

Review: Homogeneous Transformations

a **homogeneous transform** is a matrix representation of rigid motion, defined as

$$\mathbf{H} = \left[\begin{array}{cc} \mathbf{R} & \mathbf{d} \\ \mathbf{0} & 1 \end{array} \right]$$

where ${f R}$ is the 3x3 rotation matrix, and ${f d}$ is the 1x3 translation vector

$$\mathbf{H} = \left[egin{array}{ccccc} n_x & s_x & a_x & d_x \ n_y & s_y & a_y & d_y \ n_z & s_z & a_z & d_z \ 0 & 0 & 0 & 1 \end{array}
ight]$$

the **inverse** of a homogeneous transform can be expressed as

$$\mathbf{H}^{-1} = \left[\begin{array}{cc} \mathbf{R}^{\top} & -\mathbf{R}^{\top} d \\ 0 & 1 \end{array} \right]$$

STEVENS

Fall 2013

ME 598, Lecture

Review: Homogeneous Transformations

the **homogeneous representation** of a vector is formed by concatenating the original vector with a unit scalar

$$\mathbf{P} = \left[\begin{array}{c} \mathbf{p} \\ 1 \end{array} \right]$$

where P is the Ix3 vector

$$\mathbf{P} = \begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix}$$

Review: Homogeneous Transformations

rigid body transformations are accomplished by pre-multiplying by the homogenous transform $\,$

$$\mathbf{P}^0 = \mathbf{H}_1^0 \; \mathbf{P}^1$$

composition of multiple transforms is the same as for rotation matrices:

post-multiply when successive rotations are relative to intermediate frames

$$\mathbf{H}_2^0 = \mathbf{H}_1^0 \; \mathbf{H}_2^1$$

pre-multiply when successive rotations are relative to the first fixed frame

$$\mathbf{H}_2^0 = \mathbf{H} \; \mathbf{H}_1^0$$

Review: Homogeneous Transformations

Composition (intermediate frame)

$$\mathbf{H}_2^0 = \mathbf{H}_1^0 \; \mathbf{H}_2^1 = \left[egin{array}{cc} \mathbf{R}_1^0 & \mathbf{d}_1^0 \ 0 & 1 \end{array}
ight] \left[egin{array}{cc} \mathbf{R}_2^1 & \mathbf{d}_2^1 \ 0 & 1 \end{array}
ight] = \left[egin{array}{cc} \mathbf{R}_2^0 & \mathbf{R}_1^0 \mathbf{d}_2^1 + \mathbf{d}_1^0 \ 0 & 1 \end{array}
ight]$$

Inverse Transform

$$\mathbf{H}_0^1 = \left[egin{array}{cc} \mathbf{R}_0^1 & \mathbf{d}_0^1 \ \mathbf{0} & 1 \end{array}
ight] = \left[egin{array}{cc} (\mathbf{R}_1^0)^ op & -(\mathbf{R}_1^0)^ op \mathbf{d}_1^0 \ \mathbf{0} & 1 \end{array}
ight]$$

STEVENS

Fall 2013

ME 598, Lecture 2

Forward Kinematics Denavit-Hartenberg Parameters

Review: Homogeneous Transformations

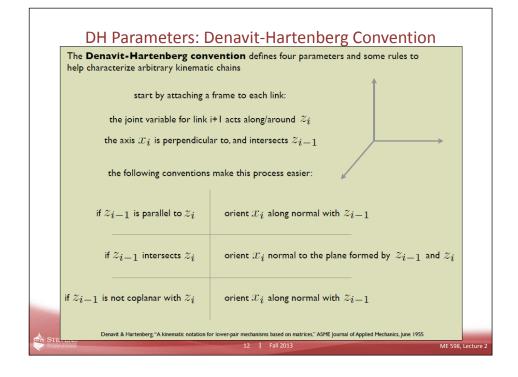
- · H that represents the following in order:
 - Rotation by angle α about current x-axis
 - Translation of b units along current x-axis
 - Translation of d units along current z-axis
 - Rotation by angle θ about current z-axis

