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Chapter content

I An example – polynomial curve fitting – was considered in
Ch. 1

I A linear combination – regression – of a fixed set of nonlinear
functions – basis functions

I Supervised learning: N observations {xn} with corresponding
target values {tn} are provided. The goal is to predict t of
a new value x.

I Construct a function such that y(x) is a prediction of t.

I Probabilistic perspective: model the predictive distribution
p(t|x).
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Figure 1.16, page 29
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The chapter section by section

3.1 Linear basis function models

I Maximum likelihood and least squares

I Geometry of least squares

I Sequential learning

I Regularized least squares

3.2 The bias-variance decomposition

3.3 Bayesian linear regression

I Parameter distribution

I Predictive distribution

I Equivalent kernel

3.4 Bayesian model comparison

3.5 The evidence approximation

3.6 Limitations of fixed basis functions
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Linear Basis Function Models

y(x,w) =
M−1∑
j=0

wjφj(x) = w>φ(x)

where:

I w = (w0, . . . , wM−1)
> and φ = (φ0, . . . , φM−1)

> with
φ0(x) = 1 and w0 = bias parameter.

I In general x ∈ RD but it will be convenient to treat the case
x ∈ R

I We observe the set X = {x1, . . . ,xn, . . . ,xN} with
corresponding target variables t = {tn}.
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Basis function choices

I Polynomial
φj(x) = xj

I Gaussian

φj(x) = exp

(
−(x− µj)

2

2s2

)
I Sigmoidal

φj(x) = σ

(
x− µj

s

)
with σ(a) =

1

1 + e−a

I splines, Fourier, wavelets, etc.
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Examples of basis functions
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Maximum likelihood and least squares

t = y(x,w)︸ ︷︷ ︸
deterministic

+ ε︸︷︷︸
Gaussian noise

For a i.i.d. data set we have the likelihood function:

p(t|X,w, β) =
N∏

n=1

N (tn|w>φ(xn)︸ ︷︷ ︸
mean

, β−1︸︷︷︸
var

)

We can use the machinery of MLE to estimate the parameters w
and the precision β:

wML = (Φ>Φ)−1Φ>t with ΦM×N = [φmn(xn)]

and:

β−1
ML =

1

N

N∑
n=1

(
tn −w>

MLφ(xn)
)2
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Geometry of least squares
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Sequential learning

Apply a technique known as stochastic gradient descent or
sequential gradient descent, i.e.,
replace:

ED(w) =
1

2

N∑
n=1

(
tn −w>φ(xn)

)2

with (η is a learning rate parameter):

w(τ+1) = w(τ) + η (tn −w(τ)>φ(xn))φ(xn)︸ ︷︷ ︸
∇En

(3.23)
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Regularized least squares

The total error function:

1

2

N∑
n=1

(
tn −w>φ(xn)

)2
+

λ

2
w>w

w = (λI + Φ>Φ)−1Φ>t

Regularization has the advantage of limiting the model complexity
(the appropriate number of basis functions). This is replaced with
the problem of finding a suitable value of the regularization
coefficient λ.
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The Bias-Variance Decomposition

I Over-fitting occurs whenever the number of basis functions is
large and with training data sets of limited size.

I Limiting the number of basis functions limits the flexibility of
the model.

I Regularization can control over-fitting but raises the question
of how to determine λ.

I The bias-variance tradeoff is a frequentist viewpoint of
model complexity.
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Back to section 1.5.5

I The regression loss-function: L(t, y(x)) = (y(x)− t)2

I The decision problem = minimize the expected loss:

E[L] =

∫ ∫
(y(x)− t)2p(x, t)dxdt

I Solution: y(x) =

∫
tp(t|x)dt = Et[t|x]

I this is known as the regression function
I conditional average of t conditioned on x, e.g., figure 1.28,

page 47

I Another expression for the expectation of the loss function:

E[L] =

∫
(y(x)− E[t|x])2p(x)dx +

∫
(E[t|x]− t)2p(x)dx.

(1.90)
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I The optimal prediction is obtained by minimization of the
expected squared loss function:

h(x) = E[t|x] =

∫
tp(t|x)dt (3.36)

I The expected squared loss can be decomposed into two terms:

E[L] =

∫
(y(x)− h(x))2p(x)dx +

∫
(h(x)− t)2p(x, t)dxdt.

(3.37)

I The theoretical minimum of the first term is zero for an
appropriate choice of the function y(x) (for unlimited data
and unlimited computing power).

I The second term arises from noise in the data and it
represents the minimum achievable value of the expected
squared loss.
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An ensemble of data sets

I For any given data set D we obtain a prediction function
y(x,D).

I The performance of a particular algorithm is assessed by
taking the average over all these data sets, namely ED[L].
This expands into the following terms:

expected loss = (bias)2 + variance + noise

I There is a tradeoff between bias and variance:
I flexible models have low bias and high variance
I rigid models have high bias and low variance

I The bias-variance decomposition provides interesting insights
in model complexity, it is of limited practical value because
several data sets are needed.
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Example: L=100, N=25, M=25, Gaussian basis
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Bayesian Linear Regression (1/5)

Assume additive gaussian noise with known precision β.

