Pattern Recognition and Machine Learning Chapter 6: Kernel Methods

Vasil Khalidov Alex Kläser

December 13, 2007

Vasil Khalidov, Alex Kläser Bishop Chapter 6: Kernel Methods

Training Data: Keep or Discard?

- **Parametric** methods (linear/nonlinear) so far:
 - learn parameter vector \boldsymbol{w} or posterior distribution $p(\boldsymbol{w}|\boldsymbol{t})$
 - \blacktriangleright discard training data t
- Non-parametric methods:
 - Parzen probability density model: set of kernel functions centered on training data points
 - Nearest neighbours technique: closest example from the training set
 - Memory-based methods: similar examples from the training set

Kernel methods:

 prediction is based on linear combinations of a kernel function evaluated at the training data points

Kernel Function

• for models based on feature space mapping $\phi(x)$:

$$k(\boldsymbol{x}, \boldsymbol{x}') = \boldsymbol{\phi}(\boldsymbol{x})^T \boldsymbol{\phi}(\boldsymbol{x}')$$
(6.1)

- ▶ symmetric function: k(x, x') = k(x', x)
- lacksimsimple example *linear* kernel: $oldsymbol{\phi}(oldsymbol{x}) = oldsymbol{x}$
- stationary kernel: k(x, x') = k(x x')
- ► homogeneous kernel: k(x, x') = k(||x x'||)

Algorithm, expressed in terms of scalar products can be reformulated using *kernel substitution*: PCA, nearest-neighbour classifiers, Fisher discriminant

Dual Representation

Many linear models for regression and classification can be reformulated in terms of a dual representation in which the kernel function arises naturally.

• linear regression model ($\lambda \ge 0$):

$$J(\boldsymbol{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ \boldsymbol{w}^{T} \boldsymbol{\phi}(\boldsymbol{x}_{n}) - t_{n} \right\}^{2} + \frac{\lambda}{2} \boldsymbol{w}^{T} \boldsymbol{w}$$
(6.2)

set the gradient to zero:

$$\boldsymbol{w} = -\frac{1}{\lambda} \sum_{n=1}^{N} \left\{ \boldsymbol{w}^{T} \boldsymbol{\phi}(\boldsymbol{x}_{n}) - t_{n} \right\} \boldsymbol{\phi}(\boldsymbol{x}_{n}) = \boldsymbol{\Phi}^{T} \boldsymbol{a}$$
(6.3)

• substitute w and define the *Gram* matrix $\mathbf{K} = \mathbf{\Phi} \mathbf{\Phi}^T$:

$$K_{nm} = \boldsymbol{\phi}(\boldsymbol{x}_n)^T \boldsymbol{\phi}(\boldsymbol{x}_m) = k(\boldsymbol{x}_n, \boldsymbol{x}_m)$$
(6.6)

Solution for Dual Problem

▶ in terms of new parameter vector *a*:

$$\boldsymbol{w} = \frac{1}{2}\boldsymbol{a}^{T}\boldsymbol{\mathsf{K}}\boldsymbol{\mathsf{K}}\boldsymbol{a} - \boldsymbol{a}^{T}\boldsymbol{\mathsf{K}}\boldsymbol{t} + \frac{1}{2}\boldsymbol{t}^{T}\boldsymbol{t} + \frac{\lambda}{2}\boldsymbol{a}^{T}\boldsymbol{\mathsf{K}}\boldsymbol{a} \tag{6.7}$$

set the gradient to zero:

$$\boldsymbol{a} = (\mathbf{K} + \lambda \mathbf{I}_N)^{-1} \boldsymbol{t}$$
 (6.8)

