Patt. Rec. and Mach. Learning Ch. 7: Sparse Kernel Machines

Marcin Marszalek & Pierre Mahé

January 11, 2008

Marcin Marszalek & Pierre Mahé Patt. Rec. and Mach. Learning Ch. 7: Sparse Kernel Machines

Part 2: Relevance Vector Machines

Marcin Marszalek & Pierre Mahé Patt. Rec. and Mach. Learning Ch. 7: Sparse Kernel Machines

→ 3 → 4 3

Motivations

In the spirit of SVMs, define sparse kernel models:

$$y(\mathbf{x}, \mathbf{w}) = \sum_{i=1}^{N} w_i k(\mathbf{x}, \mathbf{x}_i)$$

where $\{\mathbf{x}_i, t_i\}_{i=1:N}$ is the training set and many w_i 's are equal to 0,

...but cope with the limitations of the SVM algorithm:

- no probabilistic interpretation
- difficulty of choosing the regularization parameter C (soft-margin)
- restricted to positive (semi) definite kernels
- no natural extension to the multiclass case
- (models are not so sparse)

Definition

The Relevance Vector Machine (RVM) is an instance of the Bayesian linear and logistic regression models where:

- 1. the basis functions are centered on the training points \mathbf{x}_i , that is $\phi(\mathbf{x}) = [k(\mathbf{x}, \mathbf{x}_1), \dots, k(\mathbf{x}, \mathbf{x}_N)]$
 - gives the "SVM-like" formulation: $y(\mathbf{x}, \mathbf{w}) = \sum_{i=1}^{N} w_i k(\mathbf{x}, \mathbf{x}_i)$
- 2. the following prior over the weights is used:

$$p(\mathbf{w}|\boldsymbol{\alpha}) = \prod_{i=1}^{N} \mathcal{N}(w_i|\mathbf{0}, \alpha_i^{-1})$$
$$= \mathcal{N}(\mathbf{w}|\mathbf{0}, \mathbf{A}),$$

with $\mathbf{A} = \operatorname{diag}(\alpha_1^{-1}, \dots, \alpha_N^{-1}).$

a vector α of alpha parameters (one per training point) instead of a single α parameter in the "standard case": p(w|α) = N(w|0, α⁻¹I)

・吊 ・ ・ ラ ・ ・ ラ ト ・ ラ

Outline

- 1. RVM for regression
 - "basics" of Bayesian linear regression
 - RVM solution
 - Intuition on sparsity
- 2. RVM for classification
 - "basics" of Bayesian logistic regression
 - RVM solution
- 3. Illustrations/remarks/conclusion

From least-squares and SVM to Bayesian models 1/2

We consider linear models of regression: $y(\mathbf{x}, \mathbf{w}) = \mathbf{w}^T \phi(\mathbf{x})$

Regularized/penalized least squares and SVM solutions:

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} E_D(\mathbf{w}) + \lambda E_W(\mathbf{w}),$$

where:

•
$$E_D(\mathbf{w}) = \sum_{i=1}^N L(t_i, y(\mathbf{x}_i, \mathbf{w}))$$
 is an empirical error
• $E_W(\mathbf{w})$ is a regularization term (typically $||\mathbf{w}||^2$)

From least-squares and SVM to Bayesian models 2/2

Bayesian approach:

- work in a probabilistic framework:
 - $p(t|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(t|y(\mathbf{x}, \mathbf{w}), \beta^{-1})$
- introduce a prior over w:

• typically: favor small values by $p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I})$

From the training data (\mathbf{X}, \mathbf{t}) , compute the posterior of \mathbf{w} :

• $p(\mathbf{w}|\mathbf{t}, \mathbf{X}, \alpha, \beta) \propto p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) \times p(\mathbf{w}|\alpha)$

▶ for a new data x, predict t according to the predictive distribution:

$$p(t|\mathbf{x},\mathbf{X},\mathbf{t},lpha,eta) = \int p(t|\mathbf{x},\mathbf{w},eta) p(\mathbf{w}|\mathbf{t},\mathbf{X},lpha,eta) d\mathbf{w}$$

Note:

- ▶ in regularized least squares, $p(\mathbf{w}|\mathbf{t}, \mathbf{X}, \alpha, \beta) = \delta(\mathbf{w} = \mathbf{w}_{MAP})$
- being "fully" or "truly" Bayesian: don't pick a value of w, average over all possible values

Bayesian regression in practice 1/3

How to compute the predictive distribution?

$$p(t|\mathbf{x},\mathbf{X},\mathbf{t},lpha,eta) = \int p(t|\mathbf{x},\mathbf{w},eta) p(\mathbf{w}|\mathbf{t},\mathbf{X},lpha,eta) d\mathbf{w}$$

