C.M. Bishop's PRML: Chapter 5; Neural Networks

Vasil Khalidov & Miles Hansard

∃ ►

Introduction

The aim is, as before, to find useful decompositions of the target variable;

$$t(\mathbf{x}) = y(\mathbf{x}, \mathbf{w}) + \epsilon(\mathbf{x}) \tag{3.7}$$

- $t(\mathbf{x}_n)$ and \mathbf{x}_n are the observations, $n = 1, \dots, N$.
- $\epsilon(\mathbf{x})$ is the residual error.

Linear Models

For example, recall the (Generalized) Linear Model:

$$y(\mathbf{x}, \mathbf{w}) = f\left(\sum_{j=0}^{M} w_j \phi_j(\mathbf{x})\right)$$
(5.1)

- $\phi = (\phi_0, \dots, \phi_M)^\top$ is the fixed model basis.
- $\mathbf{w} = (w_0, \dots, w_M)^{\top}$ are the model coefficients.
- For regression: $f(\cdot)$ is the identity.
- For classification: $f(\cdot)$ maps to a posterior probability.

Feed-Forward Networks

Feed-forward Neural Networks generalize the linear model

$$y(\mathbf{x}, \mathbf{w}) = f\left(\sum_{j=0}^{M} w_j \phi_j(\mathbf{x})\right)$$
 (5.1 again)

- The basis itself, as well as the coefficients w_j , will be adapted.
- Roughly: the principle of (5.1) will be used twice; once to define the basis, and once to obtain the output.

Activations

Construct M linear combinations of the inputs x_1, \ldots, x_D :

$$a_j = \sum_{i=0}^{D} w_{ji}^{(1)} x_i \tag{5.2}$$

Each linear combination a_j is transformed by a (nonlinear, differentiable) activation function:

$$z_j = h(a_j) \tag{5.3}$$

() <) <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <

Output Activations

The hidden outputs $z_j = h(a_j)$ are linearly combined in layer two:

$$a_k = \sum_{j=0}^M w_{kj}^{(2)} z_j \tag{5.4}$$

a_k are the output activations, *k* = 1,...,*K*.
 w⁽²⁾_{kj} are the layer two weights, *j* = 1...*D*.
 w⁽²⁾_{k0} are the layer two biases.

The output activations a_k are transformed by the output activation function:

$$y_k = \sigma(a_k) \tag{5.5}$$

- y_k are the final outputs.
- $\sigma(\cdot)$ is, like $h(\cdot)$, a sigmoidal function.

The Complete Two-Layer Model

The model $y_k = \sigma(a_k)$ is, after substituting the definitions of a_j and a_k : $y_k(\mathbf{x}, \mathbf{w}) = \sigma \left(\sum_{j=0}^M w_{kj}^{(2)} h \left(\sum_{i=0}^D w_{ji}^{(1)} x_i \atop a_j \right) \right)$ (5.9)

h(·) and σ(·) are a sigmoidal functions, e.g. the logistic function.

$$s(a) = \frac{1}{1 + \exp(-a)}$$
 $s(a) \in [0, 1]$

• If $\sigma(\cdot)$ is the identity, then a regression model is obtained.

► Evaluation of (5.9) is called forward propagation.

Network Diagram

The approximation process can be represented by a network:

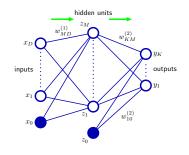


Figure: 5.1

- Nodes are input, hidden and output units. Links are corresponding weights.
- Information propagates 'forwards' from the explanatory variable x to the estimated response y_k(x, w).

Properties & Generalizations

- ► Typically K ≤ D ≤ M, which means that the network is redundant if all h(·) are linear.
- There may be more than one layer of hidden units.
- Individual units need not be fully connected to the next layer.
- Individual links may skip over one or more subsequent layers.
- Networks with two (cf. 5.9) or more layers are universal approximators.
- Any continuous function can be uniformly approximated to arbitrary accuracy, given enough hidden units.
- ► This is true for many definitions of h(·), but excluding polynomials.
- There may be symmetries in the weight space, meaning that different choices of w may define the same mapping from input to output.

Maximum Likelihood Parameters

The aim is to minimize the residual error between $\mathbf{y}(\mathbf{x}_n, \mathbf{w})$ and \mathbf{t}_n . Suppose that the target is a scalar-valued function, which is Normally distributed around the estimate:

$$p(t|\mathbf{x}, \mathbf{w}) = \mathcal{N}(t \mid y(\mathbf{x}, \mathbf{w}), \beta^{-1})$$
(5.12)

Then it will be appropriate to consider the sum of squared-errors

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(y(\mathbf{x}_n, \mathbf{w}) - t_n \right)^2$$
(5.14)

The maximum-likelihood estimate of \mathbf{w} can be obtained by (numerical) minimization:

$$\mathbf{w}_{\mathsf{ML}} = \min_{\mathbf{w}} E(\mathbf{w})$$

Maximum Likelihood Precision

Having obtained the ML parameter estimate \mathbf{w}_{ML} , the precision, β can also be estimated. E.g. if the N observations are IID, then their joint probability is

$$p\Big(\{t_1,\ldots,t_N\}\Big|\{\mathbf{x}_1,\ldots,\mathbf{x}_N\},\mathbf{w},\beta\Big)=\prod_{n=1}^N p(t_n|\mathbf{x}_n,\mathbf{w},\beta)$$

