

Review: Path and Trajectory Planning

- Given:
 - Initial configuration of robot, q_s (initial joint coordinates)
 - Final configuration of robot, q_f (final joint coordinates)
- Goal:
 - Find a collision free path connecting q_s and q_f
- Path Planning
 - Provides geometric description (q) of the robot motion (no dynamics)
- Trajectory Planning
 - Provides time function to specify velocities and accelerations as robot moves along path q

Review:

The Attractive Field

- Conic well potential far away from goal
- Parabolic well potential close to goal
- Workspace attractive Force = negative gradient of U_{att}

in which d is the distance that defines the transition from conic to parabolic well. In this case the workspace force for o_i is given by

$$F_{\text{att,}i}(q) = \begin{cases} -\zeta_i(o_i(q) - o_i(q_f)) & : ||o_i(q) - o_i(q_f)|| \le d \\ \\ -d\zeta_i \frac{(o_i(q) - o_i(q_f))}{||o_i(q) - o_i(q_f)||} & : ||o_i(q) - o_i(q_f)|| > d \end{cases}$$
(5.4)

The gradient is well defined at the boundary of the two fields since at the boundary $d=||o_i(q)-o_i(q_t)||$ and the gradient of the quadratic potential is equal to the gradient of the conic potential $F_{\mathrm{att},i}(q)=-\zeta_i(o_i(q)-o_i(q_t))$.

Fall 2013

ME 598, Lecture !

Review: The Repulsive Field

Properties

STEVENS

- Repel robot from obstacles, never allowing collisions
- When robot far away, little/no influence on motion

ρ_o = distance of influence of an obstacle

$$U_{\text{rep},i}(q) = \begin{cases} \frac{1}{2} \eta_i \left(\frac{1}{\rho(o_i(q))} - \frac{1}{\rho_0} \right)^2 & ; & \rho(o_i(q)) \le \rho_0 \\ 0 & ; & \rho(o_i(q)) \ge \rho_0 \end{cases}$$
(5.5)

in which $\rho(o_i(q))$ is the shortest distance between o_i and any workspace obstacle. The workspace repulsive force is equal to the negative gradient of $U_{\text{rep},i}$. For $\rho(o_i(q)) \leq \rho_0$, this force is given by (Problem 5-11)

$$F_{\text{rep},i}(q) = \eta_i \left(\frac{1}{\rho(o_i(q))} - \frac{1}{\rho_0} \right) \frac{1}{\rho^2(o_i(q))} \nabla \rho(o_i(q))$$
 (5.6)

in which the notation $\nabla \rho(o_i(q))$ indicates the gradient $\nabla \rho(x)$ evaluated at $x=o_i(q)$. If the obstacle region is convex and b is the point on the obstacle boundary that is closest to o_i , then $\rho(o_i(q))=||o_i(q)-b||$, and its gradient is

$$\nabla \rho(x) \Big|_{x=o_i(q)} = \frac{o_i(q)-b}{||o_i(q)-b||}$$
 (5.7)

that is, the unit vector directed from b toward $o_i(q)$.

Fall 2013

ME 598, Lecture

Review:

Workspace Forces → Joint Torques

Map workspace forces to configuration space before combining them

• Use Jacobians at each O_i

$$\tau = J^{T} F$$

$$\tau(q) = \sum_{i} J^{T} O_{i}(q) F_{att,i}(q) + J^{T} O_{i}(q) F_{rep,i}(q)$$

ME 598, Lecture 5

Review:

Gradient Descent Planning Algorithm

1.
$$q^0 = q_s$$
, $i = 0$

2. WHILE
$$||q^i - q_f|| > \varepsilon$$

$$q^{i+1} = q^{i} + \alpha^{i} \frac{\tau(q^{i})}{\left\|\tau(q^{i})\right\|}$$
$$i = i+1$$

- 3. END
- 4. Return [q⁰,q¹,...,qⁱ]

 α = step size

 ζ_i = controls the relative influence of attractive potential for O_i

 η_i = controls the relative influence of repulsive potential for O_i

 ρ_0 = defines the distance of influence for obstacles

Review: Trajectory Planning

- Path from q_s to q_f in C:
 - continuous map γ , with $\gamma(0) = q_s$ and $\gamma(1) = q_f$
- Trajectory:
 - function of time q(t) such that $q(t_0) = q_s$ and $q(t_f) = q_f$
 - $-t_f t_0 = time to execute trajectory$
 - q'(t), q''(t) = velocity, acceleration
 - path planning only give sequence of points along q

