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Need for Approximate Inference

A central task in the application of probabilistic models is the evaluation
of the posterior distribution and the evaluation of expectations computed
with respect to this distribution

For many models the posterior distribution or expectations w.r.t this
distribution may be infeasible

@ Dimensionality is too high

@ Posterior distribution has a complex form for which the expectations
are not tractable

@ For continuous variables the integrations may not have closed form
analytical solutions or dimensionality may be too large for numerical
integration

@ For discrete variables summing over all possible configurations of
hidden variables may be exponentially large
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Two approximation schemes

@ Stochastic Approximation: Ex Markov chain Monte Carlo

e Given infinite computational resource can produce exact results
e However, sampling methods can be computationally demanding

@ Deterministic Approximation:

o Based on analytical approximation of the posterior distribution; Ex it
factorizes in a particular way or has parametric form
o However, they can never generate exact results

Florence Forbes, Fabio Cuzzolin and Ramya NC.M. Bishop’s PRML: Chapter 10; Approximz 20 March 2008 4/23



Variational optimization

@ Originates from calculus of variations

o Like y = f(x) is a mapping from x NN Yy

@ A functional maps a function to a value; For ex:

Hlp| = / p(z) Inp(z)da

@ Functional derivative: How the value of a functional changes w.r.t
infinitesimal changes to the input function

@ Many problems can be expressed as optimization problem of finding
the function that maximizes/minimizes the functional

@ Approximate solutions can be obtained by restricting the range of
function over which the optimization is performed
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Variational optimization as applied to inference

From our discussion on EM:

Inp(X) = L(q) + K L(q||p)

£@) = [ a2 {pf&? }dz

_ L J P(ZX)
KL(qllp) = /Q(Z)l { () }dZ

If we allow any possible ¢(Z) the maximum occurs when KL divergence is
zero or q(Z) = p(Z|X)

Assuming true posterior is intractable, consider a restricted family of
distributions ¢(Z) and seek a member of this family for which KL
divergence is minimized
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Factorized Distributions

Let Z be partitioned into disjoint groups Z; where i =1... M

Assume ¢ factorizes as follows:

There is no restriction on the functional form of ¢;(Z;)

This factorized form of Variational inference corresponds to Mean
Field Theory in physics

@ We make free form variational optimization of £(q) w.r.t all ¢;(Z;)
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Factorized distributions(Il)

L(q) = /Qi Inp(X,Z;) - /Qj In ¢;dZ; +const

negative KL divergence

where
P(X,Z;) = Eiz;[Inp(X, Z)] + const

and

Eizjllnp(X,Z)] = / np(X,Z) [ [ a:dz;
i#]

e Maximize L(q) by keeping {g;;} fixed

@ This is same as minimizing KL divergence between p(X,Z;) and
9;(Zj)
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Optimal solution

In g5 (Z;) = Eiz;[Inp(X, Z)] + const
or

_ exp(Eigj[Inp(X, Z)])
J exp(Eiyj[lnp(X, Z)])dZ;

4;(Z;)

The optimum depends on the expectations of {g;;}

Initialize all factors appropriately

Cycle through the factors and replace each with revised estimate
evaluated using current estimates

Convergence is guaranteed because bound is convex w.r.t each of the
factors
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Properties of factorized approximations

Approximate Gaussian Distribution with factorized Gaussian

Consider,
p(z) = (N)(z|p, A7)

1 A A
where z = (z1,29) , 4 = and A =
(z1,22) e (Mz) <A21 A22>
Approximate using ¢(z) = q1(z1) g2(z2) The optimal solution
(1) = N(z1|ma1, A

q"(22) = N(z2ma, Asy)
where m1 = u1 — Al_ll Alg(]E[ZQ] — Mg) and mo = U2 — A2_21 A21 (E[zl] — ,ul)
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@ The mean is captured correctly, but the variance is underestimated in
the orthogonal direction

