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Chapter content

» An example — polynomial curve fitting — was considered in
Ch.1

» A linear combination — regression — of a fixed set of nonlinear
functions — basis functions

> Supervised learning: N observations {x,,} with corresponding
target values {¢,} are provided. The goal is to predict ¢ of
a new value .

» Construct a function such that y(x) is a prediction of ¢.

» Probabilistic perspective: model the predictive distribution

p(tlx).
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Figure 1.16, page 29
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The chapter section by section

3.1 Linear basis function models
» Maximum likelihood and least squares
» Geometry of least squares
» Sequential learning
» Regularized least squares
3.2 The bias-variance decomposition
3.3 Bayesian linear regression
» Parameter distribution
» Predictive distribution
» Equivalent kernel
3.4 Bayesian model comparison
3.5 The evidence approximation

3.6 Limitations of fixed basis functions
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Linear Basis Function Models

M-1
y(o,w) = > wipi(x) =w' ¢(x)
j=0
where:
> w= (w07 s ’wM—l)T and ¢ = (qua S 7¢M—1)—r with

¢o(x) =1 and wy = bias parameter.

> In general = € R but it will be convenient to treat the case
zeER

» We observe the set X = {x1,...,x,,...,xN} with
corresponding target variables t = {t,,}.
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Basis function choices

» Polynomial

» Gaussian

» Sigmoidal

1
1—|—e a

o) = (21 with ofa) =

» splines, Fourier, wavelets, etc.
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Examples of basis functions
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Maximum likelihood and least squares

t= ylxz,w) + €

deterministic ~ Gaussian noise

For a i.i.d. data set we have the likelihood function:

p(t| X, w,[) = H/\/t \'w o(xn), B~ )

mean Var

We can use the machinery of MLE to estimate the parameters w
and the precision 3:

wyrr = (®1 ) O TE with Dayuny = [Prn ()]

and:
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Geometry of least squares
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Sequential learning

Apply a technique known as stochastic gradient descent or
sequential gradient descent, i.e.,

replace:
N

Ep(w) = 33" (tn ~ v ¢(e))’
2

n=1

with (7 is a learning rate parameter):

w1 = w4, — w0 B(@n))b(an) (3.23)
VE,
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Regularized least squares

The total error function:

5 Z —w ' ¢( ann))2 + %w—rw

w=MN+o"o) 1ot

Regularization has the advantage of limiting the model complexity
(the appropriate number of basis functions). This is replaced with
the problem of finding a suitable value of the regularization
coefficient A.
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The Bias-Variance Decomposition

» Over-fitting occurs whenever the number of basis functions is
large and with training data sets of limited size.

» Limiting the number of basis functions limits the flexibility of
the model.

» Regularization can control over-fitting but raises the question
of how to determine A.

» The bias-variance tradeoff is a frequentist viewpoint of
model complexity.
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Back to section 1.5.5

> The regression loss-function: L(t,y(x)) = (y(x) — t)?

» The decision problem = minimize the expected loss:
Bl = [ [(ol2) - 0Pp(a. tydade

> Solution: y(x) = / tp(t|)dt = Byft]a]

» this is known as the regression function
» conditional average of ¢ conditioned on «, e.g., figure 1.28,
page 47

» Another expression for the expectation of the loss function:

BL) = / (y(x) — Elt|])*p(x)dz + / (Blt|z] - t)2p(x)de.
(1.90)
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The optimal prediction is obtained by minimization of the
expected squared loss function:

ha) = E[t]z] = / tp(t|)dt (3.36)

The expected squared loss can be decomposed into two terms:

E[L] = /(y(w) — h(x))*p(x)dz + /(h(a:) —t)2p(x, t)dadt.
(3.37)

The theoretical minimum of the first term is zero for an

appropriate choice of the function y(x) (for unlimited data

and unlimited computing power).

The second term arises from noise in the data and it

represents the minimum achievable value of the expected
squared loss.
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An ensemble of data sets

» For any given data set D we obtain a prediction function
y(x, D).

» The performance of a particular algorithm is assessed by
taking the average over all these data sets, namely Ep[L].
This expands into the following terms:

expected loss = (bias)? + variance -+ noise

» There is a tradeoff between bias and variance:
> flexible models have low bias and high variance
> rigid models have high bias and low variance
» The bias-variance decomposition provides interesting insights
in model complexity, it is of limited practical value because
several data sets are needed.
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Example: L=100, N=25, M=25, Gaussian basis

InA=26
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Bayesian Linear Regression (1/5)
Assume additive gaussian noise with known precision .

