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Introduction

I Aim of this chapter: dimensionality reduction

I Can be interesting for lossy data compression, feature
extraction and data visualization.

I Example: synthetic data set

I Choice of one of the off-line digit images

I Creation of multiple copies with a random displacement and
rotation

I Individuals= images (28× 28 = 784)

I Variables= pixels grey levels

I Only two latent variables: the translation and the rotation
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Maximum variance formulation
I Consider a data set of observations {xn} where n = 1, . . . , N

(xn with dimensionality D).
I Idea of PCA: Project this data onto a space of lower

dimensionality M < D, called the principal subspace, while
maximizing the variance of the projected data
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Notations

We will denote by:

I D the dimensionality

I M the fixed dimension of the principal subspace

I {ui}, i = 1, . . . ,M the basis vectors ((D × 1) vectors) of the
principal subspace

I The sample mean ((D × 1) vector) by:

x̄ =
1

N

N∑
n=1

xn (1.90)

I The sample variance/covariance matrix ((D ×D) matrix) by:

S =
1

N

N∑
n=1

(xn − x̄)(xn − x̄)T (1)
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Idea of PCA with one-dimensional principal subspace

I Let us consider a unit D-dimensional normalized vector u1

(uT
1 u1 = 1)

I Each point xn is then projected onto a scalar is uT
1 xn

I The mean of the projected data is:

uT
1 x̄ (2)

I The variance of the projected data is:

1

N

N∑
n=1

uT
1 xn − uT

1 x̄
2

= uT
1 Su1 (3)

Idea of PCA: Maximize the projected variance uT
1 Su1 with respect

to u1 under the normalization constraint uT
1 u1 = 1
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Idea of PCA with one-dimensional principal subspace

I Trick: introduce the Lagrange multiplier λ1

I Unconstrained maximization of uT
1 Su1 + λ1(1− uT

1 u1)
I Solution must verify:

Su1 = λ1u1 (4)

I u1 must be an eigenvector of S having eigenvalue λ1!
I The variance of the projected data is λ1 (uT

1 Su1 = λ1), so λ1

has to be the largest eigenvalue!
I Additional principal components are obtained maximizing the

projected variance amongst all possible directions orthogonal
to those already considered!

I PCA =calculating the eigenvectors of the data covariance
matrix corresponding to the largest eigenvalues!

I Note:
∑D

i=1 λi is generally called the total inerty or the total
variance. The percentage of inerty explained by one
component ui is then λiPD

i=1 λi
.
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Minimum-error formulation

I Based on projection error minimization
I Consider a D-dimensional basis vectors {ui} where

i = 1, . . . , D satisfying uT
i uj = δij

I Each data point xn can be represented by:

xn =
D∑

i=1

αniui where αni = xT
nui (5)

I xn can be approximated by

x̃n =
M∑
i=1

zniui +
D∑

i=M+1

biui (6)

I Idea of PCA: Minimize the distortion J introduced by the
reduction in dimensionality

J =
1

N

N∑
n=1

|| xn − x̃n ||2 (7)
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Minimum-error formulation (2)

I Setting the derivative with respect to znj and to bj , one
obtains that:

znj = xT
nuj and bj = x̄T uj (8)

I J can then be expressed as:

J =
1

N

D∑
i=M+1

uT
i Sui (9)

I The minimum is obtained when {ui}, i = M + 1, . . . , D are
the eigenvectors of S associated to the smallest eigenvalues.

I The distortion is then given by J =
∑D

i=M+1 λi

I xn is approximated by:

x̃n =
M∑
i=1

(xT
nui)ui +

D∑
i=M+1

(x̄T ui)ui = x̄ +
M∑
i=1

(xT
n − x̄T ui)ui

(10)
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Application of PCA: data compression

I Individuals = images
I Variables = grey levels of each pixel (784)
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Application of PCA: data compression (2)

I Compression using the PCA approximation for xn

x̃n = x̄ +
M∑
i=1

{xnui − x̄ui}ui (11)

I For each data point we have replaced the D-dimensional
vector xn with an M-dimensional vector having components
(xT

nui − x̄T ui)

Original ����� ������� ����	
� �����
	��
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Application of PCA: data pre-processing

I Usually, individual standardization of each variable: each
variable has zero mean and unit variance. Variables still
correlated.