@ Considering reverse KL divergence that is

L(pllq) = —/ Zlnqz dZ 4+ const

e Optimal solution ¢;(Z;) = p(Z;), that is the corresponding marginal
distribution of p(Z)
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More about divergence

e K L(p||lq) and K L(q||p) belong to the alpha family of divergences

4 ) -
Da(plla) = 17— (1 —~ /p(q;)(1+ 2g(2)(1 )/2dx>

where —oo0 < o < 0
e if a < —1, g(x) will underestimate p(xz) — K L(q||p)
o if a>—1, g(x) will overestimate p(xz) — K L(p||q)

o if & = 0 we obtain symmetric divergence measure related to Hellinger
distance
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Univariate Gaussian Example

@ Goal: To infer posterior distribution for mean p and precision 7 given
data set D = {z1,...,zN}

@ Likelihood function

D) = () esp T3 o
p(Plu,7) = (5-)  exp 7 2 T — 1
@ Prior
p(ulr) = N (plpo, (Ao7) ™)
and )
p(T) = F(ao)bg%ao_le_bm — Gam(7|ao, bo)

o Approximate
(1, 7) = qu(p) 4= (7)
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1 -1 0 " 11 0 " 1

" Optimal solution for mean:
q (1) = N (ulpn, Ay
__ Xopo+Nz

where puy = S vem o and

Av = (Ao + N)E[7] ]

@ Optimal solution for precision:
¢:(1) = Gam(7|an, by)
where ay = ag + % and

N
by =bo + (1/2)E, Z(wn — )% + o1 — po)®

n=1
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@ The explicit solution can be found using simultaneous equations for
the optimal factors ¢, and ¢,

@ Non-informative priors g = ag = bg = Ao = 0 and
E[r] = an /by — mean of gamma distribution

@ The first and second order moments of ¢,,(u):

and

e Solving for E[7]:

Florence Forbes, Fabio Cuzzolin and Ramya NC.M. Bishop’s PRML: Chapter 10; Approximz 20 March 2008



Model Comparison

@ Prior probabilities on the models be p(m)
o Goal: determine p(m|X) where X is the observed data
e Approximate ¢(Z, m) = q(Z|m)q(m)

p(Z, m|X)
lnp(X) = L = 2D a(Zlm)al {q<zwm>q<m>

where L, is the lower bound
e Maximizing L,, w.r.t g(m) we get g(m) o p(m) exp{L}

e Maximizing w.r.t ¢(Z|m) we find solutions for different m are coupled
due to the conditioning

@ Thus, optimize each ¢(Z|m) individually and subsequently find g(m)

@ normalized ¢(m) can be then used for model selection
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Variational mixture of Gaussian

Observation: X ,Latent variable: Z comprising a 1-of-K binary vector with
elements z,, for k=1,... K

N K
p(zfx) = [T [ =

n

p(X|Z, p, A HH (x|, A )P

n=1k=1
p(m) = Dir(m|ap)

Il
—_
=
Il
—

K
A) = T M (pelmo, (BoAr) ™ )W(Ak[Wo, 10)
k=1
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Variational distribution

p(X,Z,m, p, A) = p(X|Z, p, A)p(Z|7)p(pe, A)

Approximate
a(Z,m, p, A) = q(Z)q(m, p, A)
Optimal Solutions (1)

Ing*(z) = En[lnp(ZIW)HEuA[lnP(X!Z p, A)]

N
Ing*(Z) = Z Z Znk IN ppi + const

vk
¢"(2) = HHT’Z"’“

rnk are normalized p,,; values

Can also be seen as responsibilities as in case of EM
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Optimal solution (Il)

In ¢* () = Dir(r|a)

where « has components o = ag + N

Ing*(p, A) = N (pe|mu, (Brdi) ™ YW AR Wi, vi)
where ﬂk,mk,Wk_l, v, are updated using data and initial solutions

Remember that the responsibilities 7, need the above parameters for
updation, we can thus optimize the variational posterior distribution
through cycling analogous to EM procedure
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Variational equivalent of EM

@ E step: Use the current distribution of parameters to evaluate the
responsibilities

@ M step: Fix responsibilities and use it to recompute the variational
distribution over parameters

@ As N — oo Bayesian treatment converges to Maximum likelihood EM
algorithm

@ Singularities that arise in ML are absent in Bayesian treatment;
removed by the introduction of prior
@ No over-fitting; determines the number of components
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More about variational approximation |

@ Variational lower bound

o Useful to test convergence

e To check on the correctness of both mathematical expressions and
implementation

@ Predictive density P(z|X),for a new value Z with corresponding
latent variable 2

e Depends on the posterior distribution of parameters

o As the posterior distribution is intractable the variational approximation
can be used to obtain an approximate predictive density
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Number of components

@ For a given mixture model of K components, each parameter setting
is a member of a family of K! equivalent settings
@ This is not a problem when modeling given the number of components
@ However, for model comparison an approximate solution is to add
In K!