The negative log-likelihood, in this case, is

$$-\log p = \beta E(\mathbf{w}_{\mathsf{ML}}) - \frac{N}{2}\log\beta + \frac{N}{2}\log 2\pi$$
(5.13)

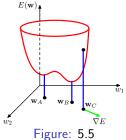
The derivative d/deta is $E(\mathbf{w}_{\mathsf{ML}}) - rac{N}{2eta}$ and so

$$\frac{1}{\beta_{\mathsf{ML}}} = \frac{1}{N} 2E(\mathbf{w}_{\mathsf{ML}}) \tag{5.15}$$

And $1/\beta_{ML} = \frac{1}{NK} 2E(\mathbf{w}_{ML})$ for K target variables.

Error Surface

The residual error $E(\mathbf{w})$ can be visualized as a surface in the weight-space:



- The error will, in practice, be highly nonlinear, with many minima, maxima and saddle-points.
- There will be inequivalent minima, determined by the particular data and model, as well as equivalent minima, corresponding to weight-space symmetries.

Parameter Optimization

Iterative search for a local minimum of the error:

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} + \Delta \mathbf{w}^{(\tau)}$$
(5.27)

- ∇E will be zero at a minimum of the error.
- τ is the time-step.
- $\Delta \mathbf{w}^{(\tau)}$ is the weight-vector update.
- The definition of the update depends on the choice of algorithm.

Local Quadratic Approximation

The truncated Taylor expansion of $E(\mathbf{w})$ around a weight-point $\hat{\mathbf{w}}$ is

$$E(\mathbf{w}) \simeq E(\hat{\mathbf{w}}) + (\mathbf{w} - \hat{\mathbf{w}})^{\top} \mathbf{b} + \frac{1}{2} (\mathbf{w} - \hat{\mathbf{w}})^{\top} \mathbf{H} (\mathbf{w} - \hat{\mathbf{w}})$$
 (5.28)

▶ **b** =
$$\nabla E|_{\mathbf{w}=\hat{\mathbf{w}}}$$
 is the gradient at $\hat{\mathbf{w}}$.
▶ (**H**)_{ij} = $\frac{\partial E}{\partial w_i \partial w_j}\Big|_{\mathbf{w}=\hat{\mathbf{w}}}$ is the Hessian $\nabla \nabla E$ at $\hat{\mathbf{w}}$.

The gradient of E can be approximated by the gradient of the quadratic model (5.28); if $\mathbf{w} \simeq \hat{\mathbf{w}}$ then

$$\nabla E \simeq \mathbf{b} + \mathbf{H}(\mathbf{w} - \hat{\mathbf{w}}) \tag{5.31}$$

where $\frac{1}{2} \left((\mathbf{H} + \mathbf{H}^{\top}) \mathbf{w} - \mathbf{H} \hat{\mathbf{w}} - \mathbf{H}^{\top} \hat{\mathbf{w}} \right) = \mathbf{H} (\mathbf{w} - \hat{\mathbf{w}})$, as $\mathbf{H}^{\top} = \mathbf{H}$.

Approximation at a Minimum

Suppose that \mathbf{w}^{\star} is at a minimum of E, so $\nabla E|_{\mathbf{w}=\mathbf{w}^{\star}}$ is zero, and

$$E(\mathbf{w}) = E(\mathbf{w}^{\star}) + \frac{1}{2}(\mathbf{w} - \mathbf{w}^{\star})^{\top}\mathbf{H}(\mathbf{w} - \mathbf{w}^{\star})$$
(5.32)

• $\mathbf{H} = \nabla \nabla E|_{\mathbf{w} = \mathbf{w}^{\star}}$ is the Hessian.

• The eigenvectors $\mathbf{H}\mathbf{u}_i = \lambda \mathbf{u}_i$ are orthonormal.

• $(\mathbf{w} - \mathbf{w}^{\star})$ can be represented in **H**-coordinates as $\sum_{i} \alpha_{i} \mathbf{u}_{i}$.

Hence the second term of (5.32) can be written

$$\frac{1}{2}(\mathbf{w} - \mathbf{w}^{\star})^{\top} \mathbf{H}(\mathbf{w} - \mathbf{w}^{\star}) = \frac{1}{2} \left(\sum_{i} \lambda_{i} \alpha_{i} \mathbf{u}_{i} \right)^{\top} \left(\sum_{j} \alpha_{j} \mathbf{u}_{j} \right)$$

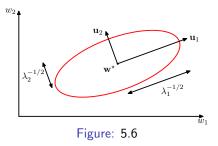
So that

$$E(\mathbf{w}) = E(\mathbf{w}^{\star}) + \frac{1}{2} \sum_{i} \lambda_i \alpha_i^2$$
(5.36)

Characterization of a Minimum

The eigenvalues λ_i of **H** characterize the stationary point **w**^{*}.