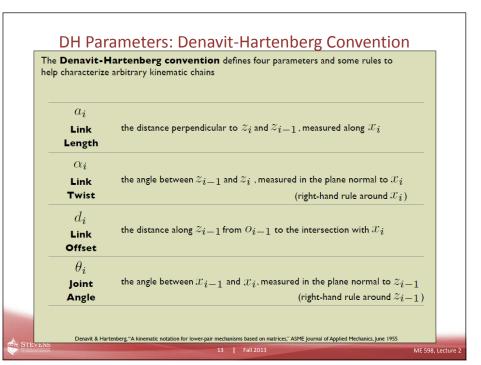
$$H = Rot_{x, \alpha} Trans_{x, \beta} Trans_{z, d} Rot_{z, \theta}$$

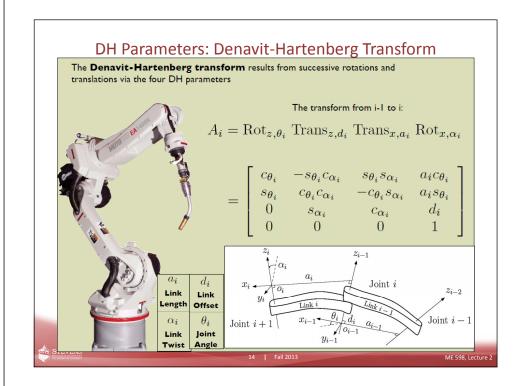
$$H = \begin{bmatrix} c_{\theta} & -s_{\theta} & 0 & | & \beta \\ c_{\alpha}s_{\theta} & c_{\alpha} & -s_{\alpha} & | & -ds_{\theta} \\ s_{\alpha}s_{\theta} & s_{\alpha} & c_{\alpha} & | & dc_{\alpha} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Characterized by 6 numbers

Fall 2013







DH Parameters: Example 1- Planar Elbow Manipulator

Link and Joint Labeling Scheme:

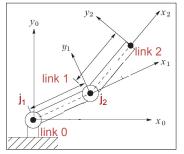
of joints = n Number joints from 1 to n

of links = n + 1 Number links from a to n

of links = n + 1 Number links from o to n When joint i is actuated, link i moves \rightarrow Link o is fixed

start by attaching a frame to each link: the joint variable for link i+1 acts along/around $\,z_i\,$

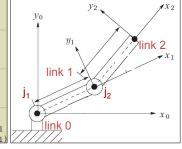
the axis x_i is perpendicular to, and intersects z_{i-1}



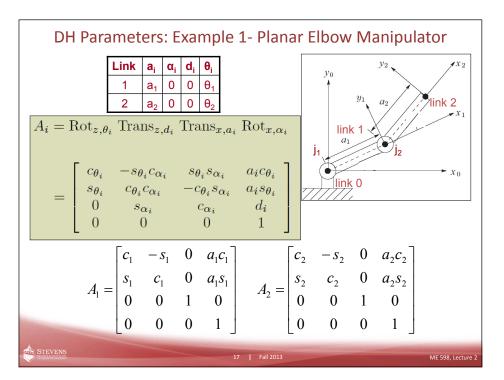
if z_{i-1} is parallel to z_i	orient x_i along normal with z_{i-1}
if z_{i-1} intersects z_i	orient x_i normal to the plane formed by z_{i-1} and z_i
if z_{i-1} is not coplanar with z_i	orient x_i along normal with z_{i-1}

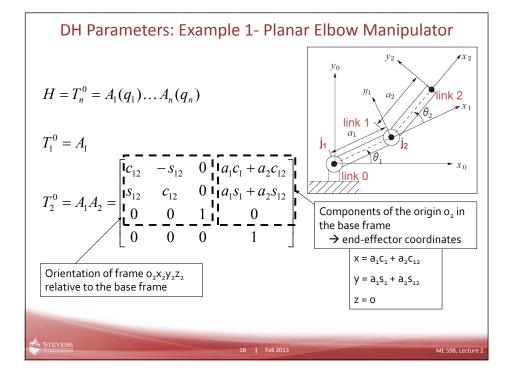
DH Parameters: Example 1- Planar Elbow Manipulator

