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Need for Approximate Inference

A central task in the application of probabilistic models is the evaluation
of the posterior distribution and the evaluation of expectations computed
with respect to this distribution

For many models the posterior distribution or expectations w.r.t this
distribution may be infeasible

Dimensionality is too high

Posterior distribution has a complex form for which the expectations
are not tractable

For continuous variables the integrations may not have closed form
analytical solutions or dimensionality may be too large for numerical
integration

For discrete variables summing over all possible configurations of
hidden variables may be exponentially large
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Two approximation schemes

Stochastic Approximation: Ex Markov chain Monte Carlo

Given infinite computational resource can produce exact results
However, sampling methods can be computationally demanding

Deterministic Approximation:

Based on analytical approximation of the posterior distribution; Ex it
factorizes in a particular way or has parametric form
However, they can never generate exact results
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Variational optimization

Originates from calculus of variations

Like y = f(x) is a mapping from x
f

7−→ y

A functional maps a function to a value; For ex:

H[p] =

∫

p(x) ln p(x)dx

Functional derivative: How the value of a functional changes w.r.t
infinitesimal changes to the input function

Many problems can be expressed as optimization problem of finding
the function that maximizes/minimizes the functional

Approximate solutions can be obtained by restricting the range of
function over which the optimization is performed
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Variational optimization as applied to inference

From our discussion on EM:

ln p(X) = L(q) + KL(q||p)

L(q) =

∫

q(Z) ln

{

p(X,Z)

q(Z)

}

dZ

KL(q||p) = −

∫

q(Z) ln

{

p(Z|X)

q(Z)

}

dZ

If we allow any possible q(Z) the maximum occurs when KL divergence is
zero or q(Z) = p(Z|X)

Assuming true posterior is intractable, consider a restricted family of
distributions q(Z) and seek a member of this family for which KL
divergence is minimized
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Factorized Distributions

Let Z be partitioned into disjoint groups Zi where i = 1 . . .M

Assume q factorizes as follows:

q(Z) =

M∏

i=1

qi(Zi)

There is no restriction on the functional form of qi(Zi)

This factorized form of Variational inference corresponds to Mean

Field Theory in physics

We make free form variational optimization of L(q) w.r.t all qi(Zi)
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Factorized distributions(II)

L(q) =

∫

qi ln p̃(X,Zi) −

∫

qj ln qjdZi

︸ ︷︷ ︸

negative KL divergence

+const

where
p̃(X,Zi) = Ei6=j [ln p(X,Z)] + const

and

Ei6=j [ln p(X,Z)] =

∫

ln p(X,Z)
∏

i6=j

qidZi

Maximize L(q) by keeping {qi6=j} fixed

This is same as minimizing KL divergence between p̃(X,Zi) and
qj(Zj)
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Optimal solution

ln q⋆
j (Zj) = Ei6=j [ln p(X,Z)] + const

or

q⋆
j (Zj) =

exp(Ei6=j [ln p(X,Z)])
∫

exp(Ei6=j [ln p(X,Z)])dZj

The optimum depends on the expectations of {qi6=j}

Initialize all factors appropriately

Cycle through the factors and replace each with revised estimate
evaluated using current estimates

Convergence is guaranteed because bound is convex w.r.t each of the
factors
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Properties of factorized approximations

Approximate Gaussian Distribution with factorized Gaussian

Consider,
p(z) = (N)(z|µ,Λ−1)

where z = (z1, z2) , µ =

(
µ1

µ2

)

and Λ =

(
Λ11 Λ12

Λ21 Λ22

)

Approximate using q(z) = q1(z1) q2(z2) The optimal solution

q⋆(z1) = N (z1|m1,Λ
−1
11 )

q⋆(z2) = N (z2|m2,Λ
−1
22 )

where m1 = µ1 −Λ−1
11 Λ12(E[z2]−µ2) and m2 = µ2 −Λ−1

22 Λ21(E[z1]−µ1)
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The mean is captured correctly, but the variance is underestimated in
the orthogonal direction

