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Goal of sampling methods

I fundamental problem: find the expectation of some function f(z)
with respect to a probability distribution p(z)

IE[f ] =

∫
f(z) p(z) dz (11.1)

I idea: If we obtain a set of samples z(l), l = 1 . . . L drawn
independantly from p(z), the expectation may be approximated by :

f̂ =
1

L

L∑
l=1

f(z(l)) (11.2)

I new problem: How can we obtain independant samples from a
distribution p(z) we do not know how to sample from ?
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11.1.1 Standard distributions: the transformation method

I We aim at sampling from p(.).

I Suppose that we have available samples z uniformly distributed over
the interval (0, 1)

I Transforming z into y using y = h−1(z) where h is defined as the
cumulative distribution fuction of p:

h(y) =

∫ y

−∞
p(x) dx (11.6 modified)

I Then y are independant samples from p(.).

I ex: exponential distribution, Cauchy distribution, Gaussian
distribution
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11.1.1 Standard distributions: the transformation method

p(y)

h(y)

y0

1
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11.1.2 Rejection sampling

I Assumption 1: Sampling directly from p(z) is difficult but we are
able te evaluate p(z) for any value of z up to a unknown
normalizing constant Zp

p(z) =
1

Zp
p̃(z) (11.13)

I Assumption 2: We know how to sample from a proposal distribution
q(z), and there exists a constant k such that

k q(z) ≥ p̃(z)

I Then we know how to obtain independant samples from p(.)
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11.1.2 Rejection sampling

1. generate a number z0 from q(.)

2. generate a number u0 from the uniform distribution over [0, kq(z0)]

3. if u0 > p̃(z0) then the sample is rejected, otherwise zo is kept

4. The set of kept z are distributed according to p(.)

z0 z

u0

kq(z0) kq(z)

p̃(z)

I efficiency of the method depend on the ratio between the grey area
and the white area → the proposal distribution q(.) as to be as
close as possible from p(.)
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11.1.3 Adaptive Rejection sampling

I the proposal distribution q(.) may be constructed on the fly

I eg, if p is log-concave, use of the derivative of ln p at some given
grid points

z1 z2 z3 z

ln p(z)

I in any cases, rejection sampling methods are inefficient if sampling
in high dimension (exponential decrease of acceptance rate with
dimensionality)
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11.1.4 Importance sampling

I provides a framework for approximating expectations directly

I technique again based on the use of a proposal distibution q(.)

The trick:

IE[f ] =

∫
f(z)p(z)dz =

∫
f(z)

p(z)

q(z)
q(z)dz ≈ 1

L

L∑
l=1

p(z(l))

q(z(l))
f(z(l))

(11.19)

IE[f ] ≈
L∑

l=1

wlf(z(l)) (11.22)

I The importance weights correct the bias introduced by sampling
from a wrong distribution. wl are the normalized imp. weights.

I all the generated samples are retained
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11.1.4 Importance sampling

p(z) f(z)

z

q(z)

Again, the success of the method depend on how well the proprosal q(.)

fit the desired distribution p(.). In particular, p(z) > 0 ⇒ q(z) > 0
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11.1.5 Sampling-importance-resampling

I importance sampling is an alternative to rejection sampling

I technique based on the use of a proposal distibution q(.)
the assumption on the existence of a constant k is relaxed

1. Draw L samples z(1), z(2), . . . z(L) from q(z)

2. Calculate the importance weight p(z(l))
q(z(l))

∀l = 1 . . . L

3. Normalize the weights to obtain w1 . . . wL

4. Draw a second set of L samples from the discrete distribution
(z(1), z(2), . . . z(L)) with probabilities (w1 . . . wL)

I The resulting L samples are distibuted according to p(z) if L →∞
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11.1.6 Sampling and the EM algorithm
Monte Carlo EM algorithm

I Use some Monte Carlo methods to approximate the expectation of
the E step

I The expected complete-data log likelihood, given by (Z hidden ; X
observed ; θ parameters):

Q(θ, θold) =

∫
p(Z|X, θold) ln p(Z,X|θ) dZ (11.28)

may be approximate by (where Z(l) are drawn from p(Z,X|θold) )

