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Training Data: Keep or Discard?

» Parametric methods (linear/nonlinear) so far:
» learn parameter vector w or posterior distribution p(w|t)
» discard training data t

» Non-parametric methods:
» Parzen probability density model: set of kernel functions
centered on training data points
» Nearest neighbours technique: closest example from the
training set
» Memory-based methods: similar examples from the training
set

» Kernel methods:
» prediction is based on linear combinations of a kernel function
evaluated at the training data points
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Kernel Function

v

for models based on feature space mapping ¢(x):

kiz,z') = ¢(x)T p(z) (6.1)

v

symmetric function: k(x,x') = k(z', x)

v

simple example - linear kernel: ¢(x) = x

v

stationary kernel: k(x,x') = k(x — x')

v

homogeneous kernel: k(x,x’) = k(||x — ||

Algorithm, expressed in terms of scalar products can be
reformulated using kernel substitution: PCA, nearest-neighbour
classifiers, Fisher discriminant

Vasil Khalidov, Alex Klaser Bishop Chapter 6: Kernel Methods



Dual Representation

Many linear models for regression and classification can be
reformulated in terms of a dual representation in which the kernel
function arises naturally.

> linear regression model (A > 0):
AT
Z{'w (x, —t} + W W (6.2)
> set the gradient to zero:
1 N
=1 2_{w'o(x) —tn} d(zn) =@"a  (63)
n=1

» substitute w and define the Gram matrix K = ®®7":
Kpm = ¢(mn)T¢($m) = k(xn, Tm) (6.6)



Solution for Dual Problem

» in terms of new parameter vector a:

1 1 A
w=-a’KKa — a’Kt + ~t"t + Za’Ka (6.7)

2 2 2

» set the gradient to zero:
a=(K+Ay)'t (6.8)
» prediction for a new input
y(x) = wl¢(x) = a’ ®p(x) = k(x)' (K+ My) "t (6.9)
where
k(z) = (k(x,x),....k(xzy,x))
» inverting N x N matrix instead of M x M
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Constructing Kernels - First Approach

» choose feature space mapping ¢(x)

M
k(z,2) = ¢(x) d(a') =D di(x)¢i(2) (6.10)
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Constructing Kernels - Second Approach

» construct kernel function directly and verify its validity

> simple example
k(x,z) = (z' 2)? (6.11)
in 2-D case corresponds to
k(z,z) = ¢(z) ¢(2) (6.12)

with ¢(x) = (27, V2r129,23)"

To test validity without having to construct the function ¢(x)
explicitly, one can use the condition:

Function k(x,x’) is a valid kernel < K >0 V{x,}
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Combining Kernels

Given valid kernels k1 (x, ') and ka(x, ') the following kernels
will also be valid:

~

k(z, ') = cki(z, ) (6.13)
k(x.2') = f(@)ki(z,2))f(2) (6.14)
k(x,2") = qlki(z,z)) (6.15)
k(z,z') = exp(ki(z,x')) (6.16)
k(z, ') = ki(z,2')+ ko(z, x') (6.17)
k(z,2') = ki(z,2)ko(z,x’) (6.18)
Ka,a!) = ka(d(), d() (6.19)
k(z, ') = xlAz’ (6.20)
k(x,x') = ko(xa, )+ kp(xp, 1) (6.21)
k(z,x') = ko(xa,))ke(zp, ) (6.22)

with corresponding conditions on ¢, f, q, @, k3, A, x4, p, ke, kp
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Examples

» Polynomial kernels:

k(zx,x') = (T2")? contains only terms of degree 2

k(x,2') = (a:Tac’+c),c>0

k(z,x') = (T2")™ contains all monomials of order M
k(m, )= (xTz' +c)M, c>0

» Gaussian kernel:

k(z,z') = exp(—|z — 2'||2/20?) (6.23)

Note: can substitute 72’ with a nonlinear kernel (x, x')