-
WDK) it
+

@ The Bayesian inference makes automatic trade off between model
complexity and fitting the data

@ Starting with relative large value of K and components with
insufficient contribution are pruned out : the mixing coefficient is
driven to zero
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Induced factorizations

Induced factorization arises from an interaction between the factorization
assumption in variational posterior and the conditional independence
properties of the true posterior

For ex: Let A, B, C be disjoint groups of latent variables
Factorization assumption ¢(A, B, C) = ¢(A,B)q(C)

The optimal solution In¢*(A,B) = Ec[lnp(A, B|X, C)] + const
We need to determine if ¢*(A,B) = ¢*(A)g*(B): This is possible iff
A1BIX,C

This can also determined from the graph using d-separation
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Chap. 10: Approximate inference
Part 2

Variational logistic regression
Expectation Propagation

F. Forbes



Local variational models

* Global methods: approximation to the full posterior

* Local methods: approximation to individual or
groups of variables

—> A practical example: Logistic regression



Variational Logistic Regression

Variational framework: Maximize a lower bound on the marginal
likelihood

For the Bayesian logistic regression model, the marginal likelihood takes
the form

N
p(t) = /p(ﬂw}p(w] dw = f [H P(fww)] p(w) dw. (10.147)

fi=1

We first note that the conditional distribution for £ can be written as

p(tlw) = of(a)' {1l —o(a)}

{ ( ) 1 -1
= _— = ——
( 1+ (—2_““> ( 1+ (—1_“’>

e @

= ff*’*“m = eo(—a) (10.148)

where a = w'o.



Variational lower bound on the logistic sigmoid function:

o(z) = o(€) exp {{z = 82— XE) (27 — E""]} (10.149)
where
A§) = _ [af{kf} — l} (10.150)
. — 2{_‘- - 2 ™ i

We can therefore write

p(tiw) = e*o(—a) = e*a()exp{—(a+ €)/2 — AM&)(e® — %)} . (10.151)

— bound on the joint distribution of t and w
pit,w) = p(tjw)p(w) = h(w,&)p(w) (10.152)
where £ denotes the set {Eﬂ} of variational parameters, and

N

hiw,&) = [] o) exp{w  dptn — (W e, +&:)/2

n=1

— X&) (W, ]2 — )} (10.153)



— a lower bound on the log of the joint distribution
of t and w of the form

In {p(tjw)p(w)} > lnp(w TZ{lm n) + W 0,1

n=1

— (W', +Ea) /2= ME) (W o] - €D} (10.154)

Hypothesis for the prior p(w): Gaussian with parameters Mo and So

considered as fixed

The rhs of this inequality becomes

1 S
—E(W — IHH}TS“ I{W — ITL;}}

N
—I—Z {wTdJn(tﬂ_ — 1f2) — A{E.”]IWT{-:ﬁ:,”qu}w} + const. (10.155)

n=1



Quantity of interest: exact posterior distribution, requires normalisation of the Ihs in
(10.152) usually intractable

Work instead with the rhs (10.155): a quadratic function of w which is a lower bound of p(W; t)

The corresponding variational approximation to the posterior is obtained by normalizing this
lower bound which leads to a Gaussian distribution:

a Gaussian variational posterior of the form

q(w) = N(wimy,Sy) (10.156)
where
N
Wy = B (SJ‘IH[} + ) (tn - 1/2}(,5”_) (10.157)
fi=1
N
Sy' = Sit+2) A&n)d,. b, (10.158)
=1

As with the Laplace framework, we have again obtained a Gaussian approximation
to the posterior distribution. However, the additional flexibility provided by the vari-
ational parameters {&,, } leads to improved accuracy in the approximation (Jaakkola
and Jordan, 2000).



