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Introduction

The aim is, as before, to find useful decompositions of the target
variable;
t(x) = y(x,w) + €(x) (3.7)

> t(x,) and x,, are the observations, n =1,..., N.

> ¢(x) is the residual error.
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Linear Models

For example, recall the (Generalized) Linear Model:

M
yxow) = f | > wid;(x) (5.1)
j=0

> ¢ = (¢o,...,0n)" is the fixed model basis.
» w = (wp,...,wy)! are the model coefficients.
» For regression: f(-) is the identity.

» For classification: f(-) maps to a posterior probability.
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Feed-Forward Networks

Feed-forward Neural Networks generalize the linear model

M
y(x,w) = f ijgbj(x) (5.1 again)
j=0

» The basis itself, as well as the coefficients w;, will be adapted.

» Roughly: the principle of (5.1) will be used twice; once to
define the basis, and once to obtain the output.
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Activations

Construct M linear combinations of the inputs z1, ...

D
_ (1),
aj; = g (G
=0

> a; are the activations, j =1,..., M.
(1)
7t

(1)

1
70

» w:.’ are the layer one weights, i =1...D.

> w:, are the layer one biases.

Each linear combination a; is transformed by a (nonlinear,

differentiable) activation function:

zj = h(a;)
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Output Activations

The hidden outputs z; = h(a;) are linearly combined in layer two:

M
2
ay = Zw,(gj)zj (5.4)
j=0
» aj are the output activations, k. =1,..., K.
> w,(é) are the layer two weights, j =1...D.
> w,(j)) are the layer two biases.

The output activations ay, are transformed by the output activation
function:

Yk = o(ak) (5.5)

> 1y are the final outputs.

» o(-) is, like h(), a sigmoidal function.
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The Complete Two-Layer Model

The model y,, = o(ay) is, after substituting the definitions of a;
and ag:

yp(x,w) =0o ng)h Zw(l) (5.9)

aj
ak

» h(-) and o(-) are a sigmoidal functions, e.g. the logistic
function.

s(a) = L ) s(a) € [0,1]

1+ exp(—a

» If o(+) is the identity, then a regression model is obtained.

» Evaluation of (5.9) is called forward propagation.
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Network Diagram

The approximation process can be represented by a network:

hidden units

Figure: 5.1

» Nodes are input, hidden and output units. Links are
corresponding weights.

» Information propagates ‘forwards’ from the explanatory
variable x to the estimated response yx(x, w).
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Properties & Generalizations

>

vV v v Y

Typically K < D < M, which means that the network is
redundant if all A(-) are linear.

There may be more than one layer of hidden units.
Individual units need not be fully connected to the next layer.
Individual links may skip over one or more subsequent layers.

Networks with two (cf. 5.9) or more layers are universal
approximators.

Any continuous function can be uniformly approximated to
arbitrary accuracy, given enough hidden units.

This is true for many definitions of h(-), but excluding
polynomials.

There may be symmetries in the weight space, meaning that

different choices of w may define the same mapping from
input to output.
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Maximum Likelihood Parameters

The aim is to minimize the residual error between y(x,,w) and t,,.
Suppose that the target is a scalar-valued function, which is
Normally distributed around the estimate:

p(t|x,w) = N(t ’ y(x,w), 5_1) (5.12)

Then it will be appropriate to consider the sum of squared-errors

1 2
E(w) = 3 Z(y(xn, w) — tn) (5.14)
n=1
The maximum-likelihood estimate of w can be obtained by
(numerical) minimization:

WL = min E(w)

Vasil Khalidov & Miles Hansard C.M. Bishop's PRML: Chapter 5; Neural Networks



Maximum Likelihood Precision

Having obtained the ML parameter estimate wy, the precision, G
can also be estimated. E.g. if the IV observations are IID, then
their joint probability is

p({tl, ... ,tN}‘{xl, ... ,xN},w,,8> = ﬁp(tn]xn,w,ﬂ)
n=1

The negative log-likelihood, in this case, is

N N
—logp = BE(wmL) — > log 3 + > log 27 (5.13)
The derivative d/d3 is E(wmi) — % and so
1 1
- = 2B 5.15
P N (W) (5.15)

And 1/BuL = % 2E(wwi) for K target variables.
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Error Surface

The residual error E(w) can be visualized as a surface in the
weight-space:

Figure: 5.5

» The error will, in practice, be highly nonlinear, with many
minima, maxima and saddle-points.

» There will be inequivalent minima, determined by the
particular data and model, as well as equivalent minima,
corresponding to weight-space symmetries.
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Parameter Optimization

Iterative search for a local minimum of the error:

w1 = w4 Aw() (5.27)

» VE will be zero at a minimum of the error.
» 7 is the time-step.
» Aw(7) is the weight-vector update.