Review:

Trajectories- Point to Point Motion

- n = # of constraints (pos/velocity/accel)
- Trajectory function = polynomial of degree n-1
- Cubic Polynomial Trajectories:

$$q(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3$$

Review:

Quintic Polynomial Trajectories

$$q(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3 + a_4 t^4 + a_5 t^5$$

Constraints, n = 6: $q_o = initial position$ $v_o = initial velocity$ $\alpha_0 = initial acceleration$ $q_f = final position$ $v_f = final velocity$

 α_f = final acceleration

 $\begin{bmatrix} 1 & t_0 & t_0^2 & t_0^3 & t_0^4 & t_0^5 \\ 0 & 1 & 2t_0 & 3t_0^2 & 4t_0^3 & 5t_0^4 \\ 0 & 0 & 2t_0 & 3t_0^2 & 4t_0^3 & 5t_0^4 \\ 0 & 0 & 2 & 6t_0 & 12t_0^2 & 20t_0^3 \\ 1 & t_f & t_f^2 & t_f^3 & t_f^4 & t_f^3 \\ 0 & 1 & 2t_f & 3t_f^2 & 4t_0^3 & 5t_f^4 \\ 0 & 0 & 2 & 6t_f & 12t_f^2 & 20t_0^3 \\ \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \end{bmatrix} = \begin{bmatrix} q_0 \\ \eta_0 \\ \alpha_0 \\ q_f \\ v_f \\ a_f \end{bmatrix}$ (5.23)

 $a_0 + a_1t_0 + a_2t_0^2 + a_3t_0^3 + a_4t_0^4 + a_5t_0^5$

 $a_0 + a_1 t_f + a_2 t_f^2 + a_3 t_f^3 + a_4 t_f^4 + a_5 t_f^5$

 $a_1 + 2a_2t_0 + 3a_3t_0^2 + 4a_4t_0^3 + 5a_5t_0^4$ $2a_2 + 6a_3t_0 + 12a_4t_0^2 + 20a_5t_0^3$

 $= a_1 + 2a_2t_f + 3a_3t_f^2 + 4a_4t_f^3 + 5a_5t_f^4$

 $\alpha_f = 2a_2 + 6a_3t_f + 12a_4t_f^2 + 20a_5t_f^3$

Review:

Trajectory For Paths W/ Multiple Points

- Use lower order polynomials for trajectory segments between adjacent points
- Require velocity and acceleration constraints at points where switch from one polynomial to another
- For each segment:

J. Craig, Chapter 9: Linear Control of Manipulators, Introduction to Robotics: Mechanics and Control, 2nd Edition, Addison-Wesley Publishing Company, New York, 1989.

14 | Fall 201

ME 598, Lecture

Control of Manipulators: Open-Loop Introduction

Control of Manipulators: Closed-Loop Introduction

Closed-loop

- Use feedback from joint sensors, q and q'
- Feedback used to compute servo error:

$$E = q_d - q$$

$$\dot{E} = \dot{q}_d - \dot{q}$$

 Control system computes how much torque to send actuators as a function of E, E'

16 | Fall 2013

Control of Manipulators: Introduction

- Goal:
 - Design a closed-loop system that is stable
 - Errors remain "small" when tracking various desired trajectories even in presence of "moderate" disturbances
 - Meets performance objectives for particular application

Control of Manipulators: (Stable) Second-Order Linear Systems

- Roots (poles): $s_1 = -\frac{b}{2m} + \frac{\sqrt{b^2 4mk}}{2m}$ $b \qquad \sqrt{b^2 4mk}$
 - $s_2 = -\frac{b}{2m} \frac{\sqrt{b^2 4mk}}{2m}$
- Three cases for roots (if system is stable!):
 - 1. Real and Unequal: b² > 4mk, friction dominates, sluggish behavior results → overdamped
 - 2. Complex: b² < 4mk, stiffness dominates, oscillatory behavior results → underdamped
 - 3. Real and equal: $b^2 = 4mk$, friction and stiffness are balanced, fastest possible nonoscillatory response \rightarrow **critically damped**

21 | Fall 2013

Control of Manipulators: Case 1- Overdamped System

• Solution:

$$x(t) = c_1 e^{s_1 t} + c_2 e^{s_2 t}$$

- S₁ and S₂ are real and unequal
- c₁ and c₂ constants determined from initial conditions, i.e. initial position and velocity of block

Control of Manipulators:

Case 2- Underdamped System

• Solution:

$$s_1 = \lambda + \mu i, \quad s_2 = \lambda - \mu i$$

$$x(t) = c_1 e^{s_1 t} + c_2 e^{s_2 t}$$

$$e^{ix} = \cos(x) + i \sin(x)$$

$$\therefore \quad x(t) = c_1 e^{\lambda t} \cos(\mu t) + c_2 e^{\lambda t} \sin(\mu t)$$

- S₁ and S₂ are complex (conjugate pair)
- c₁ and c₂ constants determined from initial conditions, i.e. initial position and velocity of block

where
$$c_1 = r\cos(\delta)$$
, $c_2 = r\sin(\delta)$
 $x(t) = re^{\lambda t}\cos(\mu t - \delta)$
 $x(t) = re^{\lambda t}\cos(\mu t - \delta)$

Control of Manipulators: Case 2- Underdamped System

$$s_1 = \lambda + \mu i, \quad s_2 = \lambda - \mu i$$

$$x(t) = c_1 e^{\lambda t} \cos(\mu t) + c_2 e^{\lambda t} \sin(\mu t)$$

Control of Manipulators: Case 3- Critically Damped System

• Solution:

$$x(t) = c_1 e^{s_1 t} + c_2 t e^{s_2 t}$$

$$s_1 = s_2 = -\frac{b}{2m}$$

$$\therefore x(t) = (c_1 + c_2 t) e^{-\frac{b}{2m} t}$$

- S₁ and S₂ are real and equal (repeated roots)
- c₁ and c₂ constants determined from initial conditions,
 i.e. initial position and velocity of block

5 | Fall 2013

ME 598, Lecture

Control of Manipulators: Second Order System

- Alternative representation:
 - Parameterize characteristic equation by:

$$s^{2} + 2\varsigma \omega_{n} s + \omega_{n}^{2} = 0$$

$$\varsigma = \text{damping ratio}$$

$$\omega_{n} = \text{natural frequency}$$

- Relationship to pole locations: $s_1 = \lambda + \mu j$, $s_2 = \lambda \mu j$ $\lambda = -\zeta \omega_n$, $\mu = \omega_n \sqrt{1 - \zeta^2}$ = damped natural frequency
- For this spring-mass-damp system:

$$\varsigma = \frac{b}{2\sqrt{km}}, \quad \omega_n = \sqrt[k]{_m} \qquad \text{No damping: b = 0, \varsigma = 0}$$
 Critically damped, (b²=4km), ς = 1

STEVENS 27 | Fall

Control of Manipulators:

Control of Second-Order Linear Systems

- $(1) \quad m\ddot{x} + b\dot{x} + kx = f$
- $(2) \quad f = -k_p x k_v \dot{x}$
- Plugging (1) into (2):

$$m\ddot{x} + b\dot{x} + kx = -k_p x - k_v \dot{x}$$

$$m\ddot{x} + (b + k_v)\dot{x} + (k + k_p)x = 0$$

$$m\ddot{x} + b'\dot{x} + k'x = 0$$
where $b' = b + k_v$ and $k' = k + k_p$

 Choose control gains, k_v and k_p, to cause system to have any second order system behavior that is desired:

> critically damped: $b' = 2\sqrt{mk'}$ closed loop stiffness: k'

| Fall 2013

ME 598, Lecture !

Control of Manipulators: Control Law Partitioning

- Model-based portion
 - Contains system parameters (m, b, and k)
 - Reduces system so it appears to be a unit mass
- Servo portion
 - Independent of system parameters
 - Uses feedback to modify behavior of system

Equation of motion: $m\ddot{x} + b\dot{x} + kx = f$ Control law: $f = \alpha f' + \beta$ f' = new input to system α and β chosen so system appears to be a unit mass

30 | Fall 2013

Control of Manipulators:

Control Law Partitioning

$$m\ddot{x} + b\dot{x} + kx = \alpha f' + \beta$$

Choose: $\alpha = m$, $\beta = b\dot{x} + kx$

After substitution : $\ddot{x} = f' \rightarrow \text{Equation of motion for unit mass}$

