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Review: Workspace

Adept S850 Workspace Review: Topics Covered

frame notation

2-d rotation matrix derivation

3-d rotation matrices

Workable space
defined by point P
h

composition of rotations

Euler angles

Roll, Pitch, Yaw angles

Axis/Angle representation

Workable space
defined by point P

Side Dimensions and Work Envelope
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Review: Rigid Motions Review: Homogeneous Transformations
a rigid motion couples pure translation with pure rotation

a homogeneous transform is a matrix representation of rigid motion,
defined as

R d
! H_{o 1]

where R is the 3x3 rotation matrix, and d is the 1x3 translation vector

g Sz dzf de
He | ™ S a d,
T, S, af .,

0 0 0 1

L]

the inverse of a homogeneous transform can be expressed as
«'L'Ox rigid motions can be expressed as

i RT -R'd
p’ = Rip' +dj Lo 1
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Review: Homogeneous Transformations Review: Homogeneous Transformations

rigid body transformations are accomplished by pre-multiplying by the
the homogeneous representation of a vector is formed by concatenating homogenous transform
the original vector with a unit scalar 0 0 ol
P’ =H' P
p=|"P
1
composition of multiple transforms is the same as for rotation matrices:
where P is the |x3 vector
post-multiply when successive rotations are relative to intermediate frames
Pz
P= | H) = H) H}
D2 - 1 2
1
pre-multiply when successive rotations are relative to the first fixed frame
H) = H H°
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Review: Homogeneous Transformations

Composition (intermediate frame)

R} d?HR% d%]_[Rg Rid; +dj

0 __ 170 t71 _
HH1H2[0 1 0 1 0 1

Inverse Transform
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Review: Homogeneous Transformations

» H that represents the following in order:
— Rotation by angle a about current x-axis
— Translation of b units along current x-axis
— Translation of d units along current z-axis
— Rotation by angle 6 about current z-axis

H= Rot,, Trans, ; Trans,4 Rot, o

Characterized by 6 numbers
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Forward Kinematics
Denavit-Hartenberg Parameters
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DH Parameters: Denavit-Hartenberg Convention

The Denavit=-Hartenberg convention defines four parameters and some rules to
help characterize arbitrary kinematic chains

start by attaching a frame to each link:

the joint variable for link i+ acts along/around Z;

the axis [I'; is perpendicular to, and intersects Z;__ 1

the following conventions make this process easier:

if Zj—1 is parallel to Z;

orient .I’;j along normal with Z; 1

if Zj 1 intersects Z;

orient .I; normal to the plane formed by Z; 1 and Z;

if Zj 1 is not coplanar with Z;

Denavit & Hartenberg, “A kinematic notation for lower-pair mechanisms based on matrices.” ASME Journal of Applied Mechanics. june 1955

orient .['; aleng normal with Z; 1
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DH Parameters: Denavit-Hartenberg Convention DH Parameters: Denavit-Hartenberg Transform
The Denavit-Hartenberg convention defines four parameters and some rules to The Denavit-Hartenberg transform results from successive rotations and
help characterize arbitrary kinematic chains translations via the four DH parameters
The transform from i-| to i:
a;
Link the distance perpendicular to Zj and Z; 1. measured along ['j Az — ROtz ,0; Transz,dl— ﬁansm,ai ROtz:,ai
Length
2% co, —S50,Ca;  50,5; QiCe,
Link the angle between Z; 1 and Z; . measured in the plane normal to (' . .
. ) ) . Sg, Cp,;Cay; Co,5a; 1359,
Twist (right-hand rule around :U'; ) = 0 d
Sa; Coy; i
d; Lo 0 0 .
Link the distance along Zj 1 from Oj 1] to the intersection with {';
Offset
t;
Joint the angle between ['; 1 and .I’;j, measured in the plane normal to Z; 1
Angle (right-hand rule around Z5—1)

