of pairwise comparisons
are picked), the ranking accuracy can achieve at least 0.86
(for 100 objects and uniform quality distribution). When the
selection ratio r = 0.3, the accuracy can reach 0.98! This
demonstrates that our task assignment approach works well
for budget-conscious crowdsourcing setting.

D. AMT Crowdsourcing Setting
Ranking Accuracy. We compare the accuracy of SAPS com-
pared with the exact solution TAPS. We observe that for most
cases, SAPS generates the same ranking result as TAPS. We
omit the results due to the limited space.

TABLE I: Comparison with Baselines

# of objects 100 200 300
Accu. Time(s) Accu. Time(s) Accu. Time(s)

SAPS 89.2% 0.363 92.9% 1.464 94.2% 3.882
RC 2.00% 0.038 1.70% 0.090 1.50% 0.179
QS 19.6% 0.275 23.1% 0.654 19.6% 1.159

CrowdBT 93.8% 3529 92.4% 14938 89.1% 26012
(a) Workers’ quality (Gaussian distribution)

# of objects 100 200 300
Accu. Time(s) Accu. Time(s) Accu. Time(s)

SAPS 86.0% 0.330 90.5% 1.235 92.9% 3.185
RC 1.83% 0.035 1.59% 0.089 1.46% 0.178
QS 18.8% 0.274 22.4% 0.661 19.5% 1.114

CrowdBT 92.9% 3490 93.0% 14100 83.0% 28425
(b) Workers’ quality (Uniform distribution)

E. Comparison with Baselines

Time Performance. We compare SAPS with the three baseline
approaches. It turned out that RC is the fastest, while QS the
second, and SAPS the third (3.882 seconds for 300 objects).
CrowdBT is significantly slower than SAPS (26,012 seconds
for 300 objects), as it performs in an interactive fashion. More
details of the time performance can be found in Table I.

Accuracy. First, we compare the accuracy of the four ap-
proaches for various number of objects. We fix the selection
ratio r = 0.5 and vary the number of objects from 100 to 300.
Table I shows the comparison results. We observe that SAPS
wins RC and QS for both worker quality distributions. The
ranking accuracy of RC and QS never exceeds 20%, while the
accuracy of SAPS is always higher than 86%. Furthermore, the
accuracy of CrowdBT is comparable to SAPS. An interesting
observation is that the accuracy of SAPS improves with the
increase of the number of objects, while the accuracy of
CrowdBT degrades. This is because SAPS benefits from the
transitive property of ranking preferences; more objects leads
to more preferences that can be inferred from the transitive
closure. However, CrowdBT suffers from the impact of the
number of objects on active learning. As stated in [7], for large
number of objects, the active learning strategy may perform
too much exploration but with small accuracy gain.

Second, we compare the accuracy of the four approaches
with regards to various budgets (i.e. selection ratios) and
workers’ quality. We only report the results when the workers’
quality follows the Gaussian distribution. The results from
the uniform distribution is similar to the Gaussian distribution
and thus we omit them due to the limited space. We have
the following observations. First, in most cases, the accuracy
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Fig. 6: SAPS versus baselines w.r.t. workers’ quality (simulated setting)

improves when the selection ratio grows. This makes sense
as more pairwise preferences always lead to more accurate
ranking result. Second, under various selection ratios, SAPS
always produces the top-2 ranking accuracy. Compared with
RC and QS, SAPS wins more for smaller r. For these cases, the
accuracy of RC and QS (below 0.5) is no better than a random
guess. In contrast, the ranking accuracy of SAPS is at least
0.88. Third, CrowdBT demonstrates its advantage when only a
small fraction of comparison tasks can be crowdsourced. But
it loses to SAPS when the budgets increases. Fourth, all the
four approaches produce higher ranking accuracy when the
worker quality improves. Furthermore, SAPS wins the other
three baseline approaches in almost all testing cases when the
workers have medium or high quality.