Optimizing the variational parameters

Determine the variational parametersf»ng by maximizing the lower bound on the
marginal likelihood

To do this, we substitute the inequality (10.152) back into the marginal likeli-

hood to give

Inp(t) = lllfp(ﬂw]p{w) dw = in/h(w,ﬁ)p{w}dw = L(E). (10.159)

Two approaches:
7) View w as a latent variable and use the EM algorithm

8) Compute and maximize L (»)directly, using the fact that p(w) is Gaussian and

log p(w; ») is a quadratic function of w.
: 1 SN S o
LUEF = 3 In ||S?|| — EHIE{JSE’LHIN + EIH{l] S, 'm,
< )
N 1
+)° {IIW(EHJ ~ ke A(fﬁ,)fi} . (10.164)

=1

1) and 2) lead to the same re-estimation equations
(gnew}‘ﬁ — Q‘L‘-];HE’WWF'Q{)H - d):! (S_-"'u" = Il'l,g'ﬂ.-'m:{;r) flf)n

T

(10.163)



lllustration
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Figure 10.13 lllustration of the Bayesian approach to logistic regression for a simple linearly separable data
set. The plot on the left shows the predictive distribution obtained using variational inference. We see that
the decision boundary lies roughly mid way between the clusters of data points, and that the contours of the
predictive distribution splay out away from the data reflecting the greater uncertainty in the classification of such
regions. The plot on the right shows the decision boundaries corresponding to five samples of the parameter
vector w drawn from the posterior distribution p(w |t).



Inference of hyperparameters

Allow the hyperparameters in the prior to be inferred from the data set

We consider A simple isotropic Gaussian prior of the form

p(wla) = N(w|0,a'1). (10.165)
we consider a conjugate hyperprior over ¢ given by a gamma
distribution

pla) = Gam/(alag, by) (10.166)

= The marginal likelihood for this model now takes the form

p(t) = f/ plw,a. t)dwdo (10.167)
where the joint distribution 1s given by

p(w.a.t) = p(tjw)p(w|a)p(a). (10.168)

An intractable integration over w and ® —>combine local and global variational approaches



1) Global approach: consider a variational distribution q(w;®) ang apply the
standard decomposition

Inp(t) = L(q) + KL{q||p) (10.169)

2) But the lower bound L(Q) is intractable so apply the local approach as
before to get a lower bound on L () and on In p(t):

lnp(t) > L(q) > L(q.€)
// (w, @) ln { il .,E}p{wlr.x}p(uj} dwdea. (10.172)
q(w, )

3)Then assume that g factorizes and use the standard result
glw,a) = g(w)gla)
Ing(w) = E,[In{h(w.&)p(wl|a)p(a)}] + const
= Inh(w.&)+ E, [Inp(w|a)] + const.

Ing(er) = Ew [Inp(wla)] + In p(e) + const.



It follows (quadratic function of w):

a(w) = N(w|py, En) (10.174)
where we have defined
N
B = ) (6 —1/2), (10.175)
=1
N
SV = Elal+2) A&, o (10.176)
n=1
M A o
mgla) = —Ina — El& [w W} + (ag — 1) In @ — byev + const.

We recognize this as the log of a gamma distribution, and so we obtain

g(a) = Gam(alay,by) = ﬁmﬁ”&“”_lﬁ_b"” (10.177)

where
ay = ag+ % (10.178)
by = by+ %ﬁ.w (wiw]. (10.179)



The variational parameters are obtained by maximizing £(0; »)
similarly as before:

maximizing the lower bound £(g. £). Omitting terms that are independent of £, and
integrating over «, we have

EI::’;, £ = /q(w] Inh(w, &) dw + const. (10.180)

leading to re-estimation equations of the form

( :fjﬂw-}z = 'i’:f (EN -+ f—t_-"u'f-"*’_-{") ‘i’ﬂ-' (10.181)
Ela] = - (10.182)
b

E[w'w] = Zn+pypy. (10.183)



Expectation Propagation (EP)

An alternative form of deterministic approximate inference (Minka 2001) based on the
reverse KL divergence KL(p ||q) (instead of KL(q||p)) where p is the complexe
distribution

R R
KL@jjp) = a(z)Inf32gdz  KL(pjja) = p(z)Inf2Zgdz

When q is in the exponential family
q(z) = h(z)g(n)exp {n u(z)} . (10.184)

As a function of 7, the Kullback-Leibler divergence then becomes

KL(pllg) = —Ing(n) — nT[Ep{Z}[u[zj] + const (10.185)
It is minimized when
—Ving(n) = Eyq[ulz)]. (10.186)

f;lz}[ 5}]: p[z][u(z)]- (10.187)



Sometimes called Moment matching, eg. If (z) is assumed Gaussian N (zj*;§)

KL(p||q) is minimized by setting respectively * @nd § to the mean and
covariance of p.

