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Goals

Pattern Recognition: automatic discovery of regularities in data
and the use of these regularities to take actions —
classifying the data into different categories.
Example: handwritten recognition. Input: a vector
of pixel values. Output: A digit from 0 to 9.

Machine learning: a large set of input vectors x1,...,xy, or a
training set is used to tune the parameters of an
adaptive model. The category of an input vector is
expressed using a target vector t.

The result of a machine learning algorithm: y(x)
where the output y is encoded as the target vectors.
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Terminology

> training or learning phase: determine y(x) on the basis of the
training data.

> test set, generalization,
> supervised learning (input/target vectors in the training data),

» classification (discrete categories) or regression (continuous
variables),

> unsupervised learning (no target vectors in the training data)
also called clustering, or density estimation.

» reinforcement learning, credit assignment, exploration,
exploitation.
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1.1 Polynomial curve fitting

» Training set: x = (z1,...,zx5) AND t = (¢1,...,tN)
» Goal: predict the target 7 for some new input &

» Probability theory allows to express the uncertainty of the
target.

» Decision theory allows to make optimal predictions.
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» Minimize:

1 N
E(w) = E Z{y(xm w) - tn}z
=1

v

The case of a polynomial function linear in w:

M
Y(Tn, w) = Z wjx?!
j=0

» Model selection: choosing M.
» Regularization (adding a penalty term):
1 A
Bw) = 23 (e w) — 1, + 5 o
i=1

v

This can be expressed in the Bayesian framework using
maximum likelihood.
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1.2 Probability theory (discrete random variables)

» Sum rule:

» Product rule:

p(X,Y) = p(X|Y)p(Y) = p(Y[X)p(X)

» Bayes:
p(X|Y )p(Y
p(r|x) = AT
>y p(X[Y)p(Y)
i likelihood x prior
posterior =

normalization
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1.2.1 Probability densities (continuous random variables)

v

Probability that x lies in an interval:

b
p(z € (a,b)) = / p(w)dz

v

p(z) is called the probability density over x.
p(z) = 1, p(z € (-o00,00)) =1

v

» nonlinear change of variable z = g(y):
dx
Py\Y) = P2\T) | 7
o) = ela) |

v

cumulative distribution function: P(z) = p(x € (—00, 2))

v

sum and product rules extend to probability densities.
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1.2.2 Expectations and covariances

» Expectation: the average value of some function f(z) under a
probability distribution p(x);

> discrete case: E[f] =), p(x)f(x)

» continuous case: E[f] = [p(z)f(z)dx

» N points drawn from the prob. distribution or prob. density,
expectation can be approximated by:

1 N
Elf] =+ D f(wn)
n=1

» functions of several variables: E,[f] =) p(x)f(x,y)
(MODIFIED)

> conditional expectation: E,[f|y] = >, p(z|y)f(z)
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Variance of f(z): a measure of the variations of f(z) around
E[f].

var(f] = E[f?] - E[f]?

> var[z] = E[z?] — E[x]?

» Covariance for two random variables:

covlz,y] = Ey y[zy] — Ez]Ely]
Two vectors of random variables:
cov[z,y] = By ylzy "] — E[@]E[y"]
ADDITIONAL FORMULA:

Ex,y[f($ay)] = Z Zp(:E?y)f(:Ev y)
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1.2.3 Bayesian probabilities

vV v.yYvyy

v

frequentist versus Bayesian interpretation of probabilities;
frequentist estimator: maximum likelihood (MLE or ML);
Bayesian estimator: MLE and maximum a posteriori (MAP);
back to curve fitting: D = {t1,...,tn} is a set of N
observations of N random variables, and w is the vector of

unknown parameters.

Bayes theorem writes in this case: p(w|D) = %

posterior o likelihood x prior (all these quantities are
parameterized by w)

p(D|w) is the likelihood function and denotes how probable is
the observed data set for various values of w. It is not a
probability distribution over w.

The denominator:

o) = [ .. [ s(Dlw)p(w)dw
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1.2.4 The Gaussian distribution

» The Gaussian distribution of a single real-valued variable x:

Nl o) = s expl =52 = 17}

» in D dimensions: N (z|u,Z): RP — R

E[z] = p, var[z] = o?