I Use of PCA for standardization:
I writing the eigenvector equation SU = UL where L is a

D ×D diagonal matrix with element λi and U is a D ×D
orthogonal matrix with columns given by ui

I And defining by: yn = L−1/2UT (xn − x̄)
I yn has zero mean and identity covariance matrix (new

variables are decorrelated)
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Application of PCA: data pre-processing

I Comparison: PCA chooses the direction of maximum variance
whereas the Fisher’s linear discriminant takes account of the
class labels (see Chap. 4).
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I Vizualization: projection of the oil data flow onto the first two
principal factors. Three geometrical configurations of the oil,
water and gas phases.
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PCA for high-dimensional data

I Number of data points N is smaller than the dimensionality D

I At least D −N + 1 of the eigenvalues equal to zero!

I Generally computationally infeasible.

I Let us denote X the (N ×D)-dimensional centred matrix.

I The covariance matrix can be writen as S = N−1XT X

I It can be shown that S has D −N + 1 eigenvalues of value
zero and N − 1 eigenvalues as XXT

I If we denote the eigenvectors of XXT by vi, the normalized
eigenvectors ui for S can be deduced by:

ui =
1

(Nλi)
1
2

XT vi (12)
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Probabilistic PCA

Advantages:

I Derive an EM algorithm for PCA that is computationally
efficient

I Allows to deal with missing values in the dataset

I Mixture of probabilistic PCA models

I Basis for the Bayesian treatment of PCA in which the
dimensionality of the principal subspace can be found
automatically.

I ...
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Probabilistic PCA (2)

Related to factor analysis:

I A latent variable model seeks to relate a D-dimensional
observation vector x to a corresponding M -dimensional
Gaussian latent variable z

x = Wz + µ + ε (13)

where
I z is an M -dimensional Gaussian latent variable
I W is an (D ×M) matrix (the latent space)
I ε is a D-dimensional Gaussian noise
I ε and z are independent
I µ is a parameter vector that permits the model to have non

zero mean

I Factor analysis: ε v N(O,Ψ)

I Probabilistic PCA: ε v N(O, σ2I)
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Probabilistic PCA (3)

I The use of the isotropic Gaussian noise model for ε implies
that the z-conditional probability distribution over x-space is
given by

x/z v N (Wz + µ, σ2I) (14)

I Defining z v N (0, I), the marginal distribution of x is
obtained by integrating out the latent variables and is likewise
Gaussian

x v N(µ,C) (15)

with C = WW T + σ2I

To do: estimate the parameters: µ, W and σ2
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Maximum likelihood PCA

Given a data set X = {xn} of observed data points, the log
likelihood is given by:

L = −ND

2
ln(2π)− N

2
ln | C | −1

2

∑
n=1

N(xn − µ)T C−1(xn − µ)

(16)
Setting the derivative with respect to µ gives

µ = x̄ (17)

Back-substituting,we can write:

L = −ND

2
ln(2π) + ln | C | +Tr(C−1S) (18)

This solution represents the unique maximum
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Maximum likelihood PCA (2)

Maximization with respect to W and σ2 is more complex but has
an exact closed-form solution

WML = UM (LM − σ2I)
1
2 R (19)

where

I UM is a (D ×M) matrix whose columns are given by the
eigenvectors of S whose eigenvalues are the M largest

I LM is an (M ×M) diagonal matrix given by the
corresponding eigenvalues λi

I R is an arbitrary (M ×M) orthogonal matrix.