Denavit & Hartenberg, “A kinematic notation for lower-pair mechanisms based on matrices.” ASME Journal of Applied Mechanics. jJune 1955
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DH Parameters: Example 1- Planar Elbow Manipulator DH Parameters: Example 1- Planar Elbow Manipulator
Link and Joint Labeling Scheme: =
# of joints =n Number joints from z to n Link the distance perpendicular to 2 and 21 . measured along L5
. i Length
#oflinks =n+1  Number links from oton N
When-/o’nt 05 aCtUated, link i moves = Link o ISﬁXed Link the angle between Z;__1 and Zj . measured in the plane normal to .’
Twist (right-hand rule around ;)
start by attaching a frame to each link: d;
Link the distance along 2 _ 1 from O _] to the intersection with L'j
the joint variable for link i+1 acts along/around Z; Offset
the axis .I'; is perpendicular to, and intersects Zj__ | 0 )
Joint the angle between [I’;__1 and I'j. measured in the plane normal to Z; 1
Angle (right-hand rule around Zj 1 )|
if Zj—1 is parallel to Z; orient [I'; along normal with Z; 1
Link|a; |a;|d;|6;
if Z;_1 intersects Z; orient [I'; normal to the plane formed by Z; 1 and Z; 1 a1 O O 91
2 132100 |6,
if Zj 1 is not coplanar with Z; orient .I'; along normal with Zj 1
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DH Parameters: Example 1- Planar Elbow Manipulator DH Parameters: Example 1- Planar Elbow Manipulator

Link | a; | o;

1 |a,|0/0]e,
2 |a,|0]0]6,

d.

H=T,=4(q)...-4,(q,)

A; = Rot, g, Trans; 4, Trans, ,, Rot, o,

co, —S0,Ca, 50, 5a; a;cg,
59, Ch,Ca; —Cp;Sa; A3Sp;

0 Sa; Ea d; T20 _
0 0 0 1

Components of the origin o, in
the base frame
- end-effector coordinates

a,c c, —S
1™ 2 2 X=a,C, +a,C,

a,s, Sy G Orientation of frame 0,x,y,2,

i y=a,5,+a,s
0 relative to the base frame o

Z=0

il

0
S = O O
oS = O O

IS

)

%}

o

17 | Fall2013 ME 598, Lecture 2

18 | Fall2013 ME 598, Lecture 2

DH Parameters: Example 2a- SCARA Manipulator DH Parameters: Example 2a- SCARA Manipulator

| if Zj—1 is parallel to Z; orient .’ along normal with 27 —1

start by attaching a frame to each link:
the joint variable for link i+1 acts along/around Z5 if Zj_1 intersects Z; orient .I’; normal to the plane formed by Z;_1 and Z;
the axis :&'; is perpendicular to,and intersects Z;_1 X2
if Zj 1 is not coplanar with Z; orient .l'; along normal with Z; 1 d3

s
the distance perpendicular to Z; and Z; 1, measured along 5 Li n k a a d e
Y2 %2 i i i i
. z,
Link 3 i *
A ) . ; P 1 a‘l 0 d 1 61
the angle between Z;__1 and Z; . measured in the plane normal to .U
i (right-hand rule around ' ) *
Y3 X3 2 82 1 80 0 62
the distance along Z; ] from O; ] to the intersection with :L'; 3 0 0 d *| 0
3
the angle between (';__1 and [I’j. measured in the plane normal to 2; 1
— right-hand rule around Zj—1
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DH Parameters: Example 2a- SCARA Manipulator

Link | a

1 |ay

zZ1
i di ei 4
d4 [e,* A CilJe,

2 |a,[180] 0 |B,* | @4’1 X4 a7

3 |0

JL\JJ Link2 %y

A; = Rot, g, Trans, 4, Trans, o, Rot, o,

d, ! a, Link3]%

B P
| o b o0 ]
[Matlab Symbolic Math Toolbox]
aq -5 0 ag c s, 0 ac, 1 0
4 = s, ¢ 0 as, 4, = s, —¢, 0 a,s, 4= 0 1
0 0 1 d, 0o o0 -1 0 0 0
0 0 0 1 0 0 O 1 0 0
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DH Parameters: Example 2a- SCARA Manipulator

zZ1

I
; a, @ 0o
| Y1 x,

Ly

a

JLﬂ Link 2 y%y X,

Link 3

z, d3

a,c +a,c,

T° — 4 4.4 n —Cr 0 as tays,
e 0 -1 d—d,
0 0 0 1

22 | Fall2013

Y3 ‘I_ X

ME 598, Lecture 2

DH Parameters: Example 2b- SCARA Manipulator

7
A

i aj @92

@41 X1 ‘3ﬂ

. JLFQ Link2 LAl dxz
n 0, 4
Yold, a, Link3 |72 g
i
j1 X X3
WA Ya» | Link 4 ds
N =
Link O / : X4
Y4
= e,
Link the distance perpendicular to Z; and Zj— 1 , measured along L'; 7
Length Z3: 24
(a7} .
Link the angle between Z; 1 and Z; , measured in the plane normal to .l’; Link a; ;i di ei
Twist (right-hand rule around .; ) 1 a1 0 d1 91 *
d;
I_i:k the distance along Zj_ 1 from O; 1 to the intersection with '3 2 a, 180 | O 92*
Offset 3 0 d3* 0
0;
Joint the angle between l';_ 1 and .17j, measured in the plane normal to Z; 1 4 0 d, | 6,4

