Patt. Rec. and Mach. Learning Ch. 1: Introduction

Radu Horaud & Pierre Mahé

September 28, 2007

Radu Horaud & Pierre Mahé Patt. Rec. and Mach. Learning Ch. 1: Introduction

3 N

Chapter content

- Goals, terminology, scope of the book;
- 1.1 Example: Polynomial curve fitting;
- 1.2 Probability theory;
- 1.3 Model selection;
- 1.4 The curse of dimensionality;
- 1.5 Decision theory;
- ▶ 1.6 Information theory.

Goals

Pattern Recognition: automatic discovery of regularities in data and the use of these regularities to take actions – *classifying the data into different categories.* Example: handwritten recognition. Input: a vector xof pixel values. Output: A digit from 0 to 9.

Machine learning: a large set of input vectors x_1, \ldots, x_N , or a training set is used to tune the parameters of an adaptive model. The category of an input vector is expressed using a target vector t. The result of a machine learning algorithm: y(x)

where the output \boldsymbol{y} is encoded as the target vectors.

Terminology

- training or learning phase: determine y(x) on the basis of the training data.
- test set, generalization,
- supervised learning (input/target vectors in the training data),
- classification (discrete categories) or regression (continuous variables),
- unsupervised learning (no target vectors in the training data) also called *clustering*, or *density estimation*.
- reinforcement learning, credit assignment, exploration, exploitation.

1.1 Polynomial curve fitting

- ▶ Training set: $\mathbf{x} \equiv (x_1, \dots, x_N)$ AND $\mathbf{t} \equiv (t_1, \dots, t_N)$
- Goal: predict the target \hat{t} for some new input \hat{x}
- Probability theory allows to express the uncertainty of the target.
- Decision theory allows to make optimal predictions.

Minimize:

$$E(\boldsymbol{w}) = \frac{1}{2} \sum_{i=1}^{N} \{y(x_n, \boldsymbol{w}) - t_n\}^2$$

▶ The case of a polynomial function linear in *w*:

$$y(x_n, \boldsymbol{w}) = \sum_{j=0}^M w_j x^j$$

- Model selection: choosing M.
- Regularization (adding a penalty term):

$$\tilde{E}(\boldsymbol{w}) = \frac{1}{2} \sum_{i=1}^{N} \{y(x_n, \boldsymbol{w}) - t_n\}^2 + \frac{\lambda}{2} \|\boldsymbol{w}\|^2$$

 This can be expressed in the Bayesian framework using maximum likelihood. 1.2 Probability theory (discrete random variables)

$$p(X) = \sum_{Y} p(X, Y)$$

Product rule:

$$p(X,Y) = p(X|Y)p(Y) = p(Y|X)p(X)$$

Bayes:

$$p(Y|X) = \frac{p(X|Y)p(Y)}{\sum_{Y} p(X|Y)p(Y)}$$

posterior =
$$\frac{\text{likelihood} \times \text{prior}}{\text{normalization}}$$

-

3 N

1.2.1 Probability densities (continuous random variables)

Probability that x lies in an interval:

$$p(x \in (a, b)) = \int_a^b p(x) dx$$

• p(x) is called the *probability density* over x.

▶
$$p(x) \ge 1$$
, $p(x \in (-\infty, \infty)) = 1$

• nonlinear change of variable x = g(y):

$$p_y(y) = p_x(x) \left| \frac{dx}{dy} \right|$$

• cumulative distribution function: $P(z) = p(x \in (-\infty, z))$

sum and product rules extend to probability densities.