 \blacktriangleright prediction for a new input x

$$y(\boldsymbol{x}) = \boldsymbol{w}^T \boldsymbol{\phi}(\boldsymbol{x}) = \boldsymbol{a}^T \boldsymbol{\Phi} \boldsymbol{\phi}(\boldsymbol{x}) = \boldsymbol{k}(\boldsymbol{x})^T (\mathbf{K} + \lambda \mathbf{I}_N)^{-1} \boldsymbol{t}$$
 (6.9)

where

$$k(x) = (k(x_1, x), ..., k(x_N, x))$$

• inverting $N \times N$ matrix instead of $M \times M$

Constructing Kernels - First Approach

 \blacktriangleright choose feature space mapping $\phi(x)$

$$k(x, x') = \phi(x)^T \phi(x') = \sum_{i=1}^M \phi_i(x) \phi_i(x')$$
 (6.10)

Constructing Kernels - Second Approach

- construct kernel function directly and verify its validity
- simple example

$$k(x, z) = (x^T z)^2$$
 (6.11)

in 2-D case corresponds to

$$k(\boldsymbol{x}, \boldsymbol{z}) = \boldsymbol{\phi}(\boldsymbol{x})^T \boldsymbol{\phi}(\boldsymbol{z})$$
 (6.12)

with $\phi(x) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)^T$

To test validity without having to construct the function $\phi(x)$ explicitly, one can use the condition:

Function $k(\boldsymbol{x}, \boldsymbol{x}')$ is a valid kernel $\iff \mathbf{K} \ge 0 \qquad \forall \{x_n\}$

Combining Kernels

Given valid kernels $k_1(x, x')$ and $k_2(x, x')$ the following kernels will also be valid:

$$k(x, x') = ck_1(x, x')$$
 (6.13)

$$k(x, x') = f(x)k_1(x, x')f(x')$$
 (6.14)

$$k(x, x') = q(k_1(x, x'))$$
 (6.15)

$$k(\boldsymbol{x}, \boldsymbol{x}') = exp(k_1(\boldsymbol{x}, \boldsymbol{x}'))$$
(6.16)

$$k(x, x') = k_1(x, x') + k_2(x, x')$$
 (6.17)

$$k(x, x') = k_1(x, x')k_2(x, x')$$
 (6.18)

$$k(\boldsymbol{x}, \boldsymbol{x}') = k_3(\boldsymbol{\phi}(\boldsymbol{x}), \boldsymbol{\phi}(\boldsymbol{x}')) \tag{6.19}$$

$$k(\boldsymbol{x}, \boldsymbol{x}') = \boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x}' \tag{6.20}$$

$$k(x, x') = k_a(x_a, x'_a) + k_b(x_b, x'_b)$$
 (6.21)

$$k(\boldsymbol{x}, \boldsymbol{x}') = k_a(\boldsymbol{x}_a, \boldsymbol{x}'_a)k_b(\boldsymbol{x}_b, \boldsymbol{x}'_b)$$
(6.22)

with corresponding conditions on $c, f, q, \phi, k_3, \mathbf{A}, \mathbf{x}_a, \mathbf{x}_b, k_a, k_b$

Examples

Polynomial kernels:

$$\begin{split} k(\boldsymbol{x},\boldsymbol{x}') &= (\boldsymbol{x}^T\boldsymbol{x}')^2 \text{ contains only terms of degree 2} \\ k(\boldsymbol{x},\boldsymbol{x}') &= (\boldsymbol{x}^T\boldsymbol{x}'+c)^2 \text{, } c > 0 \\ k(\boldsymbol{x},\boldsymbol{x}') &= (\boldsymbol{x}^T\boldsymbol{x}')^M \text{ contains all monomials of order } M \\ k(\boldsymbol{x},\boldsymbol{x}') &= (\boldsymbol{x}^T\boldsymbol{x}'+c)^M \text{, } c > 0 \end{split}$$

Gaussian kernel:

$$k(x, x') = \exp(-\|x - x'\|^2 / 2\sigma^2)$$
 (6.23)