σ2
ML =

1

D −M

D∑
i=M+1

λi (20)

Average variance of the discarded dimensions
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Maximum likelihood PCA (3)

I R can be interpreted as a rotation matrix in the M ×M
latent space

I The predictive density is unchanged by rotations

I If R = I, the columns of W are the principle component
eigenvectors scaled by the variance λi − σ2

I The model correctly captures the variance of the data along
the principal axes and approximates the variance in all
remaining directions with a single average value σ2. Variance
’lost’ in the projections.
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Maximum likelihood PCA (4)

I PCA generally expressed as a projection of points from the
D-dimensional dataspace onto an M-dimensional subspace

I Use of the posterior distribution

z/x v N(M−1W T (x− µ), σ−2M) (21)

where M = W T W + σ2I
The mean is given by

E(z/x) = M−1W T
ML(x− x̄) (22)

Note: Takes the same form as the solution of a regularized
linear regression!
This projects to a point in data space given by

WE(z/x) + µ (23)
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EM algorithm for PCA

I In spaces of high dimensionality, computational advantages
using EM!

I Can be extended to factor analysis for which there is no
closed-form solution

I Can be used when values are missing, for mixture models...

Requires the complete-data log likelihood function that takes the
form:

Lc =
N∑

n=1

lnp(xn/zn) + lnp(zn) (24)

In the followings, µ is substituted by the sample mean x̄
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EM algorithm for PCA

I Initialize the parameters W and σ2

I E-step

E[Lc] = −
NX

n=1

{
D

2
ln(2πσ2) +

1

2
Tr(E[znzT

n ])

+
1

2σ2
|| xn − µ ||2 −

1

σ2
E[zT

n ]W T (xn − µ) +
1

2σ2
Tr(E[znZT

n ]W T W )}

with
E[zn] = M−1W (xn − x̄)

E[znzT
n ] = σ2M−1 + E[zn]E[zn]T

I M-step

Wnew = [
NX

n=1

(xn − x̄)E[zn]T ][
NX

n=1

E[znzT
n ]]−1 (25)

σ2
new =

1

ND

NX
n=1

{|| xn − x̄ ||2 −2E[zn]T W T
new(xn − x̄)

+ Tr(E[znzT
n ]WnewWnew)}

I Check for convergence
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EM algorithm for PCA

I When σ2 → 0, EM approach corresponds to standard PCA

I Defining X̃ a matrix of size N ×D whose nth row is given by
xn − x̄

I Defining Ω a matrix of size D ×M whose nth row is given by
the vector E[zn]

I The E-step becomes

Ω = (W T
oldWold)

−1W T
oldX̃ (26)

Orthogonal projection on the current estimate for the
principal subspace

I The M-step takes the form

Wnew = X̃T ΩT (ΩΩT )−1 (27)

Re-estimation of the principal subspace minimizing the
squared reconstruction errors in which the projections are fixed
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EM algorithm for PCA
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Idea of Bayesian PCA

I Usefull to choose the dimensionality M of the principal
subspace

I Cross validation with a validation data set: computationally
costly!

I Define an independent Gaussian prior over each column wi of
W . The variance is governed by a precision parameter αi

p(W/α) =
M∏
i=1

(
αi

2π
)D/2exp{−1

2
αiω

T
i wi} (28)

I Values of αi are estimated iteratively by maximizing the
logarithm of the marginal likelihood function:

p(X/α, µ, σ2) =

∫
p(X|W,µ, σ2)p(W |α)dW (29)

I The effective dimensionality of the principal subspace is
determined by the number of finite αi values. Principal
subspace = the corresponding wi.
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Idea of Bayesian PCA

I Maximization with respect to αi:

αnew
i =

D

wT
i wi

(30)

I These estimations are intervealed with EM algorithm with
Wnew modified

Wnew = [
N∑

n=1

(xn − x̄)E[zn]T ][
N∑

n=1

E[znzT
n ] + σ2A]−1 (31)

with A = diag(αi)
I Example: 300 point in dimension D sampled from a Gaussian distribution having M = 3 directions

with larger variance
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Factor analysis

I Closely related to Bayesian PCA
→ but the covariance of p(x|z) diagonal instead of isotropic:

x/z v N (Wz + µ,Ψ) (64)

where Ψ is a D ×D diagonal matrix.