VII. RELATED WORK

We classify the related work into three categories: (1)
crowdsourcing ranking; (2) rank aggregation; and (3) truth
discovery.

Crowdsourced Ranking. The problem of finding top-k rank-
ing is highly related to ours. While this problem aims at finding
the top-k answers, we aim to find the full ranking. Most of
the existing crowdsourced top-k ranking approaches follow the
same idea: estimate the score for each object from the crowd’s
pairwise preferences, and find the k objects of the highest
estimated scores. There are two type of algorithms to estimate
the object scores: heuristic-based algorithms and machine-
learning methods [23]. The heuristic algorithms estimate the
object scores by either the number of neighbors in a graph
model (e.g., [5]), or the probability theory [24], or the number
of winning counts (e.g., [25]). The machine-learning methods
(e.g. [7], [8]) assume that each object has a latent score which
follows a certain distribution. These algorithms use machine
learning techniques to estimate the scores. We refer the readers
to [23] for a wonderful survey on crowdsouced top-k ranking.
Unlike these work, we do not associate a score with the
objects. Instead, we compute the probabilistic preference on
the pairwise comparisons, and aggregate the preference to
generate the full ranking.

Rank Aggregation. The rank aggregation problem have
gained much attention. The rank aggregation functions can
be grouped into two categories: (1) ranking list aggregation;
and (2) pairwise preference aggregation. The problem of rank
list aggregation is the following: given m permutations of n
elements (i.e., m full rankings), to find a permutation that
minimizes the sum of distances between itself and each given
permutation. Here, each permutation represents a ranking over
n elements. A key of the rank aggregation problem is to define
a measure of disagreement between the input rankings and the

aggregated result. Correlation statistics such as Spearman’s
rank correlation coefficient [26] and Kendall’s tau distance
[22] are popularly used. It is known that the rank aggregation
problem based on Kendall’s tau distance is NP-hard [27]. A
number of heuristic algorithms can compute the aggregation
in O(nlogn) [28] or O(nlogn/loglogn) [29]. Algorithms for
aggregation of partial rankings (i.e., rankings with ties) are
also designed [17].

Pairwise preference aggregation methods organize their
ranking inputs in a pairwise way. Possible approaches include
modeling the ranking preferences as a Condorcet graph [18],
a tournament [30], and a pairwise preference matrix [31]. The
probabilistic approaches define the generative probability of
pairwise preferences and optimize the likelihood function by
a gradient based approach [32], [7].

Truth Discovery. Truth discovery [33], [12], [34] has caught
much attention recently and many truth discovery methods
have been proposed. The goal of truth discovery is to identify
true information (i.e., truths) from the conflicting multi-source
data. The advantage of truth discovery over the naive aggrega-
tion methods is that it can capture the variance in sources
reliability degrees. Most truth discovery methods estimate
source reliability automatically from the data, and integrate
the source reliability into truth computation as source weight.
Consequently, the more reliable sources contribute more in
the final aggregation step. A large variety of truth discovery
methods have been designed to jointly estimate truths and
source reliability. We refer to [11] for a wonderful survey on
this topic. In our work, we adapt the truth discovery method to
estimate the true pairwise inference and the workers’ quality.

VIII. CONCLUSION

In this paper, we study budget-conscious pairwise ranking
aggregation problem in the non-interactive crowdsourcing set-
ting. We design efficient algorithms that select a small number
of pairwise comparisons by the crowd. We ensure that the se-
lected pairs guarantee fair and robust ranking aggregation. We
also design efficient result inference algorithms that construct
the full ranking from the workers’ pairwise preferences by
taking the workers’ quality into consideration. Experimental
results demonstrate that our method can achieve high accuracy
in full ranking generation under the non-interactive setting.

There are many interesting future directions. In this paper,
we aim to bound the number of comparisons performed by
the crowd under a given budget constraint. It is interesting
to consider alternative objectives such as minimizing the
number of comparisons to find the full ranking with acceptable
accuracy. Another interesting research direction is to consider
the same setting for top-k ranking.
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