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Probability Distributions: General

I Density Estimation: given a finite set x1, . . . ,xN of
observations, find distribution p(x) of x

I Frequentist’s Way: chose specific parameter values by
optimizing criterion (e.g., likelihood)

I Bayesian Way: prior distribution over parameters, compute
posterior distribution with Bayes’ rule

I Conjugate Prior: leads to a posterior distribution of the
same functional form as the prior (makes life a lot easier :)
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Binary Variables: Frequentist’s Way

Given a binary random variable x ∈ {0, 1} (tossing a coin) with

p(x = 1|µ) = µ, p(x = 0|µ) = 1− µ. (2.1)

p(x) can be described by the Bernoulli distribution:

Bern(x|µ) = µx(1− µ)1−x. (2.2)

The maximum likelihood estimate for µ is:

µML =
m

N
with m = (#observations of x = 1) (2.8)

Yet this can lead to overfitting (especially for small N), e.g.,
N = m = 3 yields µML = 1!
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Binary Variables: Bayesian Way (1)

The binomial distribution describes the number m of observations
of x = 1 out of a data set of size N :

Bin(m|N,µ) =
(

N
m

)
µm(1− µ)N−m (2.9)(

N
m

)
≡ N !

(N −m)!m!
(2.10)
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Binary Variables: Bayesian Way (2)

For a Bayesian treatment, we take the beta distribution as
conjugate prior:

Beta(µ|a, b) =
Γ(a + b)
Γ(a)Γ(b)

µa−1(1− µ)b−1) (2.13)

Γ(x) ≡
∫ ∞

0
ux−1e−udu

(The gamma function extends the factorial to real numbers, i.e.,
Γ(n) = (n− 1)!.) Mean and variance are given by

E[µ] =
a

a + b
(2.15)

var[µ] =
ab

(a + b)2(a + b + 1)
(2.16)
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Binary Variables: Beta Distribution

Some plots of the beta distribution:
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Binary Variables: Bayesian Way (3)

Multiplying the binomial likelihood function (2.9) and the beta
prior (2.13), the posterior is a beta distribution and has the form:

p(µ|m, l, a, b) ∝ Bin(m, l|µ)Beta(µ|a, b)

∝ µm+a−1(1− µ)l+b−1 (2.17)

with l = N −m.

I Simple interpretation of hyperparameters a and b as effective
number of observations of x = 1 and x = 0 (a priori)

I As we observe new data, a and b are updated

I As N →∞, the variance (uncertainty) decreases and the
mean converges to the ML estimate
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Multinomial Variables: Frequentist’s Way
A random variable with K mutually exclusive states can be
represented as a K dimensional vector x with xk = 1 and
xi6=k = 0. The Bernoulli distribution can be generalized to

p(x|µ) =
K∏

k=1

µxk
k (2.26)

with
∑

k µk = 1. For a data set D with N independent
observations x1, . . . ,xN , the corresponding likelihood function
takes the form

p(D|µ) =
N∏

n=1

K∏
k=1

µxnk
k =

K∏
k=1

µ
(
P

n xnk)
k =

K∏
k=1

µmk
k (2.29)

The maximum likelihood estimate for µ is:

µML
k =

mk

N
(2.33)
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Multinomial Variables: Bayesian Way (1)

The multinomial distribution is a joint distribution of the
parameters m1, . . . ,mK , conditioned on µ and N :

Mult(m1,m2, . . . ,mK |µ, N) =
(

N
m1m2 . . .mK

) K∏
k=1

µmk
k (2.34)(

N
m1m2 . . .mK

)
≡ N !

m1!m2! . . .mK !
(2.35)

where the variables mk are subject to the constraint:

K∑
k=1

mk = N (2.36)
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Multinomial Variables: Bayesian Way (2)

For a Bayesian treatment, the Dirichlet distribution can be taken
as conjugate prior:

Dir(µ|α) =
Γ(α0)

Γ(α1) . . .Γ(αK)

K∏
k=1

µαk−1
k (2.38)

with α0 =
∑K

k=1 αk.
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Multinomial Variables: Dirichlet Distribution

Some plots of a Dirichlet distribution over 3 variables:

Dirichlet distribution with values
(clockwise from top left): α =
(6, 2, 2), (3, 7, 5), (6, 2, 6), (2, 3, 4).

