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Review:
Representing Robot Position
© R. Siegwart, ETH Zurich - ASL

= Representing the robot within an arbitrary initial frame
= Inertial frame: {XI,YI}

= Robot frame: {XR,YR} i

= Robot pose: &; =[x h% H]T

= Mapping between the two frames

& =ROK=RO) [ 5 Of .

cosf sinfd 0 P
R(6’)= —sinf cosd 0 I
0 0 1
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Review:

Wheel Kinematic Constraints

Assumptions:

= Movement on a horizontal plane
= Point contact of the wheels
= \Wheels rlot deformable ,.\qb- ¥
= Pure rolling 1
= v, = 0 at contact point v
= No slipping, skidding or sliding
= No friction for rotation around contact point
= Steering axes orthogonal to the surface
= Wheels connected by rigid frame (chassis)
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Review:
Wheel Kinematic Constraints- Fixed Standard Wheel

Y’ ©R. Siegwart, ETH Zurich - ASL
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Review:
Wheel Kinematic Constraints- Steered Standard Wheel

Y’ ©R. Siegwart, ETH Zurich - ASL
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Review:
Wheel Kinematic Constraints- Castor Wheel
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Review:
Wheel Kinematic Constraints- Swedish Wheel
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7 | Fall2013 ME 598, Lecture 9 ot

ZR [Sin(OL TB+7Y) —cos(a+P+7y) (~Icos(P+ ”/)] R®)E; rcosy = 0
[cos(e+B+7) sin(o+B+y) fsin(p+ 1 ROF, rpsiny - r. b, = 0
/
_ Y
Robot chassis -
-l
o

©R. Siegwart, ETH Zurich - ASL

6 | Fall2013 ME 598, Lecture 9

8 | Fall2013 ME 598, Lecture 9




Review: Review:

Degrees of Freedom, Holonomy Path / Trajectory Considerations
Omnidirectional Drive Two-Steer Drive
© R. Siegwart, ETH Zurich - ASL Y; Y,

= DOF degrees of freedom:
= Robots ability to achieve various poses
= DDOF differentiable degrees of freedom: How many DOF can be

= Robots ability to achieve various path |:> controlled by just changing
wheel velocities

X

DDOF<65, <DOF

= Holonomic Robots X o B
= A holonomic kinematic constraint can be expressed a an explicit function of x5 8 P T ~T g,
position variables only L %20
= A non-holonomic constraint requires a different relationship, such as the x(1) L
derivative of a position variable ) i ;Zj
= S,

= Fixed and steered standard wheels impose non-holonomic constraints 12 3 T2 5 4 5
© R. Siegwart, ETH Zurich - ASL
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Review: Review:
Motion Control- Feedback Control Motion Control- Kinematic Model

© R. Siegwart, ETH Zurich - ASL

= The kinematics of a differential drive

= Find a control matrix K, if

exists mobile robot described in the inertial
. {k“ ki, klg] frame {x,, y,, 8} is given by,
k21 k22 k23 .
with k;=k(t.e) x| |cos6 0 -
= such that the control of v(t) y|=|sin6 0 |: :|
and oft ; , 6 [ o 1
I D Y et Yo=X;
v(r) '
L)([)} =K-.e=K-|y = where & and y are the linear velocities
4 Ay in the direction of the x, and y, of the
inertial frame.
@m (nonintegrable) """ = drives the error e to zero 2L = Let a denote the angle between the x,
Robot Model lim e(f) = 0 e\ axis of the robots reference frame and
oz the vector connecting the center of the

axle of the wheels with the final
position.