1.2.2 Expectations and covariances

- Expectation: the average value of some function f(x) under a probability distribution p(x);
- discrete case: $E[f] = \sum_{x} p(x)f(x)$
- continuous case: $E[f] = \int p(x)f(x)dx$
- N points drawn from the prob. distribution or prob. density, expectation can be approximated by:

$$E[f] \approx \frac{1}{N} \sum_{n=1}^{N} f(x_n)$$

- ► functions of several variables: $E_x[f] = \sum_x p(x)f(x,y)$ (MODIFIED)
- conditional expectation: $E_x[f|y] = \sum_x p(x|y)f(x)$

- Variance of f(x): a measure of the variations of f(x) around E[f].
- ▶ $var[f] = E[f^2] E[f]^2$
- ▶ $var[x] = E[x^2] E[x]^2$
- ► Covariance for two random variables: cov[x, y] = E_{x,y}[xy] - E[x]E[y]
- ► Two vectors of random variables: $cov[\boldsymbol{x}, \boldsymbol{y}] = E_{x,y}[\boldsymbol{x}\boldsymbol{y}^\top] - E[\boldsymbol{x}]E[\boldsymbol{y}^\top]$
- ► ADDITIONAL FORMULA:

$$E_{x,y}[f(x,y)] = \sum_{x} \sum_{y} p(x,y)f(x,y)$$

1.2.3 Bayesian probabilities

- frequentist versus Bayesian interpretation of probabilities;
- frequentist estimator: maximum likelihood (MLE or ML);
- Bayesian estimator: MLE and maximum a posteriori (MAP);
- ▶ back to curve fitting: D = {t₁,...,t_N} is a set of N observations of N random variables, and w is the vector of unknown parameters.
- ▶ Bayes theorem writes in this case: $p(w|D) = \frac{p(D|w)p(w)}{p(D)}$
- ▶ posterior ∝ likelihood × prior (all these quantities are parameterized by w)
- ▶ p(D|w) is the likelihood function and denotes how probable is the observed data set for various values of w. It is not a probability distribution over w.
- The denominator:

$$p(\mathcal{D}) = \int \dots \int p(\mathcal{D}|\boldsymbol{w}) p(\boldsymbol{w}) d\boldsymbol{w}$$

A B > A B >

1.2.4 The Gaussian distribution

► The Gaussian distribution of a single real-valued variable *x*:

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\{-\frac{1}{2\sigma^2}(x-\mu)^2\}$$

► in *D* dimensions:
$$\mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) : \mathbb{R}^D \to \mathbb{R}$$

•
$$E[x] = \mu$$
, $var[x] = \sigma^2$

- ► x = (x₁,...,x_N) is a set of N observations of the SAME scalar variable x
- Assume that this data set is independent and identically distributed:

$$p(x_1,\ldots,x_N|\mu,\sigma^2) = \prod_{n=1}^N \mathcal{N}(x_n|\mu,\sigma^2)$$

- max p is equivalent to max $\ln(p)$ or min $(-\ln(p))$
- $\ln p(x_1, \dots, x_N | \mu, \sigma^2) = \frac{1}{2\sigma^2} \sum_{n=1}^{N} (x \mu)^2 \frac{N}{2} \ln \sigma^2 \dots$
- maximum likelihood solution: μ_{ML} and σ_{ML}^2
- MLE underestimates the variance: bias

1.2.5 Curve fitting re-visited

▶ training data: $\mathbf{x} = (x_1, \dots, x_N)$ and $\mathbf{t} = (t_1, \dots, t_N)$

• it is assumed that t is Gaussian:

$$p(t|x, w, \beta) = (t|y(x, w), \beta^{-1})$$

• recall that: $y(x, w) = w_0 + w_1 x + \ldots + w_M x^M$

- (joint) likelihood function: $p(\mathbf{t}|\mathbf{x}, \boldsymbol{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}(t_n | y(x_n, \boldsymbol{w}), \beta^{-1})$
- log-likelihood:

$$\ln p(\mathbf{t}|\mathbf{x}, \boldsymbol{w}, \beta) = -\frac{\beta}{2} \sum_{n=1}^{N} \{t_n - y(x_n, \boldsymbol{w})\}^2 + \frac{N}{2} \ln \beta - \dots$$

- $\beta = \frac{1}{\sigma^2}$ is called the precision.
- ► The ML solution can be used as a *predictive distribution*: $p(t|x, \boldsymbol{w}_{ML}, \beta_{ML}) = (t|y(x, \boldsymbol{w}_{ML}), \beta_{ML}^{-1})$