Dirichlet distribution with val-
ues (from left to right): α =
(0.1, 0.1, 0.1), (1, 1, 1).
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Multinomial Variables: Bayesian Way (3)

Multiplying the prior (2.38) by the likelihood function (2.34) yields
the posterior:

p(µ|D,α) ∝ p(D|µ)p(µ|α) ∝
K∏

k=1

µαk+mk−1
k (2.40)

p(µ|D,α) = Dir(µ|α + m) (2.41)

with m = (m1, . . . ,mK)>. Similarly to the binomial distribution
with its beta prior, αk can be interpreted as effective number of
observations of xk = 1 (a priori).
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The gaussian distribution

The gaussian law of a D dimensional vector x is:

N(x|µ,Σ) =
1

(2π)
D
2 |Σ|

1
2

exp{−1
2
(x− µ)>Σ−1(x− µ)} (2.43)

Motivations:

I maximum of the entropy,

I central limit theorem.
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Histogram of the mean of N uniform random variables
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The gaussian distribution : Properties

I The law is a function of the Mahalanobis distance from x to
µ:

∆2 = (x− µ)>Σ−1(x− µ) (2.44)

I The expectation of x under the Gaussian distribution is:

IE(x) = µ, (2.59)

I The covariance matrix of x is:

cov(x) = Σ. (2.64)
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The gaussian distribution : Properties

The law is constant on elliptical surfaces

x1

x2

λ
1/2
1

λ
1/2
2

y1

y2

u1

u2

µ

where

I λi are the eigenvalues of Σ,

I ui are the associated eigenvectors.
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The gaussian distribution : Conditional and marginal laws
Given a Gausian distribution N(x|µ,Σ) with:

x = (xa,xb)>, µ = (µa,µb)
> (2.94)

Σ =
(

Σaa Σab

Σba Σbb

)
(2.95)

I The conditional distribution p(xa|xb) is a gaussian law with
parameters:

µa|b = µa + ΣabΣ−1
bb (xb − µb), (2.96)

Σa|b = Σaa −ΣabΣ−1
bb Σba. (2.82)

I The marginal distribution p(xa) is a gaussian law with
parameters (µa,Σaa).
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The gaussian distribution : Bayes’ theorem

A linear gaussian model is a couple of vectors (x,y) described by
the relations:

p(x) = N(x,µ,Λ) (2.113)

p(y|x) = N(y,Ax + b, L−1) (2.114)

(y = Ax + b + ε) where x is gaussian and ε is a centered gaussian
noise).
Then

p(y) = N(y,Aµ + b,L−1 + AΛ−1A>) (2.115)

p(x|y) = N(x|Σ(A>L(y − b) + Λµ),Σ) (2.116)

where

Σ = (Λ + A>LA)−1 (2.117)
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The gaussian distribution : Maximum likehood

Assume we have X a set of N iid observations following a
Gaussian law. The parameters of the law, estimated by ML are:

µML =
1
N

N∑
n=1

xn, (2.121)

ΣML =
1
N

N∑
n=1

(xn − µML)(xn − µML)
>. (2.122)

The empirical mean is unbiased but it is not the case of the
empirical variance. The bias can be correct multiplying ΣML by

the factor
N

N − 1
.
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The gaussian distribution : Maximum likehood

The mean estimated form N data points is a revision of the
estimator obtained from the (N − 1) first data points:

µ
(N)
ML = µ

(N−1)
ML +

1
N

(xN − µ
(N−1)
ML ). (2.126)

It is a particular case of the algorithm of Robbins-Monro, which
iteratively search the root of a regression function.
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The gaussian distribution : bayesian inference

I The conjugate prior for µ is gaussian,

I The conjugate prior for λ = 1
σ2 is a Gamma law,

I The conjugate prior of the couple (µ, λ) is the normal gamma
distribution N(µ|µ0, λ

−1
0 )Gam(λ|a, b) where λ0 is a linear

function of λ.

