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Training Data: Keep or Discard?

I Parametric methods (linear/nonlinear) so far:
I learn parameter vector w or posterior distribution p(w|t)
I discard training data t

I Non-parametric methods:
I Parzen probability density model: set of kernel functions

centered on training data points
I Nearest neighbours technique: closest example from the

training set
I Memory-based methods: similar examples from the training

set

I Kernel methods:
I prediction is based on linear combinations of a kernel function

evaluated at the training data points
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Kernel Function

I for models based on feature space mapping φ(x):

k(x,x′) = φ(x)Tφ(x′) (6.1)

I symmetric function: k(x,x′) = k(x′,x)

I simple example - linear kernel: φ(x) = x

I stationary kernel: k(x,x′) = k(x− x′)
I homogeneous kernel: k(x,x′) = k(‖x− x′‖)

Algorithm, expressed in terms of scalar products can be
reformulated using kernel substitution: PCA, nearest-neighbour
classifiers, Fisher discriminant
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Dual Representation
Many linear models for regression and classification can be
reformulated in terms of a dual representation in which the kernel
function arises naturally.

I linear regression model (λ ≥ 0):

J(w) =
1
2

N∑
n=1

{
wTφ(xn)− tn

}2
+

λ

2
wTw (6.2)

I set the gradient to zero:

w = − 1
λ

N∑
n=1

{
wTφ(xn)− tn

}
φ(xn) = ΦTa (6.3)

I substitute w and define the Gram matrix K = ΦΦT :

Knm = φ(xn)Tφ(xm) = k(xn,xm) (6.6)
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Solution for Dual Problem

I in terms of new parameter vector a:

w =
1
2
aT KKa− aT Kt+

1
2
tT t+

λ

2
aT Ka (6.7)

I set the gradient to zero:

a = (K + λIN )−1t (6.8)

I prediction for a new input x

y(x) = wTφ(x) = aTΦφ(x) = k(x)T (K + λIN )−1t (6.9)

where

k(x) = (k(x1,x), ..., k(xN ,x))

I inverting N ×N matrix instead of M ×M
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Constructing Kernels - First Approach
I choose feature space mapping φ(x)

k(x, x′) = φ(x)Tφ(x′) =
M∑
i=1

φi(x)φi(x′) (6.10)
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Constructing Kernels - Second Approach

I construct kernel function directly and verify its validity

I simple example

k(x,z) = (xTz)2 (6.11)

in 2-D case corresponds to

k(x,z) = φ(x)Tφ(z) (6.12)

with φ(x) = (x2
1,
√

2x1x2, x
2
2)

T

To test validity without having to construct the function φ(x)
explicitly, one can use the condition:

Function k(x,x′) is a valid kernel ⇐⇒ K ≥ 0 ∀{xn}
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Combining Kernels

Given valid kernels k1(x,x′) and k2(x,x′) the following kernels
will also be valid:

k(x,x′) = ck1(x,x′) (6.13)

k(x,x′) = f(x)k1(x,x′)f(x′) (6.14)

k(x,x′) = q(k1(x,x′)) (6.15)

k(x,x′) = exp(k1(x,x′)) (6.16)

k(x,x′) = k1(x,x′) + k2(x,x′) (6.17)

k(x,x′) = k1(x,x′)k2(x,x′) (6.18)

k(x,x′) = k3(φ(x),φ(x′)) (6.19)

k(x,x′) = xT Ax′ (6.20)

k(x,x′) = ka(xa,x
′
a) + kb(xb,x

′
b) (6.21)

k(x,x′) = ka(xa,x
′
a)kb(xb,x

′
b) (6.22)

with corresponding conditions on c, f, q,φ, k3,A,xa,xb, ka, kb
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Examples

I Polynomial kernels:

k(x,x′) = (xTx′)2 contains only terms of degree 2
k(x,x′) = (xTx′ + c)2, c > 0
k(x,x′) = (xTx′)M contains all monomials of order M
k(x,x′) = (xTx′ + c)M , c > 0

I Gaussian kernel:

k(x,x′) = exp(−‖x− x′‖2/2σ2) (6.23)