= MIMO state feedback control
©R. Siegwart, ETH Zurich - ASL|
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Review:
Kinematic Model: Coordinate Transformation

» Coordinate transformation into polar coordinates
with its origin at goal position:

p= »\/sz +Ayz

o = —0+atan2(Ay, Ax)

B=-6-0a =

» System description, in the new polar coordinates

. —cosa. 0 cosct 0
P . p
o = | 2RO ]|V . sino v
al = o —-1
P © , p ®
7sinoc sino .
P p

forael, = (-n,—-w/2]U(n/2, 1]
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Review:
Kinematic Position Control- Control Law
= |t can be shown, that with

v = k,p ® = koot kg

© R. Siegwart, ETH Zurich - ASL

the feedback controlled system

P —k,pcosa
Gl = |k,sinc—Kk,0 — kg

fkp sinot
will drive the robot to (p,c.p)=(0,0,0)

= The control signal v has always constant sign,
= the direction of movement is kept positive or negative during movement

= parking maneuver is performed always in the most natural way and without
ever inverting its motion.
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Computer Vision & Image Processing
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Computer Vision & Image Processing:
Representing Images

* Images: width x height (pixels)

* In MATLAB: image = matrix
— Height = # rows (y coordinate)
— Width = # columns (x coordinate)
— 1(y,x) = pixel value according to image x,y coordinate

16 | Fall2013 ME 598, Lecture 9




Computer Vision & Image Processing:
Grayscale Images

* Grayscale images (black and white)
* size(l) = rows x columns = height x width
* Pixel values: 0 (black) 2 255 (white)
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Computer Vision & Image Processing:
Color Images

* RGB color model

* Size(l) = rows x columns x 3
* Red, green, and blue layers (RGB)
il » Pixel values: 0 2 255

— (0,0, 0) is black

— (255, 255, 255) is white
— (255, 0,0) isred

— (0, 255, 0) is green

— (0, 0, 255) is blue

— (255, 255, 0) is yellow
— (0, 255, 255) is cyan

— (255, 0, 255) is magenta

(0,0,0) Black

Grayscale values (R=G=|

18 | Fall2013

Computer Vision & Image Processing:

Color Images
* HSV color model

* Size(l) = rows x columns x 3
* Hue, Saturation, and Value layers (HSV)

* Colors as points in a cylinder

— Central axis ranges from black at the bottom to white at the top
with neutral colors between them

— Angle around the axis corresponds to “hue”
— Distance from the axis corresponds to “saturation”
— Distance along the axis corresponds to “value”

Angle

§ * H:Hue represents color, angle from 0° to 360° (can be
" normalized between 0 and 1)

o ‘;.:g " |+ s:Saturation indicates the grey in color space, 0 to 100% (or 0 60120

0-60

to 1); 0 = grey, 1 = primary color 120-180

* V: Value is brightness of the color and varies with saturation; ~ 180-240
ranges from 0 to 100% (0 = totally black) 240-300
300-360

Fall 2013

Color
Red
Yellow
Green
Cyan
Blue

Magenta
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Computer Vision & Image Processing:
Detecting Color in MATLAB
7

getHSVColorFromDirectory:

Training Dataset: For each JPG file, the user selects a number of

Code from MATLAB File Exchange: m "“‘:9]'53 sasds that have the desired calor. For sach image hy 8, vy
- e the median HSV value is retumed (function hys, v,
Theodoros Giannakopoulos D&"jd”pg seleciPixelsAndGelHSY). The function retums a e
i [Mx3] matrix, each row of which contains the S Vi
Department of Informatics and elc. e o e e o

Telecommunications
University of Athens, Greece

Mhsv]

Training selectPixelsAndGetHSY £

\pracass
colorDetectHSV:
This function s called for detecting the color

Test
Imeaze [H S V[ (as selected by the userin the
training step). Tol is the tolerance of the
detection step.

Detected areas
Testing
| e

http://www.mathworks.com/matlabcentral/fileexchange/18440
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Computer Vision & Image Processing: Computer Vision & Image Processing:
Detecting Color in MATLAB Detecting Color in MATLAB

* example.m

— Create Training data set of images to determine HSV values that you are
looking for and place in training directory (‘train’)

* Training data
— Left-click in color region you want to detect (at least 10 in each image)

— Right-click once you have finished selecting all points in the image

% STEP 1: Use getHSVColorFromDirectory(dirName) in order to estimate the

% average H3V wvalues of your ochjects of interestc. - Repeat f0r a" images |n trainlng directory

H3V = getHSVColorFromDirectory('train'j:

"

The above function call will let the user choose manually (through simple
mouse clicks) several "seeds" from each image.

