
C.M. Bishop’s PRML:
Chapter 5; Neural Networks

Vasil Khalidov & Miles Hansard

Vasil Khalidov & Miles Hansard C.M. Bishop’s PRML: Chapter 5; Neural Networks



Introduction

The aim is, as before, to find useful decompositions of the target
variable;

t(x) = y(x,w) + ε(x) (3.7)

I t(xn) and xn are the observations, n = 1, . . . , N .

I ε(x) is the residual error.

Vasil Khalidov & Miles Hansard C.M. Bishop’s PRML: Chapter 5; Neural Networks



Linear Models

For example, recall the (Generalized) Linear Model:

y(x,w) = f

 M∑
j=0

wjφj(x)

 (5.1)

I φ = (φ0, . . . , φM )> is the fixed model basis.

I w = (w0, . . . , wM )> are the model coefficients.

I For regression: f(·) is the identity.

I For classification: f(·) maps to a posterior probability.

Vasil Khalidov & Miles Hansard C.M. Bishop’s PRML: Chapter 5; Neural Networks



Feed-Forward Networks

Feed-forward Neural Networks generalize the linear model

y(x,w) = f

 M∑
j=0

wjφj(x)

 (5.1 again)

I The basis itself, as well as the coefficients wj , will be adapted.

I Roughly: the principle of (5.1) will be used twice; once to
define the basis, and once to obtain the output.

Vasil Khalidov & Miles Hansard C.M. Bishop’s PRML: Chapter 5; Neural Networks



Activations

Construct M linear combinations of the inputs x1, . . . , xD:

aj =
D∑

i=0

w
(1)
ji xi (5.2)

I aj are the activations, j = 1, . . . ,M .

I w
(1)
ji are the layer one weights, i = 1 . . . D.

I w
(1)
j0 are the layer one biases.

Each linear combination aj is transformed by a (nonlinear,
differentiable) activation function:

zj = h(aj) (5.3)

Vasil Khalidov & Miles Hansard C.M. Bishop’s PRML: Chapter 5; Neural Networks



Output Activations

The hidden outputs zj = h(aj) are linearly combined in layer two:

ak =
M∑

j=0

w
(2)
kj zj (5.4)

I ak are the output activations, k = 1, . . . ,K.

I w
(2)
kj are the layer two weights, j = 1 . . . D.

I w
(2)
k0 are the layer two biases.

The output activations ak are transformed by the output activation
function:

yk = σ(ak) (5.5)

I yk are the final outputs.

I σ(·) is, like h(·), a sigmoidal function.

Vasil Khalidov & Miles Hansard C.M. Bishop’s PRML: Chapter 5; Neural Networks



The Complete Two-Layer Model

The model yk = σ(ak) is, after substituting the definitions of aj

and ak:

yk(x,w) = σ


M∑

j=0

w
(2)
kj h

 D∑
i=0

w
(1)
ji xi

aj


ak

 (5.9)

I h(·) and σ(·) are a sigmoidal functions, e.g. the logistic
function.

s(a) =
1

1 + exp(−a)
s(a) ∈ [0, 1]

I If σ(·) is the identity, then a regression model is obtained.

I Evaluation of (5.9) is called forward propagation.

Vasil Khalidov & Miles Hansard C.M. Bishop’s PRML: Chapter 5; Neural Networks



Network Diagram

The approximation process can be represented by a network:

x0

x1

xD

z0

z1

zM

y1

yK

w
(1)
MD w

(2)
KM

w
(2)
10

hidden units

inputs outputs

Figure: 5.1

I Nodes are input, hidden and output units. Links are
corresponding weights.

I Information propagates ‘forwards’ from the explanatory
variable x to the estimated response yk(x,w).

Vasil Khalidov & Miles Hansard C.M. Bishop’s PRML: Chapter 5; Neural Networks



Properties & Generalizations

I Typically K ≤ D ≤ M , which means that the network is
redundant if all h(·) are linear.

I There may be more than one layer of hidden units.

I Individual units need not be fully connected to the next layer.

I Individual links may skip over one or more subsequent layers.

I Networks with two (cf. 5.9) or more layers are universal
approximators.

I Any continuous function can be uniformly approximated to
arbitrary accuracy, given enough hidden units.

I This is true for many definitions of h(·), but excluding
polynomials.

I There may be symmetries in the weight space, meaning that
different choices of w may define the same mapping from
input to output.

