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Review: Jacobian
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Review: Differential Motion

The Instantaneous Position Jacobian

pP= Jp(@’) q

1 1

endpoint joint
velocity velocity
Jacobian
matrix

For an n-dimensional joint variable space and a cartesian workspace, the Jacobian is a 3xn matrix
composed of the partial derivatives of the end-effector position with respect to each joint variable.
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Reveiw: Position Jacobian
Example 1: Planar RR

From the forward kinematics, we can extract

the position vector from the last column of the
transform matrix:
(z.y)
I_ a2C12 + a1Cq ]
a 0
2 [t dy = | assia +aisy
//
| [0 ]
ai Taking the partial derivative with respect to
y each joint variable produces the Jacobian:
1
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Review: Position Jacobian

Example 1: Planar RR

From the forward kinematics, we can extract
the position vector from the last column of the
transform matrix:

[ asCqo + @1Cq -|
dj = [ ass12 + (151
o]

Taking the partial derivative with respect to
each joint variable produces the Jacobian:

—G151 — Q2512 —@2512
= aicy + aacq2 a2c12
0 0
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Review: Singularities

Singularities are points in the configuration space where infinitesimal motion in a certain
direction is not possible and the manipulator loses one or more degrees of freedom

when operating at a singular point, bounded end-effector velocities may correspond to
unbounded joint velocities

singularities are often found on the extents of the workspace,
and also relate to the nonuniqueness of solution to inverse kinematics

Mathematically, singularities exist at any point in the workspace where the Jacobian
matrix loses rank.

[i.e. all columns of J are not linearly independent]
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Review: Identifying Singularities

a matrix is singular if and only if it’s determinant is zero:
det(J) =0
The 2=2 matrix,

] g

has determinant

det(A) = ad — be.

The 3=3 matrix

a b ¢
A=1|d e f|.
g h i

Using the cofactor expansion on the first row of the matrix we get
e f d f d e
h i g i g h
= aei — afh — bdi + bfg+ cdh — ceg
= (aei +bfg+ cdh) — (gec + h fa + idb)
[http://en.wikipedia.org/wiki/Determinant]

det(d)=a -b +ec
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Review: Singularities
Example 1: Planar RR

The 2=2 matrix, . —(Ll ,5'1 — CL2312 —CL2512
b =
A= [Z d] aici + asciz asc12

has determinant

det(A) = ad — be.

(z,y)
as
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Review: Jacobian Transpose

The transpose of the Jacobian relates joint torques and forces to cartesian end-effector forces

T=J'(q) F
io!nt endloint
torques forces
Jacobian
matrix
transpose

Review: Inverse Jacobian

The Jacobian relationship:
p=Jp(0)a
Specifies the end-effector velocity that will result when the

joints move with velocity q

Inverse problem: Find the joint velocitiesq that produce the
desired end-effector velocity

a=J,(7"'p

[Hard if have non-square J = pseudo-inverse (pinv)]
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Path and Trajectory Planning
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Path and Trajectory Planning:
Introduction

Given:
— Initial configuration of robot, g, (initial joint coordinates)
— Final configuration of robot, g; (final joint coordinates)
Goal:
— Find a collision free path connecting q, and g

Path Planning
— Provides geometric description (q) of the robot motion (no dynamics)
Trajectory Planning

— Provides time function to specify velocities and accelerations as robot
moves along path g
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Path and Trajectory Planning:

Configuration Space
End-effector. r

* Configuration Space =C

* Obstacle Configuration Space = CO
* Free Configuration Space = C—CO = C;,,
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Path and Trajectory Planning:
Configuration Space

8,
\’\J \’-\J
| o
0, 0, %

Very expensive to compute exactly

Complexity grow exponentially with degrees of freedom 2>
intractable

Need methods that avoid explicit construction of CO or Cq,,
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Path and Trajectory Planning:
Path Planning Using Potential Fields

* Workspace potential fields
— Attract the origins of the DH frames to goal locations while repelling
them from obstacles

— Used to define motions in configuration space with the manipulator
Jacobians
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Path and Trajectory Planning:
Artificial Potential Fields




Path and Trajectory Planning: Path and Trajectory Planning:

The Attractive Field Example- Attractive Field
* Conic well potential — far away from goal 0,(a) 0,(qy)
. _ o]