The likelihood function p(t|w) is the exponential of a quadratic
function of w, its conjugate prior is Gaussian:

p(w) = N (w|mo, So) (3.48)

Its posterior is also Gaussian (2.116):

p(w|t) = N(w|my, Sx) oc p(t|w)p(w) (3.49)

my = SN(Sglmg—l—ﬁCDTt)

where | g1 _ g1 goTo

(3.50/3.51)

» Note how this fits a sequential learning framework

» The max of a Gaussian is at its mean: wyap = my
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Bayesian Linear Regression (2/5)

Assume p(w) is governed by a hyperparameter « following a
Gaussian law of scalar covariance (i.e. mg =0 and Sp = a1 ):

p(wla) = N(w|0,a~t1) (3.52)
my = ﬁSNd)Tt
then S = al+30To (3.53/3.54)
» Note v — 0 implies my — wy = (CDT(D)_ICDTt (3.35)

Log of posterior is sum of log of likelihood and log of prior:

N
Inp(w|t) = —= Z (tn — WT¢(Xn))2 — %WTW + const  (3.55)

n=1

which is equivalent to a quadratic regularizer with coeff. /3
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likelihood prior/posterior data space
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Bayesian Linear Regression (3/5)

In practice, we want to make predictions of ¢ for new values of x:

p(tlt o, B) = / p(tlw, B)p(wit, o, B)dw  (3.57)

» Conditional distribution: p(tjw, 3) = N(t|y(x,w), 37!) (3.8)
» Posterior: p(wlt, o, 3) = N(w|mpy,Sy) (3.49)

The convolution is a Gaussian (2.115):

pltlx,t, a, B) = N (t|myd(x), o3 (x)) (3.58)
where
2 (x) = 1 4 ox)TSyd(x 3.59
oy (x) g8 (x) " Sn®(x) (3.59)
noise in data uncertainty in w
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Bayesian Linear Regression (4/5)

y(x, my) rewrites as ny:l k(x,x,)t, where
k(x,x") = Bo(x) TS yd(x) (3.61-3.62)

Smoother matrix, equivalent kernel, linear smoother

The kernel works as a similarity or closeness measure, giving more
weight to evidence that is close to the point where we want to
make the prediction

» Basis functions «~ kernel duality

> With W(x) = B-1/28Y2(x), k(x,x) = V(x)TW(x')  (3.65)
» The kernel sums to one (over the training set)

> cov(y(x),y(x")) = B~ 1k(x,x) (3.63)
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Bayesian Linear Regression (5/5)

Kernel from Gaussian basis functions

Kernels at x = 0 for kernels corresponding (left) to the polynomial
basis functions and (right) to the sigmoidal basis functions.

0.04 0.04

Mathieu Guillaumin & Radu Horaud Chris Bishop’s PRML Ch. 3: Linear Models of Regression



Bayesian Model Comparison (1/2)

The overfitting that appears in ML can be avoided by
marginalizing over the model parameters.

» Cross-validation is no more useful
» We can use all the data for better training the model

» We can compare models based on training data alone
p(M;i|D) o< p(M;)p(D|M;) (3.66)

p(D|M;): model evidence or marginal likelihood.

Using model selection and assuming the posterior p(w|D, M;) is
sharply peaked at wmap (single parameter case):

Awposterior

3.70
Awprior ( )

p(D) = / p(Dlw)p(w)dw ~ p(Dlwnap)

Mathieu Guillaumin & Radu Horaud Chris Bishop's PRML Ch. 3: Linear Models of Regression



Bayesian Model Comparison (2/2)

Awpesterior
—

p(D)

WNAT 7 \ \

—_—
Awprior Dy

Back to multiple parameters, assuming they share the same Aw
ratio, the complexity penalty is linear in M:

Awposterior )

3.72
A'LUprior ( )

Inp(D) ~ Inp(D|wmap) + M In <

About p(D|M;):

» if M, is too simple, bad fitting of the data

> if M, is too complex/powerful, the probability of generating
the observed data is washed out
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The evidence approximation (1/2)

Fully bayesian treatment would imply marginalizing over
hyperparameters and parameters, but this is intractable:

1) = [ [ [ pttiw. it . e Gityiwdads  (374)

An approximation is found by maximizing the marginal likelihood

function p(a, B|t) o p(t|e, B)p(a, B) to get (o“a,ﬁ) (empirical
Bayes).

M N 1 N
Inp(tjer, B) = > Ina+ > Ing— E(my) — 3 In ISt — > In(27)
(3.77 — 3.86)
Assuming p(av, 8]t) is highly peaked at (&, 3):

p(t]E) ~ p(t]t, &, 3) = / p(thw, Ap(w, &, Bdw  (3.75)
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The evidence approximation (2/2)

Plot of the model evidence In p(t|a, 3) versus M, the model
complexity, for the polynomial regression of the synthetic
sinusoidal example (with fixed «).
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The computation for (o“z,ﬁ) give rise to v = amymy (3.90)

~ has the nice interpretation of being the effective number of
parameters
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