Considering reverse KL divergence that is

KL(p||q) = −

∫

p(Z)
[

M∑

i=1

ln qi(Zi)
]
dZ + const

Optimal solution q⋆
j (Zj) = p(Zj), that is the corresponding marginal

distribution of p(Z)
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More about divergence

KL(p||q) and KL(q||p) belong to the alpha family of divergences

Dα(p||q) =
4

1 − α2

(

1 −

∫

p(x)(1+α)/2q(x)(1−α)/2dx

)

where −∞ < α < ∞

if α ≤ −1 , q(x) will underestimate p(x) −→ KL(q||p)

if α ≥ −1 , q(x) will overestimate p(x) −→ KL(p||q)

if α = 0 we obtain symmetric divergence measure related to Hellinger

distance
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Univariate Gaussian Example

Goal: To infer posterior distribution for mean µ and precision τ given
data set D = {x1, . . . , xN}

Likelihood function

p(D|µ, τ) =
( τ

2π

)N/2
exp

{

−
τ

2

N∑

n=1

(xn − µ)2

}

Prior
p(µ|τ) = N

(
µ|µ0, (λ0τ)−1

)

and

p(τ) =
1

Γ(a0)
ba0

0 τa0−1e−b0τ −→ Gam(τ |a0, b0)

Approximate
q(µ, τ) = qµ(µ) qτ (τ)

Florence Forbes, Fabio Cuzzolin and Ramya Narasimha ()C.M. Bishop’s PRML: Chapter 10; Approximate Inference 20 March 2008 13 / 23



�

�

(a)

−1 0 1
0

1

2

�

�

(b)

−1 0 1
0

1

2

�

�

(c)

−1 0 1
0

1

2

�

�

(d)

−1 0 1
0

1

2

Optimal solution for mean:

q⋆
µ(µ) = N (µ|µN , λ−1

N )

where µN = λ0µ0+Nx
λ0+N and

λN = (λ0 + N)E[τ ]

Optimal solution for precision:

q⋆
τ (τ) = Gam(τ |aN , bN )

where aN = a0 + N
2 and

bN = b0 + (1/2)Eµ

[
N∑

n=1

(xn − µ)2 + λ0(µ − µ0)
2

]
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The explicit solution can be found using simultaneous equations for
the optimal factors qµ and qτ

Non-informative priors µ0 = a0 = b0 = λ0 = 0 and
E[τ ] = aN/bN −→ mean of gamma distribution

The first and second order moments of qµ(µ):

E[µ] = x

and

E[µ2] = x2 +
1

NE[τ ]

Solving for E[τ ]:

1

E[τ ]
=

1

N − 1

N∑

n=1

(xn − x)2
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Model Comparison

Prior probabilities on the models be p(m)

Goal: determine p(m|X) where X is the observed data

Approximate q(Z,m) = q(Z|m)q(m)

ln p(X) = Lm −
∑

m

∑

Z

q(Z|m)q(m) ln

{

p(Z,m|X)

q(Z|m)q(m)

where Lm is the lower bound

Maximizing Lm w.r.t q(m) we get q(m) ∝ p(m) exp{L}

Maximizing w.r.t q(Z|m) we find solutions for different m are coupled
due to the conditioning

Thus, optimize each q(Z|m) individually and subsequently find q(m)

normalized q(m) can be then used for model selection
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Variational mixture of Gaussian

xn

zn

N

π

µ

Λ

Observation: X ,Latent variable: Z comprising a 1-of-K binary vector with
elements znk for k = 1, . . . ,K

p(Z|π) =

N∏

n=1

K∏

k=1

πznk

p(X|Z, µ,Λ) =
N∏

n=1

K∏

k=1

N (x|µk,Λ
−1
k )znk

p(π) = Dir(π|α0)

p(µ,Λ) =
K∏

k=1

N (µk|m0, (β0Λk)
−1)W(Λk|W0, ν0)
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Variational distribution

p(X,Z, π, µ,Λ) = p(X|Z,µ,Λ)p(Z|π)p(µ,Λ)

