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Introduction

» Aim of this chapter: dimensionality reduction

» Can be interesting for lossy data compression, feature
extraction and data visualization.

» Example: synthetic data set
» Choice of one of the off-line digit images

» Creation of multiple copies with a random displacement and
rotation

» Individuals= images (28 x 28 = 784)
» Variables= pixels grey levels

» Only two latent variables: the translation and the rotation
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Maximum variance formulation

» Consider a data set of observations {x,,} wheren =1,..., N
(z,, with dimensionality D).

» Idea of PCA: Project this data onto a space of lower
dimensionality M < D, called the principal subspace, while
maximizing the variance of the projected data
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Notations
We will denote by:

» D the dimensionality

v

M the fixed dimension of the principal subspace

{w;}, i=1,..., M the basis vectors ((D x 1) vectors) of the
principal subspace

v

v

The sample mean ((D x 1) vector) by:

1 N
= len (1.90)
n=

v

The sample variance/covariance matrix ((D x D) matrix) by:

§= 2 3 T )7 1
= NZ(%—%)(%—%) (1)

n=1
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|ldea of PCA with one-dimensional principal subspace

» Let us consider a unit D-dimensional normalized vector uy

(ufu; = 1)
» Each point x,, is then projected onto a scalar is ufacn
» The mean of the projected data is:
ui T (2)

» The variance of the projected data is:

1 Y 2

T T~ T
NZulxn—ulm = uj Suz (3)
n=1

Idea of PCA: Maximize the projected variance ulTSul with respect
to w1 under the normalization constraint ulTul =1
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|ldea of PCA with one-dimensional principal subspace

» Trick: introduce the Lagrange multiplier A1
Unconstrained maximization of ulTSul + A(1— u{ul)
» Solution must verify:

v

Su; = Mug (4)

> w3 must be an eigenvector of S having eigenvalue ;!

» The variance of the projected data is Ay (ulTSul = A1), SO A1
has to be the largest eigenvalue!

» Additional principal components are obtained maximizing the
projected variance amongst all possible directions orthogonal
to those already considered!

» PCA =calculating the eigenvectors of the data covariance
matrix corresponding to the largest eigenvalues!

» Note: Zfil A; is generally called the total inerty or the total
variance. The percentage of inerty explained by one

. A
component wu; is then i
P ' Z?:l Ai
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Minimum-error formulation

» Based on projection error minimization
» Consider a D-dimensional basis vectors {u;} where
i=1,...,D satisfying uzTuj = 0;j
» Each data point x,, can be represented by:
D
Ty = Z QniU; where ap; = azgul (5)
i=1

» x, can be approximated by

Fp = Z Znili + Z biu; (6)

i=M+1

> ldea of PCA: Minimize the distortion J introduced by the
reduction in dimensionality

1 N
= =3 =3 |12 7)
n=1
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Minimum-error formulation (2)

> Setting the derivative with respect to z,; and to b;, one
obtains that:

Znj = xguj' and b; = a_:Tuj (8)

» J can then be expressed as:
1 2
J = N Z ul Su; (9)
i=M+1

» The minimum is obtained when {u;}, i =M +1,...,D are

the eigenvectors of S associated to the smallest eigenvalues.
» The distortion is then given by J = Zi’;MH Ai
> x,, is approximated by:

M D M
Ty = Z(xful)uz + Z (" wi)u; = 7 + Z(ﬂfg — 2 u;)u;
i=1 i=M+1 =1

Caroline Bernard-Michel & Hervé Jegou Chris Bishop’s PRML Ch. XII: Continuous Latent Variables



Chapter content

» Principal Component Analysis

» Maximum variance formulation
Minimum-error formulation
Applications of PCA
PCA for high-dimensional data
» Probabilistic PCA

» Problem setup
Maximum likelihood PCA
EM algorithm for PCA
Bayesian PCA
Factor analysis

» Kernel PCA

» Nonlinear Latent Variable Models

> Independent component analysis
» Autoassociative neural networks
» Modelling nonlinear manifolds

vV vy

v vy VvYy

Caroline Bernard-Michel & Hervé Jegou Chris Bishop’s PRML Ch. XIlI: Continuous Latent Variables



Application of PCA: data compression

» Individuals = images
» Variables = grey levels of each pixel (784)

3 J
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2
1 L o
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Mean A =3.4-10° Ay =2.8-10° A3 =24-10° A= 1.6-10°
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Application of PCA: data compression (2)

» Compression using the PCA approximation for z,,

M
Fn=F+ Y {wnu; — Futu; (11)
i=1
» For each data point we have replaced the D-dimensional
vector x, with an M-dimensional vector having components

(wlu; — 7T w;)

Original M=1 M =10 M =50 M =250

313/13]3]}
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Application of PCA: data pre-processing

» Usually, individual standardization of each variable: each
variable has zero mean and unit variance. Variables still
correlated.