Note: can substitute $x^T x'$ with a nonlinear kernel $\kappa(x, x')$ • Kernel on nonvectorial space:

$$k(A_1, A_2) = 2^{|A_1 \cap A_2|} \tag{6.27}$$

Sigmoidal kernel:

$$k(\boldsymbol{x}, \boldsymbol{x}') = \tanh(a\boldsymbol{x}^T\boldsymbol{x}' + b)$$
 (6.37)

Probabilistic generative models

• Kernel for generative model $p(\boldsymbol{x})$:

$$k(x, x') = p(x)p(x')$$
 (6.28)

$$k(\boldsymbol{x}, \boldsymbol{x}') = \sum_{i} p(\boldsymbol{x}|i) p(\boldsymbol{x}'|i) p(i)$$
(6.29)

$$k(\boldsymbol{x}, \boldsymbol{x}') = \int p(\boldsymbol{x}|\boldsymbol{z}) p(\boldsymbol{x}'|\boldsymbol{z}) p(\boldsymbol{z}) d\boldsymbol{z} \qquad (6.30)$$

Kernel for HMM:

$$k(\mathbf{X}, \mathbf{X}') = \sum_{\mathbf{Z}} p(\mathbf{X}|\mathbf{Z}) p(\mathbf{X}'|\mathbf{Z}) p(\mathbf{Z})$$
(6.31)

A B M A B M

$$f X = \{m x_1,...,m x_L\}$$
 - observations $f Z = \{m z_1,...,m z_L\}$ - hidden states

Fisher kernel

- parametric generative model $p(\boldsymbol{x}|\boldsymbol{\theta})$
- Fisher score:

$$g(\theta, x) = \nabla_{\theta} \ln p(x|\theta)$$
 (6.32)

Fisher kernel and information matrix:

$$k(\boldsymbol{x}, \boldsymbol{x}') = \boldsymbol{g}(\boldsymbol{\theta}, \boldsymbol{x})^T \mathbf{F}^{-1} \boldsymbol{g}(\boldsymbol{\theta}, \boldsymbol{x}')$$
(6.33)

$$\mathbf{F} = \mathbb{E}_{\boldsymbol{x}} \left[\boldsymbol{g}(\boldsymbol{\theta}, \boldsymbol{x}) \boldsymbol{g}(\boldsymbol{\theta}, \boldsymbol{x})^T | \boldsymbol{\theta} \right]$$
(6.34)

- Note: the kernel is invariant under $oldsymbol{ heta} o oldsymbol{\psi}(oldsymbol{ heta})$
- Simplify matrix calculation:

$$\mathbf{F} \simeq \frac{1}{N} \sum_{n=1}^{N} \boldsymbol{g}(\boldsymbol{\theta}, \boldsymbol{x}_n) \boldsymbol{g}(\boldsymbol{\theta}, \boldsymbol{x}_n)^T$$
(6.35)

Or simply omit the Fisher information matrix

Radial Basis Functions

- By definition $\phi_j(\boldsymbol{x}) = h(\|\boldsymbol{x} \boldsymbol{\mu}_j\|)$
- ➤ Originally were introduced for the problem of exact interpolation f(xn) = tn:

$$f(\boldsymbol{x}) = \sum_{n=1}^{N} w_n h(\|\boldsymbol{x} - \boldsymbol{x}_n\|)$$
(6.38)

- Green's functions for an isotropic differential operator in regularizer
- Interpolation problem with noisy inputs

$$E = \frac{1}{2} \sum_{n=1}^{N} \int \{y(\boldsymbol{x}_{n} + \boldsymbol{\xi}) - t_{n}\}^{2} \nu(\boldsymbol{\xi}) d\boldsymbol{\xi}$$
(6.39)

Interpolation With Noisy Inputs

Sum of squares function

$$E = \frac{1}{2} \sum_{n=1}^{N} \int \{y(\boldsymbol{x}_{n} + \boldsymbol{\xi}) - t_{n}\}^{2} \nu(\boldsymbol{\xi}) d\boldsymbol{\xi}$$
 (6.39)