At the end the H3V matrix contains M rows (M is the total number of jpeg files
in dirName): each row corresponds to the average HEV wvalue of the

selected seeds in the respective image.

The average (or median) wvalue of this matrix (column-wise) can he used,

in the sequence for detecting the speficic color walues.

FE )

a

% 3TEP Z: Use the estimated (=sverage] hsv value for detecting the specified
% color in & specific image.

colorDetectH3V (' test/facell, jpg', median(H3V), [0.05 0.05 0.2]): -
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Computer Vision & Image Processing: Computer Vision & Image Processing:
Detecting Color in MATLAB Detecting Color

. examplem ° CO|0I’DeteCtHSVm Ef\mcnmn ColorDetectHSV (f1leName, hovval, toll

W

mouse clicks) several "seeds™ from each image.
it the end the H3V matrix contains M rows (M is the total nurber of jpeg files

worn . di . uoa. gr/ ~tyisnnak

— Step 2. Use the estimated HSV value for detecting the specified color in a — Inputs: * function colorDeectESV(fileNewe, hovial, tol]
particular image R image filename x This function is used for detecting a specified hsv walue in images.

© ARGUMENTS:

5 STEP 1: Use getHSVColorFromDirectoryidirMName) in order to estimate the ¢ hsvValue & fileName: the name of the jpg file to be loaded

4 average HSV values of your ohiects of interest % hev¥al: 3xl array eontaining the HSV values to ke detecrted

. * Tolerance % tol: 1xl or Zxl or 3xl array containing the tolerance (i.e. The maximum

% distanse - in each hev cosfficient - of esch pixel from hsvval) .

HSV = getHSVColorFromDirectory(' train'): — Calculates HSV values for all 5
% Example:

. piXeIS in image x colorDetectHSV (! train/face0?. jpg', median(HS¥), [0.05 0.05 0.1]):

% The sbove function call will let the user choose manually (through simple —_ Compares W|th HSV Values that fTh ; . . | . et
% Theodoros Giannakopoulos - January
5

you’re searching for
in dirMame) : each row corresponds to the average HIV walue of the —_ NEW image initialized as a” b|ac|<

selected seeds in the respective image. . I |f HSV df_f I
The awverage (or median) wvalue of this matrix (column-wise) can he used, pIXe S’ [ erenCE<t0’

e

-

e

RGB = imread(fileName);

-

% in the sequence for detecting the speficic color values. turns reSpeCtiVe piXeI white FSY = TaRanev (RGR)
% % find the difference between required and real H value:
- Output: QiffH = abs (ESV(:,:,1] - hswWal(l)];
% 3ITEP Z: Use the estimated (=sverage] hsv value for detecting the specified . Figure Wlth
% color in a specific image.
— Original image
colorDetectHSV (' test/facell. pg', median(HSV), [0.05 0.05 0.21); - — Color detected image
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Color Detection Demo

Computer Vision & Image Processing:
Blob Analysis- Opening

bwareacopen
Morphologically open binary image (remove small abjects)
Syntax
EWZ = bwacreaopen (BU,P)
BUZ = bwaresaopen (BU,P,conn)
Description
BU2 = buareaopen(BW, P} removes from a binary image all connected components (objects) that have fewer than  pixels, producing ancther binary image,
BUz. The default is 8 for two | 26 for three ,and conndef (ndims (BW) , 'maximal’ ) for higher dimensions,

BUZ = buareacpen{EW,P,conn) speciiies the desired connectivity. @onn can have any of the following scalar values