I The components’ variance of natural axes is explained by Ψ

I Observed covariance structured is captured by W

I Consequences
I For PCA,

rotation of data space ⇒ same fit with W rotated with the
same matrix

I For Factor Analysis, the analogous property is: component-wise
re-scaling is absorbed into the re-scaling elements of Ψ
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Factor analysis

I The marginal density of the observed variable is

x v N (µ,WW T + Ψ) (65)

I As in probabilistic PCA, the model is invariant w.r.t the latent
space

I µ, W and Ψ can be determined by maximum likehood

I µ = x̄, as in probabilistic PCA

I But no closed-form ML solution for W
→ iteratively estimated using EM
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Parameters estimation using EM

I E step

E[zn] = GW T Ψ−1(x− x̄) (66)

E[znzT
n ] = G + E[zn] E[zn]T (67)

where G = (I + W T Ψ−1W )−1

I M step

W new =

[
N∑

n=1

(x− x̄)E[zn]T

] [
N∑
n

E[znzT
n ]

]−1

(69)

Ψnew = diag

{
S −W new 1

N

N∑
n=1

E[zn](xn − x̄)T

}
(70)

where the “diag” operator zeros all non diagonal elements
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Caroline Bernard-Michel & Hervé Jegou Chris Bishop’s PRML Ch. XII: Continuous Latent Variables



Kernel PCA

Applying the ideas of Kernel substitution (see Chapter 5) to PCA

x1

x2

φ2

φ1
v1
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Kernel PCA: preliminaries

Kernel substitution: express each step of PCA in terms of the inner
product xT x between data vectors to generalize the inner product

I Recall that the principal components are defined as

Sui = λiui (71)

with ||ui||2 = uT
i ui = 1 and covariance Matrix S defined as

S =
1

N

N∑
n=1

xnxT
n (72)

I Consider a nonlinear mapping transformation Φ into a
M -dimensional feature space
→ maps any data point xn onto Φ(xn)
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Kernel PCA

I Let assume that
∑

n Φ(xn) = 0

I the M ×M sample covariance matrix C in feature space is
given by

C =
1

N

N∑
n=1

Φ(xn)Φ(xn)T (73)

with eigenvector expansion as

Cvi = λivi, i = 1, ...,M (74)

I Goal: solve this eigenvalue problem without working explicitly
in the feature space

I Eigenvector vi can be written as a linear combination of the
Φ(xn), of the form

vi =
M∑

n=1

ainΦ(xn) (76)
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Kernel PCA

Note: typo in (12.78)

I The eigenvector equation can then be defined in terms of the
kernel function as

K2ai = λiNKai (79)

where ai = (a1i, . . . , aNi)
T , unknown at this point.

I The ai can be found by solving the eigenvalue problem:

Kai = λiNai (80)

I The ai’s normalization condition is obtained by requiring that
the eigenvectors in feature space be normalized:

1 = vT
i vi = aT

i Kai = λiNaT
i ai (81)
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Kernel PCA

I The resulting principal component projections can also be cast
in terms of the kernel function

I A point x is “projected” onto eigenvector i as

yi(x) = Φ(x)T vi

=
N∑

n=1

ain k(x, xn) (82)

I Remarks:
I At most D linear principal components
I The number of nonlinear principal components can exceed D
I The number of nonzero eigenvalues cannot exceed the number

of data points N
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Kernel PCA

I Up to now, we assumed that the projected data has zero mean

N∑
i=1

Φ(xn) = 0

I This mean can’t be simply computed and subtracted

I However the projected data points after centralizing can be
obtained as

Φ̃(xn) = Φ(xn)− 1

N

N∑
l=1

Φ(xl) (83)
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Kernel PCA

I The corresponding elements of the Gram matrix are given by

K̃nm = Φ̃(xn)T Φ̃(xm)