Optimal value

$$y(\boldsymbol{x}_n) = \sum_{n=1}^{N} t_n h(\boldsymbol{x} - \boldsymbol{x}_n)$$
(6.40)

with basis functions given by normalized functions

$$h(\boldsymbol{x} - \boldsymbol{x}_n) = \frac{\nu(\boldsymbol{x} - \boldsymbol{x}_n)}{\sum\limits_{n=1}^{N} \nu(\boldsymbol{x} - \boldsymbol{x}_n)}$$
(6.41)

If noise distribution ν(ξ) is isotropic, basis functions would be radial

Normalization effect

Avoids regions in an input space where all of the basis functions take small values

Reducing Size of the Basis

- Keep number of basis functions M smaller than input data size N
- Centers locations μ_i are determined based on the input data $\{x_n\}$ alone
- Coefficients $\{w_i\}$ are determined by least squares
- Choice of centers:
 - random
 - orthogonal least squares greatest error reduction
 - using clustering algorithms

Parzen Density Estimator

 Prediction of linear regression model - linear combination of t_n with 'equivalent kernel' values

Same result starting from Parzen density estimator

$$p(x,t) = \frac{1}{N} \sum_{n=1}^{N} f(x - x_n, t - t_n)$$
 (6.42)

Regression function

$$y(\boldsymbol{x}) = \mathbb{E}[t|\boldsymbol{x}] = \int_{-\infty}^{\infty} tp(t|\boldsymbol{x})dt =$$

$$= \frac{\int tp(\boldsymbol{x},t)dt}{\int p(\boldsymbol{x},t)dt} =$$

$$= \frac{\sum_{n} \int tf(\boldsymbol{x} - \boldsymbol{x}_{n}, t - t_{n})dt}{\sum_{m} \int f(\boldsymbol{x} - \boldsymbol{x}_{m}, t - t_{m})dt} \qquad (6.43)$$

Nadaraya-Watson Model

Assume that the component density functions have zero mean so that

$$\int_{-\infty}^{\infty} t f(\boldsymbol{x}, t) dt = 0$$
 (6.44)

for all values of x. Then by variable change

$$y(\boldsymbol{x}) = \frac{\sum_{n} g(\boldsymbol{x} - \boldsymbol{x}_{n}) t_{n}}{\sum_{m} g(\boldsymbol{x} - \boldsymbol{x}_{m})} =$$
$$= \sum_{n} k(\boldsymbol{x}, \boldsymbol{x}_{n}) t_{n}$$
(6.45)

with $g(\pmb{x}) = \int\limits_{-\infty}^{\infty} f(\pmb{x},t) dt$ and $k(\pmb{x},\pmb{x}_n)$ given by

$$k(\boldsymbol{x}, \boldsymbol{x}_n) = \frac{g(\boldsymbol{x} - \boldsymbol{x}_n)}{\sum_{m} g(\boldsymbol{x} - \boldsymbol{x}_m)}$$
(6.46)

Illustration of the Nadaraya-Watson Model

single input variable x f(x,t) is a zero-mean isotropic Gaussian with variance σ^2

Conditional distribution

$$p(t|\boldsymbol{x}) = \frac{p(t,\boldsymbol{x})}{\int p(t,\boldsymbol{x})dt} = \frac{\sum_{n} f(\boldsymbol{x} - \boldsymbol{x}_{n}, t - t_{n})}{\sum_{m} \int f(\boldsymbol{x} - \boldsymbol{x}_{m}, t - t_{m})dt}$$
(6.47)

is given by a mixture of Gaussians

Gaussian processes: Key Idea

The idea is similar to linear regression with a fixed set of basis functions (Chapter 3):

$$y(\mathbf{x}) = \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}) \tag{6.49}$$

- However, we forget about the parametric model
- Instead we take a infinite number of basis functions given by a probability distribution over functions
- Might loook difficult to handle, but it is not ... we only have to consider the values of the functions at training/test data points

Linear regression revisited

Model defined by linear combination of M fixed basis functions:

$$y(\mathbf{x}) = \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}) \tag{6.49}$$

A Gaussian prior distribution over the weight vector ${f w}$

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I})$$
(6.50)

governed by the hyperparameter α (precision) induces then a probability distribution over functions $y(\mathbf{x})$.