» Kernel on nonvectorial space:
k(A Ay) = 2l4in4:| (6.27)
» Sigmoidal kernel:
k(x,x') = tanh(az’x’ + b) (6.37)
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Probabilistic generative models

» Kernel for generative model p(x):

k(z,x') = p(a)p(a) (6.28)
k(z, ') = Zp(wli)p(m’\i)p(i) (6.29)

b(w, ) = / p(xl2)p(@|2)p(z)dz  (630)
» Kernel for HMM:

k(X,X') = Zp X|Z)p(X'|1Z)p(Z) (6.31)

X ={x,...,xp} - observations
Z ={z,...,z1} - hidden states
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Fisher kernel

> parametric generative model p(xz|0)
» Fisher score:

g9(0,x) = Vg Inp(x|0) (6.32)
» Fisher kernel and information matrix:

k(z,z')=g(0,2) ' F g8, (6.33)
F=TEgzx[g(0,z)g9(0.2)|6] (6.34)

» Note: the kernel is invariant under 8 — (6)

» Simplify matrix calculation:

Zg (0,2,)g(0,2,)" (6.35)

Or simply omit the Fisher information matrix
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Radial Basis Functions
> By definition ¢;(x) = h(||z — p;l))

» Originally were introduced for the problem of exact
interpolation f(x,) = ty:

N
f@) =3 weh(lle — ) (6.38)
n=1

» Green's functions for an isotropic differential operator in
regularizer

» Interpolation problem with noisy inputs

E—lN tn v (€)d 6.39
=33 [ o -nyos 69
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Interpolation With Noisy Inputs

» Sum of squares function

E—lN/H &)~ t)(E)dE  (639)
—2; Y(xn +§) —tnsv .

» Optimal value

N
Y@n) =D toh(m — x) (6.40)
n=1
with basis functions given by normalized functions
hx —x,) = ]\;/(:z:;azn) (6.41)
> v(®—xn)
n=1

» If noise distribution v/(&) is isotropic, basis functions would be
radial
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Normalization effect

Avoids regions in an input space where all of the basis functions
take small values
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Reducing Size of the Basis

» Keep number of basis functions M smaller than input data
size N

» Centers locations p; are determined based on the input data
{x,} alone

» Coefficients {w;} are determined by least squares

» Choice of centers:

» random
» orthogonal least squares - greatest error reduction
» using clustering algorithms

Vasil Khalidov, Alex Klaser Bishop Chapter 6: Kernel Methods



Parzen Density Estimator

» Prediction of linear regression model - linear combination of
t, with 'equivalent kernel' values

» Same result starting from Parzen density estimator

Zf — X, t — ) (6.42)

» Regression function

v@) = Eftle] = [ tp(tla)it -
ftp(sc,t)::lzo_
[p(z, t)dt
S Jtf(x—@p,t —t,)dt
= 2 (6.43)

S [ flx—am,t—ty)dt
m
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Nadaraya-Watson Model

Assume that the component density functions have zero mean so
that

o0

/ tf (e, t)dt = 0 (6.44)

—00
for all values of . Then by variable change

;g(m —xp)ty
U e

= Z k(x, )ty (6.45)

with g(x f f(x,t)dt and k(x,x,) given by

g(x —xy)

Z g(@ — @)
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lllustration of the Nadaraya-Watson Model

15

single input variable x
f(z,t) is a zero-mean

isotropic Gaussian with
2

variance o

Conditional distribution

iy = )T

Tt x)dt fo et —tya &4

is given by a mixture of Gaussians
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Gaussian processes: Key Idea

» The idea is similar to linear regression with a fixed set of basis
functions (Chapter 3):

y(x) = w' p(x) (6.49)

» However, we forget about the parametric model

» Instead we take a infinite number of basis functions given by a
probability distribution over functions

» Might loook difficult to handle, but it is not ...we only have
to consider the values of the functions at training/test data
points
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Linear regression revisited

Model defined by linear combination of M fixed basis functions:
y(x) = w'¢(x) (6.49)
A Gaussian prior distribution over the weight vector w
p(w) = N(w|0,a'T) (6.50)

governed by the hyperparameter o (precision) induces then a
probability distribution over functions y(x).

