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Review: Denavit-Hartenberg Convention

The Denavit=-Hartenberg convention defines four parameters and some rules to
help characterize arbitrary kinematic chains

start by attaching a frame to each link:

the joint variable for link i+ acts along/around Z;

the axis .l’; is perpendicular to, and intersects Z; 1

the following conventions make this process easier:

if Zj—1 is parallel to Z; orient .I’;j along normal with Z; 1
if Z; ] intersects Z; orient .I; normal to the plane formed by Z; 1 and Z;
if Zj 1 is not coplanar with Zj; orient .['; along normal with Zj 1

Denavit & Hartenberg,“A kinematic notation for lower-pair mechanisms based on matrices,” ASME Journal of Applied Mechanics, june 1955
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Review: Denavit-Hartenberg Convention

The Denavit-Hartenberg convention defines four parameters and some rules to
help characterize arbitrary kinematic chains
a;
Link the distance perpendicular to Zj and Zj 1. measured along L'j
Length
g
Link the angle between Z; 1 and Z; , measured in the plane normal to ('
Twist (right-hand rule around ;)
d;
Link the distance along Zj —1 from Oj 1] to the intersection with {';
Offset
0;
Joint the angle between .';__7 and .I;, measured in the plane normal to Z; 1
Angle (right-hand rule around Zj—1)
Denait & Hartenbers,“A kinematic notation for lower-pair mechanisms bised on matrices.” ASME Journal of Applied Mechanics. june 1955

4 | Fall2013 ME 598, Lecture 3




Review: Denavit-Hartenberg Transform

The Denavit-Hartenberg transform results from successive rotations and
translations via the four DH parameters

The transform from i-| to i:

A; = Rot; g, Trans; 4, Trans, ,, Rot, q,

cp, —50,Ca; 50, Sa; a;cy,
Sg, Cp,;Ca; —Cp,;Sa; 359,

o & % 7
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Review: Inverse Kinematics
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Review: Algebraic Decomposition

given the forward transform matrix for a manipulator

Ry (@)]3,5  [d2(@)]5,
{0} 1x3 1
solve the system of 3 equations from the displacement vector
de = [dg (q)] 1
dy = [dg (C.I)] 2
d, = [d?:, (q)] 3
to find the joint variables in terms of the end-effector position
Q].(dﬂiv dy: dz)
QQ(dSEv dy: dz)

T0 —

i

q:

qn(dft dyv dz)
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Review: Geometric Analysis

For most simple manipulators, it is often easier to use geometry
to solve for closed-form solutions to the inverse kinematics

solve for each joint variable (J; by projecting the manipulator onto the X'; 4. 1/; 1 plane

closed-form inverse kinematic solutions are not always possible,
and if it is solvable, there are often multiple solutions
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Review: Kinematic Decoupling Review: Example P3.10- PUMA 360 Manipulator
i i Forward Kinematics
Inverse kinematics = |4
inverse position kinematics +
inverse orientation kinematics

shoulder Rotation 310°

Two sub problems:

e Find position of the intersection of the wrist axes (o.)

Vs

¢ Find orientation of the wrist
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Review: Example P3.15-

Review: Example P3.13- Cylindrical Manipulator Cylindrical Manipulator + Spherical Wrist

Inverse Kinematics

Given:d=[d,d, d]7 Zy
xt Pyt Uz 1 d Q_)95 d6
Find: 6,, d,, and d, as functions of d,, d,, d, 1 ds I i [ N ﬁ_/x X N I 20 7o 7
B jQ4 ’ — 31 45 46
% L REYp (L =W o =
da2| 4 X3 Y3 "o,
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solve for each joint variable (J; by projecting the manipulator onto the X'; 1. 1/; 1 plane
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The Jacobian: Differential Motion

The Instantaneous Position Jacobian

p= Jp(‘]) q

1 1

endpoint joint
Velocity Kinematics: The Jacobian velocity Jacobian'e'““y
matrix

For an n-dimensional joint variable space and a cartesian workspace, the Jacobian is a 3xn matrix
composed of the partial derivatives of the end-effector position with respect to each joint variable.