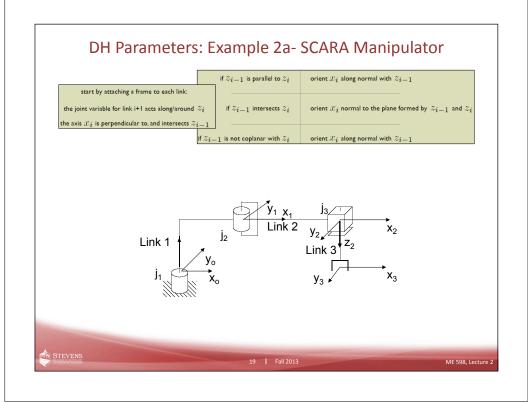
a_i Link Length	the distance perpendicular to z_i and z_{i-1} , measured along x_i
$lpha_i$ Link Twist	the angle between z_{i-1} and z_i , measured in the plane normal to x_i (right-hand rule around x_i)
d_i Link Offset	the distance along z_{i-1} from o_{i-1} to the intersection with x_i
$ heta_i$ Joint Angle	the angle between x_{i-1} and x_i , measured in the plane normal to z_{i-1} (right-hand rule around z_{i-1})

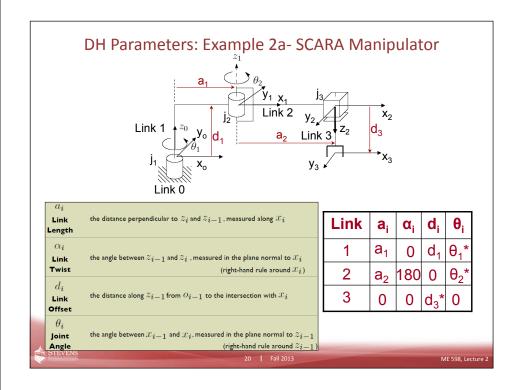


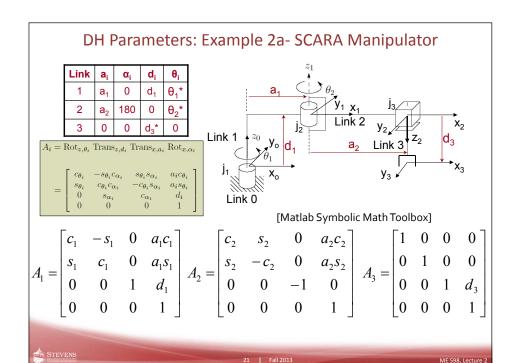
Link	a _i	α_{i}	d _i	θ_{i}
1	a ₁	0	0	θ_1
2	a_2	0	0	θ_2