I The posterior distribution would exhibit a coupling between
the precision of µ and λ.

I The multidimensional conjugate prior is the Gaussian Wishart
law.
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The Gaussian distribution : limitations

I A lot of parameters to estimate D(1 + (D + 1)/2) :
simplification (diagonal variance matrix),

I Maximum likehood estimators are not robust to outliers:
t-Student distribution,

I Not able to describe periodic data: von Mises distribution,

I Unimodal distribution Mixture of Gaussian.
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After the gaussian distribution : t-Student distribution
I A student distribution is an infinite sum of gaussian having

the same mean but different precisions (described by a
Gamma law)

p(x|µ, a, b) =
∫ ∞

0
N(x|µ, τ−1)Gam(τ |a, b)dτ (2.158)

I It is robust to outliers
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Histogram of 30 “gaussian” data points (+3 outliers) and ML
estimator of the Gaussian (green) and the Student (red) laws
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After the gaussian distribution : von Mises distribution

I When the data are periodic, it is necessary to work with polar
coordinates.

I The von Mises law is obtained by conditionning the
bidimensional gaussian law to the unit circle:

x1

x2

p(x)

r = 1

I the distribution is:

p(θ|θ0,m) =
1

2πI0(m)
exp(m cos(θ − θ0) (2.179)

where
I m is the concentration (precision) parameter,
I θ0 is the mean.

Cécile Amblard, Alex Kläser, Jakob Verbeek Bishop Chapter 2: Probability Distributions



Mixtures (of Gaussians) (1/3)

I Data with distinct regimes better modeled with mixtures
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I General form: convex combination of component densities

p(x) =
K∑

k=1

πkpk(x), (2.188)

πk ≥ 0,

K∑
k=1

πk = 1,

∫
pk(x) dx = 1
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Mixtures (of Gaussians) (2/3)

I Gaussian popular density, and so are mixtures thereof

I Example of mixture of Gaussians on IR x

p(x)

I Example of mixture of Gaussians on IR2
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Mixtures (of Gaussians) (3/3)

I Interpretation of mixture density: p(x) =
∑K

k=1 p(k)p(x|k)
I mixing weight πk is the prior probability p(k) on the regimes
I pk(x) is the conditional distribution p(x|k) on x given regime
I p(x) is the marginal on x
I p(k|x) ∝ p(k)p(x|k) is the posterior on the regime given x

I The log-likelihood contains a log-sum

log p({xn}N
n=1) =

N∑
n=1

log
K∑

k=1

πkpk(xn) (2.193)

I introduces local maxima and prevents closed-form solutions
I iterative methods: gradient-ascent or bound-maximization
I the posterior p(k|x) appears in gradient and in (EM) bounds
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The Exponential Family (1/3)
I Large family of useful distributions with common properties

I Bernoulli, beta, binomial, chi-square, Dirichlet, gamma,
Gaussian, geometric, multinomial, Poisson, Weibull, . . .

