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Goals

Pattern Recognition: automatic discovery of regularities in data
and the use of these regularities to take actions –
classifying the data into different categories.
Example: handwritten recognition. Input: a vector x
of pixel values. Output: A digit from 0 to 9.

Machine learning: a large set of input vectors x1, . . . ,xN , or a
training set is used to tune the parameters of an
adaptive model. The category of an input vector is
expressed using a target vector t.
The result of a machine learning algorithm: y(x)
where the output y is encoded as the target vectors.
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Terminology

I training or learning phase: determine y(x) on the basis of the
training data.

I test set, generalization,

I supervised learning (input/target vectors in the training data),

I classification (discrete categories) or regression (continuous
variables),

I unsupervised learning (no target vectors in the training data)
also called clustering, or density estimation.

I reinforcement learning, credit assignment, exploration,
exploitation.
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1.1 Polynomial curve fitting

I Training set: x ≡ (x1, . . . , xN ) AND t ≡ (t1, . . . , tN )

I Goal: predict the target t̂ for some new input x̂

I Probability theory allows to express the uncertainty of the
target.

I Decision theory allows to make optimal predictions.
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I Minimize:

E(w) =
1

2

N∑
i=1

{y(xn,w)− tn}2

I The case of a polynomial function linear in w:

y(xn,w) =
M∑

j=0

wjx
j

I Model selection: choosing M .

I Regularization (adding a penalty term):

Ẽ(w) =
1

2

N∑
i=1

{y(xn,w)− tn}2 +
λ

2
‖w‖2

I This can be expressed in the Bayesian framework using
maximum likelihood.
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1.2 Probability theory (discrete random variables)

I Sum rule:
p(X) =

∑
Y

p(X, Y )

I Product rule:

p(X, Y ) = p(X|Y )p(Y ) = p(Y |X)p(X)

I Bayes:

p(Y |X) =
p(X|Y )p(Y )∑
Y p(X|Y )p(Y )

posterior =
likelihood× prior

normalization
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1.2.1 Probability densities (continuous random variables)

I Probability that x lies in an interval:

p(x ∈ (a, b)) =

∫ b

a
p(x)dx

I p(x) is called the probability density over x.

I p(x) ≥ 1, p(x ∈ (−∞,∞)) = 1

I nonlinear change of variable x = g(y):

py(y) = px(x)

∣∣∣∣dx

dy

∣∣∣∣
I cumulative distribution function: P (z) = p(x ∈ (−∞, z))

I sum and product rules extend to probability densities.
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1.2.2 Expectations and covariances

I Expectation: the average value of some function f(x) under a
probability distribution p(x);

I discrete case: E[f ] =
∑

x p(x)f(x)

I continuous case: E[f ] =
∫

p(x)f(x)dx

I N points drawn from the prob. distribution or prob. density,
expectation can be approximated by:

E[f ] ≈ 1

N

N∑
n=1

f(xn)

I functions of several variables: Ex[f ] =
∑

x p(x)f(x, y)
(MODIFIED)

I conditional expectation: Ex[f |y] =
∑

x p(x|y)f(x)
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I Variance of f(x): a measure of the variations of f(x) around
E[f ].

I var[f ] = E[f2]− E[f ]2

I var[x] = E[x2]− E[x]2

I Covariance for two random variables:
cov[x, y] = Ex,y[xy]− E[x]E[y]

I Two vectors of random variables:
cov[x,y] = Ex,y[xy>]− E[x]E[y>]

I ADDITIONAL FORMULA:

Ex,y[f(x, y)] =
∑

x

∑
y

p(x, y)f(x, y)
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1.2.3 Bayesian probabilities

I frequentist versus Bayesian interpretation of probabilities;

I frequentist estimator: maximum likelihood (MLE or ML);

I Bayesian estimator: MLE and maximum a posteriori (MAP);

I back to curve fitting: D = {t1, . . . , tN} is a set of N
observations of N random variables, and w is the vector of
unknown parameters.

I Bayes theorem writes in this case: p(w|D) = p(D|w)p(w)
p(D)

I posterior ∝ likelihood× prior (all these quantities are
parameterized by w)

I p(D|w) is the likelihood function and denotes how probable is
the observed data set for various values of w. It is not a
probability distribution over w.

I The denominator:

p(D) =

∫
. . .