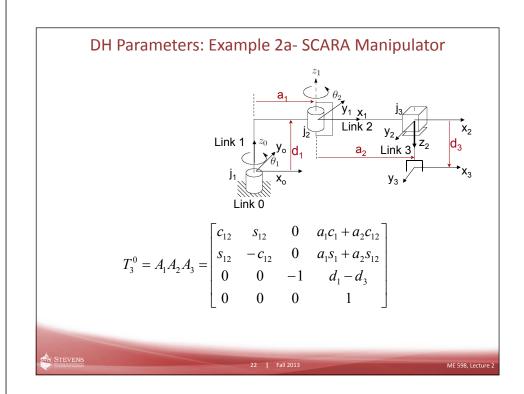


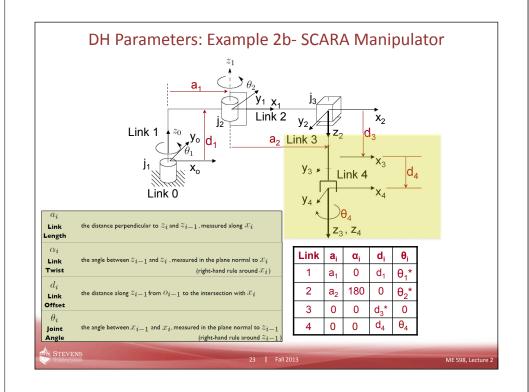


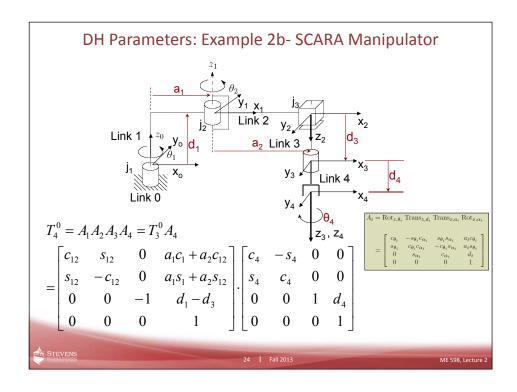


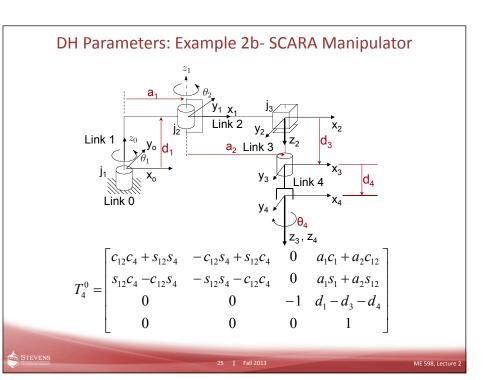


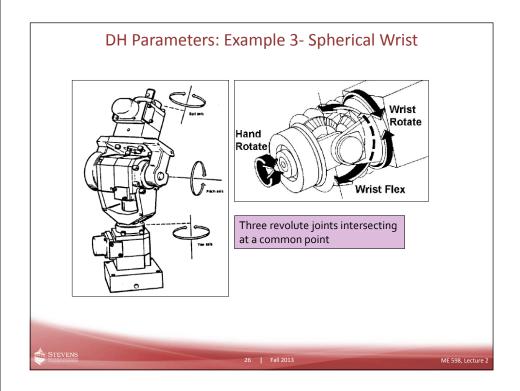










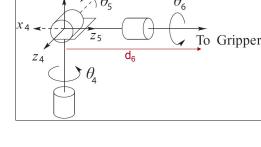


DH Parameters: Example 3- Spherical Wrist

Link	a _i	α_{i}	d _i	θί
4	0	-90	0	θ_4^*
5	0	90	0	θ ₅ *
6	0	0	d ₆	θ ₆ *

$$T_6^3 = A_4 A_5 A_6$$

$$= \begin{bmatrix} R_6^3 & o_6^3 \\ 0 & 1 \end{bmatrix}$$



$$T_6^3 = \begin{bmatrix} c_4 c_5 c_6 - s_4 s_6 & -c_4 c_5 c_6 - s_4 c_6 & c_4 s_5 & c_4 s_5 d_6 \\ s_4 c_5 c_6 + c_4 s_6 & -s_4 c_5 s_6 + c_4 c_6 & s_4 s_5 & s_4 s_5 d_6 \\ -s_5 c_6 & s_5 c_6 & c_5 & c_5 d_6 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

27 | Fall 2013

DH Parameters: Example 3- Spherical Wrist

$$T_{6}^{3} = \begin{bmatrix} c_{4}c_{5}c_{6} - s_{4}s_{6} & -c_{4}c_{5}c_{6} - s_{4}c_{6} & c_{4}s_{5} & c_{4}s_{5}d_{6} \\ s_{4}c_{5}c_{6} + c_{4}s_{6} & -s_{4}c_{5}s_{6} + c_{4}c_{6} & s_{4}s_{5} & s_{4}s_{5}d_{6} \\ -s_{5}c_{6} & -s_{5}c_{6} & -s_{5}c_{6} & -s_{5}c_{6} & -s_{5}c_{6} \\ -s_{5}c_{6} & -s_{5}c_{6} & -s_{5}c_{6} & -s_{5}c_{6} & -s_{5}c_{6} \end{bmatrix}$$

Euler Angles to Rotation Matrices

$$\mathbf{R} = \mathbf{R}_{z,\phi} \ \mathbf{R}_{y,\theta} \ \mathbf{R}_{z,\psi}$$

$$= \begin{bmatrix} c_{\phi}c_{\theta}c_{\psi} - s_{\phi}s_{\psi} & -c_{\phi}c_{\theta}s_{\psi} - s_{\phi}c_{\psi} & c_{\phi}s_{\theta} \\ s_{\phi}c_{\theta}c_{\psi} + c_{\phi}s_{\psi} & -s_{\phi}c_{\theta}s_{\psi} + c_{\phi}c_{\psi} & s_{\phi}s_{\theta} \\ -s_{\theta}c_{\psi} & s_{\theta}s_{\psi} & c_{\theta} \end{bmatrix}$$

 $\theta_{_4}$, $\theta_{_5}$, and $\theta_{_6}$ are the Euler angles Φ , θ , and ψ with respect to the coordinate frame $o_3x_3y_3z_3 \rightarrow will$ help with Inverse Kinematics