Use this property for approximate inference. Assume the joint distribution of data and
hidden variables and parameters is of the form:

p(D,6) =] £:(6). (10.188)

Example:  Fn() = P(XnJl) @NA To(H) = Pl

Quantities of interest are p(l-’-jD) (prediction) and p(D)(modeI comparison)

given by

, 1
p(0|D) = p(—mlj[ﬁ(ﬂ} (10.189)

and the model evidence 1s given by

p(D) Z/Hﬁ{ﬂ}{iﬁ‘. (10.190)



Expectation propagation starts by assuming that:
Expectation propagation 18 based on an approximation to the posterior distribu-
tion which is also given by a product of factors

q(0) = %HE{H} (10.191)

Where each factor ﬁ(“) comes from the exponential family
|deally the factors are those minimizing KL(p||g): usually intractable
12)  Minimize the KL divergences between each pair of factors f(l-l); fT(U)

independently but the product is usually a poor approximation

2) Expectation Propagation: optimize each factor in turn using the current values for
the remaining factors

Advantages and limits of EP:

Out-performs in Logistic type models but bad for mixtures due to multi-modality
No guarantee of convergence but results in the exponential family case



(c)

Figure 10.3 Another comparison of the two alternative forms for the Kullback-Leibler divergence. (a) The blue
contours show a bimodal distribution p(Z ) given by a mixture of two Gaussians, and the red contours correspond
to the single Gaussian distribution ¢(Z) that best approximates p(Z) in the sense of minimizing the Kullback-
Leibler divergence KL(p||q). (b) As in (a) but now the red contours correspond to a Gaussian distribution g(Z)

found by numerical minimization of the Kullback-Leibler divergence KL(g|/p). (c) As in (b) but showing a different
local minimum of the Kullback-Leibler divergence.



Expectation Propagation

We are given a joint distribution over observed data D and stochastic variables
6 in the form of a product of factors

p(D.0)=]] r:(0) (10.202)

and we wish to approximate the posterior distribution p(@|D) by a distribution
of the form

1 253
a(8) = - H fi(8). (10.203)
We also wish to approximate the model evidence p(D).

1. Initialize all of the approximating factors }1-(9).

2. Initialize the posterior approximation by setting

q(0) x || f.(0). (10.204)

3. Until convergence:

(a) Choose a factor }j{ﬂ) to refine.

(b) Remove ?_,-{6') from the posterior by division

- {9) .
7,(6)

R

g\ (8) =

(10.205)



(c) Evaluate the new posterior by setting the sufficient statistics (moments)
of ¢"**(8) equal to those of ¢\1(8) f;(8), including evaluation of the
normalization constant

Z; = / ¢\ (6)f;(0)de. (10.206)

(d) Evaluate and store the new factor

,..,. . .qllf_'\-.r{g) .
fi(0) = Z; o) (10.207)

4. Evaluate the approximation to the model evidence

p(p)gfﬂ}}(ﬂ)da. (10.208)



Example: the clutter problem

Illustration of the clutter problem
for a data space dimensionality of
D = 1. Training data points, de-
noted by the crosses, are drawn
from a mixture of two Gaussians
with components shown in red
and green. The goal is to infer the
mean of the green Gaussian from
the observed data.
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The clutter problem

The observed values come from a mixture of Gaussians of the form:

p(x|0) = (1 — w)N(x]0,1) + wN(x|0, al) (10.209)

where w is the proportion of background clutter and is assumed to be known. The
prior over @ is taken to be Gaussian

p(8) = N(6]0. bI) (10.210)
The joint distribution of /N observations D = {x;,..., Xy } and @ is given by
N
p(D,8) =p(0) | [ »(x.10) (10.211)
=1

To apply EP, we first identify ~ To(H) = p(u) and f,, (1) = p(Xnju)
We select an approximating distribution from the exponential family, here we choose:

q(@8) = N(8|m, vI). (10.212)
It follows that the factor approximations take the form of exponentials of quadratic functions:

(shorthand notation)  fu(8) = s, N (8|m,,, v,,I) (10.213)



These factors are initialized to unity, ie. q is initialized to the prior. Then only the factors
are iteratively refined one at a time.

