Chris Bishop's PRML Ch. 8: Graphical Models

Ramya Narasimha & Radu Horaud

January 24, 2008

Ramya Narasimha & Radu Horaud Chris Bishop's PRML Ch. 8: Graphical Models

Introduction

- Visualize the structure of a probabilistic model
- Design and motivate new models
- Insights into the model's properties, in particular conditional independence obtained by inspection
- Complex computations = graphical manipulations

A few definitions

- Nodes (vertices) + links (arcs, edges)
- Node: a random variable
- Link: a probabilistic relationship
- Directed graphical models or Bayesian networks useful to express *causal* relationships between variables.
- Undirected graphical models or Markov random fields useful to express soft constraints between variables.
- ► Factor graphs convenient for solving inference problems

Chapter organization

- 8.1 **Bayesian Networks**: Representation, polynomial regression, generative models, discrete variables, linear-Gaussian models.
- 8.2 Conditional independence: Generalities, D-separation
- 8.3 Markov random fields: conditional independence, factorization, image processing example, relation to directed graphs
- 8.4 Inference in graphical models: next reading group.

Bayesian networks (1)

$$p(a, b, c) = p(c|a, b)p(b|a)p(a)$$

Notice that the left-hand side is symmetrical w/r to the variables whereas the right-hand side is not.

Generalization to K variables:

 $p(x_1,...,x_K) = p(x_K|x_1,...,x_{K-1})...p(x_2|x_1)p(x_1)$

- ► The associated graph is *fully connected*.
- ► The absence of links conveys important information.

Bayesian networks (3)

It is obvious to obtain the associated joint probability $p(x_1, \ldots, x_7)$.

Bayesian networks (4)

More generally, for a graph with K nodes the joint distribution is:

$$p(\mathbf{x}) = \prod_{k=1}^{K} p(x_k | pa_k)$$

- this key equation expresses the factorization properties of the joint distribution.
- there must be no directed cycles
- these graphs are also called DAGs or *directed acyclic graphs*.
- equivalent definition: there exists an ordering on the nodes such that there are no links going from any node to any lowered numbered node (see example of Figure 8.2).

Polynomial regression (1)

random variables: polynomial coefficients w and the observed data t.

•
$$p(\mathbf{t}, \mathbf{w}) = p(\mathbf{w}) \prod_{n=1}^{N} p(t_n | \mathbf{w})$$

The box is called a plate

Polynomial regression (2)

Deterministic parameters shown by small nodes

shaded nodes are set to observed values

-

Polynomial regression (3)

- ▶ the observed variables, $\{t_n\}$, are shown by shaded nodes
- the values of the variables w are not observed latent or hidden variables.
- but these variables are not of direct interest
- the goal is to make predictions for new input values, ie the graphical model below:

Generative models

Back to:

$$p(\mathbf{x}) = \prod_{k=1}^{K} p(x_k | pa_k)$$

- each node has a higher number than any of its parents
- the factorization above corresponds to a DAG.
- goal: draw a sample $\hat{x}_1, \ldots, \hat{x}_K$ from the joint distribution.
- apply ancestral sampling start from lower-numbered nodes, downwards trhough the graph's nodes.
- generative graphical model captures the *causal* process that generated the observed data (object recognition example)

Discrete variables (1)

The case of a single discrete variable x with K possible states (look at section 2.2 on multinomial variables):

$$p(\mathbf{x}|\mu) = \prod_{k=1}^{K} \mu_k^{x_k}$$

with $\mu = (\mu_1, \dots, \mu_K)^T$ and $\sum_k \mu_k = 1$ hence K - 1 variables need be specified.

The case of two variables, with similar notations and definitions:

$$p(\mathbf{x}_1, \mathbf{x}_2 | \mu) = \prod_{k=1}^{K} \prod_{l=1}^{K} \mu_{kl}^{x_{1k} x_{2l}}$$

with the constraint $\sum_{k} \sum_{l} \mu_{kl} = 1$ there are $K^2 - 1$ parameters.

Discrete variables (2)

- ► If the two variables are independent, the number of parameters drops to 2(K - 1).
- ► The general case of M discrete variables generalizes to K^M - 1 parameters, which reduces to M(K - 1) parameters for M independent variables.

► In this example there are K - 1 + (M - 1)K(K - 1)parameters:

the sharing or tying of parameters is another way to reduce their number.