Control law: $f' = -k_y \dot{x} - k_p x$

After substitution : $\ddot{x} + k_{\nu}\dot{x} + k_{\nu}x = 0$

For critical damping: $k_v = 2\sqrt{k_p}$

Control of Manipulators: Trajectory Following-Control

Desired Trajectory: $x_d(t)$

Servo Error : $e = x_d - x$

Given: x_d , \dot{x}_d , \ddot{x}_d

Control law: $f' = \ddot{x}_d + k_v \dot{e} + k_p e$

After substitution : $\ddot{e} + k_y \dot{e} + k_p e = 0$

For critical damping: $k_v = 2\sqrt{k_p}$

Control of Manipulators: **Disturbance Rejection**

$$\ddot{e} + k_{v}\dot{e} + k_{p}e = f_{dist}$$

Control law:
$$f' = \ddot{x}_d + k_v \dot{e} + k_p e + k_i \int e \, dt$$

At steady - state :
$$e = 0$$

Control of Manipulators: Modeling and Control of a Single Joint

- Model single rotary joint of manipulator as secondorder linear system
- DC torque motor

Control of Manipulators: Modeling and Control of a Single Joint

Motor torque constant relates armature current to output torque:

$$\tau_m = k_m i_a$$

- Rotating motor acts like generator and develops voltage across armature
 - Back emf constant relates voltage generated for a given rotational velocity

$$v = k_e \dot{\theta}_m$$

$v = k_a \dot{\theta}_m$

Control of Manipulators: Flectrical Model of DC Motor Armature

• Armature circuit modeled by first-order differential equation

$$L_a \dot{i}_a + r_a i_a = v_a - k_e \dot{\theta}_m$$

- Use circuitry to control motor torque (rather than velocity)
 - Current amplifier motor driver: sense i_a and adjust v_a to get desired i_a
 - Rate at which ia can be commanded is limited by La and va
- Simplifying assumption: neglect L_a → actuator acts as pure torque source that we can command directly

Control of Manipulators: Mechanical Model of DC Motor Rotor

 τ_m = torque applied to rotor

 τ = torque applied to load

$$\dot{\theta} = (1/p)\dot{\theta}_m$$

i_a = armature current

 $\eta = \text{gear ratio}$

 I_{m} and I = motor and load inertias

b_m and b = rotor and load bearings viscous friction coefficients

ME 598, Lecture !

Control of Manipulators:

Second-Order Model for DC Motor

Torque balance:

$$\tau_{\rm m} = I_m \ddot{\theta}_m + b_m \dot{\theta}_m + \left(\frac{1}{\eta} \right) \left(I \ddot{\theta} + b \dot{\theta} \right)$$

$$\dot{\theta} = \left(\frac{1}{\eta} \right) \dot{\theta}_m$$

In terms of motor variables:

$$\tau_{\rm m} = \left(I_m + \frac{I}{\eta^2}\right) \ddot{\theta}_m + \left(b_m + \frac{b}{\eta^2}\right) \dot{\theta}_m$$

In terms of load variables:

$$\tau = \left(\mathbf{I} + \eta^2 I_m\right) \ddot{\theta} + \left(b + \eta^2 b_m\right) \dot{\theta}$$

For highly geared joints ($\eta >>1$), I_m dominates \rightarrow can assume effective inertia term is a constant.

Control of Manipulators:

Control of a Single Joint

3. Structural flexibilities are neglected; use the lowest one,

 $\alpha = I_{\text{max}} + \eta^2 I_{\text{m}}$

 $\beta = b + \eta^2 b_{\dots}$ control law = $\tau' = \ddot{\theta}_d + k_v \dot{e} + k_p e$

2. High gearing, effective inertia is constant: $I_{max} + \eta^2 I_m$

To ensure link motion is never underdamped, set I to I_{max} for application

ME 598, Lecture

Unmodeled Resonances

- flexible
 - of the second-order poles
- natural frequency:

$$\omega_n \leq \frac{1}{2} \omega_{res}$$

- This will limit the magnitudes for some of the gains that we choose in our controller design
- For k = stiffness of flexible member, m = equivalent mass, estimate ω_{res}

 $\omega_{res} = \sqrt{\frac{k}{m}}$

Closed-loop dynamics: $\ddot{e} + k_v \dot{e} + k_p e = \tau_{dist}$

Assumptions:

1. Neglect motor inductance L₃

 ω_{res} , to set the servo gains

Use partitioned controller design:

Gains:

 $k_p = \omega_n^2 = \frac{1}{4}\omega_{res}^2, \quad k_v = 2\sqrt{k_p} = \omega_{res}$

Control of Manipulators:

• Assumption: gearings, shafts, bearings, and link are rigid, not

• If lowest structural resonance is
$$\omega_{res}$$
, need to limit closed-loop natural frequency:

$$\omega_n \leq \frac{1}{2}\omega_{res}$$