Value Meaning

Two-dimensional connectivities

4 4-connected neighbarhood

8 8-connected neighbarhood

Three-dimensional connect

B B-connected neighborhood
13 18-connected neighborhood
26 26-connected neighborhood

Connctivity can be defined in a more general way for any dimension by using for conn a 3-by-3-by-...-by-3 matrix of o's and 1's. The 1-valued slements dsfine
neighborhood locations relative to the center element of conn. Mote that conn must be symmetric about its center element

@ - 25 | Fall2013 WSS& Lecture 9 ';1[]"" NS 26 Fall 2013 ME 598, Lecture 9
Computer Vision & Image Processing: Computer Vision & Image Processing:
Blob Analysis- Opening Blob Analysis- Filling
imfil

CD = Original BW image

Removes connected pixel regions less

than 200 pixels in size

27 | Fall2013

CDfiltered = bwareaopen(CD, 200);
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Fill image regions and holes

Syntax
BWZ = imfill (BU)
[BUZ, locations] = imfill (BWj
BWZ = imfill {BU, locations)
BWZ = imfill {BU, 'holes')
I2 = irmfill(I)
BWz = imfill [BU, locations, conn)

Description

BUZ = imfill (B} displays the binary image B on the screen and lets you define the ragion to fill by selecting points interactively on using the mouse. To use
this interactive syntax,BW must be a 2-Dimage. Press Backspace or Delete to remove the previously selected point. A shift-click, right-click, or double-click
selects a final point and starts the fill operation. Pressing Return finishes the selection without adding a point

[BWZ, locations] = imf£ill(BW) retums the locations of points selected interactively in locations. locations is avector of linear indices into the input
image. To use this interactive syntax,BW must be a 2-D image

BUZ = imfill {BW, locations) performs a flood-fill operation on background pixels of the binary image BW, starting from the points specified in locations. If
locations is a P-by-1 vector, it contains the linear indices of the starting locations. If locations is a P-by-ndima (BW) matrix, each row contains the array
indices of one of the starting locations

BUZ = imfill(BU,'holes') fills holes in the binary image B, A hole is a set of background pixels that cannot be reached by filling in the background from
the edge of the image

Iz = imfill (I} fills holes in the grayscale image I. Inthis syntax, a hole is defined as an area of dark pixels surrounded by lighter pixels

BUZ = imfill {BW, locations,conn) fills the area defined by locations, where conn specifies the connectivity. conn can have any of the following scalar
values.
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Computer Vision & Image Processing:
Blob Analysis- Filling

CDfiltered = bwareaopen(CD, 200); CDfilled = imfill(CDfiltered, 'holes');

Fall 2013 ME 598, Lecture 9

Computer Vision & Image Processing:
Blob Analysis- Labelling

bwlabel

Label connected components in binary image

Syntax

L = bwlabel (U, n
[L,num] = bwlabel (BU,n)

Description

L = bwlabel (EW, n) retumns a matrix L, of the same size as BW, containing labels for the connected objects in BW. n can have a value of either 4 or &, where 4
specifies 4-connected objects and 8 specifies 8-connected objects; if the argument is omitted, it defaults to 8

The elements of L are integer values greater than or equal to 0. The pixels labeled O are the background. The pixels labeled 1 make up one object, the pixels
labeled 2 make up a second object, and o on.

[L,mur] = bwlabel (BW,n) retuns in numthe number of connected objects found in BW.
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Computer Vision & Image Processing:
Blob Analysis- Measuring Properties

regionprops

Measure propetties of image regions (blob analysis)

Syntax

STATS = regionprops (L, properties
STATS = regionprops (L, I,properties

Description

STATS = regionprops (L, properties) measures a set of properties for each labeled region L. L can be a label matrix or a multidimensional aray.
Whenk is a label matrix, positive integer elements of L correspond to different regions. For exarmple, the set of elements of L equal to 1 corresponds to
region 1; the set of elements of L equal to 2 corresponds to region 2; and so on. The return value 3TATS is a structure array of length max (Li:) ). The
fields of the structure array denote different measurements for each region, as specified by propertises. See Properties for a list of valid property strings.