Discrete variables with Dirichlet priors (3)

The same with tied parameters:

Discrete variables (4)

 Introduce parameterizations of the conditional distributions to control the exponential growth: an example with binary variables.

 x_M

- ► This graphical model: parameters representing the probability p(y = 1).
- Alternatively, use a logistic sigmoid function over a linear combination of the parents:

$$p(y=1|x_1,\ldots,x_M) = \sigma\left(w_0 + \sum_i w_i x_i\right)$$

Linear-Gaussian models (1)

- Extensive use of this section in later chapters...
- Back to DAG: $p(\mathbf{x}) = \prod_{k=1}^{D} p(x_k | pa_k)$
- The distribution of node i:

$$p(x_i|pa_i) = \mathcal{N}\left(x_i|\sum_{j\in pa_i} w_{ij}x_j + b_i, v_i\right)$$

- ► the logarithm of the joint distribution is a quadratic function in x₁,..., x_D (see equations (8.12) and (8.13)).
- The joint distribution $p(\mathbf{x})$ is a multivariate function.
- The the mean and variance of this joint distribution can be determined recursively, given the parent-child relationships in the graph (see details in the book).

Linear-Gaussian models (2)

- The case of independent variables (no links in the graph): the covariance matrix is diagonal.
- A fully connected graph: the covariance matrix is a general one with D(D − 1)/2 entries.
- Intermediate level of complexity correspond to partially constrained covariance matrices.
- It is possible to extend the model to the case in which the nodes represent multivariate Gaussian variables.
- Later chapters will treat the case of hierarchical Bayesian models

Conditional Independence

Consider three variable a, b and c

$$p(a|b,c) = p(a|c) \tag{1}$$

Then a is conditionally independent of b given c

$$p(a, b|c) = p(a|c)p(b|c)$$
(2)

a and b are Statistically independent given c Shorthand notation : $a\perp b|c$

Conditional Independence

- Simplifies the structure of a probabilistic model
- Simplifies the computations needed for inference and learning
- This property can be tested by repeated application of sum and product rules of probability: Time consuming!!

Advantage of Graphical models

- Conditional independence can be read directly from the graph without having to perform any analytical manipulations
- ► The framework for achieving this : **D-separation**

Example-I

$$p(a,b,c) = p(a|c)p(b|c)p(c)$$

$$p(a,b) = \sum_{c} p(a|c)p(b|c)p(c) \neq p(a)p(b) \longrightarrow a \not\perp b|\emptyset$$
(3)

Using Bayes' Theorem

Example-II

$$p(a, b, c) = p(a)p(c|a)p(b|c)$$

$$p(a, b) = p(a)\sum_{c} p(c|a)p(b|c) = p(a)p(b|a) \longrightarrow a \not\perp b|\emptyset$$
(5)

Using Bayes' Theorem

Example-III

$$p(a, b, c) = p(a)p(b)p(c|a, b)$$

$$p(a, b) = p(a)p(b) \longrightarrow a \perp b|\emptyset$$
(7)

Using Bayes' Theorem

Terminology: x is the *Descendant* of y if there is path from x to y in which each step of the path follows directions of arrows **observed** c **blocks path** a - b

Tail to Tail nodes

Head to Tail nodes

observed c unblocks path a — b

Head to Head nodes

Fuel gauge Example

- B : Battery state either 0 or 1
- F : Fuel state either 0 or 1
- G : Gauge reading either 0 or 1

Observing the reading of the gauge G makes the fuel state F and battery state B dependent

D-separation

D stands for Directed

A, B and C: non-intersecting sets of nodes

To ascertain $A \perp B|C$:

 Consider all paths that are *Blocked* from any node A to any node B

> Path is said to be Blocked path if it includes a node such that

- ▶ the arrows on the path meet either head-to-tail or tail-to-tail at the node, and the node is in the set *C*, or
- ► the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, is in the set *C*

• if all paths are blocked then A is d-separated from B by C

Example-I

Figure: $a \not\perp b | c$

Figure: $a \perp b | f$

2

Example-II

- ▶ w is a tail-to-tail node with respect to the path from \hat{t} to any one of the nodes $\{t_n\}$
- Hence $\hat{t} \perp t_n | \mathbf{w}$
- Interpretation:
 - First use the training data to determine the posterior distribution over w
 - Discard $\{t_n\}$ and use posterior distribution for **w** to make predictions of \hat{t} for new input observations \hat{x}