Angle

dﬁ | STEVENS

(right-hand rule around % —1)
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DH Parameters: Example 2b- SCARA Manipulator

1
4

E a] Q)HQ

SV N TN Yar

Ai = Rot, g, Trans; g, Trans, o, Roty o,

o, —56,Cay 56,5,  @iCh,
S0,  Co.Cai €050, @iSe,

B
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i : J Link2 %y X,
d, a, Link3 1% ds
Ys* T Link 4 d,
Link 0 y F X4
4
0 0 \)64
T, =A4A4,4,4,=T; 4, z;, 2,
¢, S, 0 ac+axc,||c, =s, 0 0 -
Si2 ¢, 0 as +a,s, 1% G 0
0 -1 d, —d, 0 0 1 d,
0 0 1 0O 0 0 1
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DH Parameters: Example 2b- SCARA Manipulator

g4l
)

E a] @62 )
i ( jj( Y1 x, Jaﬂ
J'2L : J Link 2 Yo

d, | a, Link 3

—

Y3

Ya

23,24

CpCy 88, —Cpsytspe, 00 ac +ac,

70— S15C =CipSy  —SpSy =0y 0 as +a,sy,
! 0 0 -1 d,—d,—d,
0 0 0 1
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DH Parameters: Example 3- Spherical Wrist

| <
T RN
P W<
Hand X3
Rotate| 1

Three revolute joints intersecting
at a common point
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DH Parameters: Example 3- Spherical Wrist

Z3,X5 5
Link [ a; | a; | d; | 6 *\395 96
4 [0|-90] 0 |6, x4<__’\>7 @ N
s [o[m oo, 75U cripper
6 (0] 0 [d |6 Z4 dq
TP = A, A.A, 4,
& u
1o 1
[C,CsCo —S4Sg  —CyCsCo —S5,Cs  CiSs  CuSsd,
7= §4C5Ce +C,Sg  —8,Cs8s +C,Co S4S5  S,85d
—85C §5Cs Cs csdg
i 0 0 0 1
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Euler Angles to Rotation Matrices

R=R.sRyo R.y
CHpCHCyy — SpSeyp  —CpCaSyy — SpCy  CpSe

= | S4C0Cy + CpSy  —S8pCoSy + ChCy SS9
*SQC@[, SgSw Co

B,, 6, and B¢ are the Euler angles ®, 8, and y with respect to the
coordinate frame 0,x,y,z, = will help with Inverse Kinematics
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DH Parameters: Euler Angles from Spherical Wrist Egs

To find a solution for this problem we break it down into two cases. First,
suppose that not both of 113, ray are zero. Then from Equation (2.26) we
deduce that sy # 0, and hence that not both of 731, 132 are zero. If not both
rig and ro3 are zero, then ryg # 41, and we have cp = rgy, 59 = /1 — 13y
S0

CHCHCyy — S¢Sy —ChpCPSyy — S¢Cyp  ChpSe 1

S$COCY + CoSy  —S$CoSY + CoCy  SpS 0 = Atan2 (I‘:;;;. il = 1'33) (2.28)

—S9Cq)y S0 Sy co
—

&

[Spong et. al., pages 55-56] 5

*i] STEVENS

or

0 = Atan2 (7';;3. = 7'§3> (2.29)

where the function Atan2 is the two-argument arctangent function de-

fined in Appendix A.
If we choose the value for 0 given by Equation (2.28), then sg > 0. and

¢ = Atan2(ryz.ra3) (2.30)
Atan2(—ryy.132) (2.31)

U
If we choose the value for @ given by Equation (2.29), then sy < 0. and

Atan2(—ryz, —rag) (2.32)
Atan2(rsy, —rs2) (2.33)

=
|

DH Parameters: Euler Angles from Spherical Wrist Eqgs
16113 = 193 = 0. then the fact that R is orthogonal implies that g3 = +1,
and that 73 = ryo = 0. Thus, R has the form

rmoriz 0
ia— o1 ron 0 (2.34)
0 (0)F el

If 733 = 1, then ¢y = 1 and sy = 0. so that @ = 0. In this case, Equation
(2.26) becomes

CoCyp — S¢Sy —CaSy — SpCyy 0 Coty —Spty 0
S¢Cp + CpSy  —SaSy +cacy 0 = Sp4p Cory O
0 0 1 0 0 1
Thus. the sum ¢ + ¢» can be determined as