Vasil Khalidov & Miles Hansard C.M. Bishop’s PRML: Chapter 5; Neural Networks



Maximum Likelihood Parameters

The aim is to minimize the residual error between y(xn,w) and tn.
Suppose that the target is a scalar-valued function, which is
Normally distributed around the estimate:

p(t|x,w) = N
(
t
∣∣ y(x,w), β−1

)
(5.12)

Then it will be appropriate to consider the sum of squared-errors

E(w) =
1

2

N∑
n=1

(
y(xn,w)− tn

)2
(5.14)

The maximum-likelihood estimate of w can be obtained by
(numerical) minimization:

wML = min
w

E(w)

Vasil Khalidov & Miles Hansard C.M. Bishop’s PRML: Chapter 5; Neural Networks



Maximum Likelihood Precision

Having obtained the ML parameter estimate wML, the precision, β
can also be estimated. E.g. if the N observations are IID, then
their joint probability is

p
(
{t1, . . . , tN}

∣∣∣{x1, . . . , xN},w, β
)

=
N∏

n=1

p(tn|xn,w, β)

The negative log-likelihood, in this case, is

− log p = βE(wML)−
N

2
log β +

N

2
log 2π (5.13)

The derivative d/dβ is E(wML)− N
2β and so

1

βML
=

1

N
2E(wML) (5.15)

And 1/βML = 1
NK 2E(wML) for K target variables.

Vasil Khalidov & Miles Hansard C.M. Bishop’s PRML: Chapter 5; Neural Networks



Error Surface

The residual error E(w) can be visualized as a surface in the
weight-space:

w1

w2

E(w)

wA wB wC

∇E

Figure: 5.5

I The error will, in practice, be highly nonlinear, with many
minima, maxima and saddle-points.

I There will be inequivalent minima, determined by the
particular data and model, as well as equivalent minima,
corresponding to weight-space symmetries.

Vasil Khalidov & Miles Hansard C.M. Bishop’s PRML: Chapter 5; Neural Networks



Parameter Optimization

Iterative search for a local minimum of the error:

w(τ+1) = w(τ) + ∆w(τ) (5.27)

I ∇E will be zero at a minimum of the error.

I τ is the time-step.

I ∆w(τ) is the weight-vector update.

I The definition of the update depends on the choice of
algorithm.

Vasil Khalidov & Miles Hansard C.M. Bishop’s PRML: Chapter 5; Neural Networks



Local Quadratic Approximation

The truncated Taylor expansion of E(w) around a weight-point ŵ
is

E(w) ' E(ŵ) + (w − ŵ)>b +
1

2
(w − ŵ)>H(w − ŵ) (5.28)

I b = ∇E|w=ŵ is the gradient at ŵ.

I (H)ij = ∂E
∂wi∂wj

∣∣∣
w=ŵ

is the Hessian ∇∇E at ŵ.

The gradient of E can be approximated by the gradient of the
quadratic model (5.28); if w ' ŵ then

∇E ' b + H(w − ŵ) (5.31)

where 1
2

(
(H + H>)w −Hŵ −H>ŵ

)
= H(w − ŵ), as H>= H.

Vasil Khalidov & Miles Hansard C.M. Bishop’s PRML: Chapter 5; Neural Networks



Approximation at a Minimum

Suppose that w? is at a minimum of E, so ∇E|w=w? is zero, and

E(w) = E(w?) +
1

2
(w −w?)>H(w −w?) (5.32)

I H = ∇∇E|w=w? is the Hessian.

I The eigenvectors Hui = λui are orthonormal.

I (w −w?) can be represented in H-coordinates as
∑

i αiui.

Hence the second term of (5.32) can be written

1

2
(w −w?)>H(w −w?) =

1

2

(∑
i

λiαiui

)>(∑
j

αjuj

)
So that

E(w) = E(w?) +
1

2

∑
i

λiα
2
i (5.36)

Vasil Khalidov & Miles Hansard C.M. Bishop’s PRML: Chapter 5; Neural Networks



Characterization of a Minimum

The eigenvalues λi of H characterize the stationary point w?.

I If all λi > 0, then H is positive definite (v>Hv > 0).

I This is analogous to the scalar condition ∂2E
∂w2

∣∣∣
w?

> 0.

