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Introduction

» Visualize the structure of a probabilistic model
» Design and motivate new models

» Insights into the model's properties, in particular conditional
independence obtained by inspection

» Complex computations = graphical manipulations
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A few definitions

vV v v Vv

Nodes (vertices) + links (arcs, edges)
Node: a random variable
Link: a probabilistic relationship

Directed graphical models or Bayesian networks useful to
express causal relationships between variables.

Undirected graphical models or Markov random fields useful
to express soft constraints between variables.

Factor graphs convenient for solving inference problems
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Chapter organization

8.1 Bayesian Networks: Representation, polynomial regression,
generative models, discrete variables, linear-Gaussian models.

8.2 Conditional independence: Generalities, D-separation

8.3 Markov random fields: conditional independence,
factorization, image processing example, relation to directed
graphs

8.4 Inference in graphical models: next reading group.
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Bayesian networks (1)

S

p(a, b, c) = p(cla, b)p(bla)p(a)

Notice that the left-hand side is symmetrical w/r to the variables
whereas the right-hand side is not.
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Bayesian networks (2)

Generalization to K variables:
p(r1,. .., 2x) = p(ek|z1, ..., 2r-1) ... p(x2|2z1)p(21)

» The associated graph is fully connected.

» The absence of links conveys important information.

Ramya Narasimha & Radu Horaud Chris Bishop’s PRML Ch. 8: Graphical Models



Bayesian networks (3)

Z6

It is obvious to obtain the associated joint probability
p(z1,...,x7).
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Bayesian networks (4)

More generally, for a graph with K nodes the joint distribution is:

K

p(x) = [ p(=xlpar)

k=1

» this key equation expresses the factorization properties of the
joint distribution.

» there must be no directed cycles
> these graphs are also called DAGs or directed acyclic graphs.

» equivalent definition: there exists an ordering on the nodes
such that there are no links going from any node to any
lowered numbered node (see example of Figure 8.2).
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Polynomial regression (1)

» random variables: polynomial coefficients w and the observed
data t.

> p(t,w) = p(w) H711\[21 p(tn|w)

The box is called a plate
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Polynomial regression (2)

Tn « Tn «
w w
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Deterministic parameters shown shaded nodes are set

by small nodes to observed values
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Polynomial regression (3)

> the observed variables, {¢,,}, are shown by shaded nodes

» the values of the variables w are not observed — latent or
hidden variables.

» but these variables are not of direct interest

» the goal is to make predictions for new input values, ie the
graphical model below:
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Generative models

vV v v Yy

Back to:

K
p(x) = [ plalpar)
k=1

each node has a higher number than any of its parents
the factorization above corresponds to a DAG.
goal: draw a sample Z1,...,Zx from the joint distribution.

apply ancestral sampling start from lower-numbered nodes,
downwards trhough the graph’s nodes.

generative graphical model captures the causal process that
generated the observed data (object recognition example)
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Discrete variables (1)

» The case of a single discrete variable x with K possible states
(look at section 2.2 on multinomial variables):

p(X|p) = Hu

with g = (u1,...,ux)t and 37, pp = 1 hence K — 1
variables need be specified.

» The case of two variables, with similar notations and

definitions:
p(x1,%2|p) = H Huml’“”l
k=11=1
with the constraint >, =, yug; = 1 there are K2 — 1
parameters.
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Discrete variables (2)

» If the two variables are independent, the number of
parameters drops to 2(K — 1).

» The general case of M discrete variables generalizes to
KM — 1 parameters, which reduces to M (K — 1) parameters
for M independent variables.

» In this example there are K — 1+ (M - 1)K(K —1)

XM

parameters: O O : O

» the sharing or tying of parameters is another way to reduce
their number.
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Discrete variables with Dirichlet priors (3)

M1 122 Har

The same with tied parameters:
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Discrete variables (4)

» Introduce parameterizations of the conditional distributions to
control the exponential growth: an example with binary
variables.

x] M

» This graphical model: requires 2M
parameters representing the probability p(y = 1).

» Alternatively, use a logistic sigmoid function over a linear
combination of the parents:

p(y: 1’$17...,$M) =0 <w0+zwle>
i
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Linear-Gaussian models (1)

» Extensive use of this section in later chapters...
> Back to DAG: p(x) = [Ty p(zx|par)
» The distribution of node i:

p(zi|pa;) = N | x Z wijT; + by, v;
JEpa;
» the logarithm of the joint distribution is a quadratic function
in z1,...,xp (see equations (8.12) and (8.13)).
» The joint distribution p(x) is a multivariate function.

» The the mean and variance of this joint distribution can be
determined recursively, given the parent-child relationships in
the graph (see details in the book).
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Linear-Gaussian models (2)

» The case of independent variables (no links in the graph): the
covariance matrix is diagonal.

» A fully connected graph: the covariance matrix is a general
one with D(D — 1)/2 entries.

» Intermediate level of complexity correspond to partially
constrained covariance matrices.

