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Chapter outline

I (Hidden) Markov models

I Linear Dynamical Systems
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The chapter section by section

13.1

I Markov models

13.2

I Hidden Markov Models

I Parameter estimation

13.3

I Linear Dynamical Systems

I Inference in LDS

I Learning in LDS

I Particle filters
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Sequential data
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Models for sequential data

Can model as independent:

x1 x2 x3 x4

Moray Allan & Tingting Jiang Chris Bishop’s PRML Chapter 13: Sequential data



Models for sequential data

Better to link observations, e.g. first-order Markov model
conditions on previous observation:

x1 x2 x3 x4
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Models for sequential data

x1 x2 x3 x4

Second-order Markov model conditions on the two previous
observations:

x1 x2 x3 x4
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Models for sequential data

Hidden Markov model adds unobserved state variables:

zn−1 zn zn+1

xn−1 xn xn+1

z1 z2

x1 x2
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HMM latent state example

k = 1

k = 2

k = 3

n− 2 n− 1 n n + 1

A11 A11 A11

A33 A33 A33
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HMM latent state example

A12

A23

A31

A21

A32

A13

A11

A22

A33

k = 1

k = 2

k = 3
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Outputs need not be discrete states
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Transitions may be constrained

k = 1

k = 2

k = 3

n− 2 n− 1 n n + 1

A11 A11 A11

A33 A33 A33

k = 1 k = 2 k = 3

A11 A22 A33

A12 A23

A13
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Finding the most probable sequence of latent states

I Could directly iterate over all possible paths, but this is
computationally expensive.

Can use dynamic programming (Viterbi algorithm, 13.2.5):

I First work forwards through lattice, summing products of
transition and emission probabilities along paths.

I For each latent state, we only need to keep track of the
highest probability path that reaches the state.

I With K latent states, at each time step we consider K2

paths, but only retain K corresponding to the best path for
each state at the next time step.

I When we reach the end of the sequence, we can choose the
most probable latent state, and trace back through the
sequence to retrieve the whole sequence of states.
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Learning the model parameters (13.2.1–13.2.3)

I Variational methods for a fully Bayesian approach (MacKay,
1997).

I Use Baum-Welch algorithm (Baum, 1972) /
forwards-backwards algorithm (Rabiner, 1989).

I Use more general sum-product algorithm (8.4.4):

χ ψn

g1 gn−1 gn

z1 zn−1 zn

x1 xn−1 xn
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Learning the model parameters (13.2.1–13.2.3)

χ ψn

g1 gn−1 gn

z1 zn−1 zn

x1 xn−1 xn

As always condition on x1, ...xN for this inference problem, we can
absorb the emission probabilities into the transition probability
factors:

h fn

z1 zn−1 zn
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Learning the model parameters (13.2.1–13.2.3)

h fn

z1 zn−1 zn

I First pass messages along the chain to the root xN :

I Then propagate messages back from the root node to the leaf
node:

I By sum-product algorithm, marginal at node zn is the
product of the incoming messages.
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Learning the model parameters (13.2.1–13.2.3)

zn−1 zn zn+1

xn−1 xn xn+1

z1 z2

x1 x2

In M-step want to maximise log probability

where
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Learning the model parameters (13.2.1–13.2.3)

So in M-step we make these assignments:

where
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Scaling (13.2.4)

I Probabilities along state paths rapidly become very small.

I Simply taking logarithms isn’t enough, as we need to compare
between sums of small probabilities.

I Store the probabilities normalised over the states for a given
timestep, keep track of scaling factors.
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