I Zero gradient and positive principle curvatures mean that
E(w?) is a minimum.

w1

w2

λ
−1/2
1

λ
−1/2
2

u1

w?

u2

Figure: 5.6

Vasil Khalidov & Miles Hansard C.M. Bishop’s PRML: Chapter 5; Neural Networks



Gradient Descent

The simplest approach is to update w by a displacement in the
negative gradient direction.

w(τ+1) = w(τ) − η∇E
(
w(τ)

)
(5.41)

I This is a steepest descent algorithm.

I η is the learning rate.

I This is a batch method, as evaluation of ∇E involves the
entire data set.

I Conjugate gradient or quasi-Newton methods may, in practice,
be preferred.

I A range of starting points
{
w(0)

}
may be needed, in order to

find a satisfactory minimum.

Vasil Khalidov & Miles Hansard C.M. Bishop’s PRML: Chapter 5; Neural Networks



Optimization Scheme

An efficient method for the evaluation of ∇E(w) is needed.

I Each iteration of the descent algorithm has two stages:

I I. Evaluate derivatives of error with respect to weights
(involving backpropagation of error though the network).

I II. Use derivatives to compute adjustments of the weights
(e.g. steepest descent).

Backpropagation is a general principle, which can be applied to
many types of network and error function.

Vasil Khalidov & Miles Hansard C.M. Bishop’s PRML: Chapter 5; Neural Networks



Simple Backpropagation

The error function is, typically, a sum over the data points
E(w) =

∑N
n=1 En(w). For example, consider a linear model

yk =
∑

i

wkixi (5.45)

The error function, for an individual input xn, is

En =
1

2

∑
k

(ynk − tnk)
2, where ynk = yk(xn,w). (5.46)

The gradient with respect to a weight wji is

∂En

∂wji
= (ynj − tnj) xni (5.47)

I wji is a particular link (xi to yj).

I xni is the input to the link (i-th component of xn).

I (ynj − tnj) is the error output by the link.

Vasil Khalidov & Miles Hansard C.M. Bishop’s PRML: Chapter 5; Neural Networks



General Backpropagation

Recall that, in general, each unit computes a weighted sum:

aj =
∑

i

wjizi with activation zj = h(aj). (5.48,5.49)

For each error-term:
∂En

∂wji
=

∂En

∂aj︸︷︷︸
≡δj

∂aj

∂wji
(5.50)

So, from 5.48:
∂En

∂wji
= δjzi (5.53)

In the network: δj ≡
∂En

∂aj
=

∑
k

∂En

∂ak

∂ak

∂aj
where j→{k} (5.55)

Algorithm: δj = h′(aj)
∑

k

wkjδk as ∂ak
∂aj

= ∂ak
∂zj

∂zj

∂aj
(5.56)

Vasil Khalidov & Miles Hansard C.M. Bishop’s PRML: Chapter 5; Neural Networks



Backpropagation Algorithm

The formula for the update of a given unit depends only on the
‘later’ (i.e. closer to the output) layers:

zi

zj

δj
δk

δ1

wji wkj

Figure: 5.7

Hence the backpropagation algorithm is:

I Apply input x, and forward propagate to find the hidden and
output activations.

I Evaluate δk directly for the output units.

I Back propagate the δ’s to obtain a δj for each hidden unit.

I Evaluate the derivatives ∂En
∂wji

= δjzi.

Vasil Khalidov & Miles Hansard C.M. Bishop’s PRML: Chapter 5; Neural Networks



Computational Efficiency

The back-propagation algorithm is computationally more efficient
than standard numerical minimization of En. Suppose that W is
the total number of weights and biases in the network.

I Backpropagation: The evaluation is O(W ) for large W , as
there are many more weights than units.

I Standard approach: Perturb each weight, and forward
propagate to compute the change in En. This requires
W ×O(W ) computations, so the total complexity is O(W 2).

Vasil Khalidov & Miles Hansard C.M. Bishop’s PRML: Chapter 5; Neural Networks



Jacobian Matrix

The properties of the network can be investigated via the Jacobian

Jki =
∂yk

∂xi
(5.70)

For example, (small) errors can be propagated through the trained
network:

∆yk '
∂yk

∂xi
∆xi (5.72)

This is useful, but costly, as Jki itself depends on x. However, note
that

∂yk

∂xi
=

∑
j

∂yk

∂aj

∂aj

∂xi
=

∑
j

wji
∂yk

∂aj
(5.74)

The required derivatives ∂yk/∂aj can be efficiently computed by
backpropagation.

Vasil Khalidov & Miles Hansard C.M. Bishop’s PRML: Chapter 5; Neural Networks