STATS = regionprops (L, I,properties) measures aset of properies for each labeled region in the 2-D or N-D grayscale image I. L is a label
rnatrix that identifies the regions in T and must have the same size as T

Properties

properties can be a comma-separated list of strings, a cell array containing strings, the single string *all', or the string 'basic'. f propertiesis
the string 'all', regionprops I all the shape ents, listed in Shape ente. If called with a grayscale image, regionprops
alzo returns the pikel value measurements, listed in Pivel Value Measurerments. f properties is not specified or if it is the string 'basic',
regionprops computes only the ' Area', 'Centroid', and ' BoundingBox' measurements. The following properties can be calculated on M-D label
matrices: ' Area', 'BoundingBox', Centroid', 'FilledAirea', 'FilledImage', ' Image','PixelIdxList', 'PixelList',and

' Subarraylds!'

31 Fall 2013 ME 598, Lecture 9

Computer Vision & Image Processing:
Blob Analysis Example

% Label connected components

L = bwlabel [CDEilled):

% Calculate region properties for connected components

s = regionprops(L);

% Concatenate an array of all the regions 'area’ values

areas = cat(l, s.hrea);

% Concatenate an array of all the regions 'centroid' wvalues
centroids = cat(l, s.Centroid):

% Identify largest area

max_area = max [areas);

% Find the index in the 'areas' array corresponding to max_sres
idx = find(areas == max_area);

% Get the centroid value for the region with the largest area
centroidX = centroids(idx,1):

centroidY = centroids(idx,2):

% Select the connected component corresponding to this region
BUz = iswewber (L, idx);

% Plot the image of the largest connected region

figure(3)
imshow (BWZ)
hold on

% Plot a blue star in centroid of region
plot (centroidX, centroidY, 'b#')
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Blob Analysis Demo
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Computer Vision & Image Processing:
Edge Detection

M. Ani Hsieh, Drexel University, SAS Lab
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Computer Vision & Image Processing:

Edge Detection

= Ultimate goal of edge detection
= an idealized line drawing.

©R. Siegwart and D. Scaramuzz:

= Edge contours in the image correspond to important scene contours.

LTSt

-
T~
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Computer Vision & Image Processing:
Edge Detection

= FEdges correspond to sharp changes of intensity

= Change is measured by 15t derivative in 1D

= Biggest change, derivative has maximum magnitude
= Or 2™ derivative is zero.

©R. Sieqwart and D. Scaramuzza. ETH Zurich - ASL
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Computer Vision & Image Processing:
Edge Detection

= The gradient of an image:

vi=[3 3]

The gradient points in the direction of most rapid change in intensity

vf— 3f &

= The gradient direction is given by:
— —1(9f j0f )
6 = tan (@ /55
= how does this relate to the direction of the edge? < perpendicular!
The edge strength is given by the gradient magnitude

V51 = /GD* + (&)’

©R. Sleqwart and D. Scaramuzza, ETH Zurich - ASL

V= [Br’ ]

%
s
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Computer Vision & Image Processing:
Edge Detection

How can we differentiate a digital image f[x,y]?

= QOption 1: reconstruct a continuous image, then take gradient
= Option 2: take discrete derivative (finite difference)

flz+1,y]

o)~ - fley]

Convolution

A convolution is an integral that expresses
the amount of overlap of one function g as
it is shifted over another function f

©R. Siegwart and D. ETH Zurich - ASL

38 | Fall2013

ME 598, Lecture 9

Computer Vision & Image Processing:

Convolution
¢ Definition
— Continuous
(f*x9)(t)= [T f(r) - g(t—T)dr
— Discrete

(f*9)n] = >0 flm] - gln —m]

