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Review: Trajectory & Path Planning
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Review:
Path and Trajectory Planning

* Given:
— Initial configuration of robot, g, (initial joint coordinates)
— Final configuration of robot, g; (final joint coordinates)
* Goal:
— Find a collision free path connecting q, and g,

* Path Planning
— Provides geometric description (q) of the robot motion (no dynamics)
* Trajectory Planning

— Provides time function to specify velocities and accelerations as robot
moves along path g
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Review:
Path Planning Using Potential Fields

* Workspace potential fields

— Attract the origins of the DH frames to goal locations while repelling
them from obstacles

— Used to define motions in configuration space with the manipulator
Jacobians
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Review: Review:
The Attractive Field The Repulsive Field
* Properties

— Repel robot from obstacles, never allowing collisions
— When robot far away, little/no influence on motion

* Conic well potential — far away from goal

 Parabolic well potential — close to goal _ _
p, = distance of influence of an obstacle

2

1 1 1

i H i 3%l 7 H <

* Workspace attractive Force = negative gradient of U_,, Vgl = 2 (P(Oi(q» PO) et =m (5)
i ploia) > po

in which p(oi(g)) is the shortest distance between o; and any workspace

obstacle. The workspace repulsive force is equal to the negative gradient of

Usep ;- For ploi(q)) < po, this force is given by (Problem 5-11)

1 1 1
Fepild) =1 | ——— — — | 5——=Vp(oi(q)) 5.6
" Ho@) ) Platan &%
in which the notation Vp(0;(¢)) indicates the gradient Vp(z) evaluated at
x = 0;(g). If the obstacle region is convex and b is the point on the obstacle
boundary that is closest to o, then p(o;(q)) = ||oi(q) — b|, and its gradient
is

%i(g) —b
= 5.7
a=at@  Tloda) 0 o
that is, the unit vector directed from b toward 0;(q).
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Vp(z)

STEVENS
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Review: —
Workspace Forces = Joint Torques Review:
P q Gradient Descent Planning Algorithm
* Map workspace forces to configuration space before 1. q®=q,i=0
combining them i ' s
i 2. WHILE ||g'—qg; || >€
. . T i
qt+1 =qz +a1 (Q)
@)
i=i+l
_ & 3. END
¢ Use Jacobians at each O, .
4. Return[q%dl,...q']
r=J'F
’ ’ o = step size
T(q) = Z J o, (q)Fan,i (q) +J7 0, (q)F;ep,i (q) g, = controls the relative influence of attractive potential for O
! n; = controls the relative influence of repulsive potential for O;
p, = defines the distance of influence for obstacles
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Review:
Probabilistic Roadmap Methods
Sampling Connecting

Review: Trajectory Planning
* Pathfromqg,toqqinC:
— continuous map y, with y(0) = g, and y(1) = q;

‘- * Trajectory:
‘ function of time q(t) such that q(t,) = q, and q(t;) = g;

