Review: Path and Trajectory Planning

- Given:
 - Initial configuration of robot, q_i (initial joint coordinates)
 - Final configuration of robot, q_f (final joint coordinates)
- Goal:
 - Find a collision free path connecting q_i and q_f

- Path Planning
 - Provides geometric description (q) of the robot motion (no dynamics)
- Trajectory Planning
 - Provides time function to specify velocities and accelerations as robot moves along path q

Review: Path Planning Using Potential Fields

- Workspace potential fields
 - Attract the origins of the DH frames to goal locations while repelling them from obstacles
 - Used to define motions in configuration space with the manipulator Jacobians
Review: The Attractive Field

- Conic well potential – far away from goal
- Parabolic well potential – close to goal

Workspace attractive Force = negative gradient of U_{attr}

$$U_{\text{attr}}(q) = \begin{cases} \frac{1}{2}d([q] - [\bar{q}])^2 & : ||[q] - [\bar{q}]|| \leq d \\ \frac{1}{2}d^2 & : ||[q] - [\bar{q}]|| > d \end{cases}$$

(5.3)

In which d is the distance that defines the transition from conic to parabolic well. In this case the workspace force for α_i is given by

$$F_{\text{attr}}(q) = \begin{cases} -\zeta([q] - [\bar{q}]) & : ||[q] - [\bar{q}]|| \leq d \\ -\eta([q] - [\bar{q}]) & : ||[q] - [\bar{q}]|| > d \end{cases}$$

(5.4)

The gradient is well defined at the boundary of the two fields since at the boundary $d = ||[q] - [\bar{q}]||$ and the gradient of the quadratic potential is equal to the gradient of the conic potential $F_{\text{attr}}(q) = -\zeta([q] - [\bar{q}])$.

Review: The Repulsive Field

- Properties
 - Repel robot from obstacles, never allowing collisions
 - When robot far away, little/no influence on motion

$$p_o = \text{distance of influence of an obstacle}$$

$$U_{\text{rep}}(q) = \begin{cases} \frac{1}{2p_o}(\frac{1}{\rho_o(q)} - 1)^2 & : \rho_o(q) \leq \rho_o \\ 0 & : \rho_o(q) > \rho_o \end{cases}$$

(5.5)

in which $\rho_o(q)$ is the shortest distance between a_i and any workspace obstacle. The workspace repulsive force is equal to the negative gradient of U_{rep}. For $\rho_o(q) \leq \rho_o$, this force is given by

$$F_{\text{rep}}(q) = \eta \frac{1}{\rho_o(q)} \frac{1}{\rho_o(q)} \nabla \rho_o(q)$$

(5.6)

in which the notation $\nabla \rho_o(q)$ indicates the gradient $\nabla \rho_o(q)$ evaluated at $z = \rho_o(q)$. If the obstacle region is convex and b is the point on the obstacle boundary that is closest to a_i, then $\rho_o(q) = ||b - q||$, and its gradient is

$$\nabla \rho_o(q) = \frac{a_i - b}{||b - q||}$$

(5.7)

that is, the unit vector directed from b toward $a_i(q)$.

Review: Workspace Forces \rightarrow Joint Torques

- Map workspace forces to configuration space before combining them

$$\tau = J^T F(q)$$

$$\tau(q) = \sum_i J^T \alpha_i(q) F_{\text{attr}}(q) + J^T \alpha_i(q) F_{\text{rep}}(q)$$

Review: Gradient Descent Planning Algorithm

1. $q^0 = q_{s_i}$, $i = 0$
2. WHILE $||q^i - q_f|| > \varepsilon$

$$q^{i+1} = q^i + \alpha^i \frac{\tau(q^i)}{\|	au(q^i)\|}$$

$i = i + 1$
3. END
4. Return $[q^0, q^1, ..., q^i]$
Review: Probabilistic Roadmap Methods