Approximate
q(Z, π, µ,Λ) = q(Z)q(π,µ,Λ)

Optimal Solutions (I)

ln q⋆(Z) = Eπ[ln p(Z|π)] + Eµ,Λ[ln p(X|Z,µ,Λ)]

ln q⋆(Z) =

N∑

n=1

K∑

k=1

znk ln ρnk + const

q⋆(Z) =
N∏

n=1

K∏

k=1

rznk

nk

rnk are normalized ρnk values

Can also be seen as responsibilities as in case of EM
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Optimal solution (II)

ln q⋆(π) = Dir(π|α)

where α has components αk = α0 + Nk

ln q⋆(µ,Λ) = N (µk|mk, (βkΛk)
−1)W(Λk|Wk, νk)

where βk,mk,W
−1
k , νk are updated using data and initial solutions

Remember that the responsibilities rnk need the above parameters for
updation, we can thus optimize the variational posterior distribution
through cycling analogous to EM procedure

Florence Forbes, Fabio Cuzzolin and Ramya Narasimha ()C.M. Bishop’s PRML: Chapter 10; Approximate Inference 20 March 2008 19 / 23



Variational equivalent of EM

E step: Use the current distribution of parameters to evaluate the
responsibilities

M step: Fix responsibilities and use it to recompute the variational
distribution over parameters

0 15 60 120

As N → ∞ Bayesian treatment converges to Maximum likelihood EM
algorithm
Singularities that arise in ML are absent in Bayesian treatment;
removed by the introduction of prior
No over-fitting; determines the number of components
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More about variational approximation I

Variational lower bound

Useful to test convergence
To check on the correctness of both mathematical expressions and
implementation

Predictive density P (x̂|X),for a new value x̂ with corresponding
latent variable ẑ

Depends on the posterior distribution of parameters
As the posterior distribution is intractable the variational approximation
can be used to obtain an approximate predictive density
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Number of components

For a given mixture model of K components, each parameter setting
is a member of a family of K! equivalent settings
This is not a problem when modeling given the number of components
However, for model comparison an approximate solution is to add
lnK!

�

������� �	�

1 2 3 4 5 6

The Bayesian inference makes automatic trade off between model
complexity and fitting the data
Starting with relative large value of K and components with
insufficient contribution are pruned out : the mixing coefficient is
driven to zero
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Induced factorizations

Induced factorization arises from an interaction between the factorization
assumption in variational posterior and the conditional independence
properties of the true posterior

For ex: Let A,B,C be disjoint groups of latent variables

Factorization assumption q(A,B,C) = q(A,B)q(C)

The optimal solution ln q⋆(A,B) = EC[ln p(A,B|X,C)] + const

We need to determine if q⋆(A,B) = q⋆(A)q⋆(B): This is possible iff
A⊥B|X,C

This can also determined from the graph using d-separation

xn

zn

N

π

µ

Λ
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Variational lower bound on the logistic sigmoid function:



  

Hypothesis for the prior p(w): Gaussian with parameters         and      

considered as fixed

The rhs of this inequality becomes 

�� )�



  

Quantity of interest: exact posterior distribution, requires normalisation of the lhs in 
(10.152) usually intractable

Work instead with the rhs (10.155): a quadratic function of w which is a lower bound of 

The corresponding variational approximation to the posterior is obtained by normalizing this 

lower bound which leads to a Gaussian distribution:
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Optimizing the variational parameters

Determine the variational parameters           by maximizing the lower bound on the 
marginal likelihood

Two approaches:

7) View w as a latent variable and use the EM algorithm

8) Compute and maximize          directly, using the fact that p(w) is Gaussian and        

              is a quadratic function of w.

