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Probability Distributions: General

» Density Estimation: given a finite set x1,...,x5 of
observations, find distribution p(x) of x
» Frequentist’s Way: chose specific parameter values by
optimizing criterion (e.g., likelihood)
» Bayesian Way: prior distribution over parameters, compute
posterior distribution with Bayes' rule

» Conjugate Prior: leads to a posterior distribution of the
same functional form as the prior (makes life a lot easier :)
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Binary Variables: Frequentist's Way

Given a binary random variable z € {0,1} (tossing a coin) with
plz=1p)=p, plz=0lp)=1-p (2.1)
p(zx) can be described by the Bernoulli distribution:
Bern(elu) = p(1 — ). (22)
The maximum likelihood estimate for y is:

pe = % with m = (#observations of x = 1) (2.8)

Yet this can lead to overfitting (especially for small N), e.g.,
N =m = 3 yields p™M" = 1!
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Binary Variables: Bayesian Way (1)

The binomial distribution describes the number m of observations
of x = 1 out of a data set of size V:

Bin(miN, ) = <Z> p (L= )N (2.9)
@) - (N_NWL)W (2.10)
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Binary Variables: Bayesian Way (2)

For a Bayesian treatment, we take the beta distribution as
conjugate prior:

Ta+b) on
D@)r(®)"

oo
F(m)z/ u® e tdu
0

Beta(u|a, b) = (1—p)bY (2.13)

(The gamma function extends the factorial to real numbers, i.e.,
I'(n) = (n —1)!.) Mean and variance are given by
Elu] = (2.15)

ab
a+b)2a+b+1)

var[p] = ( (2.16)
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Binary Variables: Beta Distribution

Some plots of the beta distribution:
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Binary Variables: Bayesian Way (3)

Multiplying the binomial likelihood function (2.9) and the beta
prior (2.13), the posterior is a beta distribution and has the form:

p(ulm,1,a,b) oc Bin(m, l|u)Beta(u|a, b)

m+a—1(1 o N)l+b_1 (2.17)

o

with =N —m.
» Simple interpretation of hyperparameters a and b as effective
number of observations of z = 1 and x = 0 (a priori)
» As we observe new data, a and b are updated

» As N — oo, the variance (uncertainty) decreases and the
mean converges to the ML estimate
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Multinomial Variables: Frequentist's Way

A random variable with K mutually exclusive states can be
represented as a K dimensional vector x with x;, =1 and
T2 = 0. The Bernoulli distribution can be generalized to

p(x|p) = H i (2.26)

with >, = 1. For a data set D with N independent
observations x1, ..., Xy, the corresponding likelihood function
takes the form

K
p(D|p) = HMHIMM Huzx"’“ kl:[lukm’“ (2.29)

The maximum likelihood estimate for p is:

ML _ Mk
— 2.
Ky N ( 33)
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Multinomial Variables: Bayesian Way (1)

The multinomial distribution is a joint distribution of the
parameters my, ..., mg, conditioned on p and N:

N K
Mult(my, ma,...,mg|p, N) = <m1m2 - mK) et (2.34)
k=1

< N ) S (2.35)

mims...mg /)  myilmal...mg!

where the variables my are subject to the constraint:

K
> mp=N (2.36)
k=1
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Multinomial Variables: Bayesian Way (2)

For a Bayesian treatment, the Dirichlet distribution can be taken
as conjugate prior:

Dirule) = =L@t (2ap
I‘(al) e F(QK) el k -

with ag = Zszl Q.
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Multinomial Variables: Dirichlet Distribution

Some plots of a Dirichlet distribution over 3 variables:

Dirichlet distribution with val-
ues (from left to right): o =

Dirichlet distribution with values (0.1,0.1,0.1), (1, 1,1),

(clockwise from top left): a =
(6,2,2),(3,7,5),(6,2,6),(2,3,4).
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Multinomial Variables: Bayesian Way (3)

Multiplying the prior (2.38) by the likelihood function (2.34) yields
the posterior:

K

p(pID, @) o p(Dlp)p(ple) o< T upr ™" (2.40)
k=1

p(p|D, @) = Dir(p|a + m) (2.41)

with m = (my, ... ,mK)T. Similarly to the binomial distribution
with its beta prior, oy, can be interpreted as effective number of
observations of z; = 1 (a priori).
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The gaussian distribution

The gaussian law of a D dimensional vector x is:
1 1 Ts—1
Nx|p,3) = ——F5 —rexp{—o(x —p) 7 (x — n)} (243)
(2m)2 | %2

Motivations:
» maximum of the entropy,

» central limit theorem.