Linear regression revisited (2)

Evaluating $y(\mathbf{x})$ for a set of training data points $\mathbf{x}_1, \ldots, \mathbf{x}_N$, we have a joint distribution

$$\mathbf{y} = \mathbf{\Phi} \mathbf{w}, \text{ with elements } y_n = y(\mathbf{x}_n) = \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \propto \mathcal{N}, \text{ (6.51)}$$

where Φ is the design matrix with elements $\Phi_{nk} = \phi_k(\mathbf{x}_n)$. $p(\mathbf{y})$ is Gaussian, and its mean and covariance can be shown to be

$$\mathbb{E}[\mathbf{y}] = \mathbf{0} \tag{6.52}$$

$$\operatorname{cov}[\mathbf{y}] = \frac{1}{\alpha} \mathbf{\Phi} \mathbf{\Phi}^T = \mathbf{K}$$
(6.53)

where ${\bf K}$ is the Gram matrix with elements

$$K_{nm} = k(\mathbf{x}_n, \mathbf{x}_m) = \frac{1}{\alpha} \boldsymbol{\phi}(\mathbf{x}_n)^T \boldsymbol{\phi}(\mathbf{x}_m).$$
(6.54)

Up to now we only took data points + prior, but no target values.

Linear regression revisited: summary

- The model we have seen is one example for a Gaussian process
- "Gaussian process is defined as a probability distribution over functions y(x) such that the set of values of y(x) evaluated at an arbitrary set of points x₁,..., x_N jointly have a Gaussian distribution"
- Key point: the joint distribution is definied completely by second-order statistics (mean, covariance)
- Note, usually the mean is taken to be zero, then we only need the covariance, i.e., the kernel-function:

$$\mathbb{E}[y(\mathbf{x}_n)y(\mathbf{x}_m)] = k(\mathbf{x}_n, \mathbf{x}_m)$$
(6.55)

 Actually, instead of choosing (a limited number of) basis functions, we can directly choose a kernel function (which may result in an infinite number of basis functions)

Gaussian process regression

To use Gaussian processes for regression, we need to model noise:

$$t_n = y_n + \epsilon_n$$
 with $y_n = y(\mathbf{x_n})$ (6.57)

For noise processes with a Gaussian distribution we obtain

$$p(t_n|y_n) = \mathcal{N}(t_n|y_n, \beta^{-1}).$$
 (6.58)

The joint distribution for $\mathbf{t} = (t_1, \dots, t_n)^T$ and $\mathbf{y} = (y_1, \dots, y_n)^T$ is then (since the noise is assumed to be independent)

$$p(\mathbf{t}|\mathbf{y}) = \mathcal{N}(\mathbf{t}|\mathbf{y}, \beta^{-1}\mathbf{I}_N).$$
(6.59)

Gaussian process regression (2)

And from the definition of a Gaussian process we have

$$p(\mathbf{y}) = \mathcal{N}(\mathbf{y}|\mathbf{0}, \mathbf{K}), \tag{6.60}$$

i.e., points that are more similar (given the kernel function k) will be stronger correlated. For the marginal distribution $p(\mathbf{t})$, we need to integrate over \mathbf{y} (see Section 2.3.3):

$$p(\mathbf{t}) = \int p(\mathbf{t}|\mathbf{y})p(\mathbf{y})d\mathbf{y} = \mathcal{N}(\mathbf{t}|\mathbf{0}, \mathbf{C}) \text{ with } \mathbf{C} = \mathbf{K} + \beta^{-1}\mathbf{I}.$$
(6.61)