= k(xn, xm)− 1

N

N∑
l=1

k(xl, xm)

− 1

N

N∑
l=1

k(xn, xl) +
1

N2

N∑
j=1

N∑
l=1

k(xj , xl) (84)

i.e.,
K̃ = K − 1NK −K1N + 1NK1N , (85)

where

1N =

 1/N ... 1/N
. . . . . .

1/N ... 1/N
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Kernel PCA: example and remark

I PCA is often used to reconstruct a sample xn with good
accuracy from its projections on the first principal components

I In kernel PCA, this is not possible in general, as we can’t map
points explicitly from the feature space to the data space
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Independent component analysis

I Consider models in which
I the observed variables are related linearly to the latent variables
I for which the latent distribution is non-Gaussian

I Important class of such models: independent component
analysis, for which

p(z) =
M∏

j=1

p(zj) (86)

→ the distribution of latent variables factorize

Caroline Bernard-Michel & Hervé Jegou Chris Bishop’s PRML Ch. XII: Continuous Latent Variables



Application case: blind source separation

I Setup:
I Two people talking at the same time
I their voices recorded using two microphones

I Objective: to reconstruct the two signal separately
→ “blind” because we are given only the mixed data. We
haven’t observed

I the original sources
I the mixing coefficients

I under some assumptions (no time delay and echoes)
I the signals received by the microphone are linear combinations

of the voice amplitudes
I the coefficient of this linear combination are constant
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Application case: blind source separation

I Hereafter: a possible approach (see Mackay’03)
→ that does not consider the temporal aspect of the problem

I Consider generative model with
I the latent variables: unobserved speech signal amplitudes
I the two observed signal values o = [o1 o2]

T at the microphones

I Distribution of latent variables factorizes as p(z) = p(z1)p(z2)

I No need to include noise: observed variables = deterministic
linear combinations of latent variables as

o =

[
a11 a12

a21 a22

]
z
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Application case: blind source separation

I Given a set of observation
I the likehood function is a function of the coefficients aij

I log likehood maximized using gradient-based optimization
→ particular case of independent analysis

I This requires that the latent variables have non Gaussian
distributions

I Probabilistic PCA: latent-space distribution = zero-mean
isotropic Gaussian

I No way to distinguish between two choices for the latent
variables → these differ by a rotation in the latent space

I Common choice for the latent-variable distribution:

p(zj) =
1

πcosh(zj)
=

1

π(ezj + e−zj )
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Chapter content

I Principal Component Analysis
I Maximum variance formulation
I Minimum-error formulation
I Applications of PCA
I PCA for high-dimensional data

I Probabilistic PCA
I Problem setup
I Maximum likelihood PCA
I EM algorithm for PCA
I Bayesian PCA
I Factor analysis

I Kernel PCA
I Nonlinear Latent Variable Models

I Independent component analysis
I Autoassociative neural networks
I Modelling nonlinear manifolds
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Autoassociative neural networks

I Chapter 5: Neural networks for predicting outputs given inputs

I They can also used for dimensionality reduction

x1

xD

z1

zM

x1

xD

inputs outputs

I Network that perform an autoassociative mapping
I #outputs = #inputs > number of hidden units
⇒ no perfect reconstruction

I find networks parameters w minimizing a given error function
→ for instance sum-of-square errors

E(w) =
1

2

N∑
n=1

||y(xn, w)− xn||2 (91)
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Autoassociative neural networks