Vasil Khalidov, Alex Klaser Bishop Chapter 6: Kernel Methods



Linear regression revisited (2)

Evaluating y(x) for a set of training data points x1,...,Xy, we
have a joint distribution

y = ®w, with elements ¥, = y(x,) = w! ¢(x,) x N, (6.51)

where ® is the design matrix with elements ®,,; = ¢r(x,,).
p(y) is Gaussian, and its mean and covariance can be shown to be

Ely]=0 (6.52)

1
cov]y] = a<I><I>T =K (6.53)
where K is the Gram matrix with elements
1
Kpm = k(Xn, Xm) = a¢(xn)T¢(xm). (6.54)

Up to now we only took data points + prior, but no target values.
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Linear regression revisited: summary

» The model we have seen is one example for a Gaussian process

» “Gaussian process is defined as a probability distribution over
functions y(x) such that the set of values of y(x) evaluated
at an arbitrary set of points X1, ...,Xy jointly have a
Gaussian distribution”

» Key point: the joint distribution is definied completely by
second-order statistics (mean, covariance)

» Note, usually the mean is taken to be zero, then we only need
the covariance, i.e., the kernel-function:

E[y(xn)y(xm)} = kZ(Xn,Xm) (6.55)

» Actually, instead of choosing (a limited number of) basis
functions, we can directly choose a kernel function (which
may result in an infinite number of basis functions)
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Gaussian process regression

To use Gaussian processes for regression, we need to model noise:
tn = Yn +€n  With Y, = y(xn) (6.57)
For noise processes with a Gaussian distribution we obtain

Ptnlyn) = N(tnlyn, 871). (6.58)

The joint distribution for t = (t1,...,t,)" andy = (y1,...,9n)"

is then (since the noise is assumed to be independent)

p(tly) = N(tly, 57 'Iy). (6.59)
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Gaussian process regression (2)

And from the definition of a Gaussian process we have

p(y) = N(Y|Ov K)7 (660)

i.e., points that are more similar (given the kernel function k) will
be stronger correlated. For the marginal distribution p(t), we need
to integrate over y (see Section 2.3.3):

p(t) = / p(tly)p(y)dy = N'(£]0,C) with C =K+ 'L
(6.61)
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Making predictions

» So far we have a model for the joint probability distribution
over sets of data points

» For predictions of a new input variable z 1, we need to
evaluate the predictive distribution p(tx41]|t)

» By partitioning (see Section 2.3.1) the joint Gaussian

distribution over x1,...,Xx,Xn41, we obtain p(ty41|t) given
by its mean and covariance:

m(xne1) =kTCt with (6.66)
k = (k(x1,Xn+1)s - .., k(xn, xn11))"
o?(xy41) =c—kT'Clk with (6.67)

¢ =k(xyi1,xn1) + 67

Vasil Khalidov, Alex Klaser Bishop Chapter 6: Kernel Methods



Making predictions (2)
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Green curve: original sinusoidal function; blue points:
sampled training data points with additional noise;
read line: mean estimate; shaded regions: +/- 20
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Distribution over functions ... hm?
Sample functions from prior p(y) with common kernel function

0
k(xn, Xm) = Op exp <—21 | X — Xim H2> + 09 + nggxm (6.63)
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Learning hyperparameters 6

» In practice, it can be preferable not to fix parameters, but to
infer them from the data

» Parameters @ are, e.g.: length scale of correlations, precision
of noise (3)
» Simplest approach:
» Maximizing 0 for the log-likelihood (maximum likelihood):
In p(t[0)
» Problem: Inp(t|@) is in general non-convex and can have
multiple maxima
» Introduce a prior p(0) and maximize the log-posterior
(maximum a posteriori): Inp(t|@) + Inp(0)
» To be Bayesian, we need the actual distribution and have to
marginalize; this is not tractable = approximations
» The noise might not be additive but dependent on on x