- 1. Setting the regression model $p(t|\mathbf{x}, \mathbf{w}, \beta)$ and the prior $p(\mathbf{w}|\alpha)$ to Gaussians gives conjugate likelihood/prior
 - the posterior p(w|t, X, α, β) is Gaussian and given in closed form (see eqs 3.49 and 2.116)
- 2. As a result, the predictive distribution is the convolution of two Gaussians
 - it is also a Gaussian and is given in closed form (see eqs 3.57 and 2.115)

 \Rightarrow we can make probabilistic predictions and quantify their uncertainty (the variance of the predictive distribution depends on x)

Bayesian regression in practice 2/3

However, the process still depends on fixed parameters α and β :

- α from the prior $p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I})$
- β from the regression model $p(t|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(t|y(\mathbf{x}, \mathbf{w}), \beta^{-1})$

 \Rightarrow the ratio α/β plays the role of a regularization parameter in the posterior (see eq 3.55).

 \Rightarrow choosing α and β amounts to choosing λ (or C) in regularised least squares and SVMs (typically done by cross-validation)

Alternative "truly, truly" Bayesian approach \Rightarrow average them out:

$$p(t|\mathbf{x}, \mathbf{X}, \mathbf{t}) = \int p(t|\mathbf{x}, \mathbf{w}, \beta) p(\mathbf{w}|\mathbf{t}, \mathbf{X}, \alpha, \beta) p(\alpha, \beta|\mathbf{X}, \mathbf{t}) d\mathbf{w} d\alpha d\beta$$

 \Rightarrow however, becomes untractable (need to compute $\mathit{p}(\mathbf{t}|\mathbf{X}))$

Bayesian regression in practice 3/3

Need to approximate the distribution:

$$p(t|\mathbf{x}, \mathbf{X}, \mathbf{t}) = \int p(t|\mathbf{x}, \mathbf{w}, \beta) p(\mathbf{w}|\mathbf{t}, \mathbf{X}, \alpha, \beta) p(\alpha, \beta|\mathbf{X}, \mathbf{t}) d\mathbf{w} d\alpha d\beta$$

Evidence approximation method: choose single values (\hat{lpha}, \hat{eta})

- 1. assume $p(\alpha, \beta | \mathbf{X}, \mathbf{t})$ is sharply peaked around $\hat{\alpha}$ and $\hat{\beta}$
 - then $p(t|\mathbf{x}, \mathbf{X}, \mathbf{t}) \sim p(t|\mathbf{x}, \mathbf{X}, \mathbf{t}, \hat{\alpha}, \hat{\beta})$
 - $\blacktriangleright \ \Rightarrow$ standard "predictive distribution", with closed-form solution
 - ► NB: similar to the ("not fully" Bayesian) MAP approach for estimation of w

2. to get $(\hat{\alpha}, \hat{\beta})$, assume flat/uninformative priors $p(\alpha)$ and $p(\beta)$

- maximizing $p(\alpha, \beta | \mathbf{X}, \mathbf{t}) \propto p(\mathbf{t} | \mathbf{X}, \alpha, \beta) p(\alpha) p(\beta)$ is then equivalent to maximizing $p(\mathbf{t} | \mathbf{X}, \alpha, \beta)$
- $p(\mathbf{t}|\mathbf{X}, \alpha, \beta)$ is called the marginal likelihood:

$$p(\mathbf{t}|\mathbf{X}, lpha, eta) = \int p(\mathbf{t}|\mathbf{X}, \mathbf{w}, eta) p(\mathbf{w}|lpha) d\mathbf{w}$$

In the end...

With the evidence approximation method, what we need is to maximize the marginal likelihood:

$$p(\mathbf{t}|\mathbf{X}, lpha, eta) = \int p(\mathbf{t}|\mathbf{X}, \mathbf{w}, eta) p(\mathbf{w}|lpha) d\mathbf{w}$$

 \Rightarrow this gives us $\hat{\alpha}$ and $\hat{\beta}$ from which we can define the approximate distribution $p(t|\mathbf{x}, \mathbf{X}, \mathbf{t}) \sim p(t|\mathbf{x}, \mathbf{X}, \mathbf{t}, \hat{\alpha}, \hat{\beta})$

- Remarks:
 - flat/uninformative priors are actually justified in the sense that they define a scale-invariant model
 - maximizing the marginal likelihood allows to automatically select the appropriate complexity on the basis of the training data only
- ▶ For the "standard case", this is detailed in Sections 3.5.1/2

Coming back to the RVM model

Recall that he RVM is an instance of the previous model where:

- 1. the basis functions are centered on the training points \mathbf{x}_i , that is $\phi(\mathbf{x}) = [k(\mathbf{x}, \mathbf{x}_1), \dots, k(\mathbf{x}, \mathbf{x}_N)]$
 - gives the "SVM-like" form to $y(\mathbf{x}, \mathbf{w})$ as $\sum_{i=1}^{N} w_i k(\mathbf{x}, \mathbf{x}_i)$
- 2. the following prior over the weights is used:

$$p(\mathbf{w}|\boldsymbol{\alpha}) = \prod_{i=1}^{N} \mathcal{N}(w_i|\mathbf{0}, \alpha_i^{-1})$$
$$= \mathcal{N}(\mathbf{w}|\mathbf{0}, \mathbf{A}),$$

with $\mathbf{A} = \operatorname{diag}(\alpha_1^{-1}, \ldots, \alpha_N^{-1}).$

 a vector α of alpha parameters (one per training point) instead of a single α parameter in the "standard case": p(w|α) = N(w|0, α⁻¹I)

What is changed (1/2)?

Because the prior is still Gaussian, apparently not much:

- ▶ we still have conjugate likelihood/priors, and the posterior $p(\mathbf{w}|\mathbf{t}, \mathbf{X}, \boldsymbol{\alpha}, \beta)$ is available in closed form (see eqs 7.82/7.83)
- as a result the predictive distribution:

$$p(t|\mathbf{x},\mathbf{X},\mathbf{t},oldsymbol{lpha},oldsymbol{eta}) = \int p(t|\mathbf{x},\mathbf{w},eta) p(\mathbf{w}|\mathbf{t},\mathbf{X},oldsymbol{lpha},eta) d\mathbf{w}$$

is still a convolution of Gaussian and is available in closed form too (see eq 7.90)

Conclusion: we simply need to maximize the marginal likelihood $p(\mathbf{t}|\mathbf{X}, \boldsymbol{\alpha}, \beta)$ in order to get $\hat{\boldsymbol{\alpha}}$ and $\hat{\boldsymbol{\beta}}$.

 \Rightarrow Although it now depends on N + 1 (instead of 2) variables, the solution can be derived easily from the "standard case" (see eqs. 7.87/88).

What is changed (2/2)?

In the end: we obtain the same expression for the approximate predictive distribution $p(t|\mathbf{x}, \mathbf{X}, \mathbf{t}, \hat{\boldsymbol{\alpha}}, \hat{\boldsymbol{\beta}})$

• only modification: a matrix $\alpha \mathbf{I}$ is replaced by diag $(\alpha_1, \ldots, \alpha_N)$.

Striking point: the optimization drives many components of $\hat{\alpha}$ to very large values

- as a result, the corresponding entries of w have a posterior distribution centered on 0, with a variance of 0
- thus, they play no role in the model and can be removed, which leads to a sparse model
- ▶ (note: this is an exemple of automatic relevance determination)
- \Rightarrow What is going on?

What is going on (1/2)?

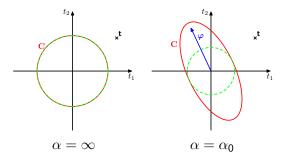
More precisely, the expression of the marginal likelihood is:

$$p(\mathbf{t}|\mathbf{X}, oldsymbol{lpha}, eta) = \mathcal{N}(\mathbf{t}|\mathbf{0}, \mathbf{C}), ext{ with } \mathbf{C} = eta^{-1}\mathbf{I} + \mathbf{X}\mathbf{A}^{-1}\mathbf{X}^T.$$

For a sample (\mathbf{X}, \mathbf{t}) of size 2, with a single basis $\phi(\mathbf{x})$, we have:

$$\mathbf{C} = \beta^{-1}\mathbf{I} + \alpha^{-1}\boldsymbol{\varphi}\boldsymbol{\varphi}^{T}, \text{ with } \boldsymbol{\varphi} = [\phi(\mathbf{x}_{1}) \ \phi(\mathbf{x}_{2})]^{T}.$$

Evidence approximation \Rightarrow find α maximizing probability at $\mathbf{t} = [t_1 \ t_2]^T$:



NB: $|\mathbf{C}|$ is kept constant ; red curve = unit Mahalanobis distance $\mathbf{t}^T \mathbf{C} \mathbf{t}$

What is going on (2/2)?

The couple $(p(\mathbf{w}|\boldsymbol{\alpha}), p(\boldsymbol{\alpha}))$ defines a hierarchical prior over \mathbf{w}

The "true" prior over \mathbf{w} is actually given by marginalizing α :

$$p(\mathbf{w}) = \int p(\mathbf{w}|oldsymbol{lpha}) p(oldsymbol{lpha}) doldsymbol{lpha}$$

 \Rightarrow for RVM, this "marginal prior" decomposes as a product of Student distributions.