> x = (21,...,2n) is a set of N observations of the SAME
scalar variable x

» Assume that this data set is independent and identically

distributed:

v

N
p(a1s- - wnlp,0®) = [ N(@als. o)
n=1

max p is equivalent to maxIn(p) or min(— In(p))

2 1 N 2 _ N 2
Inp(x1,..., 2N, 0%) = 52> 1(x —p)* =5 Ino® — ...
maximum likelihood solution: pasr, and O'JZWL
MLE underestimates the variance: bias
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1.2.5 Curve fitting re-visited

> training data: x = (z1,...,2n) and t = (t1,...,tN)
> it is assumed that ¢ is Gaussian:

p(tlz, w, B) = (tly(z, w), 37
» recall that: y(z,w) = wo + wiz + ... +wprzM

» (joint) likelihood function:
p(t|x,w,ﬁ) = Hfzvzl N(tn|y($n7w)7ﬁ_l)
» log-likelihood:

ﬁ N
Inp(tix,w, 6) = =5 > {tn = y(wn, w)}’ +*|n6—
n=1

> 3= % is called the precision.

» The ML solution can be used as a predictive distribution:
p(t‘x7 WML, ﬁML) - (t‘y(x7 wML)7 /6;41L)
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Introducing a prior distribution

» The polynomial coefficients are treated as random variables
with a Gaussian distribution taken over a vector of dimension
M+ 1:

p(wla) = Awl0,a~1) = ()M

@ T
— exp{——w ' w
o xp{—5w w}
» from Bayes we get the posterior probability:
p(wlx,t, o, B) o« p(tx, w, B)p(w|e)
» maximum posterior or MAP. We take the negative logarithm,
we throw out constant terms and we get:

N
B 2, @ T
5 ;{tn y(xmw)} + 2w w
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1.2.6 Bayesian curve fitting

» Apply the correct Bayes formula:

p(t)x, w, B)p(wle) _ p(t)x, w, B)p(w|c)
p(t|x) J p(t]x, w, B)p(w|a)dw

» Section 3.3: the posterior distribution is a Gaussian and can
be evaluated analytically.

p(’l,U|X, ta, /3) =

» the sum and product rules can be used to compute the
predictive distribution:

p(tlx,x,t) = /p(t|w,'w)p(w]x,t)dw = N (t, m(x), 32(1‘))
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1.3 Model selection

» which is the optimal order of the polynomial that gives the
best generalization?

» train a range of models and test them on an independent
validation set

» cross-validation: use a subset for training and the whole set
for assessing the performance

» Akaike information criterion: Inp(D]wpsr) — M

» Bayesian information criterion (BIC), section 4.4.1.
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1.4 The curse of dimensionality

» curse: malédiction, fléau ...

» polynomial fitting: replace x by a vector & of dimension D.
The number of unknowns becomes DM

» Not all the intuitions developed in spaces of low
dimensionality will generalize to spaces of many dimensions
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Section 1.5: Decision theory
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Decision theory - introduction

» The decision problem:
» given x, predict ¢ according to a probabilistic model p(z,t)

» For now: binary classification: ¢ € {0,1} < {C1,C>}
» Important quantity: p(Ck|x)

p(z,Cy) _  p(x,Cr)
p@@) 3wl Cr)
= getting p(z, C;) is the (central!) inference problem
_ p(2|Ck)p(Ch)
()
o likelihood x prior

p(Cklr) =

> Intuition: choose k that maximizes p(Cy|x)?
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Decision theory - binary classification

» Decision region: R; = {z : pred(z) = C;}
» Probability of misclassification:

p(mis) = p(z € R1,C2) + p(z € Ra, C1)
= / p(x, Co)dx —|—/ p(z,Cr)dz
R1

R2

= In order to minimize, affect z to R if:

p(CC, Cl) > p(ma C2)
< p(C1lz)p(x) > p(Calz)p(x)
& p(Chlz) > p(Calx)

> Similarly, for k classes: minimize Z/ (Zp(x,ck))dx
iR kA
= pred(z) = argmax;,p(Cx|z)

Radu Horaud & Pierre Mahé Patt. Rec. and Mach. Learning Ch. 1: Introduction



Decision theory - loss-sensitive decision

» Cost/Loss of a decision: Lyj; = predict C; while truth is Cj.