Note: can substitute xTx′ with a nonlinear kernel κ(x,x′)
I Kernel on nonvectorial space:

k(A1, A2) = 2|A1∩A2| (6.27)

I Sigmoidal kernel:

k(x,x′) = tanh(axTx′ + b) (6.37)
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Probabilistic generative models

I Kernel for generative model p(x):

k(x,x′) = p(x)p(x′) (6.28)

k(x,x′) =
∑

i

p(x|i)p(x′|i)p(i) (6.29)

k(x,x′) =
∫

p(x|z)p(x′|z)p(z)dz (6.30)

I Kernel for HMM:

k(X,X′) =
∑
Z

p(X|Z)p(X′|Z)p(Z) (6.31)

X = {x1, ...,xL} - observations
Z = {z1, ...,zL} - hidden states
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Fisher kernel

I parametric generative model p(x|θ)
I Fisher score:

g(θ,x) = ∇θ ln p(x|θ) (6.32)

I Fisher kernel and information matrix:

k(x,x′) = g(θ,x)T F−1g(θ,x′) (6.33)

F = IEx
[
g(θ,x)g(θ,x)T |θ

]
(6.34)

I Note: the kernel is invariant under θ → ψ(θ)
I Simplify matrix calculation:

F ' 1
N

N∑
n=1

g(θ,xn)g(θ,xn)T (6.35)

Or simply omit the Fisher information matrix

Vasil Khalidov, Alex Kläser Bishop Chapter 6: Kernel Methods



Radial Basis Functions

I By definition φj(x) = h(‖x− µj‖)
I Originally were introduced for the problem of exact

interpolation f(xn) = tn:

f(x) =
N∑

n=1

wnh(‖x− xn‖) (6.38)

I Green’s functions for an isotropic differential operator in
regularizer

I Interpolation problem with noisy inputs

E =
1
2

N∑
n=1

∫
{y(xn + ξ)− tn}2ν(ξ)dξ (6.39)
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Interpolation With Noisy Inputs

I Sum of squares function

E =
1
2

N∑
n=1

∫
{y(xn + ξ)− tn}2ν(ξ)dξ (6.39)

I Optimal value

y(xn) =
N∑

n=1

tnh(x− xn) (6.40)

with basis functions given by normalized functions

h(x− xn) =
ν(x− xn)

N∑
n=1

ν(x− xn)
(6.41)

I If noise distribution ν(ξ) is isotropic, basis functions would be
radial
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Normalization effect

Avoids regions in an input space where all of the basis functions
take small values
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Reducing Size of the Basis

I Keep number of basis functions M smaller than input data
size N

I Centers locations µi are determined based on the input data
{xn} alone

I Coefficients {wi} are determined by least squares

I Choice of centers:
I random
I orthogonal least squares - greatest error reduction
I using clustering algorithms
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Parzen Density Estimator
I Prediction of linear regression model - linear combination of

tn with ’equivalent kernel’ values

I Same result starting from Parzen density estimator

p(x, t) =
1
N

N∑
n=1

f(x− xn, t− tn) (6.42)

I Regression function

y(x) = IE[t|x] =

∞∫
−∞

tp(t|x)dt =

=
∫

tp(x, t)dt∫
p(x, t)dt

=

=

∑
n

∫
tf(x− xn, t− tn)dt∑

m

∫
f(x− xm, t− tm)dt

(6.43)
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Nadaraya-Watson Model
Assume that the component density functions have zero mean so
that

∞∫
−∞

tf(x, t)dt = 0 (6.44)

for all values of x. Then by variable change

y(x) =

∑
n

g(x− xn)tn∑
m

g(x− xm)
=

=
∑

n

k(x,xn)tn (6.45)

with g(x) =
∞∫

−∞
f(x, t)dt and k(x,xn) given by

k(x,xn) =
g(x− xn)∑

m
g(x− xm)

(6.46)
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Illustration of the Nadaraya-Watson Model

single input variable x
f(x, t) is a zero-mean
isotropic Gaussian with

variance σ2
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Conditional distribution

p(t|x) =
p(t,x)∫
p(t,x)dt

=

∑
n

f(x− xn, t− tn)∑
m

∫
f(x− xm, t− tm)dt

(6.47)

is given by a mixture of Gaussians
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Gaussian processes: Key Idea