Introducing a prior distribution

The polynomial coefficients are treated as random variables with a Gaussian distribution taken over a vector of dimension M + 1:

$$p(\boldsymbol{w}|\alpha) = \mathcal{N}(\boldsymbol{w}|\boldsymbol{0}, \alpha^{-1}\boldsymbol{I}) = \left(\frac{\alpha}{2\pi}\right)^{(M+1)/2} \exp\{-\frac{\alpha}{2}\boldsymbol{w}^{\top}\boldsymbol{w}\}$$

- ▶ from Bayes we get the posterior probability: $p(w|\mathbf{x}, \mathbf{t}, \alpha, \beta) \propto p(\mathbf{t}|\mathbf{x}, w, \beta)p(w|\alpha)$
- maximum posterior or MAP. We take the negative logarithm, we throw out constant terms and we get:

$$\frac{\beta}{2}\sum_{n=1}^{N} \{t_n - y(x_n, \boldsymbol{w})\}^2 + \frac{\alpha}{2} \boldsymbol{w}^\top \boldsymbol{w}$$

1.2.6 Bayesian curve fitting

Apply the correct Bayes formula:

$$p(\boldsymbol{w}|\mathbf{x}, \mathbf{t}, \alpha, \beta) = \frac{p(\mathbf{t}|\mathbf{x}, \boldsymbol{w}, \beta)p(\boldsymbol{w}|\alpha)}{p(\mathbf{t}|\mathbf{x})} = \frac{p(\mathbf{t}|\mathbf{x}, \boldsymbol{w}, \beta)p(\boldsymbol{w}|\alpha)}{\int p(\mathbf{t}|\mathbf{x}, \boldsymbol{w}, \beta)p(\boldsymbol{w}|\alpha)d\boldsymbol{w}}$$

- Section 3.3: the posterior distribution is a Gaussian and can be evaluated analytically.
- the sum and product rules can be used to compute the predictive distribution:

$$p(t|x, \mathbf{x}, \mathbf{t}) = \int p(t|x, \boldsymbol{w}) p(\boldsymbol{w}|\mathbf{x}, \mathbf{t}) d\boldsymbol{w} = \mathcal{N}(t, m(x), s^2(x))$$

1.3 Model selection

- which is the optimal order of the polynomial that gives the best generalization?
- train a range of models and test them on an independent validation set
- cross-validation: use a subset for training and the whole set for assessing the performance
- Akaike information criterion: $\ln p(\mathcal{D}|\boldsymbol{w}_{ML}) M$
- ▶ Bayesian information criterion (BIC), section 4.4.1.

1.4 The curse of dimensionality

- curse: malédiction, fléau …
- polynomial fitting: replace x by a vector x of dimension D.
 The number of unknowns becomes D^M.
- Not all the intuitions developed in spaces of low dimensionality will generalize to spaces of many dimensions

Section 1.5: Decision theory

Image: Image:

3

Decision theory - introduction

- The decision problem:
 - given x, predict t according to a probabilistic model p(x,t)
- ▶ For now: binary classification: $t \in \{0, 1\} \Leftrightarrow \{C_1, C_2\}$
- Important quantity: $p(C_k|x)$

$$p(C_k|x) = \frac{p(x, C_k)}{p(x)} = \frac{p(x, C_k)}{\sum_{k=1}^2 p(x, C_k)}$$

$$\Rightarrow \text{ getting } p(x, C_i) \text{ is the (central!) inference problem}$$

$$= \frac{p(x|C_k)p(C_k)}{p(x)}$$

$$\propto \text{ likelihood } \times \text{ prior}$$

• Intuition: choose k that maximizes $p(C_k|x)$?