> Loss-sensitive decision = minimize the expected loss:
E[L] = Z/ (3 Lugpler, b))
— JR;
J 7k
> Solution: for each x, choose the class C; that minimizes:

> Lijp(x, Ck) < > Ligp(Crl)
K K

= straightforward when we know p(C|x)
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Decision theory - loss-sensitive decision
» Typical example = medical diagnosis:
» C ={1,2} & {sick, healthy}

> [ = {(1) 180] = strong cost of "missing” a diseased person

» Expected loss:

E[L]:/ Llygp(l',cl)dl'—l—/ L271p(l‘,02)dl'
Ro R

:/ 100><p(z,01)dx+/ p(z, Cr)dx
Rz Rl

» Note: minimizing the probability of misclassification:

i) = | ol Capa + /| )

corresponds to minimizing the 0/1 loss: L = [2 (1)]
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Decision theory - the "reject option”

> For the 0/1 loss!, pred(x) = argmax;p(Cy|z)
» Note: K classes = 1/K < mkaxp(Ck|:r) <1

» When mI?xp(Ck\x) — 1/K the confidence in the prediction

decreases.
> classes tend to become as likely

» "Reject option”: make a decision provided méaxp(Ck\x) >0
= the value of o controls the amount of rejection:

» o = 1: systematic rejection
» o < 1/K: no rejection

» Motivation: switch between automatic/human decision

» lllustration in Figure 1.26 page 42

1For a general loss matrix, see exercice 1.24
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Decision theory - regression setting

» The regression setting: quantitative target ¢t € R
» Typical regression loss-function: L(t,y(z)) = (y(x) — t)?
» the squared loss

» The decision problem = minimize the expected loss:

E[L] = / / 2p(2, t)dzdt

> Solution: y(z) = / tp(t|x)dt
R

> this is known as the regression function
> intuitively appealing: conditional average of ¢ given =

> illustration in figure 1.28, page 47

» Note: general class of loss functions L(¢, y(z)) = |y(x) — t|?
» ¢ =2 is analytically convenient (derivable and continuous)
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Decision theory - regression setting

» Derivation:

E[L] = / / p(x, tydzdt
—Lj4m>—#umﬂ(ﬁm

= for each z, find y(z) that minimizes /(y(a:) —t)2p(t|z)dt
R

» Derivating with respect to y(z) gives: 2/(y(x) — t)p(t|x)dt
R

» Setting to zero leads to:
/Mmﬁmﬁz/wwwﬁ
R R
mmzémmw
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Decision theory - inference and decision

2 (or 3) different approaches to the decision problem:

1. rely on a probabilistic model, with 2 flavours:
1.1 generative:
> use a generative model to infer p(z|Cy)
> combine with priors p(C%) to get p(z, Ck) and eventually
p(Cklz)
1.2 discriminative: infer directly p(Cy|z)
> this is sufficient for the decision problem

2. learn a discriminant function f(z)

» directly map input to class labels
» for binary classification, f(z) is typically defined as the sign
(+1/-1) of an auxiliary function

(Note: similar discussion for regression)
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Decision theory - inference and decision

Pros and Cons:

» probabilistic generative models:
> pros: acess to p(x) — easy detection of outliers
> i.e., low-confidence predictions
» cons: estimating the joint probability p(x, Cy) can be
computational and data demanding

» probabilistic discrimative models:
» pros: less demanding than the generative approach
> see figure 1.27, page 44

» discriminant functions:
» pros: a single learning problem (vs inference + decision)
» cons: no access to p(Ck|z)

> ... which can have many advantages in practice for (e.g.)
rejection and model combination — see page 45
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Section 1.6: Information theory

Radu Horaud & Pierre Mahé Patt. Rec. and Mach. Learning Ch. 1: Introduction



Information theory - Entropy

» Consider a discrete random variable X

» We want to define a measure h(z) of surprise/information of
observing X ==z

» Natural requirements:
» if p(x) is low (resp. high), h(x) should be high (resp.low)
> h(x) should be a monotonically decreasing function of p(x)