The likelihood function p(t|w) is the exponential of a quadratic
function of w, its conjugate prior is Gaussian:

p(w) = N (w|m0,S0) (3.48)

Its posterior is also Gaussian (2.116):

p(w|t) = N (w|mN ,SN ) ∝ p(t|w)p(w) (3.49)

where

∣∣∣∣ mN = SN (S−1
0 m0 + βΦTt)

S−1
N = S−1

0 + βΦTΦ
(3.50/3.51)

I Note how this fits a sequential learning framework

I The max of a Gaussian is at its mean: wMAP = mN
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Bayesian Linear Regression (2/5)

Assume p(w) is governed by a hyperparameter α following a
Gaussian law of scalar covariance (i.e. m0 = 0 and S0 = α−1I ):

p(w|α) = N (w|0, α−1I) (3.52)

then

∣∣∣∣ mN = βSNΦTt
S−1

N = αI + βΦTΦ
(3.53/3.54)

I Note α → 0 implies mN → wML = (ΦTΦ)
−1

ΦTt (3.35)

Log of posterior is sum of log of likelihood and log of prior:

ln p(w|t) = −β

2

N∑
n=1

(
tn −wTφ(xn)

)2 − α

2
wTw + const (3.55)

which is equivalent to a quadratic regularizer with coeff. α/β
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Bayesian Linear Regression (3/5)

In practice, we want to make predictions of t for new values of x:

p(t|t, α, β) =

∫
p(t|w, β)p(w|t, α, β)dw (3.57)

I Conditional distribution: p(t|w, β) = N (t|y(x,w), β−1) (3.8)

I Posterior: p(w|t, α, β) = N (w|mN ,SN ) (3.49)

The convolution is a Gaussian (2.115):

p(t|x, t, α, β) = N (t|mT
NΦ(x), σ2

N (x)) (3.58)

where
σ2

N (x) = β−1︸︷︷︸
noise in data

+Φ(x)TSNΦ(x)︸ ︷︷ ︸
uncertainty in w

(3.59)

Mathieu Guillaumin & Radu Horaud Chris Bishop’s PRML Ch. 3: Linear Models of Regression



�

�

0 1

−1

0

1

�

�

0 1

−1

0

1

�

�

0 1

−1

0

1

�

�

0 1

−1

0

1

Mathieu Guillaumin & Radu Horaud Chris Bishop’s PRML Ch. 3: Linear Models of Regression



�

�

0 1

−1

0

1

�

�

0 1

−1

0

1

�

�

0 1

−1

0

1

�

�

0 1

−1

0

1

Mathieu Guillaumin & Radu Horaud Chris Bishop’s PRML Ch. 3: Linear Models of Regression



Bayesian Linear Regression (4/5)

y(x,mN ) rewrites as
∑N

n=1 k(x, xn)tn where

k(x, x′) = βΦ(x)TSNΦ(x′) (3.61-3.62)

Smoother matrix, equivalent kernel, linear smoother

The kernel works as a similarity or closeness measure, giving more
weight to evidence that is close to the point where we want to
make the prediction

I Basis functions ! kernel duality

I With Ψ(x) = β−1/2S
1/2
N Φ(x), k(x, x′) = Ψ(x)TΨ(x′) (3.65)

I The kernel sums to one (over the training set)

I cov(y(x), y(x′)) = β−1k(x, x′) (3.63)
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Bayesian Linear Regression (5/5)

Kernel from Gaussian basis functions

Kernels at x = 0 for kernels corresponding (left) to the polynomial
basis functions and (right) to the sigmoidal basis functions.
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Bayesian Model Comparison (1/2)

The overfitting that appears in ML can be avoided by
marginalizing over the model parameters.

I Cross-validation is no more useful

I We can use all the data for better training the model

I We can compare models based on training data alone

p(Mi|D) ∝ p(Mi)p(D|Mi) (3.66)

p(D|Mi): model evidence or marginal likelihood.

Using model selection and assuming the posterior p(w|D,Mi) is
sharply peaked at wMAP (single parameter case):

p(D) =

∫
p(D|w)p(w)dw ' p(D|wMAP)

∆wposterior

∆wprior
(3.70)
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Bayesian Model Comparison (2/2)

∆wposterior

∆wprior

wMAP w

p(D)

DD0

M1

M2

M3

Back to multiple parameters, assuming they share the same ∆w
ratio, the complexity penalty is linear in M :

ln p(D) ' ln p(D|wMAP) + M ln

(
∆wposterior

∆wprior

)
(3.72)

About p(D|Mi):

I if Mi is too simple, bad fitting of the data

I if Mi is too complex/powerful, the probability of generating
the observed data is washed out
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The evidence approximation (1/2)

Fully bayesian treatment would imply marginalizing over
hyperparameters and parameters, but this is intractable:

p(t|t) =

∫∫∫
p(t|w, β)p(w|t, α, β)p(α, β|t)dwdαdβ (3.74)

An approximation is found by maximizing the marginal likelihood
function p(α, β|t) ∝ p(t|α, β)p(α, β) to get (α̂, β̂) (empirical
Bayes).

ln p(t|α, β) =
M

2
lnα +

N

2
lnβ − E(mN )− 1

2
ln |S−1

N | − N

2
ln(2π)

(3.77 → 3.86)

Assuming p(α, β|t) is highly peaked at (α̂, β̂):

p(t|t) ' p(t|t, α̂, β̂) =

∫
p(t|w, β̂)p(w, α̂, β̂)dw (3.75)
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The evidence approximation (2/2)

Plot of the model evidence ln p(t|α, β) versus M , the model
complexity, for the polynomial regression of the synthetic
sinusoidal example (with fixed α).
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The computation for (α̂, β̂) give rise to γ = αmT
NmN (3.90)

γ has the nice interpretation of being the effective number of
parameters
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