— t;—t, = time to execute trajectory

a's <

q’(t), g”’(t) = velocity, acceleration

7

path planning only give sequence of points along q

Fast Free Space

Guarded Slow Slow Guarded

“Ufinal

Enhancing Smoothing
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Review: Review:
Trajectories- Point to Point Motion Quintic Polynomial Trajectories
— 2 3 4 5
) ) q(t)=ay+a;t+a,t?+a;t3+a,t*+agt
* n=# of constraints (pos/velocity/accel)
* Trajectory function = polynomial of degree n-1
. . . . . = 2 3 5
* Cubic Polynomial Trajectories: Constraints, n = 6: o ::::’t:;r;ﬁ;;;ﬁ:;‘f‘ﬂ
. 30 0 sl
e e g = 2 3
qt)=ag+a;t+a,t2+a,t3 q, = initial position o = Wiy asts - Dbty
45 = a0t aty+asti+ agly+ aity + asth
Then the desired velocity is given as v, = initial velocity :’ = :‘ ':—2;2‘!" +:;;tz}l':i“;?*;a5“5‘}
T . i = 40g50agey gty asly
Qt) = a1 +2ast + 3ast? (5.20) 0, = initial acceleration bl o o St
Constraints, n = 4: Combini fons (5.19) ; o . " 18 2 B8 & B
I 1 4 mo::t;:;sngimﬁtrns (51]]’9?and (5.20) with the four constraints yields four quﬂnal position G 2;:) 3;)5 4;13“2‘ 5:1‘5 Zt: ﬁ
= initial position 00 2 6ty 128 203 | | an | _ | a
9o P W = an+a1to+a2t3-|2-ﬂat§ vf=finalve|ocity (l)t{ ;?. ;?2 41:13 5;2' [{as |~ qf (5.23)
v, = initial velocit o = i Jaato bidaly i 75 || @ s
° Y 9 = atal+at o o = final acceleration U & e I WG| Lwl Loy
qs = final position v = et 20ty +30gt}
. . These four ions can be bined into a single matrix equation
v; = final velocity
(l’tn t t82 ao @
1 2ty 3
g b al s | (521)
0 1 2t 383 | | ag vy
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Review:
Trajectory For Paths W/ Multiple Points
* Use lower order polynomials for trajectory segments
between adjacent points

* Require velocity and acceleration constraints at points where
switch from one polynomial to another

* For each segment: Control of Manipulators

Constrainte me Cubic polynomial trajectory:
a(t,) =9, q(t) = a, +a, (t-t,) + a, (t-t,)* + a, (t-t,)3
qt) =v, Reference:
qt)=q where:  a,=g¢, J. Craig, Chapter 9: Linear Control of
o a=v, Manipulators, Introduction to Robotics:
qty=v, ! 3 5 L Mechanics and Control, 2" Edition, Addison-
For sequence of moves: , = (1~ 40) = (2% +2v‘)( i) Wesley Publishing Company, New York, 1989.
t,—t
Use end conditions g¢and v; of the ith (ty=to)
move as initial conditions for next move 0 = 2(qy—g,) + (o +v)(E, = 1,)

3

7Ry
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Control of Manipulators: Control of Manipulators:
Open-Loop Introduction Closed-Loop Introduction

gq(t) qq(t)

Closed-loop

Linear control — system modeled by linear _ Use feedback from joint sensors, g and o’

differential equations
T=M(q,)4,+V(q,.9,)+GC(q,)
* Open-loop

— Only function of q

— Feedback used to compute servo error:
E=q,-q
E=q,—q
— Control system computes how much torque to send

— Not a function of g, actual trajectory actuators as a function of E. E'
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Control of Manipulators:
Introduction

* Goal:
— Design a closed-loop system that is stable

|n

* Errors remain “smal
even in presence of “moderate” disturbances

when tracking various desired trajectories

— Meets performance objectives for particular application
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Control of Manipulators:
Instability Demonstration
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Control of Manipulators:
Approximation

MIMO: Multi-Input, Multi-Output System
qq(t)

* Approximation:
— Treat each joint as separate system to be controlled

— N-jointed manipulator, N-independent single-input, single-

output (SISO) control systems
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Control of Manipulators:
Second-Order Linear Systems

-

Irhrrr:::

XXX XXXXX

P

Equation of motion:
mx+bx+kx=0

Find solution: x(t)

— Form of solution depends on roots of characteristic equation:

ms* +bs+k=0
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Control of Manipulators:
(Stable) Second-Order Linear Systems
*  Roots (poles):

b b? —4Amk
s, =——+
2m 2m
b b’ —4dmk
S, =— —
2m 2m

*  Three cases for roots (if system is stable!):

1. Real and Unequal: b2 > 4mk, friction dominates, sluggish behavior
results 2> overdamped

2. Complex: b% < 4mk, stiffness dominates, oscillatory behavior results
- underdamped

3. Real and equal: b2 = 4mk, friction and stiffness are balanced, fastest
possible nonoscillatory response = critically damped
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Control of Manipulators:
Case 1- Overdamped System