» It is possible to extend the model to the case in which the
nodes represent multivariate Gaussian variables.

> Later chapters will treat the case of hierarchical Bayesian
models
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Conditional Independence
Consider three variable a, b and ¢
p(ald,c) = p(al c) (1)
Then a is conditionally independent of b given ¢

p(a, bl c) = p(al c)p(b] ¢) (2)

a and b are Statistically independent given ¢
Shorthand notation : a L blc

S
>
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Conditional Independence

» Simplifies the structure of a probabilistic model
» Simplifies the computations needed for inference and learning
» This property can be tested by repeated application of sum
and product rules of probability: Time consuming!!
Advantage of Graphical models

» Conditional independence can be read directly from the graph
without having to perform any analytical manipulations

» The framework for achieving this : D-separation
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Example-I

c

pla,b,c) = plal c)p(blc)p () (3)
pla;b) = Zpa\ c)p(bl c)p(c) # p(a)p(b) — a L 0|0

Using Bayes' Theorem

plable) = K00 (4)

= plale)p(blc) — a Lblc

Ramya Narasimha & Radu Horaud Chris Bishop’s PRML Ch. 8: Graphical Models



Example-Il

a c b

O—0O0—=0

pla,b,c) = pla)p(c|a)p(d] c) (5)
p(a,b) = p(a) > p(cla)p(dl c) = p(a)p(bla) — a L b|D

Using Bayes' Theorem

_ plabd) _ plap(elaptlo
Al = T T ©

— plal)p(blc) — a Lble
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Example-IlI

pla,b,c) = p(a)p(b)p(c|a,b) (7)
p(a,b) = p(a)p(b) — a L bl0

Using Bayes' Theorem
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Terminology: x is the Descendant of y if there is path from x to
y in which each step of the path follows directions of arrows
observed c blocks path a — b

» Tail to Tail nodes

» Head to Tail nodes

observed c unblocks path a — b

» Head to Head nodes
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Fuel gauge Example

B : Battery state either 0 or 1

F : Fuel state either 0 or 1

G : Gauge reading either 0 or 1

Observing the reading of the gauge G makes the fuel state F and
battery state B dependent
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D-separation

D stands for Directed

A, B and C': non-intersecting sets of nodes
To ascertain A L B|C:

» Consider all paths that are Blocked from any node A to any
node B

» Path is said to be Blocked path if it includes a node such that

» the arrows on the path meet either head-to-tail or tail-to-tail
at the node, and the node is in the set C, or

» the arrows meet head-to-head at the node, and neither the
node, nor any of its descendants, is in the set C'

» if all paths are blocked then A is d-separated from B by C
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Example-I

Figure: a L b|f
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Example-Il

> w is a tail-to-tail node with respect to the path from £ to any
one of the nodes {t,}

> Hence f L t,|w

» Interpretation:

» First use the training data to determine the posterior
distribution over w

» Discard {t,,} and use posterior distribution for w to make
predictions of { for new input observations %
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Interpretation as Filter

» Filter-1: allows a distribution to pass through if, and only if, it
can be expressed in terms of the factorization implied by the

graph
K

p(x) = [] p(x| par) (8)

k=1
» Filter-1I: allows distributions to pass according to whether they
respect all of the conditional independencies implied by the
d-separation properties of the graph

» The set of all possible probability distributions p(x) that is
passed by both the filters is precisely the same

» And are denoted by DF, for directed factorization

ERAF D
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Naive Bayes Model

» Conditional independence is used to simplify the model
structure

Observed: x a D-dimensional vector
K-Classes: represented as K-dimensional binary vector z

p(z| 1) : Multinomial prior i.e., prior probability of class k

vV v v VY

Graphical representation of naive Bayes model, assumes all
components x are conditionally independent given z

» However this assumption fails when marginalized over z
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Directed Graphs: Summary

» Represents specific decomposition of a joint probability
distribution into a product of conditional probabilities

» Expresses a set of conditional independence statements
through d-separation criterion

» Distributions satisfying d-separation criterion are denoted as
DF

» Extreme Cases: DF can contain all possible distributions in
case of fully connected graph or product of marginals in case
fully disconnected graphs
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Markov Blanket

Consider a joint distribution p(x1...xp)

oy = Lkp(xl pa)
Pl %) = J 11 p(xk| pag)dx; )

» Factors not having any functional dependence on x; cancel out
» Only factors remaining are
» Parents and children x;
» Also co-parents: corresponding to parents of node x; (not x;)
These remaining factors are referred to as The Markov Blanket of
node x;

Ty
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Markov Random Fields

» Also called Undirected Graphical Models

» Consists nodes which correspond to variables or group of
variables

» Links within the graph do not carry arrows

» Conditional independence is determined by simple graph
separation
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Conditional independence properties

Consider three sets of nodes A, B, and C

» Consider all possible paths that connect nodes in set A to
nodes in set B

» If all such paths pass through one or more nodes in set C,
then all such paths are blocked — A L B|C

