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Part 2: Relevance Vector Machines
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Motivations

In the spirit of SVMs, define sparse kernel models:

y(x,w) =
N∑

i=1

wik(x,xi)

where {xi, ti}i=1:N is the training set and many wi’s are equal to 0,

...but cope with the limitations of the SVM algorithm:

I no probabilistic interpretation

I difficulty of choosing the regularization parameter C (soft-margin)

I restricted to positive (semi) definite kernels

I no natural extension to the multiclass case

I (models are not so sparse)
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Definition

The Relevance Vector Machine (RVM) is an instance of the
Bayesian linear and logistic regression models where:

1. the basis functions are centered on the training points xi, that
is φ(x) = [k(x,x1), . . . , k(x,xN ]

I gives the ”SVM-like” formulation: y(x,w) =
∑N

i=1 wik(x,xi)

2. the following prior over the weights is used:

p(w|α) =
N∏

i=1

N (wi|0, α−1
i )

= N (w|0,A),

with A = diag(α−1
1 , . . . , α−1

N ).
I a vector α of alpha parameters (one per training point)

instead of a single α parameter in the ”standard case”:
p(w|α) = N (w|0, α−1I)
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Outline

1. RVM for regression
I ”basics” of Bayesian linear regression
I RVM solution
I Intuition on sparsity

2. RVM for classification
I ”basics” of Bayesian logistic regression
I RVM solution

3. Illustrations/remarks/conclusion
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From least-squares and SVM to Bayesian models 1/2

We consider linear models of regression: y(x,w) = wT φ(x)

Regularized/penalized least squares and SVM solutions:

w∗ = arg min
w

ED(w) + λEW (w),

where:

I ED(w) =
∑N

i=1 L(ti, y(xi,w)) is an empirical error

I EW (w) is a regularization term (typically ||w||2)
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From least-squares and SVM to Bayesian models 2/2

Bayesian approach:
I work in a probabilistic framework:

I p(t|x,w, β) = N (t|y(x,w), β−1)

I introduce a prior over w:
I typically: favor small values by p(w|α) = N (w|0, α−1I)

I from the training data (X, t), compute the posterior of w:
I p(w|t,X, α, β) ∝ p(t|X,w, β)× p(w|α)

I for a new data x, predict t according to the predictive
distribution:

p(t|x,X, t, α, β) =

∫
p(t|x,w, β)p(w|t,X, α, β)dw

Note:

I in regularized least squares, p(w|t,X, α, β) = δ(w = wMAP )

I being ”fully” or ”truly” Bayesian: don’t pick a value of w, average over
all possible values
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Bayesian regression in practice 1/3

How to compute the predictive distribution?

p(t|x,X, t, α, β) =

∫
p(t|x,w, β)p(w|t,X, α, β)dw

1. Setting the regression model p(t|x,w, β) and the prior
p(w|α) to Gaussians gives conjugate likelihood/prior

I the posterior p(w|t,X, α, β) is Gaussian and given in closed
form (see eqs 3.49 and 2.116)

2. As a result, the predictive distribution is the convolution of
two Gaussians

I it is also a Gaussian and is given in closed form (see eqs 3.57
and 2.115)

⇒ we can make probabilistic predictions and quantify their
uncertainty (the variance of the predictive distribution depends on x)
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Bayesian regression in practice 2/3

However, the process still depends on fixed parameters α and β:

I α from the prior p(w|α) = N (w|0, α−1I)

I β from the regression model p(t|x,w, β) = N (t|y(x,w), β−1)

⇒ the ratio α/β plays the role of a regularization parameter in the
posterior (see eq 3.55).
⇒choosing α and β amounts to choosing λ (or C) in regularised
least squares and SVMs (typically done by cross-validation)

Alternative ”truly, truly” Bayesian approach ⇒ average them out:

p(t|x,X, t) =

∫
p(t|x,w, β)p(w|t,X, α, β)p(α, β|X, t)dwdαdβ

⇒ however, becomes untractable (need to compute p(t|X))
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Bayesian regression in practice 3/3

