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Introduction

I Visualize the structure of a probabilistic model

I Design and motivate new models

I Insights into the model’s properties, in particular conditional
independence obtained by inspection

I Complex computations = graphical manipulations

Ramya Narasimha & Radu Horaud Chris Bishop’s PRML Ch. 8: Graphical Models



A few definitions

I Nodes (vertices) + links (arcs, edges)

I Node: a random variable

I Link: a probabilistic relationship

I Directed graphical models or Bayesian networks useful to
express causal relationships between variables.

I Undirected graphical models or Markov random fields useful
to express soft constraints between variables.

I Factor graphs convenient for solving inference problems
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Chapter organization

8.1 Bayesian Networks: Representation, polynomial regression,
generative models, discrete variables, linear-Gaussian models.

8.2 Conditional independence: Generalities, D-separation

8.3 Markov random fields: conditional independence,
factorization, image processing example, relation to directed
graphs

8.4 Inference in graphical models: next reading group.
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Bayesian networks (1)

a

b

c

p(a, b, c) = p(c|a, b)p(b|a)p(a)

Notice that the left-hand side is symmetrical w/r to the variables
whereas the right-hand side is not.
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Bayesian networks (2)

Generalization to K variables:

p(x1, . . . , xK) = p(xK |x1, . . . , xK−1) . . . p(x2|x1)p(x1)

I The associated graph is fully connected.

I The absence of links conveys important information.
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Bayesian networks (3)

x1

x2 x3

x4 x5

x6 x7

It is obvious to obtain the associated joint probability
p(x1, . . . , x7).
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Bayesian networks (4)

More generally, for a graph with K nodes the joint distribution is:

p(x) =
K∏

k=1

p(xk|pak)

I this key equation expresses the factorization properties of the
joint distribution.

I there must be no directed cycles

I these graphs are also called DAGs or directed acyclic graphs.

I equivalent definition: there exists an ordering on the nodes
such that there are no links going from any node to any
lowered numbered node (see example of Figure 8.2).
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Polynomial regression (1)

I random variables: polynomial coefficients w and the observed
data t.

I p(t,w) = p(w)
∏N

n=1 p(tn|w)

w

t1 tN

OR
tn

N

w

The box is called a plate
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Polynomial regression (2)

tn

xn

N

w

α

σ2

tn

xn

N

w

α

σ2

Deterministic parameters shown shaded nodes are set
by small nodes to observed values
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Polynomial regression (3)

I the observed variables, {tn}, are shown by shaded nodes

I the values of the variables w are not observed – latent or
hidden variables.

I but these variables are not of direct interest

I the goal is to make predictions for new input values, ie the
graphical model below:

tn

xn

N

w

α

t̂
σ2

x̂
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Generative models

I Back to:

p(x) =
K∏

k=1

p(xk|pak)

I each node has a higher number than any of its parents

I the factorization above corresponds to a DAG.

I goal: draw a sample x̂1, . . . , x̂K from the joint distribution.

I apply ancestral sampling start from lower-numbered nodes,
downwards trhough the graph’s nodes.

I generative graphical model captures the causal process that
generated the observed data (object recognition example)
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Discrete variables (1)

I The case of a single discrete variable x with K possible states
(look at section 2.2 on multinomial variables):

p(x|µ) =
K∏

k=1

µxk
k

with µ = (µ1, . . . , µK)T and
∑

k µk = 1 hence K − 1
variables need be specified.

I The case of two variables, with similar notations and
definitions:

p(x1, x2|µ) =
K∏

k=1

K∏
l=1

µx1kx2l
kl

with the constraint
∑

k

∑
l µkl = 1 there are K2 − 1

parameters.
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Discrete variables (2)

I If the two variables are independent, the number of
parameters drops to 2(K − 1).

I The general case of M discrete variables generalizes to
KM − 1 parameters, which reduces to M(K − 1) parameters
for M independent variables.

I In this example there are K − 1 + (M − 1)K(K − 1)

parameters:
x1 x2 xM

I the sharing or tying of parameters is another way to reduce
their number.
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Discrete variables with Dirichlet priors (3)

x1 x2 xM

µ1 µ2 µM

The same with tied parameters:

x1 x2 xM

µ1 µ
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Discrete variables (4)

I Introduce parameterizations of the conditional distributions to
control the exponential growth: an example with binary
variables.