» Testing for conditional independence in undirected graphs is
therefore simpler than in directed graphs

» The Markov blanket: consists of the set of neighboring nodes
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Factorization properties

» Consider two nodes z; and x; that are not connected by a link
then these are conditionally independent given all other nodes

» As there is no direct path between the nodes
» All other paths are blocked by nodes that are observed

p(@i, x5 %\ (i,53) = p(ail x\ iy )p(@s xajy)  (10)
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Maximal cliques

» Clique: A set of fully connected nodes

» Maximal Clique: clique in which it is not possible to include
any other nodes without it ceasing to be a clique

» Joint distribution can thus be factored it terms of maximal
cliques

» Functions defined on maximal cliques includes the subsets of
maximal cliques
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Joint distribution

For clique C and set of variables in that clique x¢
The joint distribution

p(x) = %HWC(XC) (11)
C

Where Z is the partition function

7 =3 velxe) (12)
x C

» With M node and K states, the normalization term involves
summing over KM states

» So (in the worst case) is exponential in the size of the model
» The partition function is needed for parameter learning

» For evaluating local marginal probabilities the unnormalized
joint distribution can be used

Ramya Narasimha & Radu Horaud Chris Bishop’s PRML Ch. 8: Graphical Models



Hammersley and Clifford Theorem

Using filter analogy

» UI: the set of distributions that are consistent with the set of
conditional independence statements read from the graph
using graph separation

» UF": the set of distributions that can be expressed as a
factorization described with respect to the maximal cliques
» The Hammersley-Clifford theorem states that the sets U1 and
UF are identical if W¢(xc) is strictly positive
» In such case
Ve(xe) = exp{—E(xc)} (13)

» Where E(xc¢) is called an energy function, and the exponential
representation is called the Boltzmann distribution
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Image Denoising Example

» Noisy Image: y; € {—1,+1} where i runs over all the pixels
» Unknown Noise Free Image: z; € {—1,+1}

» Goal: Given Noisy image recover Noise Free Image
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The Ising Model

Two types of cliques
» —nx; y;: giving a lower energy when x; and y; have the same
sign and a higher energy when they have the opposite sign
» —fBz; x;: the energy is lower when the neighboring pixels have
the same sign than when they have the opposite sign

The Complete energy function and joint distribution

E(x,y):thi—ﬁinxj—UZ%yz‘ (14)

{i.g} i
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The joint distribution

pxy) = 5 exp{~E(xy)} (15)

Fixing y as observed values implicitly defines p(x|y)
To obtain the image x with ICM or any other techniques

» Initialize the variables x; = y; for all 4

> For z; evaluate the total energy for the two possible states
xj = +1 and z; = —1 with other node variables fixed

> set x; to whichever state has the lower energy

» Repeat the update for another site, and so on, until some
suitable stopping criterion is satisfied
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Relation to directed graphs

Distribution for directed graph

p(x) = p(z1)p(z2|z1)p(w3]22) - - p(zn|TN-1) (16)

For undirected

1
p(x) = E‘Ul,z(flh, 22)Vo3(z2, @2) - Uy n(zn—1,2n)  (17)

where
Vio(zr,22) = p(a1)p(w2|rr)
Vo3(z1,22) = p(x3]ar)
Un_in(z1,22) = plen|zy-1)
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Another Example
€1 xs3 T L3

X2

Ty Tq

» In order to convert directed graph into undirected graph add
extra links between all pairs of parents

» Anachronistically, this process of 'marrying the parents’ has
become known as moralization

» The resulting undirected graph, after dropping the arrows, is
called the moral graph
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Moralization Procedure

» Add additional undirected links between all pairs of parents
for each node in the graph

» Drop the arrows on the original links to give the moral graph
» Initialize all of the clique potentials of the moral graph to 1

» Take each conditional distribution factor in the original
directed graph and multiply it into one of the clique potentials
» There will always exist at least one maximal clique that

contains all of the variables in the factor as a result of the
moralization step

» Going from a directed to an undirected representation discards
some conditional independence properties from the graph
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D-map and |-maps

Directed and Undirected graphs express different conditional
independence properties

» D-map of a distribution: every conditional independence
statement satisfied by the distribution is reflected in the graph

» A graph with no links will be trivial D-map

» |-map of a distribution: every conditional independence
statement implied by a graph is satisfied by a specific
distribution

» Fully connected graph will give I-map for any distribution
» Perfect map: is both D-map and I-map
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¢ D

Figure: (a) Directed (b)Undirected

» Case(a)

» A directed graph that is a perfect map

» Satisfies the properties A | B|() and A / B|C

» Has no corresponding undirected graph that is a perfect map
» Case(b)

» A undirected graph that is a perfect map

» Satisfies the properties A /£ B|}, C' L D|AU B and

A1 B|CUD
» Has no corresponding directed graph that is a perfect map
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