Decision theory - binary classification

- Decision region: $\mathcal{R}_i = \{x : \text{pred}(x) = C_i\}$
- Probability of misclassification:

$$p(\mathsf{mis}) = p(x \in \mathcal{R}_1, C_2) + p(x \in \mathcal{R}_2, C_1)$$
$$= \int_{\mathcal{R}_1} p(x, C_2) dx + \int_{\mathcal{R}_2} p(x, C_1) dx$$

 \Rightarrow In order to minimize, affect x to \mathcal{R}_1 if:

$$p(x, C_1) > p(x, C_2)$$

$$\Leftrightarrow p(C_1|x)p(x) > p(C_2|x)p(x)$$

$$\Leftrightarrow p(C_1|x) > p(C_2|x)$$

► Similarly, for k classes: minimize $\sum_{j} \int_{\mathcal{R}_{j}} \left(\sum_{k \neq j} p(x, C_{k}) \right) dx$ ⇒ pred(x) = argmax_kp(C_k|x)

Decision theory - loss-sensitive decision

- Cost/Loss of a decision: L_{kj} = predict C_j while truth is C_k .
- ▶ Loss-sensitive decision ⇒ minimize the expected loss:

$$E[L] = \sum_{j} \int_{\mathcal{R}_{j}} \left(\sum_{k} L_{kj} p(x, C_{k}) \right) dx$$

▶ Solution: for each *x*, choose the class *C_j* that minimizes:

$$\sum_{k} L_{kj} p(x, C_k) \propto \sum_{k} L_{kj} p(C_k | x)$$

 \Rightarrow straightforward when we know $p(C_k|x)$

Decision theory - loss-sensitive decision

$$E[L] = \int_{\mathcal{R}_2} L_{1,2} p(x, C_1) dx + \int_{\mathcal{R}_1} L_{2,1} p(x, C_2) dx$$
$$= \int_{\mathcal{R}_2} 100 \times p(x, C_1) dx + \int_{\mathcal{R}_1} p(x, C_2) dx$$

Note: minimizing the probability of misclassification:

$$p(\mathsf{mis}) = \int_{\mathcal{R}_1} p(x, C_2) dx + \int_{\mathcal{R}_2} p(x, C_1) dx$$

corresponds to minimizing the 0/1 loss: $L = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

Decision theory - the "reject option"

- ▶ For the 0/1 loss¹, pred(x) = $\operatorname{argmax}_k p(C_k|x)$ ▶ Note: K classes ⇒ $1/K \le \max_k p(C_k|x) \le 1$
 - $\frac{1}{k} = \frac{1}{k} \frac{$
- When $\max_{k} p(C_k|x) \rightarrow 1/K$ the confidence in the prediction decreases.
 - classes tend to become as likely
- ▶ "Reject option": make a decision provided max $p(C_k|x) > \sigma$
 - \Rightarrow the value of σ controls the amount of rejection:
 - $\sigma = 1$: systematic rejection
 - $\sigma < 1/K$: no rejection
- Motivation: switch between automatic/human decision
- Illustration in Figure 1.26 page 42

Decision theory - regression setting

- The regression setting: quantitative target $t \in \mathbb{R}$
- ► Typical regression loss-function: $L(t, y(x)) = (y(x) t)^2$
 - the squared loss
- ► The decision problem = minimize the expected loss:

$$E[L] = \int_{\mathcal{X}} \int_{\mathbb{R}} (y(x) - t)^2 p(x, t) dx dt$$

Solution:
$$y(x) = \int_{\mathbb{R}} tp(t|x)dt$$

- this is known as the regression function
- \blacktriangleright intuitively appealing: conditional average of t given x
 - illustration in figure 1.28, page 47

▶ Note: general class of loss functions $L(t, y(x)) = |y(x) - t|^q$

• q = 2 is analytically convenient (derivable and continuous)

Decision theory - regression setting

Derivation:

$$\begin{split} E[L] &= \int_{\mathcal{X}} \int_{\mathbb{R}} (y(x) - t)^2 p(x, t) dx dt \\ &= \int_{\mathcal{X}} \left[\int_{\mathbb{R}} (y(x) - t)^2 p(t|x) dt \right] p(x) dx \end{split}$$