Sampling

Connecting

Enhancing

Smoothing

Review: Trajectory Planning

- Path from q_s to q_f in C
 - continuous map γ, with $\gamma(0) = q_s$ and $\gamma(1) = q_f$
- Trajectory:
 - function of time $q(t)$ such that $q(t_0) = q_s$ and $q(t_f) = q_f$
 - $t_f - t_0 =$ time to execute trajectory
 - $q'(t), q''(t) =$ velocity, acceleration
 - path planning only give sequence of points along q

Review: Trajectory Planning

- Path from q_s to q_f in C
 - continuous map γ, with $\gamma(0) = q_s$ and $\gamma(1) = q_f$
- Trajectory:
 - function of time $q(t)$ such that $q(t_0) = q_s$ and $q(t_f) = q_f$
 - $t_f - t_0 =$ time to execute trajectory
 - $q'(t), q''(t) =$ velocity, acceleration
 - path planning only give sequence of points along q

Review: Trajectory Planning

- Path from q_s to q_f in C
 - continuous map γ, with $\gamma(0) = q_s$ and $\gamma(1) = q_f$
- Trajectory:
 - function of time $q(t)$ such that $q(t_0) = q_s$ and $q(t_f) = q_f$
 - $t_f - t_0 =$ time to execute trajectory
 - $q'(t), q''(t) =$ velocity, acceleration
 - path planning only give sequence of points along q

Review: Trajectory Planning

- Path from q_s to q_f in C
 - continuous map γ, with $\gamma(0) = q_s$ and $\gamma(1) = q_f$
- Trajectory:
 - function of time $q(t)$ such that $q(t_0) = q_s$ and $q(t_f) = q_f$
 - $t_f - t_0 =$ time to execute trajectory
 - $q'(t), q''(t) =$ velocity, acceleration
 - path planning only give sequence of points along q

Review: Trajectory Planning

- Path from q_s to q_f in C
 - continuous map γ, with $\gamma(0) = q_s$ and $\gamma(1) = q_f$
- Trajectory:
 - function of time $q(t)$ such that $q(t_0) = q_s$ and $q(t_f) = q_f$
 - $t_f - t_0 =$ time to execute trajectory
 - $q'(t), q''(t) =$ velocity, acceleration
 - path planning only give sequence of points along q

Review: Trajectory Planning

- Path from q_s to q_f in C
 - continuous map γ, with $\gamma(0) = q_s$ and $\gamma(1) = q_f$
- Trajectory:
 - function of time $q(t)$ such that $q(t_0) = q_s$ and $q(t_f) = q_f$
 - $t_f - t_0 =$ time to execute trajectory
 - $q'(t), q''(t) =$ velocity, acceleration
 - path planning only give sequence of points along q

Review: Trajectory Planning

- Path from q_s to q_f in C
 - continuous map γ, with $\gamma(0) = q_s$ and $\gamma(1) = q_f$
- Trajectory:
 - function of time $q(t)$ such that $q(t_0) = q_s$ and $q(t_f) = q_f$
 - $t_f - t_0 =$ time to execute trajectory
 - $q'(t), q''(t) =$ velocity, acceleration
 - path planning only give sequence of points along q
Review:
Trajectory For Paths W/ Multiple Points

• Use lower order polynomials for trajectory segments between adjacent points
• Require velocity and acceleration constraints at points where switch from one polynomial to another
• For each segment:

 Cubic polynomial trajectory:
 \[q(t) = a_0 + a_1 (t-t_0) + a_2 (t-t_0)^2 + a_3 (t-t_0)^3 \]
 where:
 \[a_0 = q_0 \]
 \[a_1 = v_0 \]
 \[a_2 = \frac{3(q_i - q_0) - (2v_0 + v_i)(t_f - t_i)}{(t_f - t_i)^2} \]
 \[a_3 = \frac{2(q_i - q_0) + (v_0 + v_i)(t_f - t_i)}{(t_f - t_i)^3} \]

For sequence of moves:
Use end conditions \(q_i \) and \(v_i \) of the \(i^{th} \) move as initial conditions for next move

Control of Manipulators

Reference:

Control of Manipulators:
Open-Loop Introduction

- Linear control – system modeled by linear differential equations
 \[\tau = M(q_d)\ddot{q}_d + V(q_d, \dot{q}_d) + G(q_d) \]
- Open-loop
 - Only function of \(q_d \)
 - Not a function of \(q \), actual trajectory

Control of Manipulators:
Closed-Loop Introduction

Closed-loop
- Use feedback from joint sensors, \(q \) and \(q' \)
- Feedback used to compute servo error:
 \[E = q_d - q \]
 \[\dot{E} = \dot{q}_d - \dot{q} \]
- Control system computes how much torque to send actuators as a function of \(E \), \(E' \)
Control of Manipulators: Introduction

- **Goal:**
 - Design a closed-loop system that is stable
 - Errors remain “small” when tracking various desired trajectories even in presence of “moderate” disturbances
 - Meets performance objectives for particular application

Control of Manipulators: Approximation

- **Approximation:**
 - Treat each joint as separate system to be controlled
 - N-jointed manipulator, N-independent single-input, single-output (SISO) control systems

Control of Manipulators: Second-Order Linear Systems

- **Equation of motion:**
 \[m\ddot{x} + b\dot{x} + kx = 0 \]
- **Find solution:** \(x(t) \)
 - Form of solution depends on roots of characteristic equation:
 \[ms^2 + bs + k = 0 \]
Control of Manipulators: (Stable) Second-Order Linear Systems

- Roots (poles):
 \[s_1 = -\frac{b}{2m} + \frac{\sqrt{b^2 - 4mk}}{2m} \]
 \[s_2 = -\frac{b}{2m} - \frac{\sqrt{b^2 - 4mk}}{2m} \]

- Three cases for roots (if system is stable!):
 1. Real and Unequal: \(b^2 > 4mk \), friction dominates, sluggish behavior results \(\rightarrow \) **overdamped**
 2. Complex: \(b^2 < 4mk \), stiffness dominates, oscillatory behavior results \(\rightarrow \) **underdamped**
 3. Real and equal: \(b^2 = 4mk \), friction and stiffness are balanced, fastest possible nonoscillatory response \(\rightarrow \) **critically damped**

Control of Manipulators: Case 1- Overdamped System

- Solution:
 \[x(t) = c_1 e^{s_1 t} + c_2 e^{s_2 t} \]
 - \(S_1 \) and \(S_2 \) are real and unequal
 - \(c_1 \) and \(c_2 \) constants determined from initial conditions, i.e. initial position and velocity of block

Control of Manipulators: Case 2- Underdamped System

- Solution:
 \[s_1 = \lambda + \mu i, \quad s_2 = \lambda - \mu i \]
 \[x(t) = c_1 e^{\lambda t} + c_2 e^{\mu i} \]
 \[e^{\mu i} = \cos(\mu t) + i \sin(\mu t) \]
 \[\therefore \quad x(t) = c_1 e^{\lambda t} \cos(\mu t) + c_2 e^{\mu i} \sin(\mu t) \]
 - \(S_1 \) and \(S_2 \) are complex (conjugate pair)
 - \(c_1 \) and \(c_2 \) constants determined from initial conditions, i.e. initial position and velocity of block
 \[c_1 = r \cos(\delta), \quad c_2 = r \sin(\delta) \]
 \[x(t) = re^{\lambda t} \cos(\mu t - \delta) \]
 where \(r = \sqrt{c_1^2 + c_2^2} \), \(\delta = \tan^{-1}(c_2, c_1) \)
Control of Manipulators:
Case 3- Critically Damped System

• Solution:

\[x(t) = c_1 e^{s_1 t} + c_2 e^{s_2 t} \]
\[s_1 = s_2 = -\frac{b}{2m} \]
\[\therefore x(t) = (c_1 + c_2 t) e^{-\frac{b}{2m} t} \]

– \(s_1 \) and \(s_2 \) are real and equal (repeated roots)

– \(c_1 \) and \(c_2 \) constants determined from initial conditions,
i.e. initial position and velocity of block