I Linear activations functions ⇒
I unique global minimum
I the network performs projections onto the M -dimensional

principal component subspace
I this subspace is spanned by the vector of weights

I Even with nonlinear hiddens units, minimum error obtained by
principal component subspace
⇒ no advantage of using two-layer neural networks to perform
dimensionality reduction: use standard PCA techniques
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Autoassociative neural networks

x1

xD

x1

xD

inputs outputs

F1 F2

non-linear

I Using more hidden layers (4 here), the approach is worthful

x1

x2

x3

x1

x2

x3

z1

z2
F1

F2

S

I Training the network involves nonlinear optimization
techniques (with risk of suboptimally)
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Caroline Bernard-Michel & Hervé Jegou Chris Bishop’s PRML Ch. XII: Continuous Latent Variables



Modelling nonlinear manifolds

I Data may lie in a manifold of lower dimensionality than the
observed data space

I capture this property explicitly may improve the density
modelling

I Possible approach: non-linear manifold modelled by piece-wise
linear approximation, e.g.,

I k-means + PCA for each cluster
I better: use reconstruction error for cluster assignment

I These are limited by not having an overall density model

I Tipping and Bishop: full probablistic model using a mixture
distribution in which components are probabilistic PCA
⇒ both discrete latent variables and continuous ones

Caroline Bernard-Michel & Hervé Jegou Chris Bishop’s PRML Ch. XII: Continuous Latent Variables



Modelling nonlinear manifolds

Alternative approach: to use a single nonlinear model

I Principal curves:
I Extension of PCA (that finds a linear subspace)
I A curve is described by a vector-valued function f(λ)
I Natural parametrization: the arc length along the curve
I Given a point x̂, we can find the closest point λ = gf (x) on

the curve in terms of the Euclidean distance
I A principal curve is a curve for which every point on the curve

is the mean of all points in data space to project to it, so that

E[x|gf (x) = λ] = f(λ) (92)

→ there may be many principal curves for a continuous
distribution

I Hastie et al: two-stage iterative procedure for finding principal
curve
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Modelling nonlinear manifolds: MDS

I PCA is often used for the purpose of visualization
I Another technique with a similar aim: multidimensional

scaling (MDS, Cox and Cox 2000)
I preserve as closely as possible the pairwise distances between

data points
I involves finding the eigenvectors of the distance matrix
I equivalent results to PCA when the distance is Euclidean
→ but can be extended to a wide variety of data types
specified in terms of a similarity matrix
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Modelling nonlinear manifolds: LLE

I Locally linear embedding (LLE, Roweis and Saul 2000)

I Compute the set of coefficients that best reconstruct each
data point from its neighbours

I coefficients arranged to be invariant to rotation, translations,
scaling
→ characterize the local geometrical properties of the
neighborhood

I LLE maps the high-dimensional data to a lower dimensional
subspace while preserving these coefficients

I These weights are used to reconstruct the data points in
low-dimensional space as in the high dimensional space

I Albeit non linear, LLE does not exhibit local minima
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Modelling nonlinear manifolds: ISOMAP

I Isometric feature mapping (ISOMAP, Tenenbaum et al. 2000)

I Goal: data projected to a lower-dimensional space using MDS
→ but dissimilarities defined in terms of the geodesic
distances on the manifold

I Algorithm:
I First defines the neighborhood using KNN or ε-search
I Construct a neighborhood graph with weights corresponding to

the Euclidean distances
I Geodesic distance approximated by the sum of Euclidean

distances along the shortest path connecting two points
I Apply MDS to the geodesic distances
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Modelling nonlinear manifolds: other techniques

I Latent traits: Models having continous latent variables
together with discrete observed variables
→ can be used to visualize binary vectors analogously to PCA
for continuous variables

I Density network: nonlinear function governed by a
multilayered neural network
→ flexible model but computationally intensive

I Generative topographic mapping (GTM): restricted forms for
the nonlinear function ⇒ nonlinear and efficient to train

I latent distribution defined by a finite regular grid over the
latent space (of dimensionality 2, typically)

I can be seen as a probabilistic version of the self-organizing
map (SOM, Kohonen)
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