» Use of PCA for standardization:

» writing the eigenvector equation SU = UL where L is a
D x D diagonal matrix with element \; and U isa D x D
orthogonal matrix with columns given by u;

And defining by: y, = L~Y2U7 (2, — 7)
Yn has zero mean and identity covariance matrix (new
variables are decorrelated)
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Application of PCA: data pre-processing

» Comparison: PCA chooses the direction of maximum variance
whereas the Fisher's linear discriminant takes account of the
class labels (see Chap. 4).
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» Vizualization: projection of the oil data flow onto the first two
principal factors. Three geometrical configurations of the ail,
water and gas phases.
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PCA for high-dimensional data

» Number of data points N is smaller than the dimensionality D
» At least D — N + 1 of the eigenvalues equal to zero!

» Generally computationally infeasible.

> Let us denote X the (IV x D)-dimensional centred matrix.
» The covariance matrix can be writen as S = N-1X7TX

» It can be shown that S has D — N + 1 eigenvalues of value
zero and N — 1 eigenvalues as X X7

> If we denote the eigenvectors of X X7 by v;, the normalized
eigenvectors u; for S can be deduced by:

1

_ TUz‘
B (2

Usg

Nl=
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Probabilistic PCA

Advantages:

» Derive an EM algorithm for PCA that is computationally
efficient

» Allows to deal with missing values in the dataset
» Mixture of probabilistic PCA models

» Basis for the Bayesian treatment of PCA in which the
dimensionality of the principal subspace can be found
automatically.
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Probabilistic PCA (2)

Related to factor analysis:

» A latent variable model seeks to relate a D-dimensional
observation vector x to a corresponding M-dimensional
Gaussian latent variable z

r=Wz+p+e (13)

where
» zis an M-dimensional Gaussian latent variable
W is an (D x M) matrix (the latent space)
€ is a D-dimensional Gaussian noise
€ and z are independent
[ is a parameter vector that permits the model to have non
zero mean

» Factor analysis: € ~ N(O, V)
> Probabilistic PCA: € «~ N(O, 021)

v

v vy
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Probabilistic PCA (3)

» The use of the isotropic Gaussian noise model for e implies
that the z-conditional probability distribution over x-space is
given by

x/2 A~ N(Wz+ p,o%I) (14)

» Defining z «~ N(0, ), the marginal distribution of z is
obtained by integrating out the latent variables and is likewise

Gaussian
z o N(11,C) (15)

with C = WW7T 4+ 21

To do: estimate the parameters: p, W and o2
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Maximum likelihood PCA

Given a data set X = {x,} of observed data points, the log
likelihood is given by:

L:—@ln(%r)——ln\(ﬂ—fZN (- 1)

(16)
Setting the derivative with respect to u gives

=2 (17)
Back-substituting,we can write:

L= —¥1n(27r) +in | C | +THCLS) (18)

This solution represents the unique maximum
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Maximum likelihood PCA (2)

Maximization with respect to W and o2 is more complex but has
an exact closed-form solution

Wiz = Uni(Ly — 021)2R (19)
where
» Uy is a (D x M) matrix whose columns are given by the
eigenvectors of S whose eigenvalues are the M largest
> Ly is an (M x M) diagonal matrix given by the

corresponding eigenvalues \;
» R is an arbitrary (M x M) orthogonal matrix.

D
1
2 _ E : .
M DM i=M+1 & 20

Average variance of the discarded dimensions
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Maximum likelihood PCA (3)

» R can be interpreted as a rotation matrix in the M x M
latent space

» The predictive density is unchanged by rotations

» If R =1, the columns of W are the principle component
eigenvectors scaled by the variance \; — o

» The model correctly captures the variance of the data along
the principal axes and approximates the variance in all

remaining directions with a single average value 2. Variance
'lost’ in the projections.
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Maximum likelihood PCA (4)

» PCA generally expressed as a projection of points from the
D-dimensional dataspace onto an M-dimensional subspace

» Use of the posterior distribution
2/~ N(MIWT (z — p),02M) (21)

where M = WTW + 021
The mean is given by

E(z/z) = M Wi (z — 7) (22)

Note: Takes the same form as the solution of a regularized
linear regression!
This projects to a point in data space given by

WE(z/z) + (23)
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EM algorithm for PCA

» In spaces of high dimensionality, computational advantages
using EM!