28 | Fall 201

DH Parameters: Euler Angles from Spherical Wrist Eqs

To find a solution for this problem we break it down into two cases. First, suppose that not both of r_{13} , r_{23} are zero. Then from Equation (2.26) we deduce that $s_{\theta} \neq 0$, and hence that not both of r_{31} , r_{32} are zero. If not both r_{13} and r_{23} are zero, then $r_{33} \neq \pm 1$, and we have $c_{\theta} = r_{33}$, $s_{\theta} = \pm \sqrt{1 - r_{33}^2}$ so

$$\begin{bmatrix} c_{\phi}c_{\theta}c_{\psi} - s_{\phi}s_{\psi} & -c_{\phi}c_{\theta}s_{\psi} - s_{\phi}c_{\psi} & c_{\phi}s_{\theta} \\ s_{\phi}c_{\theta}c_{\psi} + c_{\phi}s_{\psi} & -s_{\phi}c_{\theta}s_{\psi} + c_{\phi}c_{\psi} & s_{\phi}s_{\theta} \\ -s_{\theta}c_{\psi} & s_{\theta}s_{\psi} & c_{\theta} \end{bmatrix}$$

STEVENS

STEVENS

$$\theta = \text{Atan2}\left(r_{33}, \sqrt{1 - r_{33}^2}\right)$$
 (2.28)

$$\theta = \text{Atan2}\left(r_{33}, -\sqrt{1 - r_{33}^2}\right)$$
 (2.29)

where the function Atan2 is the ${f two-argument}$ arctangent function defined in Appendix A.

If we choose the value for θ given by Equation (2.28), then $s_{\theta} > 0$, and

$$\phi = \text{Atan2}(r_{13}, r_{23}) \tag{2.30}$$

$$\psi = \text{Atan2}(-r_{31}, r_{32}) \tag{2.31}$$

If we choose the value for θ given by Equation (2.29), then $s_{\theta} < 0$, and

[Spong et. al., pages 55-56] $\phi = \text{Atan2}(-r_{13}, -r_{23})$

$$\phi = \text{Atan2}(-r_{13}, -r_{23}) \tag{2.32}$$

$$\psi = \text{Atan2}(r_{31}, -r_{32}) \tag{2.33}$$

Thus, there are two solutions depending on the sign chosen for θ .

29 | Fall 2013

ME 598, Lecture 2

ME 598, Lecture

DH Parameters: Euler Angles from Spherical Wrist Eqs

If $r_{13}=r_{23}=0$, then the fact that R is orthogonal implies that $r_{33}=\pm 1$, and that $r_{31}=r_{32}=0$. Thus, R has the form

$$R = \begin{bmatrix} r_{11} & r_{12} & 0 \\ r_{21} & r_{22} & 0 \\ 0 & 0 & \pm 1 \end{bmatrix}$$
(2.34)

If $r_{33}=1$, then $c_{\theta}=1$ and $s_{\theta}=0$, so that $\theta=0$. In this case, Equation (2.26) becomes

$$\begin{bmatrix} c_{\phi}c_{\psi} - s_{\phi}s_{\psi} & -c_{\phi}s_{\psi} - s_{\phi}c_{\psi} & 0 \\ s_{\phi}c_{\psi} + c_{\phi}s_{\psi} & -s_{\phi}s_{\psi} + c_{\phi}c_{\psi} & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} c_{\phi+\psi} & -s_{\phi+\psi} & 0 \\ s_{\phi+\psi} & -s_{\phi+\psi} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Thus, the sum $\phi + \psi$ can be determined as

$$\phi + \psi = \text{Atan2}(r_{11}, r_{21}) = \text{Atan2}(r_{11}, -r_{12})$$
 (2.35)

The solution is thus

Since only the sum $\phi + \psi$ can be determined in this case, there are infinitely many solutions. In this case, we may take $\phi = 0$ by convention. If $r_{33} = -1$, then $c_{\theta} = -1$ and $s_{\theta} = 0$, so that $\theta = \pi$. In this case Equation (2.26) becomes

$$\begin{bmatrix}
-c_{\phi-\psi} & -s_{\phi-\psi} & 0 \\
s_{\phi-\psi} & c_{\phi-\psi} & 0 \\
0 & 0 & -1
\end{bmatrix} = \begin{bmatrix}
r_{11} & r_{12} & 0 \\
r_{21} & r_{22} & 0 \\
0 & 0 & -1
\end{bmatrix}$$
(2.36)

[Spong et. al., pages 55-56]

As before there are infinitely many solutions.