Q(θ, θold) ≈ 1

L

L∑
l=1

ln p(Z(l),X|θ), (11.29)

stochastic EM algorithm

I Considering a finite mixture model, only one sample Z may be
drawn at each E step (meaning a hard assignement of each data
point to one of the components in the mixture)
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Markov Chain Monte Carlo (MCMC)

I MCMC : general strategy which allows sampling from a large
class of distributions

I MCMC scales well with the dimensionality of the sample
space 6= importance sampling / rejection sampling

I use the mechanism of Markov chains

I goal: to generate a set of samples from p(z)

I assumption: we know how to evaluate p̃(z)

p̃(z) = Zp p(z)
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MCMC: the idea

I goal: to generate a set of samples from p(z)

I idea: to generate samples from a Markov Chain whose
invariant distribution is p(z)

1. knowing the current sample is z(τ), generate a candidate
sample z∗ from a proposal distribution q(z|z(τ)) we know how
to sample from.

2. accept the sample according to an appropriate criterion.
3. if the candidate sample is accepted then z(τ+1) = z∗ otherwise

z(τ+1) = z(τ).

I the proposal distribution depends on the current state
I samples z(1), z(2), . . . form a Markov chain
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Metropolis algorithm

I the proposal distibution is symetric q(zA|zB) = q(zB|zA)

I the candidate sample is accepted with probability

A(z∗, z(τ)) = min

(
1,

p̃(z∗)

p̃(z(τ))

)
(11.33)
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Use of Metropolis algorithm to

sample from a Gaussian distribu-

tion. The proposal distribution is

an isotropic Gaussian whose σ =

0.2. Accepted steps in green, re-

jected steps in red. 150 candidate

samples, 43 rejected.
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11.2.1 Why is it working ? Markov chains

I idea: to generate samples from a Markov Chain whose
invariant distribution is p(z)

I why is it working ? under what circumstances will a Markov
chain converge to the desired distribution ?

I first order Markov chain: series of random variables
z(1), . . . , z(M) such that

p(z(m+1)|z(1), . . . , z(m)) = p(z(m+1)|z(m)) ∀m (11.37)

I Markov chain specified by p(z(0)) and the transition
probabilities

Tm(z(m), z(m+1)) ≡ p(z(m+1)|z(m))
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11.2.1 Why is it working ? Markov chains

I a Markov chain is called homogeneous is the transition probabilities
are the same for all m

I a distribution p∗(z) is said to be invariant w.r.t a Markov chain if
each transition leaves the distribution invariant

p∗(z) =
∑
z′

T (z′, z) p∗(z′) (11.39)

I a sufficient condition for ensuring p∗(z) to be invariant is to choose
the transitions to satisfy the property of detailed balance defined by

p∗(z) T (z, z′) = T (z′, z) p∗(z′) (11.40)

I a Markov chain that respect the detailed balance is said to be
reversible

I a Markov chain is said ergodic if it converges to the invariant
distribution irrespective of the choice of the initial distribution
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11.2.1 Why is it working ? Markov chains

I goal: to generate a set of samples from p(z)

I idea: to generate samples from a Markov Chain whose
invariant distribution is p(z)

I how: choose the transition probability T (z, z∗) to satisfy the
property of detailed balance for p(z)

I remark : T (z, z∗) can be a mixture distribution
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11.2.2 The Metropolis-Hasting algorithm

I generalization of the Metropolis algorithm.

I the proposal distribution q is no longer symetric

I knowing the current sample is z(τ), generate a candidate
sample z∗ from a proposal distribution q(z|z(τ)),

I accept it with probability:

A(z∗, z(τ)) = min

(
1,

p̃(z∗) q(z(τ)|z∗)
p̃(z(τ)) q(z∗|z(τ))

)
(11.44)

Elise Arnaud, Jakob Verbeek Bishop Chapter 11: Sampling Methods



11.2.2 The Metropolis-Hasting algorithm

I Transition probability of this chain: T (z, z′) = q(z′|z) A(z′, z)

I to proove that p(z) is the invariant distribution of the chain, It is
sufficient to proove the property of detailled balance

p(z) T (z, z′) = T (z′, z) p(z′)
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11.2.2 The Metropolis-Hasting algorithm