∫
p(D|w)p(w)dw
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1.2.4 The Gaussian distribution
I The Gaussian distribution of a single real-valued variable x:

N (x|µ, σ2) =
1

(2πσ2)1/2
exp{− 1

2σ2
(x− µ)2}

I in D dimensions: N (x|µ,Σ) : RD → R
I E[x] = µ, var[x] = σ2

I x = (x1, . . . , xN ) is a set of N observations of the SAME
scalar variable x

I Assume that this data set is independent and identically
distributed:

p(x1, . . . , xN |µ, σ2) =
N∏

n=1

N (xn|µ, σ2)

I max p is equivalent to max ln(p) or min(− ln(p))
I ln p(x1, . . . , xN |µ, σ2) = 1

2σ2

∑N
n=1(x− µ)2 − N

2 lnσ2 − . . .
I maximum likelihood solution: µML and σ2

ML
I MLE underestimates the variance: bias
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1.2.5 Curve fitting re-visited

I training data: x = (x1, . . . , xN ) and t = (t1, . . . , tN )

I it is assumed that t is Gaussian:
p(t|x,w, β) = (t|y(x,w), β−1)

I recall that: y(x,w) = w0 + w1x + . . . + wMxM

I (joint) likelihood function:
p(t|x,w, β) =

∏N
n=1N (tn|y(xn,w), β−1)

I log-likelihood:

ln p(t|x,w, β) = −β

2

N∑
n=1

{tn − y(xn,w)}2 +
N

2
lnβ − . . .

I β = 1
σ2 is called the precision.

I The ML solution can be used as a predictive distribution:
p(t|x,wML, βML) = (t|y(x,wML), β−1

ML)
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Introducing a prior distribution

I The polynomial coefficients are treated as random variables
with a Gaussian distribution taken over a vector of dimension
M + 1:

p(w|α) = N (w|0, α−1I) =
( α

2π

)(M+1)/2
exp{−α

2
w>w}

I from Bayes we get the posterior probability:
p(w|x, t, α, β) ∝ p(t|x,w, β)p(w|α)

I maximum posterior or MAP. We take the negative logarithm,
we throw out constant terms and we get:

β

2

N∑
n=1

{tn − y(xn,w)}2 +
α

2
w>w
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1.2.6 Bayesian curve fitting

I Apply the correct Bayes formula:

p(w|x, t, α, β) =
p(t|x,w, β)p(w|α)

p(t|x)
=

p(t|x,w, β)p(w|α)∫
p(t|x,w, β)p(w|α)dw

I Section 3.3: the posterior distribution is a Gaussian and can
be evaluated analytically.

I the sum and product rules can be used to compute the
predictive distribution:

p(t|x, x, t) =

∫
p(t|x,w)p(w|x, t)dw = N (t, m(x), s2(x))
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1.3 Model selection

I which is the optimal order of the polynomial that gives the
best generalization?

I train a range of models and test them on an independent
validation set

I cross-validation: use a subset for training and the whole set
for assessing the performance

I Akaike information criterion: ln p(D|wML)−M

I Bayesian information criterion (BIC), section 4.4.1.
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1.4 The curse of dimensionality

I curse: malédiction, fléau ...

I polynomial fitting: replace x by a vector x of dimension D.
The number of unknowns becomes DM .

I Not all the intuitions developed in spaces of low
dimensionality will generalize to spaces of many dimensions
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Section 1.5: Decision theory
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Decision theory - introduction

I The decision problem:
I given x, predict t according to a probabilistic model p(x, t)

I For now: binary classification: t ∈ {0, 1} ⇔ {C1, C2}
I Important quantity: p(Ck|x)

p(Ck|x) =
p(x,Ck)

p(x)
=

p(x,Ck)∑2
k=1 p(x,Ck)

⇒ getting p(x,Ci) is the (central!) inference problem

=
p(x|Ck)p(Ck)

p(x)

∝ likelihood× prior

I Intuition: choose k that maximizes p(Ck|x)?
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Decision theory - binary classification

I Decision region: Ri = {x : pred(x) = Ci}
I Probability of misclassification:

p(mis) = p(x ∈ R1, C2) + p(x ∈ R2, C1)

=

∫
R1

p(x,C2)dx +

∫
R2

p(x,C1)dx

⇒ In order to minimize, affect x to R1 if:

p(x,C1) > p(x,C2)

⇔ p(C1|x)p(x) > p(C2|x)p(x)

⇔ p(C1|x) > p(C2|x)

I Similarly, for k classes: minimize
∑

j

∫
Rj

( ∑
k 6=j

p(x,Ck)
)
dx

⇒ pred(x) = argmaxkp(Ck|x)

Radu Horaud & Pierre Mahé Patt. Rec. and Mach. Learning Ch. 1: Introduction



Decision theory - loss-sensitive decision

I Cost/Loss of a decision: Lkj = predict Cj while truth is Ck.