» Can be extended to factor analysis for which there is no
closed-form solution

» Can be used when values are missing, for mixture models...

Requires the complete-data log likelihood function that takes the

form:
N

L.= Z lnp(:z:n/zn) + lnp(zn) (24)

n=1

In the followings, w is substituted by the sample mean Z
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EM algorithm for PCA

> Initialize the parameters W and o2
» E-step

N
E[L.] = — Z{gln(2ﬂ'02) + %Tr(E[znz;"; D
n=1

g o = p P = EEEIW o — )+ 5 Te(ELn 20T W)}
with
Elzn] = MW (zp, — 7)
E[zn2l] = 02 M ™! 4+ E[z,,]E[20]T
» M-step
N N
Whew = [Z(mn - i)E[Zn]T][Z E[anrq:]]_l (25)
n=1 n=1

N
1 _ -
P = 75 S All 20 — 7 1P —2ELen] "W, (20— 7)
n=1
+ TI'(E[ZnZg;]Wnew Wnew)}

» Check for convergence
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EM algorithm for PCA

» When 62 — 0, EM approach corresponds to standard PCA

» Defining X a matrix of size N x D whose nt"

Ty — T

row is given by

» Defining Q a matrix of size D x M whose n'"

the vector E|[z,]

row is given by

» The E-step becomes
Q = (WaaWoia) ' WoaX (26)

Orthogonal projection on the current estimate for the
principal subspace

» The M-step takes the form
Whew = XTQT(QQT) ! (27)

Re-estimation of the principal subspace minimizing the
squared reconstruction errors in which the projections are fixed
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EM algorithm for PCA

2t (@) ° 2t (b) 2} (o) /
°
0 v o / ,/ o f/— ,7/
..?. /’J ! NN /ﬂ?/
-2 -2 -2
-2 0 2 -2 0 2 -2 0 2
2t () 2t (e o/ 2t o/
1 /\/ v </
0 T 0 / \. 0 VN
Pt X X
-2 -2 / -2 /
-2 0 2 -2 0 2 -2 0 2
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|dea of Bayesian PCA

» Usefull to choose the dimensionality M of the principal
subspace

» Cross validation with a validation data set: computationally
costly!

» Define an independent Gaussian prior over each column w; of
W. The variance is governed by a precision parameter «;

(Wfa) = [ Peapl -t} (@9)
D o 11 o= exp{—5Qiw; Wi

» Values of «; are estimated iteratively by maximizing the

logarithm of the marginal likelihood function:

p(X 1, 0%) = / p(XIW, i, a)p(W]a)dW  (29)

» The effective dimensionality of the principal subspace is
determined by the number of finite «; values. Principal
subspace = the corresponding w;.
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|dea of Bayesian PCA

» Maximization with respect to «y:

apew = P (30)

» These estimations are intervealed with EM algorithm with
Wihew modified

Whew [Z E[Zn]T] [Z E[ZnZT] + 0'214] 1 (31)
n=1
with A = diag(ai)

> Examp|e: 300 point in dimension D sampled from a Gaussian distribution having M = 3 directions
with larger variance
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Factor analysis

> Closely related to Bayesian PCA
— but the covariance of p(z|z) diagonal instead of isotropic:

x/z A~ NWz+ pu, V) (64)
where W is a D x D diagonal matrix.

» The components’ variance of natural axes is explained by W
» Observed covariance structured is captured by W

» Consequences
» For PCA,
rotation of data space = same fit with W rotated with the
same matrix
» For Factor Analysis, the analogous property is: component-wise
re-scaling is absorbed into the re-scaling elements of W
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Factor analysis

» The marginal density of the observed variable is
o N(p, WIWT W) (65)

» As in probabilistic PCA, the model is invariant w.r.t the latent
space

» 1, W and W can be determined by maximum likehood
» 1 = T, as in probabilistic PCA
» But no closed-form ML solution for W

— iteratively estimated using EM
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Parameters estimation using EM

» [E step
E[zn] = GWTW (2 — 7) (66)
E[zn2]] = G + E[z,] E[zn]" (67)
where G = (I + WTw=1w)-1
» M step
N
wnew = [Z(x — T)E[z,]" ZE[zn n]] (69)
n=1

N
VeV — diag {s — e > Elznl(wn — z)T} (70)

where the “diag” operator zeros all non diagonal elements
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Kernel PCA

Applying the ideas of Kernel substitution (see Chapter 5) to PCA

o4 .V

?1

Caroline Bernard-Michel & Hervé Jegou Chris Bishop’s PRML Ch. XII: Continuous Latent Variables