- ▶ If all $\lambda_i > 0$, then **H** is positive definite ($\mathbf{v}^\top \mathbf{H} \mathbf{v} > 0$).
- This is analogous to the scalar condition $\frac{\partial^2 E}{\partial w^2}\Big|_{w^*} > 0$.
- Zero gradient and positive principle curvatures mean that E(w*) is a minimum.



Gradient Descent

The simplest approach is to update \mathbf{w} by a displacement in the negative gradient direction.

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E(\mathbf{w}^{(\tau)})$$
(5.41)

- This is a steepest descent algorithm.
- η is the learning rate.
- ► This is a batch method, as evaluation of ∇E involves the entire data set.
- Conjugate gradient or quasi-Newton methods may, in practice, be preferred.
- ► A range of starting points {w⁽⁰⁾} may be needed, in order to find a satisfactory minimum.

Optimization Scheme

An efficient method for the evaluation of $\nabla E(\mathbf{w})$ is needed.

- Each iteration of the descent algorithm has two stages:
- I. Evaluate derivatives of error with respect to weights (involving backpropagation of error though the network).
- II. Use derivatives to compute adjustments of the weights (e.g. steepest descent).

Backpropagation is a general principle, which can be applied to many types of network and error function.

Simple Backpropagation

The error function is, typically, a sum over the data points $E(\mathbf{w}) = \sum_{n=1}^{N} E_n(\mathbf{w})$. For example, consider a linear model

$$y_k = \sum_i w_{ki} x_i \tag{5.45}$$

The error function, for an individual input \mathbf{x}_n , is

$$E_n = rac{1}{2} \sum_k (y_{nk} - t_{nk})^2, \quad ext{where} \quad y_{nk} = y_k(\mathbf{x}_n, \mathbf{w}). \quad (5.46)$$

The gradient with respect to a weight w_{ji} is

$$\frac{\partial E_n}{\partial w_{ji}} = (y_{nj} - t_{nj}) x_{ni}$$
(5.47)

- w_{ji} is a particular link $(x_i \text{ to } y_j)$.
- x_{ni} is the input to the link (*i*-th component of \mathbf{x}_n).
- $(y_{nj} t_{nj})$ is the error output by the link.

General Backpropagation

Recall that, in general, each unit computes a weighted sum:

$$a_{j} = \sum_{i} w_{ji} z_{i} \quad \text{with activation} \quad z_{j} = h(a_{j}). \quad (5.48, 5.49)$$

For each error-term: $\frac{\partial E_{n}}{\partial w_{ji}} = \underbrace{\frac{\partial E_{n}}{\partial a_{j}}}_{\equiv \delta_{j}} \frac{\partial a_{j}}{\partial w_{ji}} \quad (5.50)$

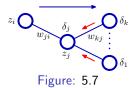
$$\frac{\partial E_n}{\partial w_{ji}} = \frac{\partial E_n}{\partial a_k} \qquad (5.55)$$

In the network:
$$\delta_j \equiv \frac{\partial D_n}{\partial a_j} = \sum_k \frac{\partial D_n}{\partial a_k} \frac{\partial a_k}{\partial a_j}$$
 where $j \rightarrow \{k\}$ (5.55)

Algorithm: $\delta_j = h'(a_j) \sum_k w_{kj} \delta_k$ as $\frac{\partial a_k}{\partial a_j} = \frac{\partial a_k}{\partial z_j} \frac{\partial z_j}{\partial a_j}$ (5.56)

Backpropagation Algorithm

The formula for the update of a given unit depends only on the 'later' (i.e. closer to the output) layers:



Hence the backpropagation algorithm is:

- Apply input x, and forward propagate to find the hidden and output activations.
- Evaluate δ_k directly for the output units.
- **•** Back propagate the δ 's to obtain a δ_j for each hidden unit.
- Evaluate the derivatives $\frac{\partial E_n}{\partial w_{ji}} = \delta_j z_i$.

The back-propagation algorithm is computationally more efficient than standard numerical minimization of E_n . Suppose that W is the total number of weights and biases in the network.

- ▶ Backpropagation: The evaluation is O(W) for large W, as there are many more weights than units.
- Standard approach: Perturb each weight, and forward propagate to compute the change in E_n. This requires W × O(W) computations, so the total complexity is O(W²).

Jacobian Matrix

The properties of the network can be investigated via the Jacobian

$$J_{ki} = \frac{\partial y_k}{\partial x_i} \tag{5.70}$$

For example, (small) errors can be propagated through the trained network:

$$\Delta y_k \simeq \frac{\partial y_k}{\partial x_i} \Delta x_i \tag{5.72}$$

This is useful, but costly, as J_{ki} itself depends on **x**. However, note that

$$\frac{\partial y_k}{\partial x_i} = \sum_j \frac{\partial y_k}{\partial a_j} \frac{\partial a_j}{\partial x_i} = \sum_j w_{ji} \frac{\partial y_k}{\partial a_j}$$
(5.74)

The required derivatives $\partial y_k/\partial a_j$ can be efficiently computed by backpropagation.