Removing the current estimate Tn (M) from a(l) by division

to give ¢'\" (@), which has mean and inverse variance given by

Il_l"'-.l'fl — m -+ {_1_\"'- n f__-; I {Il'l — My ‘1|| [ 1(:'214]

(") = vt =l (10.215)

i

Mean and variance designated the parameters in the factor definition, variance can be
negative...



Next we evaluate the normalization constant £, using (10.206) to give
Zn = (1 = )N (xpm"™, (0" + DI) + wN (x,|0, al). (10.216)

Similarly, we compute the mean and variance of ¢"“™ (@) by finding the mean and
variance of ¢'\"(8) f,,(8) to give

ai T
— \n W B

m = m'"+ pnm{xn m'") (10.217)

hny2 ap AN 2 a2

\n (” ) (f-' ) [Ixn m [i
v = vV —pp———+ pall — p . ‘ 10.218
Pn \n 1 ;l'n{: Fﬂ,) D{e”"aﬂ? ¥ 1)2 ( )

where the quantity

g =1 — %M (x,]0, al) (10.219)

T
has a simple interpretation as the probability of the point x,, not being clutter. Then
we use (10.207) to compute the refined factor f,, (@) whose parameters are given by

vt = (") = (u\) ! (10.220)

m, = m'"+ (v, +2"")@") H{m" — m\") (10.221)
Zﬂ

sy = (10.222)

(270n) PPN (g m V" (v + 0 V)T



Finally, we use (10.208) to
evaluate the approximation to the model evidence, given by

N
p(D) ~ (2mv™™)P/2 exp(B/2) H {$n(2m0,) P72} (10.223)
=1
where
(ml'lt.'!‘r';) ['Iﬂll{:“r !\Ir Il-_l_ Il.l
B= = i B (10.224)
U —~ Uy
A
-5 0 5 g 10 -5 0 10

Figure 10.16 Examples of the approximation of specific factors for a one-dimensional version of the clutter
problem, showing f..(¢) in blue, f,(#) in red, and q‘-”(ﬁ} in green. Notice that the current form for ¢'™ (8) controls
the range of # over which f,(8) will be a good approximation to f,, (8).



Expectation Propagation on graphs

The factors are not function of all variables. If the approximating distribution is fully
factorized, EP reduces to Loopy Belief Propagation

A simple example

I Ia €
=2
O—a—(O—a—
frr fb
| BE
Q
p(x) = falwyyms) folas; 3s) Folmas@a): (10.225)

We seek an approximation ¢(x) that has the same factorization, so that

(%) o fal®1,T2) fo(xa, 23) fo(@2, z4). (10.226)



we restrict attention to approximations in which the factors themselves factorize
with respect to the individual variables so that

*?(3{) X }‘al (iﬂl )}rﬂ (fi‘J:z ) }b:a {fﬂz)?h:a {1?;1)}& (372}}:::4 (llf!q) (10.227)

which corresponds to the factor graph shown on the right in Figure 10.18.
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Suppose, all the factors are initialized and we chose to refine factor

folxa, x3) = fra(xa) foa(xs). We first remove this factor from the approximating
distribution to give

s e

q‘\"b(x} = iuﬂl ( )}ﬁ_g (22) fea(T2) fea(y) (10.228)

and we then multiply this by the exact factor fi(x2, 23) to give

P(x) = ¢ 0 (x) fo (29, 23) = far(@1) faz(@s) for(22) foal(aa) fo (@2, @s).  (10.229)

we now find 9" (X) by minimizing K L (0}ja"®* )which leads to a"®¥(X) as the
product of the marginals of which are given by