Kernel PCA: preliminaries

Kernel substitution: express each step of PCA in terms of the inner
product =7 2 between data vectors to generalize the inner product

» Recall that the principal components are defined as

with [|u;||2 = ulu; = 1 and covariance Matrix S defined as

;N
_ T
S = 5_1 Tn Xy, (72)

» Consider a nonlinear mapping transformation ® into a
M-dimensional feature space
— maps any data point z, onto ®(z,,)
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Kernel PCA

> Let assume that >, ®(z,) =0

» the M x M sample covariance matrix C' in feature space is
given by

— T
with eigenvector expansion as
C’Ui = )\Z‘Ui, 1= 1, ...,M (74)

» Goal: solve this eigenvalue problem without working explicitly
in the feature space

» Eigenvector v; can be written as a linear combination of the
®(xy,), of the form

M
v; = Z ain®(zy) (76)
n=1
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Kernel PCA

Note: typo in (12.78)

» The eigenvector equation can then be defined in terms of the
kernel function as

K2a; = \iNKa; (79)

where a; = (a1, . ..,an;)", unknown at this point.

» The a; can be found by solving the eigenvalue problem:
KCLZ‘ = )\iNai (80)

» The a;'s normalization condition is obtained by requiring that
the eigenvectors in feature space be normalized:

1 =v]v; =al Ka; = \iNa] a; (81)
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Kernel PCA

» The resulting principal component projections can also be cast
in terms of the kernel function

» A point x is “projected” onto eigenvector ¢ as
yi(z) = &(2)" v

N
= Z ain k(x,x) (82)
n=1

» Remarks:

» At most D linear principal components

» The number of nonlinear principal components can exceed D

» The number of nonzero eigenvalues cannot exceed the number
of data points V
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Kernel PCA

» Up to now, we assumed that the projected data has zero mean

N

Z ®(z,) =0

i=1
» This mean can't be simply computed and subtracted

» However the projected data points after centralizing can be
obtained as

N
B(ra) = O(2a) ~ 1 > ) (83)
=1
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Kernel PCA
» The corresponding elements of the Gram matrix are given by

Kpm = ®(x,)" &(z)

N
= k(zpn, Tm) —Zk(xl,xm)
=1
1 & 1 &
——Zk(xn,xl)%—ﬁZZk(x],xl) (84)
=1 j=11=1
ie., N
K=K-1yK—-Kly+15K1y, (85)
where
1/N .. 1/N
1y =
1/N .. 1/N
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Kernel PCA: example and remark

Eigenvalug=21.72 Eigenvalue=21.65 Eigenvalue=411 Eigenvalue=343

Eigenvalue=1.65 Eigenvalue=3.00 Eigenvalue=2.60 Eigenvalue=2.53

» PCA is often used to reconstruct a sample x,, with good
accuracy from its projections on the first principal components

» In kernel PCA, this is not possible in general, as we can't map
points explicitly from the feature space to the data space
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Independent component analysis

» Consider models in which

> the observed variables are related linearly to the latent variables
» for which the latent distribution is non-Gaussian

» Important class of such models: independent component
analysis, for which

M

p(z) = [ [ p(z) (86)

J=1

— the distribution of latent variables factorize
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Application case: blind source separation

» Setup:

» Two people talking at the same time
> their voices recorded using two microphones

» Objective: to reconstruct the two signal separately
— "blind” because we are given only the mixed data. We
haven't observed

> the original sources
» the mixing coefficients
» under some assumptions (no time delay and echoes)
» the signals received by the microphone are linear combinations
of the voice amplitudes
> the coefficient of this linear combination are constant
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Application case: blind source separation

v

Hereafter: a possible approach (see Mackay'03)
— that does not consider the temporal aspect of the problem

v

Consider generative model with

> the latent variables: unobserved speech signal amplitudes
> the two observed signal values o = [0; 03] at the microphones

v

Distribution of latent variables factorizes as p(z) = p(z1)p(22)

No need to include noise: observed variables = deterministic
linear combinations of latent variables as

ail ax2
0= z
az1 @22

v
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Application case: blind source separation

» Given a set of observation
> the likehood function is a function of the coefficients a;;
> log likehood maximized using gradient-based optimization
— particular case of independent analysis
» This requires that the latent variables have non Gaussian
distributions
» Probabilistic PCA: latent-space distribution = zero-mean
isotropic Gaussian
» No way to distinguish between two choices for the latent
variables — these differ by a rotation in the latent space

» Common choice for the latent-variable distribution:

1 1
p(z) = mcosh(z;) - (e + e %) /\

(90)
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Autoassociative neural networks