Histogram of the mean of N uniform random variables
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The gaussian distribution : Properties

» The law is a function of the Mahalanobis distance from x to
J7%

A% =(x—p) =7 (x - p) (2.44)
> The expectation of x under the Gaussian distribution is:
E(x) = u, (2.59)
» The covariance matrix of x is:

cov(x) = X. (2.64)
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The gaussian distribution : Properties

The law is constant on elliptical surfaces

z2
uz
\/ul

Y2
n

A2
A2

z
where
> )\; are the eigenvalues of X,

» u; are the associated eigenvectors.
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The gaussian distribution : Conditional and marginal laws
Given a Gausian distribution N (x|u, ) with:

X = (Xa,xp) ' 1= (Has ) (2.94)
>IN S
e 2.95
( Yipg b ) (2.95)
» The conditional distribution p(x,|xp) is a gaussian law with
parameters:
oy = Mo + San Sy, (x5 — ), (2.96)
2a|b = Yaa — Eabzb_blzbm (2.82)

» The marginal distribution p(x,) is a gaussian law with
parameters (., Xaa)-
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The gaussian distribution : Bayes' theorem

A linear gaussian model is a couple of vectors (x,y) described by
the relations:

p(x) = N(x, p, A) (2.113)
p(y[x) = N(y,Ax + b, L) (2.114)
(y = Ax+ b+ €) where x is gaussian and € is a centered gaussian
noise).
Then
p(y) =N(y,Ap+b L'+ AATTAT) (2.115)
p(xly) = N(x|Z(ATL(y — b) + Ap), %) (2.116)
where
Y=(A+ATLA)! (2.117)
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The gaussian distribution : Maximum likehood

Assume we have X a set of IV iid observations following a
Gaussian law. The parameters of the law, estimated by ML are:

L
NZXH, (2.121)
n=1
N
XvL =+ Z — ) (% — i) - (2.122)

The empirical mean is unbiased but it is not the case of the
empirical variance. The bias can be correct multiplying 3y by

the fact
e acorN
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The gaussian distribution : Maximum likehood

The mean estimated form N data points is a revision of the
estimator obtained from the (N — 1) first data points:

N N-1 1 N-1
H'|(\/||_) = /'l’l(\/IL ) + 7(XN - ll'|(\/||_ ))'

~ (2.126)

It is a particular case of the algorithm of Robbins-Monro, which
iteratively search the root of a regression function.
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The gaussian distribution : bayesian inference

» The conjugate prior for u is gaussian,

» The conjugate prior for A = U% is a Gamma law,

» The conjugate prior of the couple (u, \) is the normal gamma
distribution N (1|0, \g ' )Gam(\|a, b) where g is a linear
function of A.

» The posterior distribution would exhibit a coupling between
the precision of 1 and A.

» The multidimensional conjugate prior is the Gaussian Wishart
law.
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The Gaussian distribution : limitations

» A lot of parameters to estimate D(1+ (D +1)/2) :
simplification (diagonal variance matrix),

» Maximum likehood estimators are not robust to outliers:
t-Student distribution,

» Not able to describe periodic data: von Mises distribution,

» Unimodal distribution Mixture of Gaussian.
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After the gaussian distribution : t-Student distribution

» A student distribution is an infinite sum of gaussian having
the same mean but different precisions (described by a
Gamma law)

P, a,b) = / N(alu, 7~ ") Gam(r|a,b)dr  (2.158)
0

» It is robust to outliers
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Histogram of 30 ‘gaussian” data points (+3 outliers) and ML
estimator of the Gaussian (green) and the Student (red) laws
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After the gaussian distribution : von Mises distribution

» When the data are periodic, it is necessary to work with polar
coordinates.

» The von Mises law is obtained by conditionning the
bidimensional gaussian law to the unit circle:

» the distribution is:

1

p(0|60, m) = m

exp(m cos(f — 6p) (2.179)
where

» m is the concentration (precision) parameter,
» O is the mean.
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Mixtures (of Gaussians) (1/3)

» Data with distinct regimes better modeled with mixtures

100 100
80 80 @
60 60

" 2

1 2 3 4 5 6 1 2 3 4 5 6

» General form: convex combination of component densities

K
p(x) =D mpr(x),  (2.188)
k=1
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Mixtures (of Gaussians) (2/3)

» Gaussian popular density, and so are mixtures thereof

p(z)

» Example of mixture of Gaussians on IR g

» Example of mixture of Gaussians on IR?