Sz bz Sz

dq1  dg2 7T g

J — | v dy Oy
P b1 dq2 77 qa
5z oz iz

Sq1 Sz 77 dqm
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Example 1

The Jacobian: Position Jacobian

. Planar RR

(z,y)

From the forward kinematics, we can extract
the position vector from the last column of the
transform matrix:

[ asCyo + @1Cq -|
dj = [ (3819 + 151
o

Taking the partial derivative with respect to
each joint variable produces the Jacobian:
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The Jacobian: Position Jacobian
Example 1: Planar RR

From the forward kinematics, we can extract
the position vector from the last column of the
transform matrix:

[ a9C1o + @1Cq -|
dj = [ (9519 + (151
o

Taking the partial derivative with respect to
each joint variable produces the Jacobian:

—a151 — agS12  —@2512
= aicy + aacq2 12¢12
0 0
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The Jacobian: Position Jacobian , . o
2 The Jacobian: Singularities
A
Example 2: SCARA . a C e,
: Y1 x J3M Singularities are points in the configuration space where infinitesimal motion in a certain
C, iy 0 a,c, +a,c, ' 1 y direction is not possible and the manipulator loses one or more degrees of freedom
Y2 % X
70 S~ 0 as +ays, a, z, |dg
3 0 0 -1 d —d » when operating at a singular point, bounded end-effector velocities may correspond to
! 3 X unbounded joint velocities
y 3 :
0 0 0 1 3
X =a,c +a,c, singularities are often found on the extents of the workspace,
r 7 and also relate to the nonuniqueness of solution to inverse kinematics
y=ais,+as), ox Ox Ox —a,5, =48, —a5, 0
z=d, —d, 00, 00, od,|=| ac +ac, a,, 0
Mathematically, singularities exist at any point in the workspace where the Jacobian
0 Jp = 6_y ﬂ a_y 0 0 -1 matrix loses rank.
1 00, 00, od, P— =
q=\0, 0z 0z oz a1 a2 U7 bdn [i.e. all columns of J are not linearly independent]
) o) )
d 00, 00, od, R A . 1
0z bz LES
9q1 g2 7T 0qn
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The Jacobian: Singularities
Example 1: Planar RR

The Jacobian: Identifying Singularities

a matrix is singular if and only if it’s determinant is zero:

The 2=2 matrix,

det(J) =0

] g

has determinant

det(A) = ad — be.

The 3=3 matrix

a b ¢
A=1|d e f|.
g h i

Using the cofactor expansion on the first row of the matrix we get

_le f d f d e
det(A)iah i g i g h
= aei — afh — bdi + bfg+ cdh — ceg
= (aei +bfg+ cdh) — (gec + h fa + idb)

—b

+c

[http://en.wikipedia.org/wiki/Determinant]
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N

has determinant

det(A) = ad — be.

az

—a1S51 — (2512
aic1 + a2c12

(z,y)

B

—a2512
219
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The Jacobian: Singularities
Example 2: SCARA

The Jacobian: Decoupling of Singularities

—as, — a8, —a$, 0

J=| ac +a,c, a,cy, 0

0 0 -1
1 22
A A The 3=3 matrix:
@02 =0° i a b ¢
@ ‘ A= [d e f:| .
g h 1
Z0 @ Using the cofactor expansion on the first row of the matrix we get:
. det(A):a.;{—bif-l—ci;
N = aei —afh — bdi + bfg+ cdh — ceg
= (aei + bfg + cdh) — (gec + h fa + idb)
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Manipulator Singularities
= Wrist Singularities + Arm Singularities

z
A 4

@9520

6;=0orm
(z3 and z; are collinear)

Compute Jacobian using o, instead of o,
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The Jacobian: Jacobian Transpose

The Jacobian: Jacobian Transpose

The transpose of the Jacobian relates joint torques and forces to cartesian end-effector forces

T=J"(¢)F
jo!nt endloint
torques forces
Jacobian
matrix
transpose
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xample 1: Planar RR Beginning the with the standard Jacobian

m

J— —a1S51 — G2512 —G2512

(z,y)
aici + aacia 2012

WVe can solve for the joint torques necessary
to exert a desired force at the end effector
using the Jacobian transpose

7= JT(q) F
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The Jacobian: Inverse Jacobian

The Jacobian relationship:
p=1Jy(q)q

Specifies the end-effector velocity that will result when the
joints move with velocity q

Inverse problem: Find the joint velocitiesq that produce the
desired end-effector velocity

q=J,(@)"'p

[Hard if have non-square J = pseudo-inverse (pinv)]
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Announcements:
Term Project Theme- Robotic Art Installation

* Various artistic robotic assignments throughout the
course term
— Labs

— Midterm Project
— Multiple specific events towards end of the semester

* Mixed media, sculpture, dance, etc.
— Kinematics, path planning
— Localization, image processing
— Coordination

ME 598, Lecture 3
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* Homework # 3

* Reading
— Spong Ch. 4 (today’s lecture)
— Spong Ch. 5 (next lecture)

* Lab1
— Art Installation Logo
— Kinematic robot arm,
— 2 setups in EAS 001

* Teams must take turns
* Many preliminary steps of lab may be done concurrently by
different teams (do not require operating computer/robot)
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