I Loss-sensitive decision ⇒ minimize the expected loss:

E[L] =
∑

j

∫
Rj

( ∑
k

Lkjp(x,Ck)
)
dx

I Solution: for each x, choose the class Cj that minimizes:∑
k

Lkjp(x,Ck) ∝
∑

k

Lkjp(Ck|x)

⇒ straightforward when we know p(Ck|x)
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Decision theory - loss-sensitive decision

I Typical example = medical diagnosis:
I Ck = {1, 2} ⇔ {sick, healthy}
I L =

[
0 100
1 0

]
⇒ strong cost of ”missing” a diseased person

I Expected loss:

E[L] =

∫
R2

L1,2p(x,C1)dx +

∫
R1

L2,1p(x,C2)dx

=

∫
R2

100× p(x,C1)dx +

∫
R1

p(x,C2)dx

I Note: minimizing the probability of misclassification:

p(mis) =

∫
R1

p(x,C2)dx +

∫
R2

p(x,C1)dx

corresponds to minimizing the 0/1 loss: L =

[
0 1
1 0

]
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Decision theory - the ”reject option”

I For the 0/1 loss1, pred(x) = argmaxkp(Ck|x)
I Note: K classes ⇒ 1/K ≤ max

k
p(Ck|x) ≤ 1

I When max
k

p(Ck|x) → 1/K the confidence in the prediction

decreases.
I classes tend to become as likely

I ”Reject option”: make a decision provided max
k

p(Ck|x) > σ

⇒ the value of σ controls the amount of rejection:
I σ = 1: systematic rejection
I σ < 1/K: no rejection

I Motivation: switch between automatic/human decision

I Illustration in Figure 1.26 page 42

1For a general loss matrix, see exercice 1.24
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Decision theory - regression setting

I The regression setting: quantitative target t ∈ R
I Typical regression loss-function: L(t, y(x)) = (y(x)− t)2

I the squared loss

I The decision problem = minimize the expected loss:

E[L] =

∫
X

∫
R
(y(x)− t)2p(x, t)dxdt

I Solution: y(x) =

∫
R

tp(t|x)dt

I this is known as the regression function
I intuitively appealing: conditional average of t given x

I illustration in figure 1.28, page 47

I Note: general class of loss functions L(t, y(x)) = |y(x)− t|q
I q = 2 is analytically convenient (derivable and continuous)
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Decision theory - regression setting

I Derivation:

E[L] =

∫
X

∫
R
(y(x)− t)2p(x, t)dxdt

=

∫
X

[ ∫
R
(y(x)− t)2p(t|x)dt

]
p(x)dx

⇒ for each x, find y(x) that minimizes

∫
R
(y(x)− t)2p(t|x)dt

I Derivating with respect to y(x) gives: 2

∫
R
(y(x)− t)p(t|x)dt

I Setting to zero leads to:∫
R

y(x)p(t|x)dt =

∫
R

tp(t|x)dt

y(x) =

∫
R

tp(t|x)dt
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Decision theory - inference and decision

2 (or 3) different approaches to the decision problem:

1. rely on a probabilistic model, with 2 flavours:
1.1 generative:

I use a generative model to infer p(x|Ck)
I combine with priors p(Ck) to get p(x, Ck) and eventually

p(Ck|x)

1.2 discriminative: infer directly p(Ck|x)
I this is sufficient for the decision problem

2. learn a discriminant function f(x)
I directly map input to class labels
I for binary classification, f(x) is typically defined as the sign

(+1/-1) of an auxiliary function

(Note: similar discussion for regression)
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Decision theory - inference and decision

Pros and Cons:

I probabilistic generative models:
I pros: acess to p(x) → easy detection of outliers

I i.e., low-confidence predictions

I cons: estimating the joint probability p(x,Ck) can be
computational and data demanding

I probabilistic discrimative models:
I pros: less demanding than the generative approach

I see figure 1.27, page 44

I discriminant functions:
I pros: a single learning problem (vs inference + decision)
I cons: no access to p(Ck|x)

I ... which can have many advantages in practice for (e.g.)
rejection and model combination – see page 45
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Section 1.6: Information theory
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Information theory - Entropy

I Consider a discrete random variable X

I We want to define a measure h(x) of surprise/information of
observing X = x

I Natural requirements:
I if p(x) is low (resp. high), h(x) should be high (resp.low)

I h(x) should be a monotonically decreasing function of p(x)

I if X and Y are unrelated, h(x, y) should be h(x) + h(y)
I i.e., if X and Y are independent, that is p(x, y) = p(x)p(y)

⇒ this leads to h(x) = − log p(x)

I Entropy of the variable X:

H[X] = E[h(X)] = −
∑

x

p(x) log(p(x))

(Convention: p log p = 0 if p = 0)
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Information theory - Entropy