Control of Manipulators:
Second Order System

• Alternative representation:
 – Parameterize characteristic equation by:
 \[s^2 + 2\zeta \omega_n s + \omega_n^2 = 0 \]
 \[\zeta = \text{damping ratio} \]
 \[\omega_n = \text{natural frequency} \]

 – Relationship to pole locations: \(s_1 = \lambda + \mu j \), \(s_2 = \lambda - \mu j \)
 \[\lambda = -\zeta \omega_n, \quad \mu = \omega_n \sqrt{1 - \zeta^2} = \text{damped natural frequency} \]

 – For this spring-mass-damp system:
 \[\zeta = \frac{b}{2\sqrt{km}}, \quad \omega_n = \sqrt{\frac{\sqrt{km}}{m}} \]
 No damping: \(b = 0, \zeta = 0 \)
 Critically damped, \((b^2=4km), \zeta = 1 \)

Control of Manipulators:
Control of Second Order Linear Systems

• Equation of motion:
 \[m\ddot{x} + b\dot{x} + kx = 0 \]

• Control law as a function of sensed feedback:
 \[f = -k_p x - k_v \dot{x} \]

Position regulation system: maintains the position of the block in one fixed place regardless of disturbance forces applied to the block.
Control of Manipulators:
Control of Second-Order Linear Systems

(1) \[m\ddot{x} + b\dot{x} + kx = f \]
(2) \[f = -k_p x - k_v \dot{x} \]

• Plugging (1) into (2):
 \[m\ddot{x} + b\dot{x} + kx = -k_p x - k_v \dot{x} \]
 \[m\ddot{x} + (b + k_v)\dot{x} + (k + k_p)x = 0 \]
 \[m\ddot{x} + b'\dot{x} + k'x = 0 \]
 where \(b' = b + k_v \) and \(k' = k + k_p \)

• Choose control gains, \(k_v \) and \(k_p \), to cause system to have any second order system behavior that is desired:
 critically damped: \(b' = 2\sqrt{mk'} \)
 closed loop stiffness: \(k' \)

Control of Manipulators:
Control Law Partitioning

- Model-based portion
 - Contains system parameters (m, b, and k)
 - Reduces system so it appears to be a unit mass
- Servo portion
 - Independent of system parameters
 - Uses feedback to modify behavior of system

Equation of motion: \(m\ddot{x} + b\dot{x} + kx = f \)
Control law: \(f = \alpha f' + \beta \)
 \(f' \) = new input to system
\(\alpha \) and \(\beta \) chosen so system appears to be a unit mass

Control of Manipulators:
Control Law Partitioning

\[m\dddot{x} + b\ddot{x} + kx = \alpha f' + \beta \]
Choose: \(\alpha = m, \quad \beta = b\dot{x} + kx \)
After substitution: \(\ddot{x} = f' \rightarrow \) Equation of motion for unit mass
Control law: \(f' = -k_v \dot{x} - k_p x \)
After substitution: \(\ddot{x} + k_v \dot{x} + k_p x = 0 \)
For critical damping: \(k_v = 2\sqrt{k_p} \)

Control of Manipulators:
Trajectory Following-Control

Desired Trajectory: \(x_d(t) \)
Given: \(x_d, \dot{x}_d, \ddot{x}_d \)

Servo Error: \(e = x_d - x \)
Control law: \(f' = \ddot{x}_d + k_v \dot{e} + k_p e \)
After substitution: \(\ddot{e} + k_v \dot{e} + k_p e = 0 \)
For critical damping: \(k_v = 2\sqrt{k_p} \)
Control of Manipulators: Disturbance Rejection

\[\ddot{e} + k_v \dot{e} + k_p e = f_{\text{dist}} \]

Control law: \(f = \ddot{x}_d + k_v \dot{e} + k_p e + k_i \int e \, dt \)

At steady-state: \(e = 0 \)