I Transition probability of this chain: T (z, z′) = q(z′|z) A(z′, z)

I to proove that p(z) is the invariant distribution of the chain, It is
sufficient to proove the property of detailled balance

p(z) T (z, z′) = T (z′, z) p(z′)

p(z) q(z′|z) A(z′, z)

= min
{
p(z) q(z′|z) ; p(z′) q(z|z′)

}
= min

{
p(z′) q(z|z′) ; p(z) q(z′|z)

}
= p(z′) q(z|z′) min

{
1;

p(z) q(z′|z)
p(z′) q(z|z′)

}
= p(z′) q(z|z′) A(z, z′) (11.45 modified)
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11.2.2 The Metropolis-Hasting algorithm

I common choice for q: Gaussian centered on the current state
I small variance → high rate of acceptation but slow exploration

of the state space + non independant samples
I large variance → high rate of rejection

σmax

σmin

ρ

Use of an isotropic Gaussian pro-

posal (blue circle), to sample from

a Gaussian distribution (red). The

scale ρ of the proposal should be

on the order of σmin, but the al-

gorithm may have low convergence

(low to explore the state space in

the other direction)
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Gibbs sampling

I Special case of the Metropolis-Hasting algorithm.

I objectif law : p(z) = p(z1, . . . zM )

I p(zi|z\i) known

I Each step of the Gibbs sampling procedure involve replacing the
value of one of the variables zi by a value drawn from the
distribution of that variable conditioned on the values of the
remaining variables p(zi|z\i)

I procedure repeated either by cycling through the variables in some
order, or by choosing the variable to be updated at each step from
some distribution
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Gibbs sampling - example

I The objectif law is p(z
(i)
1 , z

(i)
2 , z

(i)
3 )

I at step i, we have selected values z
(i)
1 , z

(i)
2 , z

(i)
3 .

I then we obtain z
(i+1)
1 , z

(i+1)
2 , z

(i+1)
3 with:

z
(i+1)
1 ∼ p(z1|z(i)

2 , z
(i)
3 ) (11.46)

z
(i+1)
2 ∼ p(z2|z(i+1)

1 , z
(i)
3 ) (11.47)

z
(i+1)
3 ∼ p(z3|z(i+1)

1 , z
(i+1)
2 ) (11.48)

I If, instead of drawing a sample from the conditional distribution, we
replace the variable by the maximum of the conditional distribution,
we obtain the iterated conditional modes (ICM) algorithm.
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Gibbs sampling

z1

z2

L

l

Illustration of Gibbs sampling,

by alternate updates of two

variables (blue steps) whose

distribution is a correlated

Gaussian (red). The condi-

tional distributions are Gaus-

sian (green curve).
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11.4: Slice Sampling (1/2)

I Problem of Metropolis algorithm (proposal q(z|z′) = q(z′|z))
I step size too small, slow convergence (random walk behavior)
I step size too large, high estimator variance (high rejection rate)

I Idea: adapt step size automatically to suitable value

I Technique: introduce variable u and sample (u, z) jointly.
I Ignoring u leads to the desired samples of p(z)

p̃(z)

z(τ) z

u

(a)

p̃(z)

z(τ) z

uzmin zmax

(b)
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11.4: Slice Sampling (2/2)

I Sample z and u uniformly from area under the distribution
I fix z, sample u uniform from [0, p̃(z)]
I fix u, sample z uniform from slice : {z : p̃(z) = u}

I How to sample z from the slice?! [Neal, 2003]

I Start with region of width w containing z(τ)

I If end point in slice, then extend region by w in that direction
I Sample z′ uniform from region
I If z′ in slice, then accept as z(τ+1),
I If not: make z′ new end point of the region, and resample z′

I Multivariate distributions: slice sampling within Gibbs sampler

p̃(z)

z(τ) z

u

(a)

p̃(z)

z(τ) z

uzmin zmax

(b)
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11.5 Hybrid Monte Carlo

I Problem of Metropolis algorithm is the step size trade-off.