Some remarks:

I H[X] ≥ 0 since p ∈ [0, 1] (hence p log p ≤ 0)

I H[X] = 0 if ∃x s.t. p(x) = 1
I Maximum entropy distribution = uniform distribution

I optimization problem: maximize H[X] + λ
( ∑

xi
p(xi)− 1

)
I derivating w.r.t. p(xi) shows they must be constant
I hence p(xi) = 1/M,∀xi ⇒ H[X] = log(M)

⇒ we therefore have 0 ≤ H[X] ≤ log(M)

I H[X] = lower bound on the # of bits required to (binarily)
encode the values of X (using log2 in the defintion of H)

I trivial code of length log2(M) (ex: M = 8, messages of size 3)
I no ”clever” coding scheme for uniform distributions

I for non-uniform distributions, optimal coding schemes can be
designed

I high probability values ⇒ short codes

I see illustration in page 50
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Information theory - Entropy

For continuous random variables:

I differential entropy: H[X] = −
∫

p(x) ln p(x)dx

I because p(x) can be > 1, care must be taken when
transposing properties of the discrete entropy

I in particular, can be negative (if X ↪→ U(0, 1/2) : H[X] = − ln 2)

I Given (µ, σ), maximum entropy distribution p(x) = N (µ, σ2)
I optimization problem: maximize H[X] with µ, σ equality

constraint + normalization constraint
I entropy: H[X] = 1/2

(
1 + ln(2πσ2)

)
I Conditional entropy of y given x:

H[Y |X] = −
∫ ∫

p(x, y) ln p(y|x)dxdy

⇒ we have easily H[X, Y ] = H[Y |X] + H[X]

(natural interpretation with the notion of information)
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Information theory - KL divergence

I Kullback-Leibler divergence between distributions p and q:

KL(p||q) = −
∫

p(x) ln q(x)dx−
(
−

∫
p(x) ln p(x)dx

)
= −

∫
p(x) ln

q(x)

p(x)
dx

I KL(p||q) 6= KL(q||p)

I KL(p||p) = 0

I KL(p||q) ≥ 0 (next slide)

⇒ measures the difference between the ”true” distribution p and
the distribution q

(Information therory interpretation: amount of additional information

required to encode the values of X using q(x) instead of p(x))
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Information theory - KL divergence

I A function is convex iff every cord lies above the function
I illustration in figure 1.31, page 56

I Jensen’s inequality for convex functions:

E[f(x)] ≥ f
(
E[x]

)
(strict inequality for strictly convex functions)

I When applied to KL(p||q):

KL(p||q) = −
∫

p(x) ln
q(x)

p(x)
dx

> − ln

∫
p(x)× q(x)

p(x)
dx (because − ln is stricly convex)

= − ln

∫
q(x)dx = − ln 1 = 0

Moreover, straightforward to see that KL(p||p) = 0
I Conclusion: KL(p||q) ≥ 0, with equality if p = q
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Information theory - KL divergence: illustration

I Data generated by an (unknown) distribution p(x)

I We want to fit a parametric probabilistic model q(x|θ) = qθ(x)
⇒ i.e., we want to minimize KL(p||qθ)

I Data available: observations (x1, . . . , xN ):

KL(p||qθ) = − ln

∫
p(x)× ln

q(x|θ)
p(x)

dx

' −
N∑

i=1

ln
q(xi|θ)
p(xi)

=
N∑

i=1

(
− ln q(xi|θ) + ln p(xi)

)
⇒ it follows that minimizing KL(p||qθ) corresponds to
maximizing

∑N
i=1 ln q(xi|θ) = log-likelihood
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Information theory - Mutual information

I Mutual information: I[X, Y ] = KL(p(X, Y )||p(X), p(Y ))
I Quantifies the amount of independence between X and Y

I I[X, Y ] = 0 ⇔ p(X, Y ) = p(X)p(Y )

I We have:

I[x, y] = −
∫ ∫

p(x, y) ln
p(x)p(y)

p(x, y)
dxdy

= −
∫ ∫

p(x, y) ln
p(x)p(y)

p(x|y)p(y)
dxdy

= −
∫ ∫

p(x, y) ln
p(x)

p(x|y)
dxdy

= −
∫ ∫

p(x, y) ln p(x)dxdy −
(
−

∫ ∫
p(x, y) ln p(x|y)dxdy

)
= H[X]−H[X|Y ]

I Conclusion: I[X, Y ] = H[X]−H[X|Y ] = H[Y ]−H[Y |X]
I I[X, Y ] = reduction of the uncertainty about X obtained by

telling the value of Y (that is, 0 for independent variables)
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