Inverse Kinematics

Inverse Kinematics

 Given end-effector position and orientation, compute corresponding joint variables

Algebraic Decomposition

Geometric Analysis

32 | Fall 201

Inverse Kinematics: Algebraic Decomposition

given the forward transform matrix for a manipulator

$$\mathbf{T}_n^0 = \left[egin{array}{cc} \left[\mathbf{R}_n^0(\mathbf{q})
ight]_{3 imes 3} & \left[\mathbf{d}_n^0(\mathbf{q})
ight]_{3 imes 1} \ \left[\mathbf{0}
ight]_{1 imes 3} & 1 \end{array}
ight]$$

solve the system of 3 equations from the displacement vector

$$d_x = \begin{bmatrix} \mathbf{d}_n^0(\mathbf{q}) \end{bmatrix}_1$$

$$d_y = \begin{bmatrix} \mathbf{d}_n^0(\mathbf{q}) \end{bmatrix}_2$$

$$d_z = \begin{bmatrix} \mathbf{d}_n^0(\mathbf{q}) \end{bmatrix}_3$$

to find the joint variables in terms of the end-effector position

$$\mathbf{q} = \begin{bmatrix} q_1(d_x, d_y, d_z) \\ q_2(d_x, d_y, d_z) \\ \vdots \\ q_n(d_x, d_y, d_z) \end{bmatrix}$$

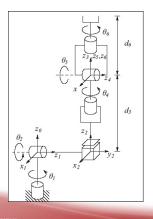
STEVENS

Fall 2013

ME 598, Lecture 2

Inverse Kinematics: Algebraic Decomposition

Link	d_i	a_i	α_i	θ_i
1	0	0	-90	θ_1^{\star}
2	d_2	0	+90	θ_2^2
3	d ₃ *	0	0	0
4	0	0	-90	θ_4^{\star}
5	0	0	+90	0
6	d_6	0	0	θ_{5}^{\star}



T_6^0 is then given	as				
	$T_6^0 = A_1 \cdots A_6 =$	$\begin{bmatrix} r_{11} \\ r_{21} \\ r_{31} \\ 0 \end{bmatrix}$	$r_{12} \\ r_{22} \\ r_{32} \\ 0$	$r_{13} \\ r_{23} \\ r_{33} \\ 0$	$egin{array}{c} d_x \ d_y \ d_z \ 1 \end{array}$

in which

 $r_{11} = c_1[c_2(c_4c_5c_6 - s_4s_6) - s_2s_5c_6] - d_2(s_4c_5c_6 + c_4s_6)$

 $r_{21} = s_1[c_2(c_4c_5c_6 - s_4s_6) - s_2s_5c_6] + c_1(s_4c_5c_6 + c_4s_6)$

 $r_{31} = -s_2(c_4c_5c_6 - s_4s_6) - c_2s_5c_6$

 $r_{12} = c_1[-c_2(c_4c_5s_6 + s_4c_6) + s_2s_5s_6] - s_1(-s_4c_5s_6 + c_4c_6)$

 $c_{22} = -s_1[-c_2(c_4c_5s_6 + s_4c_6) + s_2s_5s_6] + c_1(-s_4c_5s_6 + c_4c_6)$

 $r_{32} = s_2(c_4c_5s_6 + s_4c_6) + c_2s_5s_6$

 $c_{13} = c_1(c_2c_4s_5 + s_2c_5) - s_1s_4s_5$

 $r_{23} = s_1(c_2c_4s_5 + s_2c_5) + c_1s_4s_5$

 $r_{33} = -s_2c_4s_5 + c_2c_5$

 $c_1 = c_1 s_2 d_3 - s_1 d_2 + d_6 (c_1 c_2 c_4 s_5 + c_1 c_5 s_2 - s_1 s_4 s_5)$

 $d_y = s_1 s_2 d_3 + c_1 d_2 + d_6 (c_1 s_4 s_5 + c_2 c_4 s_1 s_5 + c_5 s_1 s_2)$

 $d_z = c_2d_3 + d_6(c_2c_5 - c_4s_2s_5)$

Eall 2012

ME 598, Lecture

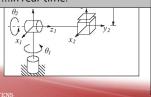
Inverse Kinematics: Algebraic Decomposition



Solve:

12 non-linear, trigonometric equations with 6 unknowns

...in real-time!