Need to approximate the distribution:

p(t|x,X, t) =

∫
p(t|x,w, β)p(w|t,X, α, β)p(α, β|X, t)dwdαdβ

Evidence approximation method: choose single values (α̂, β̂)

1. assume p(α, β|X, t) is sharply peaked around α̂ and β̂
I then p(t|x,X, t) ∼ p(t|x,X, t, α̂, β̂)
I ⇒ standard ”predictive distribution”, with closed-form solution
I NB: similar to the (”not fully” Bayesian) MAP approach for

estimation of w
2. to get (α̂, β̂), assume flat/uninformative priors p(α) and p(β)

I maximizing p(α, β|X, t) ∝ p(t|X, α, β)p(α)p(β) is then
equivalent to maximizing p(t|X, α, β)

I p(t|X, α, β) is called the marginal likelihood:

p(t|X, α, β) =

∫
p(t|X,w, β)p(w|α)dw

Marcin Marszalek & Pierre Mahé Patt. Rec. and Mach. Learning Ch. 7: Sparse Kernel Machines



In the end...

I With the evidence approximation method, what we need is to
maximize the marginal likelihood:

p(t|X, α, β) =

∫
p(t|X,w, β)p(w|α)dw

⇒ this gives us α̂ and β̂ from which we can define the
approximate distribution p(t|x,X, t) ∼ p(t|x,X, t, α̂, β̂)

I Remarks:
I flat/uninformative priors are actually justified in the sense that

they define a scale-invariant model
I maximizing the marginal likelihood allows to automatically

select the appropriate complexity on the basis of the training
data only

I For the ”standard case”, this is detailed in Sections 3.5.1/2
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Coming back to the RVM model

Recall that he RVM is an instance of the previous model where:

1. the basis functions are centered on the training points xi, that
is φ(x) = [k(x,x1), . . . , k(x,xN ]

I gives the ”SVM-like” form to y(x,w) as
∑N

i=1 wik(x,xi)

2. the following prior over the weights is used:

p(w|α) =
N∏

i=1

N (wi|0, α−1
i )

= N (w|0,A),

with A = diag(α−1
1 , . . . , α−1

N ).
I a vector α of alpha parameters (one per training point)

instead of a single α parameter in the ”standard case”:
p(w|α) = N (w|0, α−1I)
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What is changed (1/2)?

Because the prior is still Gaussian, apparently not much:

I we still have conjugate likelihood/priors, and the posterior
p(w|t,X,α, β) is available in closed form (see eqs 7.82/7.83)

I as a result the predictive distribution:

p(t|x,X, t,α, β) =

∫
p(t|x,w, β)p(w|t,X,α, β)dw

is still a convolution of Gaussian and is available in closed form too
(see eq 7.90)

Conclusion: we simply need to maximize the marginal likelihood
p(t|X,α, β) in order to get α̂ and β̂.

⇒ Although it now depends on N + 1 (instead of 2) variables, the
solution can be derived easily from the ”standard case” (see eqs.
7.87/88).

Marcin Marszalek & Pierre Mahé Patt. Rec. and Mach. Learning Ch. 7: Sparse Kernel Machines



What is changed (2/2)?

In the end: we obtain the same expression for the approximate
predictive distribution p(t|x,X, t, α̂, β̂)

I only modification: a matrix αI is replaced by diag(α1, . . . , αN ).

Striking point: the optimization drives many components of α̂ to
very large values

I as a result, the corresponding entries of w have a posterior
distribution centered on 0, with a variance of 0

I thus, they play no role in the model and can be removed,
which leads to a sparse model

I (note: this is an exemple of automatic relevance determination)

⇒ What is going on?
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What is going on (1/2)?

More precisely, the expression of the marginal likelihood is:

p(t|X,α, β) = N (t|0,C), with C = β−1I + XA−1XT .

For a sample (X, t) of size 2, with a single basis φ(x), we have:

C = β−1I + α−1ϕϕT , with ϕ = [φ(x1) φ(x2)]
T .