M. Ani Hsieh, Drexel University, SAS Lab

Computer Vision & Image Processing:
Graphical Explanation of Convolution

39 | Fall2013
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. f(t)
L ew
f 9(tT)
f(T) i 1
T == T
M. Ani Hsieh, Drexel University, SAS Lab g(t_T) . j‘. ) f(T)
T
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Computer Vision & Image Processing:
Convolution By Applying Masks to Images

111 |1 1121

1111 2|42
1111 1

* Convolution of the image w/ another “signal”
* Masks have origins

— Symmetric masks — origins are the center pixels

Computer Vision & Image Processing:
Applying Masks to Images

1
i
i
|

M. Ani Hsieh, Drexel University, SAS Lab

Computer Vision & Image Processing:
Linear Functions & Filters

* Simplest: linear filters

— Key idea: replace each pixel by a linear combination of its
neighbors

* The prescription for the linear combination is called
the convolution kernel

101 513 01010
41511 010.30 7
LLL 17 011 103
L.ocal image data kernel Modified image data

M. Ani Hsieh, Drexel University, SAS Lab

Computer Vision & Image Processing:
Linear Functions Example- 1D Linear Filter

I(x)= olol1fo]o0
|
03| 1/ 0.6

g(x)=

f(x)= 0 10.6




Computer Vision & Image Processing: Computer Vision & Image Processing:

Linear Functions Example- 1D Linear Filter Linear Functions Example- 1D Linear Filter
f(x)= 0] o0[1][0]0 f(x)=
o311 ||
h(x)= h(x)=

g(x)= 0

g(x)=

M. Ani Hsieh, Drexel University, SAS Lab M. Ani Hsieh, Drexel University, SAS Lab
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Computer Vision & Image Processing: Computer Vision & Image Processing:
Linear Filtering- Exercise | Linear Filtering- Exercise Il

= g
5 S 1.0
= 1.0 %
0 0
g Pixel offset Pixel offset
original Filtered .
(no change) original shifted

(Following examples taken from B. Freeman)

M. Ani Hsieh, Drexel University, SAS Lab M. Ani Hsieh, Drexel University, SAS Lab
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Computer Vision & Image Processing: Computer Vision & Image Processing:
Linear Filtering- Exercise Ill Linear Filtering- Blur Examples
— M. Ani Hsieh, Drexel University, SAS Lab
g o
g impulse 1‘5
g s 03 ”l
$ I_I_I_'+|_V_l_l
§ 0‘3l ' | original Pixel offset filtered
0 g 2
Pixel offset 2
. edge 4 =
0.3
original Blurred (filter g
applied in both l
dimensions). original Pixel offset filtered
M. Ani Hsieh, Drexel University, SAS Lab
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Computer Vision & Image Processing: Computer Vision & Image Processing:
Linear Filtering- Exercise IV Linear Filtering- Exercise V
2.0
I - 0.33 ?
L ]
0 1]
original 1.0 Filtered original
l (no change)
0 M. Ani Hsieh, Drexel University, SAS Lab M. Ani Hsieh, Drexel University, SAS Lab
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Computer Vision & Image Processing:
Linear Filtering- Exercise V (Remember Blurring?)

=
=
2
% 0.3
Ul‘!‘l‘l’l‘l‘!‘ﬁ
0
Pixel offset
original Blurred (filter
applied in both
dimensions).

M. Ani Hsieh, Drexel University, SAS Lab
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Computer Vision & Image Processing:
Linear Filtering- Exercise V

2.0
- 0.33
0 1]
original 1.7 Sharpened
g original
0.3

M. Ani Hsieh, Drexel University, SAS Lab
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Computer Vision & Image Processing:
Linear Filtering- Sharpening Examples

1.7
11.2

coefficient

-0.25

original Sharpened
(differences are
accentuated; constant
areas are left untouched).

o
Tt

M. Ani Hsieh, Drexel University, SAS Lab
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Computer Vision & Image Processing:
Linear Filtering- Sharpening Example

bhefore after

M. Ani Hsieh, Drexel University, SAS Lab
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Computer Vision & Image Processing:

Computer Vision & Image Processing:
Edge Detection

Edge Detection e Solution:
. = Consider a single row or column of the image Smooth first ~ — Sma =%
° m = Plotting intensity as a function of position gives a signal f Bl
Effects: ) —
.......... 0 200

f(x)

>
Kernel

=)
i

|
7 600 800 1000 1200 1400 1600 1800 2000
T T T T T T T

I I i I i i i i i
0 200 400 600 800 1000 1200 1400 1600 1800 2000

=
>
~
Convolution

1200 1400

L f(z)

Q
Fo
~—~
Pl
*
)
~—
Differentiation

AL L S O AR o LA — :
0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 201 400 600 800 1000 1200

1400 1600 1800 2000

[ i 7 ] i i
Where is the edge Look for peal((@sR'lgg s (h=f)

WY e o oo UZZA, ETH Zurich

. = Where is the edge? —

© R. Sieqwart and D. Scaramuzza, ETH Zurich - ASL
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Computer Vision & Image Processing: Computer Vision & Image Processing:
Edge Detection 2D Edge Detection

©R. Sleqwart and D. Scaramuzza, ETH Zurich - ASL
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2D Edge Detection Filters

Derivative theorem of convolution:
0 (0
—aw(h *f) = (_&Uh) * f

= This saves us one operation: Sigma = 50

i Laplacian of Gaussian
i

A
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i ; ; e Gaussian derivative of Gaussian
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s R A U « V?Zis the Laplacian operator:
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Computer Vision & Image Processing:
Optimal Edge Detection- Canny

2
= Consider %(h*f)

Sigma = 50
T

©R. Sieawart and D. Scaramuzza, ETH Zurich - ASL
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: operator :
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Convolution
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= Where is the edge? = Zero-crossings of bottom graph
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Computer Vision & Image Processing:
Edge Detection Example- Canny Edge Detector

Norm of gradient.,

S,

4

Thresholding
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Computer Vision & Image Processing:
Gradient Edge Detectors

- Roberts © R. Sieqwart and D. Scaramuzza, ETH Zurich - ASL
Gl=Jri+rs: 1 = -Lo r, = 0-
B 01 1 0
= Prewitt
» -1 -1-1 -101
1G1= Pt + ; Béatan(p—'); pr=100 0|:p=1|-101
- Sobel ’ 1] -1 0 1]
_ . B ~10 1
|Gl = 51 +55 Bsatan(—'): 5;=10 0 0]: s55=1=202
5,
’ 12 10 1]
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Computer Vision & Image Processing:
Edge Detection- Nonmaxima Suppression

Nonmaxima Suppression

= Qutput of an edge detector is usually a b/w
image where the pixels with gradient
magnitude above a predefined threshold are
black and all the others are white

* Nonmaxima suppression generates contours
described with only one pixel thinness

©R. Sieqwart and D. Scaramuzza, ETH Zurich - ASL
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Computer Vision & Image Processing:
Edge Detection Example- Sobel Filter

a) Raw image a

b) Filtered
(Sobel)

c) Thresholding

d) Nonmaxima —
suppression

il e | [
=10 0 O
L7 S |

R
65 | Fall2013 ME 598, Lecture 9

Computer Vision & Image Processing:
Comparison of Edge Detection Methods

©R. Sieqwart and D. Scaramuzza, ETH Zurich - ASL

seconds

Canny Canny Sobel Prewtt Roberts
77 (3:3)

algorithm

= Average time required to compute the edge figure of a 780 x 560 pixels image.

= The times required to compute an edge image are proportional with the accuracy of
the resulting edge images
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Computer Vision & Image Processing:
Edge Detection- Dynamic Thresholding

Dynamic Thresholding for Unstructured Environments

©R. Sieqwart and D. Scaramuzza, ETH Zurich - ASL

= Changing illumination
= Constant threshold level in edge detection is not suitable
= Dynamically adapt the threshold level

= consider only the n pixels with the highest gradient magnitude for further
calculation steps.