» The definition of the update depends on the choice of
algorithm.
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Local Quadratic Approximation

The truncated Taylor expansion of F(w) around a weight-point w
is

E(w) ~ E(W) 4 (w — W) b + 1(w — W) Hw—w) (5.28)

2
» b= VE|,_, is the gradient at W.
» (H)i; = % is the Hessian VVE at w.
I lw=w

The gradient of E can be approximated by the gradient of the
quadratic model (5.28); if w ~ W then

VE ~ b+ H(w — W) (5.31)

where 3 (H+H")w — HW — H'W) = H(w — W), as H' = H.
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Approximation at a Minimum
Suppose that w* is at a minimum of E, so VE|,_,,. is zero, and

E(w) = E(w*) + %(w _wHTHw—w)  (5.32)

» H= VVE|,_,- is the Hessian.

» The eigenvectors Hu; = Au; are orthonormal.

> (w — w*) can be represented in H-coordinates as ), a;u;.

Hence the second term of (5.32) can be written

;(w w)TH(w w* Z)\%Uz (Zajuj)

B(w) = E(w*) + % > N (5.36)
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Characterization of a Minimum

The eigenvalues \; of H characterize the stationary point w*.

> If all \; > 0, then H is positive definite (v Hv > 0).

.. .. 2
» This is analogous to the scalar condition % > 0.
w*

» Zero gradient and positive principle curvatures mean that
E(w*) is a minimum.

wo

Figure: 5.6

Vasil Khalidov & Miles Hansard C.M. Bishop's PRML: Chapter 5; Neural Networks



Gradient Descent

The simplest approach is to update w by a displacement in the
negative gradient direction.

w1 — w() — nVE(w(T)) (5.41)
» This is a steepest descent algorithm.
» 7 is the learning rate.
» This is a batch method, as evaluation of VE involves the
entire data set.
» Conjugate gradient or quasi-Newton methods may, in practice,
be preferred.
» A range of starting points {w(o)} may be needed, in order to

find a satisfactory minimum.
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Optimization Scheme

An efficient method for the evaluation of VE(w) is needed.

» Each iteration of the descent algorithm has two stages:

» |. Evaluate derivatives of error with respect to weights
involving backpropagation of error though the network).

[
» Il. Use derivatives to compute adjustments of the weights
(e.g. steepest descent).

Backpropagation is a general principle, which can be applied to
many types of network and error function.
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Simple Backpropagation

The error function is, typically, a sum over the data points
E(w) = 22;1 E,(w). For example, consider a linear model

Yp = Zwkixi (5.45)
7

The error function, for an individual input x,,, is

1
E, = 2 ;(ynk - tnk:)Za where  yy,; = yk(xn,w). (5'46)
The gradient with respect to a weight wj; is

OE,
Buy; (Ynj — tnj) Tni (5.47)
> wj; is a particular link (z; to y;).

> 2,,; is the input to the link (i-th component of x,,).

> (Ynj — tnj) is the error output by the link.
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General Backpropagation

Recall that, in general, each unit computes a weighted sum:

aj = Zwﬂz@- with activation z; = h(a;).

(5.48,5.49)
1 OE, 0B, Oaj
For each error-term: = % (5.50)
6wji 8aj 8wji
—~—
E(Sj

En
So, from 5.48: gwﬂ =0,z (5.53)
8En aEn 8ak
In th twork: §;, = — = — h j— 5.55
n the networ I = zk: dax Da; where j—{k} (5.55)

Algorithm: 5j:h’(aj)2wkj(5k as Oay,
k

day, _ day 0z

da; = 0z da (5.56)
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Backpropagation Algorithm

The formula for the update of a given unit depends only on the
‘later’ (i.e. closer to the output) layers:

Figure: 5.7
Hence the backpropagation algorithm is:

» Apply input x, and forward propagate to find the hidden and
output activations.

» Evaluate ¢ directly for the output units.

> Back propagate the d's to obtain a d; for each hidden unit.

» Evaluate the derivatives 35. = 0;%.
Vi
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Computational Efficiency

The back-propagation algorithm is computationally more efficient
than standard numerical minimization of E,,. Suppose that W is
the total number of weights and biases in the network.

» Backpropagation: The evaluation is O(W) for large W, as
there are many more weights than units.
» Standard approach: Perturb each weight, and forward

propagate to compute the change in E,. This requires
W x O(W) computations, so the total complexity is O(W?2).
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Jacobian Matrix

The properties of the network can be investigated via the Jacobian

Oy
Jii = 5.70
For example, (small) errors can be propagated through the trained
network: 9
i

This is useful, but costly, as Ji; itself depends on x. However, note

that
Oye _ N~ Oyk 0a; _ Oy
8l‘i N ZJ: 8CL]' 8952 N Zw]z 80,]' (5.74)

The required derivatives 0y, /Ja; can be efficiently computed by
backpropagation.
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