I The idea is similar to linear regression with a fixed set of basis
functions (Chapter 3):

y(x) = wTφ(x) (6.49)

I However, we forget about the parametric model

I Instead we take a infinite number of basis functions given by a
probability distribution over functions

I Might loook difficult to handle, but it is not . . . we only have
to consider the values of the functions at training/test data
points
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Linear regression revisited

Model defined by linear combination of M fixed basis functions:

y(x) = wTφ(x) (6.49)

A Gaussian prior distribution over the weight vector w

p(w) = N (w|0, α−1I) (6.50)

governed by the hyperparameter α (precision) induces then a
probability distribution over functions y(x).
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Linear regression revisited (2)

Evaluating y(x) for a set of training data points x1, . . . ,xN , we
have a joint distribution

y = Φw, with elements yn = y(xn) = wTφ(xn) ∝ N , (6.51)

where Φ is the design matrix with elements Φnk = φk(xn).
p(y) is Gaussian, and its mean and covariance can be shown to be

E[y] = 0 (6.52)

cov[y] =
1
α
ΦΦT = K (6.53)

where K is the Gram matrix with elements

Knm = k(xn,xm) =
1
α
φ(xn)Tφ(xm). (6.54)

Up to now we only took data points + prior, but no target values.
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Linear regression revisited: summary

I The model we have seen is one example for a Gaussian process

I “Gaussian process is defined as a probability distribution over
functions y(x) such that the set of values of y(x) evaluated
at an arbitrary set of points x1, . . . ,xN jointly have a
Gaussian distribution”

I Key point: the joint distribution is definied completely by
second-order statistics (mean, covariance)

I Note, usually the mean is taken to be zero, then we only need
the covariance, i.e., the kernel-function:

E[y(xn)y(xm)] = k(xn,xm) (6.55)

I Actually, instead of choosing (a limited number of) basis
functions, we can directly choose a kernel function (which
may result in an infinite number of basis functions)
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Gaussian process regression

To use Gaussian processes for regression, we need to model noise:

tn = yn + εn with yn = y(xn) (6.57)

For noise processes with a Gaussian distribution we obtain

p(tn|yn) = N (tn|yn, β−1). (6.58)

The joint distribution for t = (t1, . . . , tn)T and y = (y1, . . . , yn)T

is then (since the noise is assumed to be independent)

p(t|y) = N (t|y, β−1IN ). (6.59)

Vasil Khalidov, Alex Kläser Bishop Chapter 6: Kernel Methods



Gaussian process regression (2)

And from the definition of a Gaussian process we have

p(y) = N (y|0,K), (6.60)

i.e., points that are more similar (given the kernel function k) will
be stronger correlated. For the marginal distribution p(t), we need
to integrate over y (see Section 2.3.3):

p(t) =
∫

p(t|y)p(y)dy = N (t|0,C) with C = K + β−1I.

(6.61)
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Making predictions

I So far we have a model for the joint probability distribution
over sets of data points

I For predictions of a new input variable xN+1, we need to
evaluate the predictive distribution p(tN+1|t)

I By partitioning (see Section 2.3.1) the joint Gaussian
distribution over x1, . . . ,xN ,xN+1, we obtain p(tN+1|t) given
by its mean and covariance:

m(xN+1) = kTC−1t with (6.66)

k = (k(x1,xN+1), . . . , k(xN ,xN+1))T

σ2(xN+1) = c− kTC−1k with (6.67)

c = k(xN+1,xN+1) + β−1.
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Making predictions (2)
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Distribution over functions . . . hm?
Sample functions from prior p(y) with common kernel function

k(xn,xm) = θ0 exp
(
−θ1

2
‖ xn − xm ‖2

)
+ θ2 + θ3xT

nxm (6.63)
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Learning hyperparameters θ

I In practice, it can be preferable not to fix parameters, but to
infer them from the data

I Parameters θ are, e.g.: length scale of correlations, precision
of noise (β)