Example 3.7. Recall the Stanford manipulator of Example 3.5. Suppose that the desired position and orientation of the final frame are given by

$$H = \begin{bmatrix} 0 & 1 & 0 & -0.154 \\ 0 & 0 & 1 & 0.763 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(3.29)

To find the corresponding joint variables θ_1 , θ_2 , d_3 , θ_4 , θ_5 , and θ_6 we must solve the following simultaneous set of nonlinear trigonometric equations:

$$\begin{array}{lll} c_1[c_2(c_4c_5c_6-s_4s_6)-s_2s_5c_6]-s_1(s_4c_5c_6+c_4s_6)&=&0\\ s_1[c_2(c_4c_5c_6-s_4s_6)-s_2s_5c_6]+c_1(s_4c_5c_6+c_4s_6)&=&0 \end{array}$$

$$-s_2(c_4c_5c_6 - s_4s_6) - c_2s_5c_6 = 1$$

$$c_1[-c_2(c_4c_5s_6 + s_4c_6) + s_2s_5s_6] - s_1(-s_4c_5s_6 + c_4c_6) = 1$$

$$s_1[-c_2(c_4c_5s_6 + s_4c_6) + s_2s_5s_6] + c_1(-s_4c_5s_6 + c_4c_6) = 0$$

$$s_2(c_4c_5s_6 + s_4c_6) + c_2s_5s_6 = 0$$

$$c_1(c_2c_4s_5 + s_2c_5) - s_1s_4s_5 = 0$$

$$s_1(c_2c_4s_5 + s_2c_5) + c_1s_4s_5 = 1$$

$$-s_2c_4s_5 + c_2c_5 = 0$$

$$c_1 s_2 d_3 - s_1 d_2 + d_6 (c_1 c_2 c_4 s_5 + c_1 c_5 s_2 - s_1 s_4 s_5) = -0.154$$

$$\begin{array}{rcl} s_1s_2d_3+c_1d_2+d_6(c_1s_4s_5+c_2c_4s_1s_5+c_5s_1s_2) &=& 0.763 \\ c_2d_3+d_6(c_2c_5-c_4s_2s_5) &=& 0 \end{array}$$

ME 598, Lecture 2

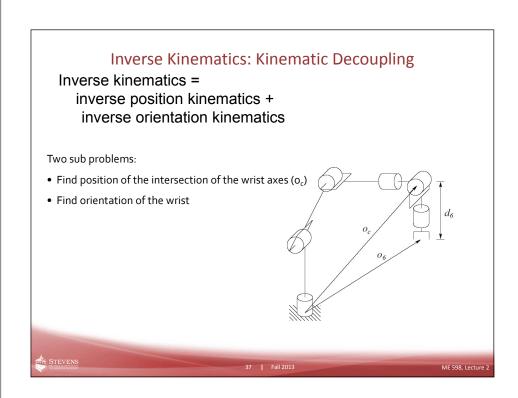
Inverse Kinematics: Geometric Analysis

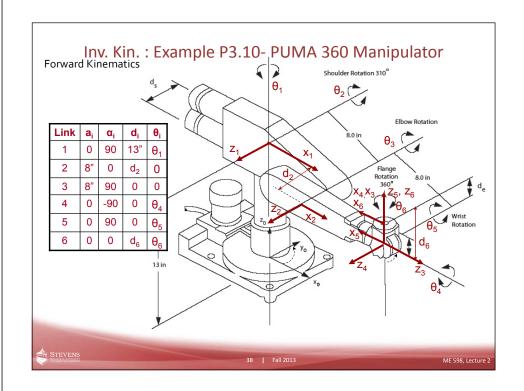
For most simple manipulators, it is often easier to use geometry to solve for closed-form solutions to the inverse kinematics

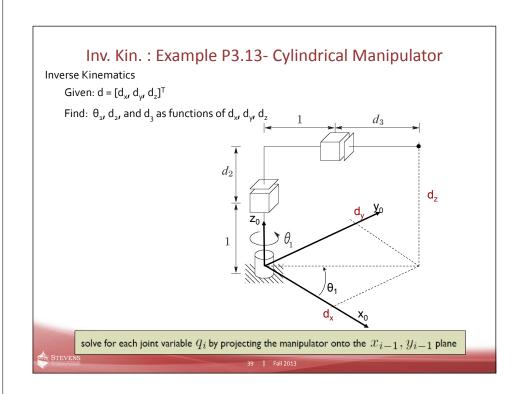
solve for each joint variable q_i by projecting the manipulator onto the $\,x_{i-1},y_{i-1}$ plane