Blz1) o farlz1) (10.230)
plas) o },-*2(:;'@)}{32{;1:2)2 folxs, x3) (10.231)
plxs) o Z{f{_,(.’ffg:,"I.';;}}ag(:ﬂg)ﬁfwﬂg(;i.’,'gj} (10.232)
Plxy) o foulzy) (10.233)

Recall that (10.17) minimizing the reverse KL when q factorizes, leads to an
optimal solution g where the factors are the marginals of p



When updating f5(X2; X3) tactors T2, @aNd T4 do not change. The ones that change

are the ones that involve the variables in fb

To obtain the refined factor ]bgjli.’f_fg,.'i’:;{;l =
Foo(i2) fus(5) we simply divide ¢"*™ (x) by ¢\°(x). which gives

foalza) Z.ﬂ}(x:z:l':;) (10.234)

fos(zs) o Z{fb(-’f-':hiif;ij}az(-f-'z}}r.-:z{-'l-“z}}- (10.235)



Standard belief propagatlon

O~a=0==0 O—a=0O=#=0
T. |
T l
> &

Figure 8.52 Flow of messages for the sum-product algorithm applied to the example graph in Figure 8.51. (a)
From the leaf nodes =; and =, towards the root node 5. (b) From the root node towards the leaf nodes.

gy @) = 1 (8.74)

Pomzs(@2) = Y fal1,22) (8.75)
-

Pp,—fl2y) = 1 (8.76)

Ptz (Ta) = Z fels, Tq) (8.77)
Ty

P‘.'I;Q—.*fh ('T'EJ - f-""fﬂ—ﬁlig I:I‘.E)ﬂ'ﬁ:—r:r:z {-’f-:z} (8?3)

H fy—aa (-T:H) - Z fh(-’i’?z- 17,‘%)11-3:9—-}';1 . (8.79)



Pes—py(Tz) = 1 (8.80)

ffozs(2) = Y folwa,as) (8.81)

Poay— . (T2) = pfy—we (Ta)of. oy (X2) (8.82)

ﬂj',,—u;-; (H"I} = Z fuIf""i'.'l""’r:}_’}“'.z;g—»f“{;rriﬁ} (833}
I

Pas—f, (X2) = pf e, (@2)fhf,—e, (X2) (8.84)

Hf.— x4 (r4) = Z felzs, Jf-L]ﬂ-m_,—.ff.'[-’f-'z}- (8.83)

In particular,

foa(x2) =) 1, x,(X2) (8.81)

fis(s) =) 11, x.(xs) (8.78) into (8.79)
22(x2) =) ey x,(X2)

folx) =) T x,(X2)

This EP slightly differs from standard BP in that messages are passed in
both direction at the same time - modified EP: update just one of the
factor at a time



Now let us consider a general factor graph corresponding to the distribution

p(8) =] f:(6:) (10.236)

where 8; represents the subset of variables associated with factor f;. We approximate
this using a fully factorized distribution of the form

0(0) < [T 1] Fir(0n) (10.237)
& E

where 6. corresponds to an individual variable node. Suppose that we wish to refine
the particular term Hfj,r_(ﬂ,g} keeping all other terms fixed. We first remove the term
fi{8;) from ¢g(@) to give

¢\ () o [ [ I Fir(0r) (10.238)
i#j k
and then multiply by the exact factor f;(8,). To determine the refined term ?j;(ﬁij.
we need only consider the functional dependence on #;, and so we simply find the
corresponding marginal of

g\ (0)f;(8;). (10.239)
— ) Y Fi0) ] 1] Fem(Om). (10.240)
B 21 €0 k mstl

This is the sum-product rule seen in chapter 8



The sum-product BP arises as a special case of EP when a fully factorized
approximating distributions is used.

EP can be seen as a way to generalized this: group factors and update them together,
use partially disconnected graph.

Q: how to choose the best grouping and disconnection?

Summary: EP and Variational message passing correspond to the optimization of two
different KL divergences

Minka 2005 gives a more general point of view using the family of alpha-divergences
that includes both KL and reverse KL, but also other divergence like Hellinger
distance, Chi2-distance...

He shows that by choosing to optimize one or the other of these divergences, you can
derive a broad range of message passing algorithms including Variational
message passing, Loopy BP, EP, Tree-Reweighted BP, Fractional BP, power EP.