Evidence approximation ⇒ find α maximizing probability at t = [t1 t2]
T :

t1

t2

t

C

t1

t2

t
C

ϕ

α = ∞ α = α0

NB: |C| is kept constant ; red curve = unit Mahalanobis distance tT Ct
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What is going on (2/2)?

The couple
(
p(w|α), p(α)

)
defines a hierarchical prior over w

The ”true” prior over w is actually given by marginalizing α:

p(w) =

∫
p(w|α)p(α)dα

⇒ for RVM, this ”marginal prior” decomposes as a product of
Student distributions.

Illustration (for w = [w1 w2]):
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Outline

1. RVM for regression
I ”basics” of Bayesian linear regression
I RVM solution
I Intuition on sparsity

I (skipped: detailed analysis of sparsity)

2. RVM for classification
I ”basics” of Bayesian logistic regression
I RVM solution

3. Illustrations/remarks/conclusion
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Logistic regression

Binary classification: target variable t ∈ {0, 1}

Logisitic regression:

p(C1|x,w) = σ(y(x,w)),

with y(x,w) = wTx and σ(x) = 1/
(
(1 + exp(−x)

)
Solution (regularized):

w∗ = arg min
w

ED(w) + λEW (w)

with:

I ED(w) = −p(t|X,w) = −log-likelihood

I EW (w) is a regularization term (e.g., ||w||2)

(Note: no closed form solution, but unique minimum – sec 4.3.3)

Marcin Marszalek & Pierre Mahé Patt. Rec. and Mach. Learning Ch. 7: Sparse Kernel Machines



Bayesian logistic regression

Similar process:

I introduce a prior over w (e.g., p(w|α) = N (w|0, α−1I)
I compute the posterior p(w|t,X, α)

I compute the predictive distribution by averaging out w

However: the model p(t|x,w) is not Gaussian anymore, so we
don’t have closed form solution for the posterior and the predictive
distribution

⇒ As a result, the procedure is more complex
I detailed in Section 4.5

I in particular, the Laplace approximation can be used to approximate the
posterior by a Gaussian

I the problem therefore boils down to averaging the logistic model w.r.t.
such a Gaussian distribution
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RVM for binary classification
⇒ An instance of Bayesian logistic regression, with the prior:

p(w|α) =
N∏

i=1

N (wi|0, α−1
i )

= N (w|0,A),

with A = diag(α−1
1 , . . . , α−1

N ).

After some derivations (...) we get:

I the same expression – as in the regression case – for the
marginal likelihood p(t|α, β)

I as a result, the same ”sparsity promoting” procedure for
getting the α

(Note: similarly to the standard logistic regression, the procedure can ”readily”

be extended to the multiclass case using the softmax instead of the logistic

function).
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Outline

1. RVM for regression
I ”basics” of Bayesian linear regression
I RVM solution
I Intuition on sparsity

I (skipped: detailed analysis of sparsity)

2. RVM for classification
I ”basics” of Bayesian logistic regression
I RVM solution

3. Illustrations/remarks/conclusion
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Comparaison RVM and SVM 1/2

Regression:

SVM RVM
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Comparaison RVM and SVM 2/2

Classification:

SVM RVM
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Conclusion

For comparable performance RVMs seem to give sparser models
than SVMs and gives a measure of confidence in the prediction

Moreover, the mechanism is very general:

I can be applied to regression, binary and multiclass classification

I can be applied with any type of basis functions (not necessarily
data-centered PSD kernels)

However: comes at the price of a more complex process...

I optimization of a non-convex function

I cubic versus quadratic complexity w.r.t. N

... which is compensated by the fact that:

I models are faster at test time (because sparser)

I the model complexity is automatically selected
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Pointers

JMLR paper:
Sparse Bayesian Learing and the Relevance Vector Machine,
Michael Tipping, 2001.

Tutorial:
Bayesian Inference: An Introduction to Principles and Practice in
Machine Learning, Michael Tipping, 2004.
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