10000 b
s

2 600

E 40000

1n0m

gradient magnitude gradiont magnituda

(a) Number of pixels with a specific gradient magnitude in the image of Figure

1.2(b).
b) Same as (a). but with loqahmic scale
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Computer Vision & Image Processing:
Line Detection
= Option 1:

= Search for the line at every possible position/orientation
= Whatis the cost of this operation?

= Option 2:
= Use a voting scheme: Hough transform
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Computer Vision & Image Processing:
Hough Transform- Straight-Line Detection

= All points p on a straight-line edge must satisfy y, =m, x, + b;.
. Each point (x,, ¥,) that is part of this line constraints the parameter m, and
1
= The Hough transform finds the line (line-parameters m, b) that gets most
“votes” from the edge pixels in the image.
= This is realized by four steps
1. Create a 2D array A [m,b] with axes that tessellate the values of m and b.
2. Initialize the array A to zero.
3. For each edge pixel (x;, Y,) in the image, loop over all values of m and b:
if y, = m; x, + b, then Afm,bJ+=1
4. Search cells in A with largest value. They correspond to extracted straight-line
edge in the image.

©R. Sleqwart and D. Scaramuzza, ETH Zurich - ASL
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Computer Vision & Image Processing:
Hough Transform- Straight-Line Detection

= Curve function and
parameters:

f(x,a) =
xz cos(0) + vy sin(0) — p

a=(p,0)"

= Hough transformation of a
single edge pixel is a sine
wave in parameter space.

= |f the edge pixel direction
is available a pixel
transforms into a single
accumulator cell.

100

[pixel]

2501

¥

300

3501
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Linc featurcs image

400
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Computer Vision & Image Processing:
Hough Transform- Straight-Line Detection Example

Computer Vision & Image Processing:
Edge Detection + Line Detection

40 60 80 100 120 140

]

Hough Transform
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= A Canny edge pixel map and the resulting Hough transform accumulator
. ©R. Sieqwart and D. Scaramuzza, ETH Zurich - ASL
array:
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—-..,_ JL— ._Jm 777, _right road s T
;T"' mgmpﬂ""‘—" HJJ-‘ = | /]ﬁ%ﬂgﬂﬁnﬁ peft Fead background
% oundary -
?@ v Left lane K.\
2 4 right lane boundary
houndary
‘\‘. ego-vehicle
',' contours
S
I’%= e
400
P,
e Lane boundaries: (6;,p;) = {59°,105} , (6, pr) = {—51°,78}
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Computer Vision & Image Processing:
Edge Detection + Line Detection

Inner city traffic

o Tt YA

Ground signs Country-side lane

e ————
High curvature
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Sensor Based Navigation
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Sensor Based Navigation:
Vision-Based Navigation

* Distance sensor

— Distance from object proportional to area of object in
image
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Sensor Based Navigation:
Vision-Based Navigation

* Track target/landmark
— Rotate robot to keep target in center of image

76 | Fall2013

ME 598, Lecture 9




Sensor Based Navigation:
Vision-Based Navigation

* Obstacle Avoidance

— Distance sensing

* Object close = avoid
* Object far > OK

— Avoidance: opposite of target

tracking

* Rotate robot so object is not in center

of image

©

©
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Sensor Based Navigation:
Vision-Based Navigation Scheme

Obstacle Color

Detection

Image
Processing

Areas| Centroids

NO

Obstacle

Obstacle?
stacie Close?

Avoid: Turn CW or CCW
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Sensor Based Navigation:
Vision + Sensor Based Navigation Scheme

d

Obstacle Color
Detection

Image
Processing

Areas | Centroids

Obstacle?

Read Cliff
Sensors

On Road?

Obstacle
Close?

Rotate: CW or CCW
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