Making predictions

- So far we have a model for the joint probability distribution over sets of data points
- ► For predictions of a new input variable x_{N+1}, we need to evaluate the predictive distribution p(t_{N+1}|t)
- ▶ By partitioning (see Section 2.3.1) the joint Gaussian distribution over x₁,..., x_N, x_{N+1}, we obtain p(t_{N+1}|t) given by its mean and covariance:

$$m(\mathbf{x}_{N+1}) = \mathbf{k}^T \mathbf{C}^{-1} \mathbf{t} \qquad \text{with } (6.66)$$
$$\mathbf{k} = (k(\mathbf{x}_1, \mathbf{x}_{N+1}), \dots, k(\mathbf{x}_N, \mathbf{x}_{N+1}))^T$$
$$\sigma^2(\mathbf{x}_{N+1}) = c - \mathbf{k}^T \mathbf{C}^{-1} \mathbf{k} \qquad \text{with } (6.67)$$
$$c = k(\mathbf{x}_{N+1}, \mathbf{x}_{N+1}) + \beta^{-1}.$$

Making predictions (2)

Green curve: original sinusoidal function; blue points: sampled training data points with additional noise; read line: mean estimate; shaded regions: $+/-2\sigma$

Distribution over functions ... hm?

Sample functions from prior $p(\mathbf{y})$ with common kernel function

$$k(\mathbf{x}_n, \mathbf{x}_m) = \theta_0 \exp\left(-\frac{\theta_1}{2} \| \mathbf{x}_n - \mathbf{x}_m \|^2\right) + \theta_2 + \theta_3 \mathbf{x}_n^T \mathbf{x}_m \quad (6.63)$$

Vasil Khalidov, Alex Kläser

Bishop Chapter 6: Kernel Methods

Learning hyperparameters θ

- In practice, it can be preferable not to fix parameters, but to infer them from the data
- Parameters θ are, e.g.: length scale of correlations, precision of noise (β)
- Simplest approach:
 - Maximizing θ for the log-likelihood (maximum likelihood): $\ln p(\mathbf{t}|\boldsymbol{\theta})$
 - ▶ Problem: $\ln p(\mathbf{t}|\boldsymbol{\theta})$ is in general non-convex and can have multiple maxima
- ► Introduce a prior $p(\theta)$ and maximize the log-posterior (maximum a posteriori): $\ln p(\mathbf{t}|\boldsymbol{\theta}) + \ln p(\boldsymbol{\theta})$
- ► To be Bayesian, we need the actual distribution and have to marginalize; this is not tractable ⇒ approximations
- The noise might not be additive but dependent on on x
 - \blacktriangleright A second Gaussian process can be introduced to represent the dependency of β on ${\bf x}$

Automatic relevance detection (ARD)

An additional hyperparameter can be introduced for each input dimension, e.g.:

$$k(\mathbf{x}_n, \mathbf{x}_m) = \theta_0 \exp\left(-\frac{1}{2} \sum_{i=1}^D \eta_i (x_{ni} - x_{mi})^2\right) + \theta_2 + \theta_3 \mathbf{x}_n^T \mathbf{x}_m$$
(6.72)

- Hyperparameter optimization by maximum likelihood allows then a different weighting of each dimension
- Unrelevant dimensions (with small weights) can be detected and discarded

Gaussian process classification

- Objective: model posterior probabilities of the target variable for a new input
- **Problem:** we need to map values to interval (0;1)
- Solution: use a Gaussian process together with a non-linear activation function (e.g., sigmoid)

Gaussian process classification (2)

Consider two-class problem with target values $t \in \{0, 1\}$. Define a Gaussian process over a function $a(\mathbf{x})$ and transform a using the logistic sigmoid to

$$y = \sigma(a(\mathbf{x})).$$

Similar to before, we need to predict the conditional distribution:

$$p(t_{N+1} = 1 | \mathbf{t}) = \int p(t_{N+1} = 1 | a_{N+1}) p(a_{N+1} | \mathbf{t}) da_{N+1}$$
$$= \int \sigma(a_{N+1}) p(a_{N+1} | \mathbf{t}) da_{N+1}.$$
 (6.76)

However, the integral is analytically intractable. Approximations can be of numerical or analytical nature.