 Parabolic well potential — close to goal g, = {0} |
7

* Workspace attractive Force = negative gradient of U_,, Py T ———

q,; =

% 04(ay) 05(a)
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Path and Trajectory Planning: Path and Trajectory Planning:
The Repulsive Field Example- Repulsive Field
. 0]
* Properties of‘.f‘_?‘f‘?:::::::::::::::‘_:éj(qf)
— Repel robot from obstacles, never allowing collisions i
— When robot far away, little/no influence on motion
p, = distance of influence of an obstacle ;
2 :
L(_1r _1) . [0 el e
Bl 41 = 3t (p(ai(q)) Po) 3 ploi(@) < po -

O1(Qs) OZ(Qs)

0 i ploia) > po
in which p(0;(q)) is the shortest distance between o; and any workspace
obstacle. The workspace repulsive force is equal to the negative gradient of

Urep,i' For p(0i(q)) < po, this force is given by (Problem 5-11)
1
Frepila) = m (5.6)

i1 1
Ao E) Foan )

in which the notation Vp(0;(g)) indicates the gradient Vp(z) evaluated at
2 = 0i(q). If the obstacle region is convex and b is the point on the obstacle
boundary that is closest to o, then p(0;(q)) = ||0i(q) — b||, and its gradient

is

_ olg)-b
z=ogy  |loi(g) — bl
that is, the unit vector directed from b toward 0;(q).
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Path and Trajectory Planning:
Repulsive Field
* Special cases to consider
— Repulsive force discontinuities
— Floating control points

Path and Trajectory Planning:
Workspace Forces = Joint Torques

* Map workspace forces to configuration space before
combining them

* Use Jacobians at each O,
t=J'F
2(q)=Y I 0.(@F,, () +] 0 (q)F,,,(q)
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Path and Trajectory Planning:
Gradient Descent Planning Algorithm

1. 9°=q,i=0
2. WHILE ||g'=q || >¢€
qi+1 :qi+ai T(ql:)
@]
i=i+1

3. END
4. Return[q%ql,...q ]

o = step size
¢, = controls the relative influence of attractive potential for O,

n; = controls the relative influence of repulsive potential for O;

p, = defines the distance of influence for obstacles
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Path and Trajectory Planning:
Escaping Local Minima

1. Qg°=q,i=o0
2. WHILE ||g' —q¢]|>€
qi+1 ¢ +a T(q‘)
Jra")
i=i+l
e Ifstuckinlocal minimum
e Execute Random walk, ending at g’
qi+1 — qv
3. END
4. Return[q°q,...,q'] MATLAB demo
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Path and Trajectory Planning: Path and Trajectory Planning:
Probabilistic Roadmap Methods Probabilistic Roadmap Methods
Sampling Connecting

 Potential Field approaches incrementally explore C,., ; . N i
— Single path qi‘s{\‘ - : ‘

— New goal location = entirely new path

* Alternative approach ’ ,

— Construct representation of C;, that can be quickly used to generate
new paths
* >Robots working long periods in single workspace 2-norm in Q: ll gl = [EL:(@#-qa)z]

oo-norm in Q: max;, |¢} — gl

1
2-norm in workspace: IZE‘,E J,,Hp(q’) - p_(‘q)"z]}

oo-norm in workspace: maxpe||p(¢) — p(9)]|
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Path and Trajectory Planning: Path and Trajectory Planning: Trajectory Planning
Probabilistic Roadmap Methods « Path from g, to g in C:

Sampling Connecting — continuous map y, with y(0) = g, and y(1) = g;

“-
2

* Trajectory:
function of time q(t) such that q(t,) = q, and q(t;) = g;

)

g's < '

— t;—t, = time to execute trajectory

q’(t), g”’(t) = velocity, acceleration

path planning only give sequence of points along q

Fast Free Space

Guarded Slow Slow Guarded

&

Enhancing Smoothing
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Path and Trajectory Planning:

Path and Trajectory Planning:
Trajectories- Point to Point Motion

Example- Cubic Polynomial Trajectories

. . Derivative of acceleration = “jerk”
* n=# of constraints (pos/velocity/accel) ‘ t ‘
* Trajectory function = polynomial of degree n-1 2
. . . . ‘ Discontinuities in acceleration ‘
* Cubic Polynomial Trajectories: -
= ]
qt)=ag+a  t+a,t?+a,t? T %
— f -Lu’l' —10) 2 100}
E{ B -5 g "
= 'S a0 =
Constraints, n = 4: Z % . oo
q, = initial position N = 8
- 02 [ 06 08 [H 04 [X) 08 2 = 02 04 08 08
° initial veloci Time (sec) k Time (sec) < Time (sec)
v, = initial velocity
(a) (b) ()
q¢ = final position
~ final velocit Figure 5.13: (a) Cubic polynomial trajectory. (b) Velocity profile for cubic
Vi = hinat velocity polynomial trajectory. (c) Acceleration profile for cubic polynomial trajec-
tory.
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Path and Trajectory Planning:

Path and Trajectory Planning:
Quintic Polynomial Trajectories

Quintic Polynomial Trajectories
qt)=a,+a,t+a, 2 +a;t>+a, t*+a  t°

g ‘@
[T) Q 4
— '3 (7]
Constraints, n = 6: 2" ] EE
] ﬁ Elzs i
q, = initial position 5" = § |
E = 15 35 -20]
v, = initial velocity 87 ém S
= 3
= initi 1 [ 1 15 0.5 1 15 Q 05 1 15
a, = initial acceleration Time (sec) Time (sec) < Time (sec)
g¢ = final position (a) (b) (c)
v; = final velocit ; o . . . :
f i Figure 5.14: (a) Quintic polynomial trajectory, (b) its velocity profile, and
a; = final acceleration (¢) its acceleration profile.

o STEVENS

5] STEVENS
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Path and Trajectory Planning: Path and Trajectory Planning:
Linear Segments with Parabolic Blends Linear Segments with Parabolic Blends
* Used when want constant velocities along portion of a path

* Trapezoidal velocity profile

4 T %
— Velocity initially ramped up to desired value 5% fjm %m
D 25 o LT~
— Ramped down when close to goal position S g 2
o s Z% 2
E“ﬂ g 20 g-mu
. - 5 D 1o o 150
Quadratic polynomial ‘Blerjd T]me§ for‘LSP‘B Tr‘ajec?tory‘ < 2 § o
— 35 Time (sec) Time (sec) < Time {sec)
. 1 (a) (b) (©)
g “ Figure 5.16: (a) LSPB trajectory. (b) Velocity profile for LSPB trajectory.
2 = Blend time ‘ (c) Acceleration profile for LSPB trajectory.
C
<

Quadratic polynomial

tp tr-tp

o1 0z 02 G4 05 06 or @8 09

Time (sec)
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Path and Trajectory Planning: Path and Trajectory Planning:
Minimum Time Trajectories Trajectories for Paths Specified by multiple (Via) Points
+ Variation of LSPB * Path specified by three configurations, q,, q,, and g, such that

they are reached at times t, t;, and t,
* Leave t; unspecified, seek fastest trajectory between q, and q;

with given constant acceleration a
— Trajectory with minimum t;

e Additional constraints on initial and final velocities

Constraints, n=7

— Max acceleration (+)a until t ., ()= Sixth order polynomial trajectory:
_ _ q(ts) =9,
— Min acceleration (-)a from tg;., to t; )=y
— 4t =Yo qt)=a,+a,t+a,t?+a,B3+a, th+a t5+agte
i £ 2 q"(t) =q,
353 % % qt,)=q, (+) Continuous everywhere
3 3 g qt)=q (-) Solve 7-dimensional linear system
@ T T 2/ 7 M2
o, o g , number of dimensions scales with number of g's
Time(sec) Time(sec) " Time‘(sec) B q (tz) = V2
b "
(a) (b) (c) q(t,) = a,
Figure 5.17: (a) Minimum-time trajectory. (b) Velocity profile for minimum-
| time trajectory. (c) Acceleration profile for minimum-time trajectory.

o5 STEVENS
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between adjacent points

* For each segment:

Path and Trajectory Planning:
Trajectory For Paths W/ Multiple Points

* Use lower order polynomials for trajectory segments

* Require velocity and acceleration constraints at points where
switch from one polynomial to another

8] STEVENS

Constrainte. ne Cubic polynomial trajectory:
a(t,) =9, q(t) = a, +a, (t-t,) + a, (t-t,)* + a, (t-t,)3
qte) =V,
qt;) =q, where:  a, =g,
a6 = v, T 2
For sequence of moves: , = (4 -40) -2, +2Vl)(tf -1,)
t,—t
Use end conditions q; and v; of the ith (t; =)
move as initial conditions for next move ~2(gy—q)+ (v V), - 1,)
3T 3
(t—1,)
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