I Not in the family: Cauchy, Laplace, mixture of Gaussians, . . .
I Variable can be discrete or continuous (or vectors thereof)

I General form: log-linear interaction

p(x|η) = h(x)g(η) exp{η>u(x)} (2.194)

I Normalization determines form of g:

g(η)−1 =
∫

h(x) exp{η>u(x)} dx (2.195)

I Differentiation with respect to η, using Leibniz’s rule, reveals

−∇ log g(η) = IEp(x|η)

[
u(x)

]
(2.226)
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The Exponential Family (2/3): Sufficient Statistics

I Maximum likelihood estimation for i.i.d. data X = {xn}N
n=1

p(X) =

(
N∏

n=1

h(xn)

)
g(η)N exp

{
η>

N∑
n=1

u(xn)

}
(2.227)

I Setting gradient w.r.t. η to zero yields

−∇ log g(ηML) =
1
N

N∑
n=1

u(xn) (2.228)

I
∑N

n=1 u(xn) is all we need from the data: sufficient statistics

I Combining with result from previous slide, ML estimate yields

IEp(x|ηML)

[
u(x)

]
=

1
N

N∑
n=1

u(xn)
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The Exponential Family (3/3): Conjugate Priors

I Given a probability distribution p(x|η), prior p(η) is conjugate
if the posterior p(η|x) has the same form as the prior.

I All exponential family members have conjugate priors:

p(η|χ, ν) = f(χ, ν)g(η)ν exp
{

νη>χ
}

(2.229)

I Combining the prior with a exponential family likelihood

p(X = {xn}N
n=1) =

(
N∏

n=1

h(xn)

)
g(η)N exp

{
η>

N∑
n=1

u(xn)

}

we obtain (2.230)

p(η|X, χ, ν) ∝ g(η)N+ν exp

{
η>

(
νχ +

N∑
n=1

u(xn)

)}
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Nonparametric methods

I So far we have seen parametric densities in this chapter
I Limitation: we are tied down to a specific functional form
I Alternatively we can use (flexible) nonparametric methods

I Basic idea: consider small region R, with P =
∫
R p(x) dx

I For N →∞ data points we find about K ≈ NP in R
I For small R with volume V : P ≈ p(x)V for x ∈ R
I Thus, combining we find: p(x) ≈ K/(NV )

I Simplest example: histograms
I Choose bins
I Estimate density in i-th bin

pi =
ni

N∆i
(2.241)

I Tough in many dimensions:
smart chopping required
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Kernel density estimators: fix V , find K

I Let R ∈ IRD be a unit hypercube around x, with indicator

k(x− y) =
{

1 : |xi − yi| ≤ 1/2 (i = 1, . . . , D)
0 : otherwise

(2.247)

I # points in X = {x1, . . . ,xN} in hypercube of side h is:

K =
N∑

n=1

k

(
x− xn

h

)
(2.248)

I Plug this into approximation p(x) ≈ K/(NV ), with V = hD:

p(x) =
1
N

N∑
n=1

1
hD

k

(
x− xn

h

)
(2.249)

I Note: this is a mixture density!
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Kernel density estimators

I Smooth kernel density estimates obtained with Gaussian

p(x) =
1
N

N∑
n=1

1
(2πh2)1/2

exp
{
−‖x− xn‖2

2h2

}
(2.250)

I Example with Gaussian kernel for different values of the
smoothing parameter h
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Nearest-neighbor methods: fix K, find V

I Single smoothing parameter for kernel approach is limiting
I too large: structure is lost in high-density areas
I too small: noisy estimates in low-density areas
I we want density-dependent smoothing

I Nearest Neighbor method also based on local approximation:

p(x) ≈ K/(NV ) (2.246)

I For new x, find the volume of
the smallest circle centered on x
enclosing K points
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Nearest-neighbor methods: classification with Bayes rule
I Density estimates from K-neighborhood with volume V :

I Marginal density estimate p(x) = K/(NV )
I Class prior esimates: p(Ck) = Nk/N
I Class-conditional estimate p(x|Ck) = Kk/(NkV )

I Posterior class probability from Bayes rule:

p(Ck|x) =
p(Ck)p(x|Ck)

p(x)
=

Kk

K
(2.256)

I Classification based on class-counts in K-neighborhood
I In limit N →∞ classification error at most 2× optimal

[Cover & Hart, 1967]

I Example for binary classification, (a) K = 3, (b) K = 1
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x2

(a)
x1

x2

(b)
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