1 1

0.5 0.5
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Mixtures (of Gaussians) (3/3)

> Interpretation of mixture density: p(x) = Zszl p(k)p(x|k)

> mixing weight 7 is the prior probability p(k) on the regimes
pr(x) is the conditional distribution p(x|k) on x given regime
p(x) is the marginal on x
p(k|x) o< p(k)p(x|k) is the posterior on the regime given x

vV vy

» The log-likelihood contains a log-sum

N K
log p({xn}n1) = Y log »  mpi(xn) (2.193)
k=1

n=1

» introduces local maxima and prevents closed-form solutions
> iterative methods: gradient-ascent or bound-maximization
» the posterior p(k|x) appears in gradient and in (EM) bounds
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The Exponential Family (1/3)

» Large family of useful distributions with common properties
» Bernoulli, beta, binomial, chi-square, Dirichlet, gamma,

Gaussian, geometric, multinomial, Poisson, Weibull, . ..
» Not in the family: Cauchy, Laplace, mixture of Gaussians, ...
» Variable can be discrete or continuous (or vectors thereof)
» General form: log-linear interaction

p(x|m) = h(x)g(n) exp{n u(x)} (2.194)

» Normalization determines form of g:

s = [heepinTue dx (2195)

» Differentiation with respect to 7, using Leibniz's rule, reveals

—Vliogg(n) = E,xm) [u(x)] (2.226)
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The Exponential Family (2/3): Sufficient Statistics

» Maximum likelihood estimation for i.i.d. data X = {x,})_,

N
= (H h(xn)> g(n exp{ TZ u(x, } (2.227)
n=1

» Setting gradient w.r.t. 17 to zero yields

1

—Vlogg(narr) - N Z (2.228)

> 25:1 u(x,) is all we need from the data: sufficient statistics

» Combining with result from previous slide, ML estimate yields

By, [0(X)] = 5 D ulxn)
n=1
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The Exponential Family (3/3): Conjugate Priors

» Given a probability distribution p(x|n), prior p(n) is conjugate
if the posterior p(n|x) has the same form as the prior.

» All exponential family members have conjugate priors:

plx.v) = FOev)gm)exp {vn"x}  (2.229)

» Combining the prior with a exponential family likelihood

p(X = {x,}0)) = (Hhxn) exp{ TZ xn}

we obtain (2.230)

N
p(nl X, x,v) o< g(m)N* exp {nT <Vx +> u(xn)> }
n=1
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Nonparametric methods

» So far we have seen parametric densities in this chapter
» Limitation: we are tied down to a specific functional form
» Alternatively we can use (flexible) nonparametric methods
> Basic idea: consider small region R, with P = [, p(x) dx

» For N — oo data points we find about K = NP in R
» For small R with volume V: P~ p(x)V forx € R
» Thus, combining we find: p(x) ~ K/(NV)

» Simplest example: histograms

» Choose bins o ﬂ

3

» Estimate density in i-th bin zo 05 1
A =008
N —

p=ya  (224) oo#-ﬁ—d% 1

5 A =0.25
» Tough in many dimensions: 0_66—&/

. . 0 0.5 1
smart chopping required
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Kernel density estimators: fix V', find K

> Let R € IR be a unit hypercube around x, with indicator

1 |e—wyl <1/2 (i=1,...,D)

k(x —y) = { 0 otherwise (2.247)

» # points in X = {x1,...,xn} in hypercube of side h is:

K= nf:lk (X _hX”> (2.248)

» Plug this into approximation p(x) ~ K/(NV), with V = hP:

N
p(x) = %Zh%k <X_hX”> (2.249)

» Note: this is a mixture density!
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Kernel density estimators

» Smooth kernel density estimates obtained with Gaussian

1o 1 % — %2

» Example with Gaussian kernel for different values of the
smoothing parameter h

S =000 MN/\
Lmnhaa
0 05 1
h =0.07
0 \,__/_\
0 0.5 1
5
h =02
0
0 05 1
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Nearest-neighbor methods: fix K, find V

» Single smoothing parameter for kernel approach is limiting

> too large: structure is lost in high-density areas
» too small: noisy estimates in low-density areas
» we want density-dependent smoothing

» Nearest Neighbor method also based on local approximation:

p(x) =~ K/(NV) (2.246)
5 K=1
. 0
» For new x, find the volume of 5 — S
the smallest circle centered on x
- - 0
enclosing K points S 95 !
0
0 05 1
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Nearest-neighbor methods: classification with Bayes rule

» Density estimates from K-neighborhood with volume V:
» Marginal density estimate p(x) = K/(NV)
» Class prior esimates: p(Ci) = Ni/N
» Class-conditional estimate p(x|Cx) = K /(N,V)

» Posterior class probability from Bayes rule:

Cr)p(x|Ch) _ Kk

p(Culx) =7 e . (2.256)

» Classification based on class-counts in K-neighborhood
» In limit N — oo classification error at most 2x optimal
[Cover & Hart, 1967]

» Example for binary classification, (a) K =3, (b) K =1
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