I This graphical model:
y

x1 xM

requires 2M

parameters representing the probability p(y = 1).

I Alternatively, use a logistic sigmoid function over a linear
combination of the parents:

p(y = 1|x1, . . . , xM ) = σ

(
w0 +

∑
i

wixi

)
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Linear-Gaussian models (1)

I Extensive use of this section in later chapters...

I Back to DAG: p(x) =
∏D

k=1 p(xk|pak)

I The distribution of node i:

p(xi|pai) = N

xi|
∑

j∈pai

wijxj + bi, vi


I the logarithm of the joint distribution is a quadratic function

in x1, . . . , xD (see equations (8.12) and (8.13)).

I The joint distribution p(x) is a multivariate function.

I The the mean and variance of this joint distribution can be
determined recursively, given the parent-child relationships in
the graph (see details in the book).
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Linear-Gaussian models (2)

I The case of independent variables (no links in the graph): the
covariance matrix is diagonal.

I A fully connected graph: the covariance matrix is a general
one with D(D − 1)/2 entries.

I Intermediate level of complexity correspond to partially
constrained covariance matrices.

I It is possible to extend the model to the case in which the
nodes represent multivariate Gaussian variables.

I Later chapters will treat the case of hierarchical Bayesian
models
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Conditional Independence

Consider three variable a, b and c

p(a| b, c) = p(a| c) (1)

Then a is conditionally independent of b given c

p(a, b| c) = p(a| c)p(b| c) (2)

a and b are Statistically independent given c
Shorthand notation : a ⊥ b|c

c

a b
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Conditional Independence

I Simplifies the structure of a probabilistic model

I Simplifies the computations needed for inference and learning

I This property can be tested by repeated application of sum
and product rules of probability: Time consuming!!

Advantage of Graphical models

I Conditional independence can be read directly from the graph
without having to perform any analytical manipulations

I The framework for achieving this : D-separation
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Example-I
c

a b

p(a, b, c) = p(a| c)p(b| c)p(c) (3)

p(a, b) =
∑

c

p(a| c)p(b| c)p(c) 6= p(a)p(b) −→ a 6⊥ b|∅

Using Bayes’ Theorem
c

a b

p(a, b| c) =
p(a, b, c)

p(c)
(4)

= p(a| c)p(b| c) −→ a ⊥ b|c
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Example-II

a c b

p(a, b, c) = p(a)p(c| a)p(b| c) (5)

p(a, b) = p(a)
∑

c

p(c| a)p(b| c) = p(a)p(b|a) −→ a 6⊥ b|∅

Using Bayes’ Theorem

a c b

p(a, b| c) =
p(a, b, c)

p(c)
=

p(a)p(c| a)p(b| c)
p(c)

(6)

= p(a| c)p(b| c) −→ a ⊥ b|c

Ramya Narasimha & Radu Horaud Chris Bishop’s PRML Ch. 8: Graphical Models



Example-III

c

a b

p(a, b, c) = p(a)p(b)p(c| a, b) (7)

p(a, b) = p(a)p(b) −→ a ⊥ b|∅

Using Bayes’ Theorem

c

a b

p(a, b| c) =
p(a)p(b)p(c| a, b)

p(c)
−→ a 6⊥ b|c
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Terminology: x is the Descendant of y if there is path from x to
y in which each step of the path follows directions of arrows
observed c blocks path a — b

I Tail to Tail nodes
c

a b

I Head to Tail nodes
a c b

observed c unblocks path a — b

I Head to Head nodes

c

a b
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Fuel gauge Example

G

B F

G

B F

G

B F

B : Battery state either 0 or 1
F : Fuel state either 0 or 1
G : Gauge reading either 0 or 1
Observing the reading of the gauge G makes the fuel state F and
battery state B dependent
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D-separation

D stands for Directed
A, B and C: non-intersecting sets of nodes
To ascertain A ⊥ B|C:

I Consider all paths that are Blocked from any node A to any
node B

I Path is said to be Blocked path if it includes a node such that
I the arrows on the path meet either head-to-tail or tail-to-tail

at the node, and the node is in the set C, or
I the arrows meet head-to-head at the node, and neither the

node, nor any of its descendants, is in the set C

I if all paths are blocked then A is d-separated from B by C
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Example-I

f

e b

a

c

Figure: a 6⊥ b|c

f

e b

a

c

Figure: a ⊥ b|f
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Example-II

tn

xn

N

w

α

t̂
σ2

x̂

I w is a tail-to-tail node with respect to the path from t̂ to any
one of the nodes {tn}

I Hence t̂ ⊥ tn|w
I Interpretation:

I First use the training data to determine the posterior
distribution over w

I Discard {tn} and use posterior distribution for w to make
predictions of t̂ for new input observations x̂
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Interpretation as Filter

I Filter-I: allows a distribution to pass through if, and only if, it
can be expressed in terms of the factorization implied by the
graph

p(x) =
K∏

k=1

p(xk| pak) (8)

I Filter-II: allows distributions to pass according to whether they
respect all of the conditional independencies implied by the
d-separation properties of the graph

I The set of all possible probability distributions p(x) that is
passed by both the filters is precisely the same

I And are denoted by DF , for directed factorization

p(x) DF
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Naive Bayes Model

I Conditional independence is used to simplify the model
structure

I Observed: x a D-dimensional vector

I K-Classes: represented as K-dimensional binary vector z

I p(z|µ) : Multinomial prior i.e., prior probability of class k

I Graphical representation of naive Bayes model, assumes all
components x are conditionally independent given z

I However this assumption fails when marginalized over z

z

x1 xD
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Directed Graphs: Summary

I Represents specific decomposition of a joint probability
distribution into a product of conditional probabilities

I Expresses a set of conditional independence statements
through d-separation criterion

I Distributions satisfying d-separation criterion are denoted as
DF

I Extreme Cases: DF can contain all possible distributions in
case of fully connected graph or product of marginals in case
fully disconnected graphs
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Markov Blanket
Consider a joint distribution p(x1 . . . xD)

p(xi| xj 6=i) =

∏
k p(xk| pak)∫ ∏

k p(xk| pak)dxi
(9)

I Factors not having any functional dependence on xi cancel out
I Only factors remaining are

I Parents and children xi

I Also co-parents: corresponding to parents of node xk (not xi)

These remaining factors are referred to as The Markov Blanket of
node xi

xi

Ramya Narasimha & Radu Horaud Chris Bishop’s PRML Ch. 8: Graphical Models



Markov Random Fields

I Also called Undirected Graphical Models

I Consists nodes which correspond to variables or group of
variables

I Links within the graph do not carry arrows

I Conditional independence is determined by simple graph
separation
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Conditional independence properties

A

C
B

Consider three sets of nodes A, B, and C

I Consider all possible paths that connect nodes in set A to
nodes in set B

I If all such paths pass through one or more nodes in set C,
then all such paths are blocked → A ⊥ B|C

I Testing for conditional independence in undirected graphs is
therefore simpler than in directed graphs

I The Markov blanket: consists of the set of neighboring nodes
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Factorization properties

I Consider two nodes xi and xj that are not connected by a link
then these are conditionally independent given all other nodes

I As there is no direct path between the nodes

I All other paths are blocked by nodes that are observed

p(xi, xj | x\{i,j}) = p(xi| x\{i,j})p(xj | x\{i,j}) (10)
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Maximal cliques

x1

x2

x3

x4

I Clique: A set of fully connected nodes

I Maximal Clique: clique in which it is not possible to include
any other nodes without it ceasing to be a clique

I Joint distribution can thus be factored it terms of maximal
cliques

I Functions defined on maximal cliques includes the subsets of
maximal cliques
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Joint distribution
For clique C and set of variables in that clique xC
The joint distribution

p(x) =
1

Z

∏
C

ΨC(xC) (11)

Where Z is the partition function

Z =
∑

x

∏
C

ΨC(xC) (12)

I With M node and K states, the normalization term involves
summing over KM states