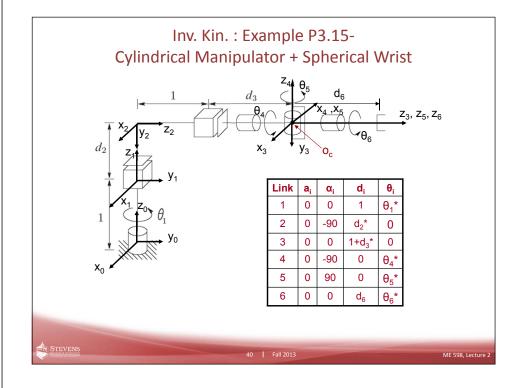
closed-form inverse kinematic solutions are not always possible, and if it is solvable, there are often multiple solutions

Fall 201









Summary Algorithms for Denavit-Hartenberg Parameters

Summary Algorithms for DH Parameters: Forward Kinematics

[Spong et. al., pages 110-111]

Step 1: Locate and label the joint axes z_0, \ldots, z_{n-1} .

Step 2: Establish the base frame. Set the origin anywhere on the z_0 -axis. The x_0 and y_0 axes are chosen conveniently to form a right-handed frame.

For i = 1, ..., n-1 perform Steps 3 to 5.

Step 3: Locate the origin o_i where the common normal to z_i and z_{i-1} intersects z_i . If z_i intersects z_{i-1} locate o_i at this intersection. If z_i and z_{i-1} are parallel, locate o_i in any convenient position along z_i .

Step 4: Establish x_i along the common normal between z_{i-1} and z_i through o_i , or in the direction normal to the $z_{i-1}-z_i$ plane if z_{i-1} and z_i intersect.

Step 5: Establish y_i to complete a right-handed frame.

Step 6: Establish the end-effector frame $o_n x_n y_n z_n$. Assuming the n^{th} joint is revolute, set $z_n = a$ parallel to z_{n-1} . Establish the origin o_n conveniently along z_n , preferably at the center of the gripper or at the tip of any tool that the manipulator may be carrying. Set $y_n = s$ in the direction of the gripper closure and set $x_n = n$ as $s \times a$. If the tool is not a simple gripper set x_n and y_n conveniently to form a right-handed frame.

2 | Fall 2013

ME 598, Lecture

Summary Algorithms for DH Parameters: Forward Kinematics

[Spong et. al., pages 110-111]

STEVENS

Step 7: Create a table of DH parameters a_i , d_i , α_i , θ_i .

- $a_i =$ distance along x_i from the intersection of the x_i and z_{i-1} axes to o_i .
- $d_i = \text{distance along } z_{i-1} \text{ from } o_{i-1} \text{ to the intersection of the } x_i \text{ and } z_{i-1} \text{ axes. If joint } i \text{ is prismatic, } d_i \text{ is variable.}$
- α_i = the angle from z_{i-1} to z_i measured about x_i .
- θ_i = the angle from x_{i-1} to x_i measured about z_{i-1} . If joint i is revolute, θ_i is variable.

Step 8: Form the homogeneous transformation matrices A_i by substituting the above parameters into Equation (3.10).

Step 9: Form $T_n^0 = A_1 \cdots A_n$. This then gives the position and orientation of the tool frame expressed in base coordinates.

Summary Algorithms for DH Parameters: Inverse Kinematics (Manipulators w/Spherical Wrists)

[Spong et. al., pages 110-111]

Step 1: Find q_1, q_2, q_3 such that the wrist center o_c has coordinates given by

$$o_c^0 = o - d_6 R \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
(3.79)

Step 2: Using the joint variables determined in Step 1, evaluate R_3^0 .

Step 3: Find a set of Euler angles corresponding to the rotation matrix

$$R_6^3 = (R_3^0)^{-1}R = (R_3^0)^TR$$
 (3.80)

In this chapter we demonstrated a geometric approach for Step 1. In particular, to solve for joint variable q_i , we project the manipulator (including the wrist center) onto the $x_{i-1} - y_{i-1}$ plane and use trigonometry to find q_i .

Announcements

- Homework #2
- Manipulator Lab 1

Typo in book for Law of Cosines in Appendix A. Should be:

$$c^2 = a^2 + b^2 - 2 a b \cos \theta$$

45 | Fall 2013