1) and 2) lead to the same re-estimation equations
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Illustration



  

Inference of hyperparameters

Allow the hyperparameters in the prior to be inferred from the data set

We consider 

An intractable integration over w and       �combine local and global variational approaches

A simple isotropic Gaussian prior of the form

.



  

1) Global approach: consider a variational distribution                  and apply the 

standard decomposition

2) But the lower bound           is intractable so apply the local approach as 

before to get a lower bound on          and on ln p(t):

3)Then assume that q factorizes and use the standard result

/∗%+.,
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It follows (quadratic function of w):



  

The variational parameters are obtained by maximizing             

similarly as before:
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Expectation Propagation (EP)
An alternative form of deterministic approximate inference (Minka 2001) based on the 

reverse KL divergence KL(p ||q) (instead of KL(q||p)) where p is the complexe 

distribution

When q is in the exponential family 

It is minimized when 

1 �∗�22/, 3
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Sometimes called Moment matching, eg. If q(z) is assumed Gaussian 

KL(p||q) is minimized by setting respectively                 to the mean and 

covariance of p.

Use this property for approximate inference. Assume the joint distribution of data and 

hidden variables and parameters is of the form:

Example: 

Quantities of interest are                (prediction) and           (model comparison)

4 ∗(25 + 6 ,

5 �� 6
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Expectation propagation starts by assuming that:

Where each factor            comes from the exponential family

Ideally the factors are those minimizing KL(p||q): usually intractable

12) Minimize the KL divergences between each pair of factors 

independently but the product is usually a poor approximation

2)        Expectation Propagation: optimize each factor in turn using the current values for 
the remaining factors

Advantages and limits of EP: 

Out-performs in Logistic type models but bad for mixtures due to multi-modality

No guarantee of convergence but results in the exponential family case
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Example: the clutter problem



  

The clutter problem

The observed values come from a mixture of Gaussians of the form:

To apply EP, we first identify 

We select an approximating distribution from the exponential family, here we choose:

It follows that the factor approximations take the form of exponentials of quadratic functions:
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(shorthand notation)



  

These factors are initialized to unity, ie. q is initialized to the prior. Then only the factors 
are iteratively refined one at a time.

Removing  the current estimate           from          by division

Mean and variance designated the parameters in the factor definition, variance can be 
negative… 
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Expectation Propagation on graphs
The factors are not function of all variables. If the approximating distribution is fully 

factorized, EP reduces to Loopy Belief Propagation

A simple example



  



  

Suppose, all the factors are initialized and we chose to refine factor

We now find                    by minimizing                        which leads to                 as the 

product of the marginals of       which are given by

/��%∗,
9�

/��%∗,1 �∗9�22/��%,

Recall that (10.17) minimizing the reverse KL when q factorizes, leads to an 
optimal solution q where the factors are the marginals of p



  

When updating                     factors                         do not change. The ones that change 

are the ones that involve the variables in 
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Standard belief propagation
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This EP slightly differs from standard BP in that messages are passed in 

both direction at the same time � modified EP: update just one of the 

factor at a time



  
This is the sum-product rule  seen in chapter 8



  

The sum-product BP arises as a special case of EP when a fully factorized 
approximating distributions is used. 

EP can be seen as a way to generalized this: group factors and update them together, 
use partially disconnected graph.

Q: how to choose the best grouping and disconnection?

Summary: EP and Variational message passing correspond to the optimization of two 
different KL divergences

Minka 2005 gives a more general point of view using the family of alpha-divergences 

that includes both KL and reverse KL, but also other divergence like Hellinger 

distance, Chi2-distance…

He shows that by choosing to optimize one or the other of these divergences, you can 
derive a broad range of message passing algorithms including Variational 

message passing, Loopy BP, EP, Tree-Reweighted BP, Fractional BP, power EP.