» A second Gaussian process can be introduced to represent the
dependency of 3 on x
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Automatic relevance detection (ARD)

» An additional hyperparameter can be introduced for each
input dimension, e.g.:

D
1
k(Xna Xm) = 00 exp <_2 Z 7]1($nz - $mz)2> + 02 + 93X5Xm

i=1
(6.72)
» Hyperparameter optimization by maximum likelihood allows
then a different weighting of each dimension

» Unrelevant dimensions (with small weights) can be detected
and discarded
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Gaussian process classification

» Objective: model posterior probabilities of the target variable
for a new input

» Problem: we need to map values to interval (0;1)

» Solution: use a Gaussian process together with a non-linear
activation function (e.g., sigmoid)

10 1
5 0.75]
0 0.5
e
-5 0.25]
-10 0
-1 -0.5 0 05 1 -1 -0.5 0 05 1

Vasil Khalidov, Alex Klaser Bishop Chapter 6: Kernel Methods



Gaussian process classification (2)

Consider two-class problem with target values ¢ € {0,1}. Define a
Gaussian process over a function a(x) and transform a using the
logistic sigmoid to

y = o(a(x)).

Similar to before, we need to predict the conditional distribution:
p(tngr = 1Jt) = /P(tN+1 = lan+1)p(an+1[t)dan+1

_ / olans1)plansilt)dan i, (6.76)

However, the integral is analytically intractable. Approximations
can be of numerical or analytical nature.
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Gaussian process classification (3)

» Problem 1: we need to compute a weird integral

» Solution 1: we know how to compute the convolution of an
Gaussian and a sigmoid function (Eq. (4.153)) = approximate
the posterior distribution p(ay1|t) as Gaussian

» Problem 2: Hm ... but how do we approximate the posterior?

» Solution 2: the Laplace approximation (among others)
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Laplace approximation

We can rewrite the posterior over ay 1 using Bayes's theorem:
planlt) = [ plavir.alt)da
=...= /p(aN+1|a)p(a]t)da. (6.77)
We know how to compute mean and covariance for p(an+1/a).

Now we have to find a Gaussian approximation only for p(a|t).
This is done noting that p(alt) o« p(t|a)p(a), thus

¥(a) = Inp(alt) = Inp(t|a) + Inp(a) + const. (6.80)
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Laplace approximation (2)

> We can use the iterative reweighted least squares (IRLS)
algorithm (Sec. 4.3.3) to find the mode of ¥(a) (first and
second derivative have to be evaluated)

> It can be shown that ¥(a) is convex and thus has only one
mode :-)

» The mode position a* and the Hessian matrix H at this
position define our Gaussian approximation

q(a) = N(ala*,H ) (6.86)

» Now we can go back to the formulas and compute the
integrals and finally also p(ty1|t) from Eq. (6.76)
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Learning hyperparameters

v

To determine the parameters 8, we can maximize the
likelihood function:

p(t]0) = / p(ta)p(al0)da (6.89)

v

Again, the integral is analytically intractable, so the Laplace
approximation can be applied again

v

We need an expression for the gradient of the logarithm of
p(t[0)
Hm .. .this is a bit trickier, but nevertheless doable

v

v

... by now we might be happy to skip the exact details :-)
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Gaussian process classification (finishing up)

Just to finish up, and now we have a binary classifier based on a
Gaussian process
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Connection to neural networks

» Neural Networks
» The range of representable functions is governed by the
number M of hidden units
» Within the maximum likelihood framework, they overfit as M
comes close to the number of training samples
» Bayesian Neural Networks
» The prior over w in conjunction with the network function
f(x,w) produces a prior distribution over functions from y(x)
» The distribution of functions will tend to a Gaussian process in
the limit M — oo
» The property that the outputs share hidden units (and thus
‘borrow statistical strength’ from each other) is lost in this
limit
> ...and some other details
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