¢+t = Atan2(ryy, ro1) = Atan2(ryy. —ri2) (2.35)

Thus, there are two solutions depending on the sign chosen for 0.

| Fall2013 ME 598, Lecture 2

Since only the sum ¢+ 1 can be determined in this case, there are infinitely

many solutions. In this case, we may take ¢ = 0 by convention. If rz3 = —1.
then ¢y = —1 and sp = 0, so that 0 = 7. In this case Equation (2.26)
becomes

=Cop-ip —Sp=i 0 ryore 0
B, Col—al 0 = To) T92 0 (2.36)
0 0r —1 0 0 -1

The solution is thus

[Spong et. al., pages 55-56]

o—¢ = Atan2(—rp, —ri2) (2.37)

As before there are infinitely many solutions.

Inverse Kinematics
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Inverse Kinematics

» Given end-effector position and orientation,
compute corresponding joint variables

Algebraic Decomposition

Geometric Analysis
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Inverse Kinematics: Algebraic Decomposition Inverse Kinematics: Algebraic Decomposition
given the forward transform matrix for a manipulator Link [ d; [ai | o [ 6
T [o0|o0]|—90]6]
0 0 2 |dy| 0| +90 |63
o | Ba@]s.s [di(@]s,, ANk
T = 4 [0|o|-9%]6
(2 [0} 1 5 | 0|0+ 62
1x3 6 |ds|0| 0 |6
solve the system of 3 equations from the displacement vector - T9 is then given as
o 0 ™ T2 T de
N CHCUR % e | TR
. 0 0 0 1
dy - [dn (q)] 2 A 13 in which
d _ dO i1 = cifca(cacscs — 8456) — 8285¢6) — d2(s4C506 + CaS6)
= [ " (q)] 3 s 1 = sifea(cacscs — sase) — s285c6] + c1(sacscs + case)
to find the joint variables in terms of the end-effector position & a1 = —83(cacsCs — 8486) — Cas5Ce
ri2 = ci[—cp(cacsse + sacs) + 528586] — s1(—s4c556 + cace)
q1 (da: 5 dy 5 dz ) r2 = —si[—ca(cacsse + 84cg) + s29586] + c1(—sacs6 + cace
r32 = 82(cacs86 + Sac6) + 25556
q2 (da:: dy ) dz ) 1 ri3 = ci(cacass + sacs) — 515485
q= T3 = si(cacsss + s205) + 18485
g * . # Tss = —s3caS5+CaCs
d d d ! d; = c182d3 — s1dz + +dg(crcacass + c1¢582 — 515485)
dy = s182d3 + c1dp + de(c15485 + 248185 + €55152)
qn( Ty MYy, Yz ) = cads + dg(cacs — Ca5285)
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Inverse Kinematics: Algebraic Decomposition Inverse Kinematics: Geometric Analysis

Link

—90 | 6}
* . . e = .

+90 | 63 For most simple manipulators, it is often easier to use geometry

~90 | 0 to solve for closed-form solutions to the inverse kinematics

+90 | 62

§ ook s o
cococooolf
o
o

ok W

E le 3.7

Recall the f ipul of E: le 3.5. Suppose that the desired
position and orientation of the final frame are given by
" 010 -0154

00 1 0763 i - : o ) ) )

j= H= 1100 0 (3.20) solve for each joint variable (J; by projecting the manipulator onto the X'; 4. 1/; 1 plane
looo 1
To find the corresponding joint variables 61, 85, dg, 04, 05, and 86 we must
solve the followi: imaul set of li tri tric ti

Solve:

12 non-linear, trigonometric

. . c1[ca(cacscs — s436) — s285¢6] — 51(84¢5C6 + Casg) 0
equations with 6 unknowns ~
s1[ca(cacscs — s486) — s285¢6] + c1(sacsce +casg) = 0
. i | —s2(cacscs — 8456) — Cas5c6 = 1
inreal-time! c1[—ca(cacss + s4g) + 528536] — 81(—s4cs86 + cace) = 1
6: l s1(—ca(cacsse + sace) + s28586] + c1(—sacs86 + cacs) = 0
s2(cacsse + sacs) + cassss = 0
c1(cocass + sacs) — s18485 = 0 : . . . -
_ closed-form inverse kinematic solutions are not always possible,
s1(cacass + s2¢5) +c18485 = 1 e . %
sy Figey = 0 and if it is solvable, there are often multiple solutions
c152d3 — s1dg + dg(c1c2c485 + €10582 — s18485) = —0.154

s1852d3 + c1da + dg(c15455 + caca8185 + c58182) = 0.763

cad3 + dg(cacs — ca5285)

ME 598, Lecture 2
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Inverse Kinematics: Kinematic Decoupling Inv. Kin. : Example P3.10- PUMA 360 Manipulator
i i Forward Kinematics
Inverse kinematics = |4
inverse position kinematics +
inverse orientation kinematics

shoulder Rotation 310°

Two sub problems:

e Find position of the intersection of the wrist axes (o.)