 \Rightarrow for each x, find y(x) that minimizes $\int_{\mathbb{D}} (y(x) - t)^2 p(t|x) dt$

- Derivating with respect to y(x) gives: $2 \int_{\mathbb{R}} (y(x) t)p(t|x)dt$
- Setting to zero leads to:

$$\int_{\mathbb{R}} y(x)p(t|x)dt = \int_{\mathbb{R}} tp(t|x)dt$$
$$y(x) = \int_{\mathbb{R}} tp(t|x)dt$$

Decision theory - inference and decision

2 (or 3) different approaches to the decision problem:

- 1. rely on a probabilistic model, with 2 flavours:
 - 1.1 generative:
 - use a generative model to infer $p(x|C_k)$
 - combine with priors $p(C_k)$ to get $p(x, C_k)$ and eventually $p(C_k|x)$
 - 1.2 discriminative: infer directly $p(C_k|x)$
 - this is sufficient for the decision problem
- 2. learn a discriminant function f(x)
 - directly map input to class labels
 - ▶ for binary classification, f(x) is typically defined as the sign (+1/-1) of an auxiliary function

(Note: similar discussion for regression)

Decision theory - inference and decision

Pros and Cons:

- probabilistic generative models:
 - ▶ pros: acess to $p(x) \rightarrow$ easy detection of outliers
 - i.e., low-confidence predictions
 - cons: estimating the joint probability $p(x, C_k)$ can be computational and data demanding
- probabilistic discrimative models:
 - pros: less demanding than the generative approach
 - ▶ see figure 1.27, page 44
- discriminant functions:
 - pros: a single learning problem (vs inference + decision)
 - cons: no access to $p(C_k|x)$
 - ... which can have many advantages in practice for (e.g.) rejection and model combination – see page 45

4 B N 4 B N

Section 1.6: Information theory

★ 注 ▶ → 注

-

Information theory - Entropy

- Consider a discrete random variable X
- We want to define a measure h(x) of surprise/information of observing X = x
- Natural requirements:
 - if p(x) is low (resp. high), h(x) should be high (resp.low)
 - h(x) should be a monotonically decreasing function of p(x)
 - if X and Y are unrelated, h(x, y) should be h(x) + h(y)
 - i.e., if X and Y are independent, that is p(x,y) = p(x)p(y)

 \Rightarrow this leads to $h(x) = -\log p(x)$

• Entropy of the variable X:

$$H[X] = E[h(X)] = -\sum_{x} p(x) \log(p(x))$$

(Convention: $p \log p = 0$ if p = 0)

Information theory - Entropy

Some remarks:

- ▶ $H[X] \ge 0$ since $p \in [0, 1]$ (hence $p \log p \le 0$)
- H[X] = 0 if $\exists x \text{ s.t. } p(x) = 1$
- Maximum entropy distribution = uniform distribution
 - optimization problem: maximize $H[X] + \lambda (\sum_{x_i} p(x_i) 1)$
 - derivating w.r.t. $p(x_i)$ shows they must be constant
 - hence $p(x_i) = 1/M, \forall x_i \Rightarrow H[X] = \log(M)$

 \Rightarrow we therefore have $0 \leq H[X] \leq \log(M)$

- ► H[X] = lower bound on the # of bits required to (binarily) encode the values of X (using log₂ in the definition of H)
 - trivial code of length $\log_2(M)$ (ex: M = 8, messages of size 3)
 - no "clever" coding scheme for uniform distributions
 - for non-uniform distributions, optimal coding schemes can be designed
 - high probability values \Rightarrow short codes
 - see illustration in page 50

白 医水理 医水黄 医水黄 医二连

Information theory - Entropy

For continuous random variables:

- differential entropy: $H[X] = -\int p(x) \ln p(x) dx$
 - ▶ because p(x) can be > 1, care must be taken when transposing properties of the discrete entropy
 - ▶ in particular, can be negative (if $X \hookrightarrow \mathcal{U}(0, 1/2) : H[X] = -\ln 2$)
- Given (μ, σ) , maximum entropy distribution $p(x) = \mathcal{N}(\mu, \sigma^2)$
 - optimization problem: maximize H[X] with μ, σ equality constraint + normalization constraint
 - entropy: $H[X] = 1/2(1 + \ln(2\pi\sigma^2))$
- ► Conditional entropy of y given x:

$$H[Y|X] = -\int \int p(x,y) \ln p(y|x) dx dy$$

 \Rightarrow we have easily H[X,Y]=H[Y|X]+H[X]

(natural interpretation with the notion of information)

Information theory - KL divergence

► Kullback-Leibler divergence between distributions *p* and *q*:

$$KL(p||q) = -\int p(x) \ln q(x) dx - \left(-\int p(x) \ln p(x) dx\right)$$
$$= -\int p(x) \ln \frac{q(x)}{p(x)} dx$$

- $\blacktriangleright KL(p||q) \neq KL(q||p)$
- $\blacktriangleright KL(p||p) = 0$
- $KL(p||q) \ge 0$ (next slide)

 \Rightarrow measures the difference between the "true" distribution p and the distribution q

(Information therory interpretation: amount of additional information required to encode the values of X using q(x) instead of p(x))

Information theory - KL divergence

- ► A function is convex iff every cord lies above the function
 - illustration in figure 1.31, page 56
- Jensen's inequality for convex functions:

 $E[f(x)] \ge f(E[x])$

(strict inequality for strictly convex functions)

• When applied to KL(p||q):

$$\begin{split} KL(p||q) &= -\int p(x)\ln\frac{q(x)}{p(x)}dx\\ &> -\ln\int p(x)\times\frac{q(x)}{p(x)}dx \quad (\text{because}-\ln\text{ is stricly convex})\\ &= -\ln\int q(x)dx = -\ln 1 = 0 \end{split}$$

Moreover, straightforward to see that KL(p||p) = 0• Conclusion: $KL(p||q) \ge 0$, with equality if p = q

Information theory - KL divergence: illustration

- Data generated by an (unknown) distribution p(x)
- We want to fit a parametric probabilistic model $q(x|\theta) = q_{\theta}(x)$ \Rightarrow i.e., we want to minimize $KL(p||q_{\theta})$
- Data available: observations (x_1, \ldots, x_N) :

$$KL(p||q_{\theta}) = -\ln \int p(x) \times \ln \frac{q(x|\theta)}{p(x)} dx$$
$$\simeq -\sum_{i=1}^{N} \ln \frac{q(x_i|\theta)}{p(x_i)}$$
$$= \sum_{i=1}^{N} \left(-\ln q(x_i|\theta) + \ln p(x_i) \right)$$

 \Rightarrow it follows that minimizing $KL(p||q_{\theta})$ corresponds to maximizing $\sum_{i=1}^{N} \ln q(x_i|\theta) = \log$ -likelihood

Information theory - Mutual information

- Mutual information: I[X, Y] = KL(p(X, Y)||p(X), p(Y))
- Quantifies the amount of independence between X and Y
 - $I[X,Y] = 0 \Leftrightarrow p(X,Y) = p(X)p(Y)$

► We have:

$$\begin{split} I[x,y] &= -\int \int p(x,y) \ln \frac{p(x)p(y)}{p(x,y)} dx dy \\ &= -\int \int p(x,y) \ln \frac{p(x)p(y)}{p(x|y)p(y)} dx dy \\ &= -\int \int p(x,y) \ln \frac{p(x)}{p(x|y)} dx dy \\ &= -\int \int p(x,y) \ln p(x) dx dy - \left(-\int \int p(x,y) \ln p(x|y) dx dy\right) \\ &= H[X] - H[X|Y] \end{split}$$

• Conclusion: I[X,Y] = H[X] - H[X|Y] = H[Y] - H[Y|X]

► I[X, Y] = reduction of the uncertainty about X obtained by telling the value of Y (that is, 0 for independent variables)