Interpretation as Filter

 Filter-I: allows a distribution to pass through if, and only if, it can be expressed in terms of the factorization implied by the graph

$$p(\mathbf{x}) = \prod_{k=1}^{K} p(x_k | pa_k)$$
(8)

- Filter-II: allows distributions to pass according to whether they respect all of the conditional independencies implied by the d-separation properties of the graph
- ► The set of all possible probability distributions p(x) that is passed by *both* the filters is precisely the same
- And are denoted by \mathcal{DF} , for *directed factorization*

Naive Bayes Model

- Conditional independence is used to simplify the model structure
- Observed: x a D-dimensional vector
- K-Classes: represented as K-dimensional binary vector z
- ▶ $p(\mathbf{z} | \mu)$: Multinomial prior i.e., prior probability of class k
- Graphical representation of naive Bayes model, assumes all components x are conditionally independent given z
- However this assumption fails when marginalized over z

Directed Graphs: Summary

- Represents specific decomposition of a joint probability distribution into a product of conditional probabilities
- Expresses a set of conditional independence statements through d-separation criterion
- Distributions satisfying d-separation criterion are denoted as *DF*
- Extreme Cases: DF can contain all possible distributions in case of fully connected graph or product of marginals in case fully disconnected graphs

Markov Blanket

Consider a joint distribution $p(\mathbf{x}_1 \dots \mathbf{x}_D)$

$$p(\mathbf{x}_i | \mathbf{x}_{j \neq i}) = \frac{\prod_k p(\mathbf{x}_k | pa_k)}{\int \prod_k p(\mathbf{x}_k | pa_k) \mathsf{d}\mathbf{x}_i}$$
(9)

- Factors not having any functional dependence on \mathbf{x}_i cancel out
- Only factors remaining are
 - Parents and children x_i
 - Also co-parents: corresponding to parents of node \mathbf{x}_k (not \mathbf{x}_i)

These remaining factors are referred to as The Markov Blanket of node \mathbf{x}_i

Markov Random Fields

- Also called Undirected Graphical Models
- Consists nodes which correspond to variables or group of variables
- Links within the graph do not carry arrows
- Conditional independence is determined by simple graph separation

Conditional independence properties

Consider three sets of nodes A, B, and C

- Consider all possible paths that connect nodes in set A to nodes in set B
- ▶ If all such paths pass through one or more nodes in set C, then all such paths are blocked $\rightarrow A \perp B | C$
- Testing for conditional independence in undirected graphs is therefore simpler than in directed graphs
- The Markov blanket: consists of the set of neighboring nodes

Factorization properties

- Consider two nodes x_i and x_j that are not connected by a link then these are conditionally independent given all other nodes
- As there is no direct path between the nodes
- All other paths are blocked by nodes that are observed

$$p(x_i, x_j | \mathbf{x}_{\backslash \{i, j\}}) = p(x_i | \mathbf{x}_{\backslash \{i, j\}}) p(x_j | \mathbf{x}_{\backslash \{i, j\}})$$
(10)

Maximal cliques

- Clique: A set of fully connected nodes
- Maximal Clique: clique in which it is not possible to include any other nodes without it ceasing to be a clique
- Joint distribution can thus be factored it terms of maximal cliques
- Functions defined on maximal cliques includes the subsets of maximal cliques

Joint distribution

For clique ${\cal C}$ and set of variables in that clique $\textbf{x}_{\cal C}$ The joint distribution

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{\mathcal{C}} \Psi_{\mathcal{C}}(\mathbf{x}_{\mathcal{C}})$$
(11)

Where Z is the partition function

$$Z = \sum_{\mathbf{x}} \prod_{\mathcal{C}} \Psi_{\mathcal{C}}(\mathbf{x}_{\mathcal{C}})$$
(12)

- ▶ With M node and K states, the normalization term involves summing over K^M states
- ► So (in the worst case) is exponential in the size of the model
- The partition function is needed for parameter learning
- For evaluating local marginal probabilities the unnormalized joint distribution can be used