* Solution: . »
x(t)=ce" +c,e”

— S, and S, are real and unequal

— ¢, and ¢, constants determined from initial conditions, i.e.
initial position and velocity of block

Im{s} X(t)

) S, Re{s} t
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Control of Manipulators:

Case 2- Underdamped System

* Solution: _ _
S, =A+pi, s,=A—pi

x(t)=c.e" +c,e”
e™ = cos(x)+isin(x)

x(¢) = c,e™ cos(ut) +c,e’ sin(ut)

— S, and S, are complex (conjugate pair)
— ¢, and ¢, constants determined from initial conditions, i.e.

initial position and velocity of block
¢, =rcos(9), ¢, =rsin(o)

x(t) =re* cos(ut —0)

where r=4c¢ +c,’, S=atan2(c,,c,)
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Control of Manipulators:
Case 2- Underdamped System

S, =A+ui, s,=A—pi
x(t) = c,e™ cos(ut) +c,e™ sin(ut)

Im{s} X(t)

Re{s} v t
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Control of Manipulators: Control of Manipulators:
Case 3- Critically Damped System Case 3- Critically Damped System
e Solution: .
x(t) =ce’ +c,te™ .
b o
Sl :S2 = —— x(t)=(cl+czt)e 2m
2m
_b Im{s} X(t)
t
x(t)=(c,+cyt)e "
Underdamped
— S,andS, are real and equal (repeated roots) Critically damped. [\
- ¢, and ¢, constants determined from initial conditions, i
i.e. initial position and velocity of block 7S e
S12 Re{s} ’ t
Overdamped
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Control of Manipulators: Control of Manipulators:
Second Order System Control of Second-Order Linear Systems
X
* Alternative representation: * Equation of motion:
— Parameterize characteristic equation by: mx+bx+kx=0
' +260,5+0," =0 * Control law as a function of f
¢ = damping ratio sensed feedback:
o, =natural frequency f=—k x—kx
P v
— Relationship to pole locations: s, =A+ 1), s, =A—4j X
System X

A=—¢w,, p=w,/1-¢> =damped natural frequency

— For this spring-mass-damp system:

b No damping: b=0,¢=0
g = > wn = V % i 2_ _
2 /km Critically damped, (b?=4km), ¢=1

Position regulation system: maintains the position of the block in one fixed
place regardless of disturbance forces applied to the block
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Control of Manipulators:
Control of Second-Order Linear Systems
(1) mi+bx+hkx=f
2) f=—kx—ki
* Plugging (1) into (2):
mi+bx +hkx =—k,x—kx
mi+(b+k,)x+(k+k,)x=0
mi+b'x+kx=0
where b'=b+k andk'=k+k,

* Choose control gains, k, and k,, to cause system to have any
second order system behavior that is desired:

critically damped : b' = 2+/mk’
closed loop stiffness : £’
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Control of Manipulators:
Control Law Partitioning

* Model-based portion

— Contains system parameters (m, b, and k)

— Reduces system so it appears to be a unit mass
* Servo portion

— Independent of system parameters

— Uses feedback to modify behavior of system

Equation of motion: mx+bx+kx=f
Controllaw: f=a f'+p
f'=new input to system

a and S chosen so system appears to be a unit mass
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Control of Manipulators:

Control Law Partitioning
miX+bx+kx=a f'+ [

Choose: a=m, [=bx+kx
After substitution : X = " — Equation of motion for unit mass
Controllaw : [ =~k X —k,x
After substitution: X+k x+k,x=0
For critical damping : k, = 2\/5 I

Model-based

- i | portion

Control of Manipulators:
Trajectory Following-Control

Desired Trajectory : x,(?) Servo Error: e=x, —x

Given:xy, X4, X, Controllaw : f' =X, +k é+k e

After substitution: é+ke+k,e=0

For critical damping : k, = 2% I
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Control of Manipulators:
Disturbance Rejection