» Chapter 5: Neural networks for predicting outputs given inputs

» They can also used for dimensionality reduction

» Network that perform an autoassociative mapping
> #Houtputs = Finputs > number of hidden units
= no perfect reconstruction
> find networks parameters w minimizing a given error function
— for instance sum-of-square errors

1 N
B(w) = §Z|\y(wmw) — | (91)
n=1
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Autoassociative neural networks

» Linear activations functions =
> unique global minimum
> the network performs projections onto the M-dimensional
principal component subspace
> this subspace is spanned by the vector of weights
» Even with nonlinear hiddens units, minimum error obtained by
principal component subspace
= no advantage of using two-layer neural networks to perform
dimensionality reduction: use standard PCA techniques
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Autoassociative neural networks

» Using more hidden layers (4 here), the approach is worthful

T3 T3

o

» Training the network involves nonlinear optimization
techniques (with risk of suboptimally)
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Chapter content

» Principal Component Analysis

» Maximum variance formulation
Minimum-error formulation
Applications of PCA
PCA for high-dimensional data
» Probabilistic PCA

» Problem setup
Maximum likelihood PCA
EM algorithm for PCA
Bayesian PCA
Factor analysis

» Kernel PCA

» Nonlinear Latent Variable Models

> Independent component analysis
» Autoassociative neural networks
» Modelling nonlinear manifolds

vV vy

v vy VvYy
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Modelling nonlinear manifolds

» Data may lie in a manifold of lower dimensionality than the
observed data space
» capture this property explicitly may improve the density
modelling
» Possible approach: non-linear manifold modelled by piece-wise
linear approximation, e.g.,
» k-means + PCA for each cluster
> better: use reconstruction error for cluster assignment
» These are limited by not having an overall density model

» Tipping and Bishop: full probablistic model using a mixture
distribution in which components are probabilistic PCA
= both discrete latent variables and continuous ones
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Modelling nonlinear manifolds

Alternative approach: to use a single nonlinear model

» Principal curves:

» Extension of PCA (that finds a linear subspace)

» A curve is described by a vector-valued function f(X)

» Natural parametrization: the arc length along the curve

» Given a point &, we can find the closest point A = g¢(x) on
the curve in terms of the Euclidean distance

» A principal curve is a curve for which every point on the curve
is the mean of all points in data space to project to it, so that

Elzlgs(x) = A] = f(}) (92)
— there may be many principal curves for a continuous
distribution
» Hastie et al: two-stage iterative procedure for finding principal
curve

Caroline Bernard-Michel & Hervé Jegou Chris Bishop’s PRML Ch. XII: Continuous Latent Variables



Modelling nonlinear manifolds: MDS

» PCA is often used for the purpose of visualization

» Another technique with a similar aim: multidimensional
scaling (MDS, Cox and Cox 2000)

> preserve as closely as possible the pairwise distances between
data points

> involves finding the eigenvectors of the distance matrix

> equivalent results to PCA when the distance is Euclidean
— but can be extended to a wide variety of data types
specified in terms of a similarity matrix
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Modelling nonlinear manifolds: LLE

» Locally linear embedding (LLE, Roweis and Saul 2000)

» Compute the set of coefficients that best reconstruct each
data point from its neighbours

» coefficients arranged to be invariant to rotation, translations,
scaling
— characterize the local geometrical properties of the
neighborhood

» LLE maps the high-dimensional data to a lower dimensional
subspace while preserving these coefficients

» These weights are used to reconstruct the data points in
low-dimensional space as in the high dimensional space

» Albeit non linear, LLE does not exhibit local minima
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Modelling nonlinear manifolds: ISOMAP

» Isometric feature mapping (ISOMAP, Tenenbaum et al. 2000)

» Goal: data projected to a lower-dimensional space using MDS
— but dissimilarities defined in terms of the geodesic
distances on the manifold

» Algorithm:
» First defines the neighborhood using KNN or e-search
» Construct a neighborhood graph with weights corresponding to
the Euclidean distances
» Geodesic distance approximated by the sum of Euclidean
distances along the shortest path connecting two points
» Apply MDS to the geodesic distances
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Modelling nonlinear manifolds: other techniques

» Latent traits: Models having continous latent variables
together with discrete observed variables
— can be used to visualize binary vectors analogously to PCA
for continuous variables

» Density network: nonlinear function governed by a
multilayered neural network
— flexible model but computationally intensive
» Generative topographic mapping (GTM): restricted forms for
the nonlinear function = nonlinear and efficient to train
> latent distribution defined by a finite regular grid over the
latent space (of dimensionality 2, typically)

» can be seen as a probabilistic version of the self-organizing
map (SOM, Kohonen)
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