Control of Manipulators: Modeling and Control of a Single Joint

- Model single rotary joint of manipulator as second-order linear system

DC torque motor

Control of Manipulators: Electrical Model of DC Motor Armature

- Armature circuit modeled by first-order differential equation
 \[L_a \dot{i}_a + r_a i_a = v_a - k_e \dot{\theta}_m \]

- Use circuitry to control motor torque (rather than velocity)
 - Current amplifier motor driver: sense \(i_a \) and adjust \(v_a \) to get desired \(i_a \)
 - Rate at which \(i_a \) can be commanded is limited by \(L_a \) and \(v_a \)

- Simplifying assumption: neglect \(L_a \rightarrow \) actuator acts as pure torque source that we can command directly
Control of Manipulators: Mechanical Model of DC Motor Rotor

\[\tau_m = \text{torque applied to rotor} \]
\[\tau = \eta \tau_m \]
\[i_a = \text{armature current} \]
\[\eta = \text{gear ratio} \]
\[I_m, I = \text{motor and load inertias} \]
\[b_m, b = \text{rotor and load bearings viscous friction coefficients} \]

\[\tau_m = I_m \ddot{\theta}_m + b_m \dot{\theta}_m + (\gamma \eta) (I \dot{\theta} + b \dot{\theta}) \]
\[\dot{\theta} = (\gamma \eta) \dot{\theta}_m \]

In terms of load variables:

\[\tau_m = \left(I_m + \frac{I}{\eta^2} \right) \ddot{\theta}_m + \left(b_m + b \frac{\eta^2}{\eta^2} \right) \dot{\theta}_m \]

Effective inertia
Effective damping

For highly geared joints (\(\eta \gg 1 \)), \(I_m \) dominates \(\rightarrow \) can assume effective inertia term is a constant.

To ensure link motion is never underdamped, set \(I \) to \(I_{\text{max}} \) for application

Control of Manipulators: Unmodeled Resonances

- Assumption: gearings, shafts, bearings, and link are rigid, not flexible
 - If system is sufficiently stiff, natural freq of these unmodeled resonances are very high and can be neglected compared to influence of the second-order poles
- If lowest structural resonance is \(\omega_{\text{res}} \), need to limit closed-loop natural frequency:
 \[\omega_n \leq \frac{1}{2} \omega_{\text{res}} \]
 - This will limit the magnitudes for some of the gains that we choose in our controller design
 - For \(k = \text{stiffness of flexible member}, m = \text{equivalent mass} \), estimate \(\omega_{\text{res}} \) as:
 \[\omega_{\text{res}} = \sqrt{\frac{k}{m}} \]

Control of Manipulators: Control of a Single Joint

- Assumptions:
 1. Neglect motor inductance \(L_a \)
 2. High gearing, effective inertia is constant: \(I_{\text{max}} + \eta^2 I_m \)
 3. Structural flexibilities are neglected; use the lowest one, \(\omega_{\text{res}} \) to set the servo gains
- Use partitioned controller design:

\[\alpha = I_{\text{max}} + \eta^2 I_m \]
\[\beta = b + \eta^2 b_m \]

control law: \(\tau^* = \ddot{\theta}_d + k \dot{e} + k_p e \)

Closed-loop dynamics:

\[\dot{e} + k \dot{e} + k_p e = \tau_{\text{dist}} \]

Gains:

\[k_p = \omega_{\text{res}}^2 = \frac{1}{4} \omega_{\text{res}}^2, \quad k_v = 2 \sqrt{k_p} = \omega_{\text{res}} \]
Control of Manipulators: Unimation PUMA 560 Control System

Computer - Interprets motion command, perform inverse kinematic computations, plan desired trajectory, generate trajectory via points every 28 ms

Microprocessors – get position commands every 28 ms

Microprocessors – run at 0.875 ms cycle
Interpolate desired position, compute servo error, PID control law, command new torque value

Optical encoder – measures joint position; joint position differenced on subsequent cycles to estimate velocity

D/A chip converts processor commands to signal for current driver circuits
Current is controlled by adjusting voltage across the armature as needed