» if X and Y are unrelated, h(z,y) should be h(x) + h(y)
> i.e, if X and Y are independent, that is p(z,y) = p(z)p(y)

= this leads to h(z) = — logp(z)
» Entropy of the variable X:

H[X] = E[Ah(X)] = - Zp ) log(p(z))

(Convention: plogp =0 if p = 0)
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Information theory - Entropy

Some remarks:

» H[X] > 0 since p € [0, 1] (hence plogp < 0)

» HX]|=0if Jzst plx)=1

» Maximum entropy distribution = uniform distribution
» optimization problem: maximize H[X] + A( > e, D(Ti) — 1)
» derivating w.r.t. p(z;) shows they must be constant
> hence p(z;) = 1/M,Vz;, = H[X] = log(M)

= we therefore have 0 < H[X] < log(M)

» H[X] = lower bound on the # of bits required to (binarily)
encode the values of X (using log, in the defintion of H)
> trivial code of length log, (M) (ex: M = 8, messages of size 3)
> no "clever" coding scheme for uniform distributions
» for non-uniform distributions, optimal coding schemes can be
designed
> high probability values = short codes
> see illustration in page 50
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Information theory - Entropy

For continuous random variables:

» differential entropy: H[X] = —/p(w)lnp(az)dw

> because p(z) can be > 1, care must be taken when
transposing properties of the discrete entropy
> in particular, can be negative (if X — 1/(0,1/2) : H[X] = —In2)

> Given (i, ), maximum entropy distribution p(z) = N (u, 0?)
> optimization problem: maximize H[X] with u, o equality
constraint + normalization constraint
> entropy: H[X] =1/2(1+ In(270?))

» Conditional entropy of y given x:
HY1X] =~ [ [ o) mplodsdy

= we have easily H[X,Y] = H[Y|X] + H[X]

(natural interpretation with the notion of information)
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Information theory - KL divergence

» Kullback-Leibler divergence between distributions p and ¢:
KL(pll9) =~ [ ple)na(o)ds — (= [ pla)inp(a)de)

=— xn@w
B /p( )! p(w)d

» K L(pllq) # KL(qllp)
» KL(p|lp) =0
» KL(p||qg) > 0 (next slide)

= measures the difference between the "true” distribution p and
the distribution ¢

(Information therory interpretation: amount of additional information
required to encode the values of X using ¢(z) instead of p(z))
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Information theory - KL divergence

» A function is convex iff every cord lies above the function
> illustration in figure 1.31, page 56

» Jensen's inequality for convex functions:

E[f(z)] = f(Elx])

(strict inequality for strictly convex functions)
» When applied to K L(p||q):

=— x nM x
KLlle) = = [ oy 230

x
> —1n /p(z:) X de (because — In is stricly convex)

p(z)
:—In/q(:z:)da?:—lnIZO

Moreover, straightforward to see that K L(p||p) =0
» Conclusion: K L(pl||g) > 0, with equality if p = ¢
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Information theory - KL divergence: illustration

» Data generated by an (unknown) distribution p(x)

» We want to fit a parametric probabilistic model ¢(x|0) = gy(x)
= i.e., we want to minimize K L(p||qg)

» Data available: observations (z1,...,zyN):

KLl = —1n [ o0) 10 828,

Ny 2(il0)

B ;l p(z;)
N

- Z ( — Inq(z;]0) + Inp(m))
i=1

= it follows that minimizing K L(p||gs) corresponds to
maximizing SN | Ing(z]0) = log-likelihood
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Information theory - Mutual information

» Mutual information: I[X,Y] = KL(p(X,Y)||p(X),p(Y))
» Quantifies the amount of independence between X and Y
> I[X,Y]=0% p(X,Y) = p(X)p(Y)

» We have:
Iz, y] = — / / p(x,y)In p}g?fg)dwdy
ey 2RO
B //p( )] p(rﬂly)p(y)d W

-
_ / [ ez - (- [ / Pl ) Inp(aly)dedy

= H[X] - H[X]Y]

» Conclusion: I[X,Y] = H[X] - H[X|Y] = H[Y] - H[Y|X]
» I[X,Y] = reduction of the uncertainty about X obtained by
telling the value of Y (that is, O for independent variables)
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