Vs

¢ Find orientation of the wrist
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Inv. Kin. : Example P3.15-

Inv. Kin. : Example P3.13- Cylindrical Manipulator Cylindrical Manipulator + Spherical Wrist

Inverse Kinematics

Given:d=[d,d, d]7 Zy
xt Pyt Uz 1 d Q_)95 d6
Find: 6,, d,, and d, as functions of d,, d,, d, 1 ds I i [ N ﬁ_/x X N I 20 7o 7
B jQ4 ’ — 31 45 46
% L REYp (L =W o =
da2| 4 X3 Y3 "o,
X ﬁ_, Y1
Link | a; | o d; 6
Xy 1 0 0,"
! % 4, T
9 | d* | 0

X
<
o
[o) XN IS, I I SN NGV BN \N ]
o|lo|lOo|O|O| O
©
OO
-
old
w
"
2o
*

solve for each joint variable (J; by projecting the manipulator onto the X'; 1. 1/; 1 plane
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Summary Algorithms for DH Parameters:
Forward Kinematics

[Spong et. al., pages 110-111]

Step 1: Locate and label the joint axes z, ..., zp—1.

Step 2: Establish the base frame. Set the origin anywhere on the zg-axis.
The g and yp axes are chosen conveniently to form a right-handed
frame.

For i=1,...,n—1 perform Steps 3 to 5.

Summary Algorithms for
. Step 3: Locate the origin o; where the common normal to 2; and 2;_; in-
DenaV|t' H d rte n be rg Pa ram ete rs tersects z;. If 2; intersects 2;_; locate o; at this intersection. If z; and

zi—1 are parallel, locate o; in any convenient position along z;.

Step 4: Establish z; along the common normal between z;_; and 2; through
0;, or in the direction normal to the z;_; — z; plane if z;_; and z;
intersect.

Step 5: Establish y; to complete a right-handed frame.

Step 6: Establish the end-effector frame 0,2,yn2,. Assuming the n* joint
is revolute, set z, = a parallel to z,_;. Establish the origin o, conve-
niently along z,, preferably at the center of the gripper or at the tip
of any tool that the manipulator may be carrying. Set y, = s in the
direction of the gripper closure and set z, = n as s x a. If the tool is
not a simple gripper set z,, and y, conveniently to form a right-handed
frame.
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Summary Algorithms for DH Parameters: Summary Algorithms for DH Parameters:
Forward Kinematics Inverse Kinematics (Manipulators w/Spherical Wrists)

[Spong et. al., pages 110-111] [Spong et. al., pages 110-111]

Step 7: Create a table of DH parameters a;, d;, a;, ;.
P R e Step 1: Find ¢y, ¢2,¢3 such that the wrist center o, has coordinates given

a; = distance along z; from the intersection of the z; and z;,_; axes to by
o;. i

d; = distance along z;—; from o;_; to the intersection of the z; and uff = o—dgR | 0 (3.79)
z;—1 axes. If joint ¢ is prismatic, d; is variable. 1

a; = the angle from z;_; to z; measured about x;.
Step 2: Using the joint variables determined in Step 1. evaluate Y.

eSS

= the angle from ;) to w; measured about z,_y. If joint i is
revolute, 0; is variable. Step 3: Find a set of Euler angles corresponding to the rotation matrix

3 . : - 3 - NS 2

Step 8: Form the homogencous transformation matrices A; by substituting Rf = (R)'R= (lf:‘)l R (3.80)
the above parameters into Equation (3.10).
In this chapter we demonstrated a geometric approach for Step 1. In

Step 9: Form 7)) = A, -+ A,. This then gives the position and orientation s S : . i .
it Fthio t l’i' ) e i = Finat ! = & particular, to solve for joint. variable ¢;. we project the manipnlator (includ-

of the tool frame expressed in base coordinates. i A N :
L ing the wrist center) onto the ;- — yi—y plane and use trigonometry to find

Qi
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Announcements

Homework #2
Manipulator Lab 1

Typo in book for Law of Cosines in Appendix A. Should be:

c2=a%>+b?>-2abcosB

45 | Fall2013

ME 598, Lecture 2