étketk,e=f,,
Control law : f' = &, +k,é+k,e+k [ed
Atsteady -state:e =0
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Control of Manipulators:
Modeling and Control of a Single Joint

* Model single rotary joint of manipulator as second-
order linear system

* DCtorque motor

Stator magnet

Rotor windings

ME 598, Lecture 5

Control of Manipulators:
Modeling and Control of a Single Joint

* Motor torque constant relates armature current to
output torque:

* Rotating motor acts like generator and develops
voltage across armature

— Back emf constant relates voltage generated for a given
rotational velocity
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Control of Manipulators:
Electrical Model of DC Motor Armature
* Armature circuit modeled by first-order differential equation

Laia +ri, =v,— keém
* Use circuitry to control motor torque (rather than velocity)

— Current amplifier motor driver: sense i, and adjust v, to get desired i,
— Rate at which i, can be commanded is limited by L, and v,

* Simplifying assumption: neglect L, > actuator acts as pure
torque source that we can command directly

d@ | STEVENS - -
R
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Control of Manipulators: Control of Manipulators:

Mechanical Model of DC Motor Rotor Second-Order Model for DC Motor
Torque balance: T=nrt,

7, = torque applied to rotor =17, .. . . . . .

7 = torque applied to load 6= (%)Hm Tm = Imem + b’" 0’” + (%)(19 + bﬁ) 0= (%)Hm

i, = armature current

) In terms of motor variables:
1 = gear ratio

I,,and I = motor and load inertias = (Im + 1 jgm +(bm + b jg

b,, and b = rotor and load bearings viscous friction coefficients 2 2 mm

n n

In terms of load variables:
= (I+7721m)é+(b+772bm)9

Effective inertia  Effective damping

For highly geared joints (n>>1), |, dominates = can assume effective inertia
term is a constant.

| To ensure link motion is never underdamped, set | to I .., for application

5] STEVENS
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Control of Manipulators: Control of Manipulators:
Unmodeled Resonances Control of a Single Joint

* Assumptions:
* Assumption: gearings, shafts, bearings, and link are rigid, not 1. Neglect motor inductance L
flexible : a

— If system is sufficiently stiff, natural freq of these unmodeled 2. High gearing, effective inertia is constant: |, + n* I,
resonances are very high and can be neglected compared to influence Structural flexibilities are neglected; use the lowest one,
of the second-order poles .
W, to set the servo gains

* If lowest structural resonance is w,,,, need to limit closed-loop *  Use partitioned controller design:

. 2
natural frequency: S iw a=1_ +n°1,
n— 2 res ﬁ:b+772bm
— This will limit the magnitudes for some of the gains that we choose in control law =7'= 49d + kvé + kpe
our controller design
— For k = stiffness of flexible member, m = equivalent mass, estimate w,, ¢ Closed-loop dynamics: |+ ke+k,e=1,,

as: o, - %1 - 1

Gains: k =wn2=za’ 2k —2\/E=com
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PUMA 560

Control of Manipulators:
Unimation PUMA 560 Control System

VAL
language

Interface

6503 @oint D)
6503 Goint 5

Computer - Interprets motion command,
perform inverse kinematic computations,
plan desired trajectory, generate trajectory

via points every 28 ms

Microprocessors — get position
commands every 28 ms

41
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Control of Manipulators:

Unimation PUMA 560 Control System

value

Microprocessors — run at 0.875 ms cycle

Interpolate desired position, compute servo
error, PID control law, command new torque

0y o ia
—» 6503 D/A "X";;"‘ o  Motor

00e)

Encoder

Optical encoder — measures joint
position; joint position differenced
on subsequent cycles to estimate
velocity

D/A chip converts
processor commands
to signal for current
driver circuits

Current is controlled
by adjusting voltage
across the armature
as needed
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