Gaussian process classification (3)

- Problem 1: we need to compute a weird integral
- Solution 1: we know how to compute the convolution of an Gaussian and a sigmoid function (Eq. (4.153)) \Rightarrow approximate the posterior distribution $p(a_{N+1}|\mathbf{t})$ as Gaussian
- Problem 2: Hm ... but how do we approximate the posterior?
- Solution 2: the Laplace approximation (among others)

Laplace approximation

We can rewrite the posterior over a_{N+1} using Bayes's theorem:

$$p(a_{N+1}|\mathbf{t}) = \int p(a_{N+1}, \mathbf{a}|\mathbf{t}) d\mathbf{a}$$
$$= \dots = \int p(a_{N+1}|\mathbf{a}) p(\mathbf{a}|\mathbf{t}) d\mathbf{a}.$$
(6.77)

We know how to compute mean and covariance for $p(a_{N+1}|\mathbf{a})$. Now we have to find a Gaussian approximation only for $p(\mathbf{a}|\mathbf{t})$. This is done noting that $p(\mathbf{a}|\mathbf{t}) \propto p(\mathbf{t}|\mathbf{a})p(\mathbf{a})$, thus

$$\Psi(\mathbf{a}) = \ln p(\mathbf{a}|\mathbf{t}) = \ln p(\mathbf{t}|\mathbf{a}) + \ln p(\mathbf{a}) + \text{const.}$$
(6.80)

Laplace approximation (2)

- We can use the iterative reweighted least squares (IRLS) algorithm (Sec. 4.3.3) to find the mode of $\Psi(\mathbf{a})$ (first and second derivative have to be evaluated)
- ► It can be shown that Ψ(a) is convex and thus has only one mode :-)
- ► The mode position **a**^{*} and the Hessian matrix **H** at this position define our Gaussian approximation

$$q(\mathbf{a}) = \mathcal{N}(\mathbf{a}|\mathbf{a}^{\star}, \mathbf{H}^{-1})$$
(6.86)

► Now we can go back to the formulas and compute the integrals and finally also p(t_{N+1}|t) from Eq. (6.76)

Learning hyperparameters

To determine the parameters θ, we can maximize the likelihood function:

$$p(\mathbf{t}|\boldsymbol{\theta}) = \int p(\mathbf{t}|\mathbf{a})p(\mathbf{a}|\boldsymbol{\theta})\mathrm{d}\mathbf{a}$$
(6.89)

- Again, the integral is analytically intractable, so the Laplace approximation can be applied again
- \blacktriangleright We need an expression for the gradient of the logarithm of $p(\mathbf{t}|\boldsymbol{\theta})$
- ▶ Hm ... this is a bit trickier, but nevertheless doable
- ... by now we might be happy to skip the exact details :-)

Gaussian process classification (finishing up)

Just to finish up, and now we have a binary classifier based on a Gaussian process

Connection to neural networks

Neural Networks

- The range of representable functions is governed by the number *M* of hidden units
- ► Within the maximum likelihood framework, they overfit as *M* comes close to the number of training samples
- Bayesian Neural Networks
 - The prior over w in conjunction with the network function f(x, w) produces a prior distribution over functions from y(x)
 - \blacktriangleright The distribution of functions will tend to a Gaussian process in the limit $M \to \infty$
 - The property that the outputs share hidden units (and thus 'borrow statistical strength' from each other) is lost in this limit
 - ...and some other details