I Simplest approach:
I Maximizing θ for the log-likelihood (maximum likelihood):

ln p(t|θ)
I Problem: ln p(t|θ) is in general non-convex and can have

multiple maxima

I Introduce a prior p(θ) and maximize the log-posterior
(maximum a posteriori): ln p(t|θ) + ln p(θ)

I To be Bayesian, we need the actual distribution and have to
marginalize; this is not tractable ⇒ approximations

I The noise might not be additive but dependent on on x
I A second Gaussian process can be introduced to represent the

dependency of β on x
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Automatic relevance detection (ARD)

I An additional hyperparameter can be introduced for each
input dimension, e.g.:

k(xn,xm) = θ0 exp

(
−1

2

D∑
i=1

ηi(xni − xmi)2
)

+ θ2 + θ3xT
nxm

(6.72)

I Hyperparameter optimization by maximum likelihood allows
then a different weighting of each dimension

I Unrelevant dimensions (with small weights) can be detected
and discarded
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Gaussian process classification

I Objective: model posterior probabilities of the target variable
for a new input

I Problem: we need to map values to interval (0; 1)
I Solution: use a Gaussian process together with a non-linear

activation function (e.g., sigmoid)
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Gaussian process classification (2)

Consider two-class problem with target values t ∈ {0, 1}. Define a
Gaussian process over a function a(x) and transform a using the
logistic sigmoid to

y = σ(a(x)).

Similar to before, we need to predict the conditional distribution:

p(tN+1 = 1|t) =
∫

p(tN+1 = 1|aN+1)p(aN+1|t)daN+1

=
∫

σ(aN+1)p(aN+1|t)daN+1. (6.76)

However, the integral is analytically intractable. Approximations
can be of numerical or analytical nature.
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Gaussian process classification (3)

I Problem 1: we need to compute a weird integral

I Solution 1: we know how to compute the convolution of an
Gaussian and a sigmoid function (Eq. (4.153)) ⇒ approximate
the posterior distribution p(aN+1|t) as Gaussian

I Problem 2: Hm . . . but how do we approximate the posterior?

I Solution 2: the Laplace approximation (among others)
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Laplace approximation

We can rewrite the posterior over aN+1 using Bayes’s theorem:

p(aN+1|t) =
∫

p(aN+1, a|t)da

= . . . =
∫

p(aN+1|a)p(a|t)da. (6.77)

We know how to compute mean and covariance for p(aN+1|a).
Now we have to find a Gaussian approximation only for p(a|t).
This is done noting that p(a|t) ∝ p(t|a)p(a), thus

Ψ(a) = ln p(a|t) = ln p(t|a) + ln p(a) + const. (6.80)
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Laplace approximation (2)

I We can use the iterative reweighted least squares (IRLS)
algorithm (Sec. 4.3.3) to find the mode of Ψ(a) (first and
second derivative have to be evaluated)

I It can be shown that Ψ(a) is convex and thus has only one
mode :-)

I The mode position a? and the Hessian matrix H at this
position define our Gaussian approximation

q(a) = N (a|a?,H−1) (6.86)

I Now we can go back to the formulas and compute the
integrals and finally also p(tN+1|t) from Eq. (6.76)
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Learning hyperparameters

I To determine the parameters θ, we can maximize the
likelihood function:

p(t|θ) =
∫

p(t|a)p(a|θ)da (6.89)

I Again, the integral is analytically intractable, so the Laplace
approximation can be applied again

I We need an expression for the gradient of the logarithm of
p(t|θ)

I Hm . . . this is a bit trickier, but nevertheless doable

I . . . by now we might be happy to skip the exact details :-)
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Gaussian process classification (finishing up)

Just to finish up, and now we have a binary classifier based on a
Gaussian process
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Connection to neural networks

I Neural Networks
I The range of representable functions is governed by the

number M of hidden units
I Within the maximum likelihood framework, they overfit as M

comes close to the number of training samples

I Bayesian Neural Networks
I The prior over w in conjunction with the network function

f(x,w) produces a prior distribution over functions from y(x)
I The distribution of functions will tend to a Gaussian process in

the limit M →∞
I The property that the outputs share hidden units (and thus

‘borrow statistical strength’ from each other) is lost in this
limit

I . . . and some other details
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