Illustration (for $\mathbf{w} = [w_1 \ w_2]$): Gaussian prior Marginal prior: single α Independent α

Outline

- 1. RVM for regression
 - "basics" of Bayesian linear regression
 - RVM solution
 - Intuition on sparsity
 - (skipped: detailed analysis of sparsity)
- 2. RVM for classification
 - "basics" of Bayesian logistic regression
 - ► RVM solution
- 3. Illustrations/remarks/conclusion

Logistic regression

Binary classification: target variable $t \in \{0, 1\}$

Logisitic regression:

$$p(C_1|\mathbf{x}, \mathbf{w}) = \sigma(y(\mathbf{x}, \mathbf{w})),$$

with $y(\mathbf{x}, \mathbf{w}) = \mathbf{w}^T \mathbf{x}$ and $\sigma(x) = 1/((1 + \exp(-x)))$
Solution (regularized):

$$\mathbf{w}^* = \operatorname*{arg\,min}_{\mathbf{w}} E_D(\mathbf{w}) + \lambda E_W(\mathbf{w})$$

with:

- $E_D(\mathbf{w}) = -p(\mathbf{t}|\mathbf{X}, \mathbf{w}) = -\log$ -likelihood
- $E_W(\mathbf{w})$ is a regularization term (e.g., $||w||^2$)

(Note: no closed form solution, but unique minimum - sec 4.3.3)

Bayesian logistic regression

Similar process:

- ▶ introduce a prior over w (e.g., $p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I})$
- compute the posterior $p(\mathbf{w}|\mathbf{t},\mathbf{X},\alpha)$
- ► compute the predictive distribution by averaging out w

However: the model $p(t|\mathbf{x}, \mathbf{w})$ is not Gaussian anymore, so we don't have closed form solution for the posterior and the predictive distribution

- \Rightarrow As a result, the procedure is more complex
 - detailed in Section 4.5
 - in particular, the Laplace approximation can be used to approximate the posterior by a Gaussian
 - the problem therefore boils down to averaging the logistic model w.r.t. such a Gaussian distribution

・吊 ・・ ティー・ 一手

RVM for binary classification

 \Rightarrow An instance of Bayesian logistic regression, with the prior:

$$p(\mathbf{w}|\boldsymbol{\alpha}) = \prod_{i=1}^{N} \mathcal{N}(w_i|\mathbf{0}, \alpha_i^{-1})$$
$$= \mathcal{N}(\mathbf{w}|\mathbf{0}, \mathbf{A}),$$

with
$$\mathbf{A} = \operatorname{diag}(\alpha_1^{-1}, \ldots, \alpha_N^{-1}).$$

After some derivations (...) we get:

- ► the same expression as in the regression case for the marginal likelihood p(t|α, β)
- as a result, the same "sparsity promoting" procedure for getting the α

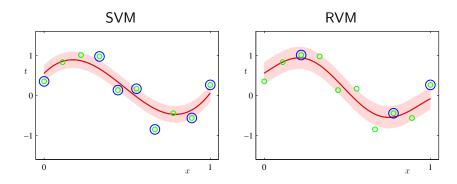
(Note: similarly to the standard logistic regression, the procedure can "readily" be extended to the multiclass case using the softmax instead of the logistic function).

Outline

- 1. RVM for regression
 - "basics" of Bayesian linear regression
 - RVM solution
 - Intuition on sparsity
 - (skipped: detailed analysis of sparsity)
- 2. RVM for classification
 - "basics" of Bayesian logistic regression
 - RVM solution
- 3. Illustrations/remarks/conclusion

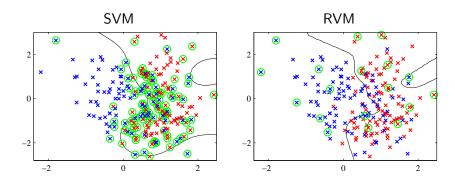
Comparaison RVM and SVM 1/2

Regression:



Comparaison RVM and SVM 2/2

Classification:



Conclusion

For comparable performance RVMs seem to give sparser models than SVMs and gives a measure of confidence in the prediction

Moreover, the mechanism is very general:

- can be applied to regression, binary and multiclass classification
- can be applied with any type of basis functions (not necessarily data-centered PSD kernels)

However: comes at the price of a more complex process...

- optimization of a non-convex function
- cubic versus quadratic complexity w.r.t. N
- ... which is compensated by the fact that:
 - models are faster at test time (because sparser)
 - the model complexity is automatically selected

Pointers

JMLR paper:

Sparse Bayesian Learing and the Relevance Vector Machine, Michael Tipping, 2001.

Tutorial:

Bayesian Inference: An Introduction to Principles and Practice in Machine Learning, Michael Tipping, 2004.