I Hybrid Monte Carlo suitable in continuous state spaces
I able to make large jumps in state space
I low rejection rate
I based on dynamical systems
I need to evaluate gradient of log-prob. w.r.t. state z
I based on Hamiltonian Dynamics

I Goal is to sample from

p(z) =
1

Zp
exp(−E(z)) (11.54)

where E(z) is interpreted as potential energy of system in z

I Hamiltonian dynamical system over energy landscape E(z)
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11.5 Hybrid Monte Carlo: Hamiltonian Dynamics

I Evolution of state variable z = {zi} under continuous time τ

I Momentum variables correspond to rate of change of state

ri =
dzi

dτ
(11.53)

I Joint (z, r) space is called phase space

I Rate of change of momentum (acceleration, applied force):

dri

dτ
= −dE(z)

dzi
(11.55)

I Hamiltonian is constant under dynamical system evolution

H(z, r) = E(z) + K(r), with K(r) =
1

2

∑
i

r2
i
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11.5 Hybrid Monte Carlo: Distribution over Phase Space

I Let Hamiltonian define a distribution over phase space:

pH(z, r) =
1

ZH
exp(−H(z, r)) =

1

ZH
exp(−E(z)−K(r)).

I Sate z and momentum r are independently distributed.

I Hamiltonian dynamics leave this distribution invariant!
I If (z, r) ∼ pH , and evolve in time τ to (z?, r?),

then also (z?, r?) ∼ pH

I volume and H are constant under Hamiltonian dynamics

I Hamiltonian evolution is not an ergodic sampler of pH

I Resampling of r using pH(r|z) = pH(r)
I Gibbs sampling step
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11.5 Hybrid Monte Carlo

I Combination of Metropolis algorithm & Hamitonian Dynamics

I Markov chain that alternates
I stochastic update of the momentum variables r
I Hamiltonian dynamical updates with acceptance probability

min(1, exp{H(z, r)−H(z?, r?)}) (11.67)

to compensate for numerical errors: if H(z, r) 6= H(z?, r?)

I Direction of time is chosen randomly to have detailed balance

I Hybrid Monte Carlo generates independent samples faster.
I the use of gradient information causes this difference
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11.6 Estimating the Partition Function

I Most sampling algorithms require distribution up to the
constant partition function ZE :

pE(z) =
1

ZE
exp(−E(z)), (11.71)

ZE =
∑

z

exp(−E(z)).

I Partition function is useful for model comparison
I it expresses the probability of observed data in

p(hidden|observed) =
1

p(observed)
p(hidden, observed)

I For model comparison we need the ratio of partition functions.

I Often intractable to compute due to sum over many terms.
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11.6 Estimating the Partition Function: Strategy 1

I Use importance sampling from proposal pG with energy G(z)

ZE

ZG
=

∑
z exp(−E(z))∑
z exp(−G(z))

=

∑
z exp(−E(z) + G(z)) exp(−G(z))∑

z exp(−G(z))

= IEpG [exp(−E(z) + G(z))]

' 1

L

L∑
l=1

exp(−E(z(l)) + G(z(l))) (11.72)

I z(l) are sampled from pG

I If ZG is easy to compute we can estimate ZE

I For this approach to work pE needs to match pG well...
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11.6 Estimating the Partition Function: Strategy 1 cntd.

I Problem: how to come up with a pG that matches pE?

I Idea: we can use samples z(l) from pE from a Markov chain:

pG(z) =
1

L

L∑
l=1

T (z(l), z), (11.73)

where T gives the transition probabilities of the chain.

I We now define G(z) = − log pG(z), and use this in (11.72)
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11.6 Estimating the Partition Function: Chaining

I Partition function ratio estim. requires matching distributions

I Problematic when estimating absolute value of part. function
I Partition function ZG needs to be evaluated exactly
I Only simple, poor matching, distributions allow this...

I Use set of distributions between simple p1 and complex pM

ZM

Z1
=

Z2

Z1

Z3

Z2
· · · ZM

ZM−1
(11.74)

I The intermediate distributions interpolate from E1 to EM

Eα(z) = (1− α)E1(z) + αEM (z) (11.75)

I Now each term can be reasonably approximated
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