Hammersley and Clifford Theorem

Using filter analogy

- U1: the set of distributions that are consistent with the set of conditional independence statements read from the graph using graph separation
- ► UF: the set of distributions that can be expressed as a factorization described with respect to the maximal cliques
- ► The Hammersley-Clifford theorem states that the sets UI and UF are identical if Ψ_C(**x**_C) is strictly positive
- In such case

$$\Psi_{\mathcal{C}}(\mathbf{x}_{\mathcal{C}}) = \exp\{-E(\mathbf{x}_{\mathcal{C}})\}$$
(13)

► Where E(x_C) is called an energy function, and the exponential representation is called the Boltzmann distribution

Image Denoising Example

- ▶ Noisy Image: $y_i \in \{-1, +1\}$ where *i* runs over all the pixels
- Unknown Noise Free Image: $x_i \in \{-1, +1\}$
- Goal: Given Noisy image recover Noise Free Image

The Ising Model

Two types of cliques

- ► $-\eta x_i y_i$: giving a lower energy when x_i and y_i have the same sign and a higher energy when they have the opposite sign
- ► -βx_i x_j: the energy is lower when the neighboring pixels have the same sign than when they have the opposite sign

The Complete energy function and joint distribution

$$E(\mathbf{x}, \mathbf{y}) = h \sum_{i} x_i - \beta \sum_{\{i,j\}} x_i x_j - \eta \sum_{i} x_i y_i$$
(14)

The joint distribution

$$p(\mathbf{x}, \mathbf{y}) = \frac{1}{Z} \exp\{-E(\mathbf{x}, \mathbf{y})\}$$
(15)

Fixing **y** as observed values implicitly defines $p(\mathbf{x}|\mathbf{y})$ To obtain the image **x** with ICM or any other techniques

- Initialize the variables $x_i = y_i$ for all i
- For x_j evaluate the total energy for the two possible states $x_j = +1$ and $x_j = -1$ with other node variables fixed
- set x_j to whichever state has the lower energy
- Repeat the update for another site, and so on, until some suitable stopping criterion is satisfied

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

3

Relation to directed graphs

Distribution for directed graph

$$p(\mathbf{x}) = p(x_1)p(x_2|x_1)p(x_3|x_2)\cdots p(x_N|x_{N-1})$$
(16)

For undirected

$$p(\mathbf{x}) = \frac{1}{Z} \Psi_{1,2}(x_1, x_2) \Psi_{2,3}(x_2, x_2) \cdots \Psi_{N-1,N}(x_{N-1}, x_N) \quad (17)$$

where

$$\begin{split} \Psi_{1,2}(x_1, x_2) &= p(x_1)p(x_2|x_1) \\ \Psi_{2,3}(x_1, x_2) &= p(x_3|x_2) \\ &\vdots \\ \Psi_{N-1,N}(x_1, x_2) &= p(x_N|x_{N-1}) \end{split}$$

-

Another Example

- In order to convert directed graph into undirected graph add extra links between all pairs of parents
- Anachronistically, this process of 'marrying the parents' has become known as *moralization*
- The resulting undirected graph, after dropping the arrows, is called the moral graph

Moralization Procedure

- Add additional undirected links between all pairs of parents for each node in the graph
- Drop the arrows on the original links to give the moral graph
- Initialize all of the clique potentials of the moral graph to 1
- Take each conditional distribution factor in the original directed graph and multiply it into one of the clique potentials
- There will always exist at least one maximal clique that contains all of the variables in the factor as a result of the moralization step
- Going from a directed to an undirected representation discards some conditional independence properties from the graph

D-map and I-maps

Directed and Undirected graphs express different conditional independence properties

- D-map of a distribution: every conditional independence statement satisfied by the distribution is reflected in the graph
- A graph with no links will be trivial D-map
- I-map of a distribution: every conditional independence statement implied by a graph is satisfied by a specific distribution
- Fully connected graph will give I-map for any distribution
- Perfect map: is both D-map and I-map

Figure: (a) Directed

(b)Undirected

- Case(a)
 - A directed graph that is a perfect map
 - Satisfies the properties $A \perp B | \emptyset$ and $A \not\perp B | C$
 - Has no corresponding undirected graph that is a perfect map
- Case(b)
 - A undirected graph that is a perfect map
 - \blacktriangleright Satisfies the properties $A \not\perp B | \emptyset, \, C \perp D | A \cup B$ and $A \perp B | C \cup D$
 - Has no corresponding directed graph that is a perfect map