I So (in the worst case) is exponential in the size of the model

I The partition function is needed for parameter learning

I For evaluating local marginal probabilities the unnormalized
joint distribution can be used
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Hammersley and Clifford Theorem

Using filter analogy

I UI: the set of distributions that are consistent with the set of
conditional independence statements read from the graph
using graph separation

I UF : the set of distributions that can be expressed as a
factorization described with respect to the maximal cliques

I The Hammersley-Clifford theorem states that the sets UI and
UF are identical if ΨC(xC) is strictly positive

I In such case
ΨC(xC) = exp{−E(xC)} (13)

I Where E(xC) is called an energy function, and the exponential
representation is called the Boltzmann distribution
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Image Denoising Example

I Noisy Image: yi ∈ {−1,+1} where i runs over all the pixels

I Unknown Noise Free Image: xi ∈ {−1,+1}
I Goal: Given Noisy image recover Noise Free Image
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The Ising Model

xi

yi

Two types of cliques

I −ηxi yi: giving a lower energy when xi and yi have the same
sign and a higher energy when they have the opposite sign

I −βxi xj : the energy is lower when the neighboring pixels have
the same sign than when they have the opposite sign

The Complete energy function and joint distribution

E(x, y) = h
∑

i

xi − β
∑
{i,j}

xi xj − η
∑

i

xi yi (14)

Ramya Narasimha & Radu Horaud Chris Bishop’s PRML Ch. 8: Graphical Models



The joint distribution

p(x, y) =
1

Z
exp{−E(x, y)} (15)

Fixing y as observed values implicitly defines p(x| y)
To obtain the image x with ICM or any other techniques

I Initialize the variables xi = yi for all i

I For xj evaluate the total energy for the two possible states
xj = +1 and xj = −1 with other node variables fixed

I set xj to whichever state has the lower energy

I Repeat the update for another site, and so on, until some
suitable stopping criterion is satisfied
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Relation to directed graphs

x1 x2 xN−1 xN x1 x2 xN−1xN

Distribution for directed graph

p(x) = p(x1)p(x2|x1)p(x3|x2) · · · p(xN |xN−1) (16)

For undirected

p(x) =
1

Z
Ψ1,2(x1, x2)Ψ2,3(x2, x2) · · ·ΨN−1,N (xN−1, xN ) (17)

where

Ψ1,2(x1, x2) = p(x1)p(x2|x1)

Ψ2,3(x1, x2) = p(x3|x2)

...

ΨN−1,N (x1, x2) = p(xN |xN−1)
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Another Example

x1 x3

x4

x2

x1 x3

x4

x2

I In order to convert directed graph into undirected graph add
extra links between all pairs of parents

I Anachronistically, this process of ’marrying the parents’ has
become known as moralization

I The resulting undirected graph, after dropping the arrows, is
called the moral graph
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Moralization Procedure

I Add additional undirected links between all pairs of parents
for each node in the graph

I Drop the arrows on the original links to give the moral graph

I Initialize all of the clique potentials of the moral graph to 1

I Take each conditional distribution factor in the original
directed graph and multiply it into one of the clique potentials

I There will always exist at least one maximal clique that
contains all of the variables in the factor as a result of the
moralization step

I Going from a directed to an undirected representation discards
some conditional independence properties from the graph
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D-map and I-maps

Directed and Undirected graphs express different conditional
independence properties

I D-map of a distribution: every conditional independence
statement satisfied by the distribution is reflected in the graph

I A graph with no links will be trivial D-map

I I-map of a distribution: every conditional independence
statement implied by a graph is satisfied by a specific
distribution

I Fully connected graph will give I-map for any distribution

I Perfect map: is both D-map and I-map
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C

A B
A

C

B

D

Figure: (a) Directed (b)Undirected

I Case(a)
I A directed graph that is a perfect map
I Satisfies the properties A ⊥ B|∅ and A 6⊥ B|C
I Has no corresponding undirected graph that is a perfect map

I Case(b)
I A undirected graph that is a perfect map
I Satisfies the properties A 6⊥ B|∅, C ⊥ D|A ∪B and

A ⊥ B|C ∪D
I Has no corresponding directed graph that is a perfect map
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