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Localization, Path Planning, & Navigation:
Localization- Where am I?
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Localization, Path Planning, & Navigation:
Localization- Challenges

= Knowing the absolute position (e.g. GPS) is not sufficient
= L ocalization in human-scale in relation with environment
= Planning in the Cognition step requires more than only position as input

= Perception and motion plays an important role
= Sensor noise
= Sensor aliasing
= Effector noise
= Odometric position estimation

©R. Siegwart, ETH Zurich - ASL
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Localization, Path Planning, & Navigation:
Sensor Noise

= Sensor noise is mainly influenced by environment
e.g. surface, illumination ...

= or by the measurement principle itself
e.g. interference between ultrasonic sensors

= Sensor noise drastically reduces the useful information of sensor readings.
The solution is:

= to take multiple readings into account
= employ temporal and/or multi-sensor fusion

©R. Siegwart, ETH Zurich - ASL
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Localization, Path Planning, & Navigation:
Sensor Aliasing

= |n robots, non-uniqueness of sensors readings is the norm

= Even with multiple sensors, there is a many-to-one mapping from
environmental states to robot’s perceptual inputs

= Therefore the amount of information perceived by the sensors is generally
insufficient to identify the robot’s position from a single reading
= Robot’s localization is usually based on a series of readings
= Sufficient information is recovered by the robot over time

© R. Siegwart, ETH Zurich - ASL
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Localization, Path Planning, & Navigation:
Effector Noise- Odometry, Deduced Reckoning

= Odometry and dead reckoning:
Position update is based on proprioceptive sensors

= Odometry: wheel sensors only
= Dead reckoning: also heading sensors

= The movement of the robot, sensed with wheel encoders and/or heading
sensors is integrated to the position.
= Pros: Straight forward, easy
= Cons: Errors are integrated -> unbound

= Using additional heading sensors (e.g. gyroscope) might help to reduce
the cumulated errors, but the main problems remain the same.

©R. Siegwart, ETH Zurich - ASL
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Localization, Path Planning, & Navigation:
Odometry- Error Sources

deterministic h non-deterministic

(systematic) (non-systematic)

= deterministic errors can be eliminated by proper calibration of the system.

= non-deterministic errors have to be described by error models and will always lead to
uncertain position estimate.

= Major Error Sources:
= Limited resolution during integration (time increments, measurement resolution)
= Misalignment of the wheels (deterministic)
= Unequal wheel diameter (deterministic)
= Variation in the contact point of the wheel
= Unequal floor contact (slipping, not planar ...)

© R. Siegwart, ETH Zurich - ASL
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Localization, Path Planning, & Navigation:
Odometry- Classification of Integration Errors

= Range error: integrated path length (distance) of the robots movement
= sum of the wheel movements

= Turn error; similar to range error, but for turns
= difference of the wheel motions

= Drift error: difference in the error of the wheels leads to an error in the
robots angular orientation

= Over long periods of time, turn and drift errors far outweigh range
errors!
= Consider moving forward on a straight line along the x axis. The error in the y-
position introduced by a move of d meters will have a component of dsinDq,
which can be quite large as the angular error Dq grows.

©R. Siegwart, ETH Zurich - ASL
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Localization, Path Planning, & Navigation:
Odometry- Differential Drive Robot

* Kinematics s x Av
p=|y PEpH Ay
V) 0 A6
Ax = Ascos(60+A672) 0
. (1)
Av = Assin(6+A672) " .
) ) As, ; As, = travled distances for right and left wheel
AD = As "—A‘S/ b =distance between two wheels on robot
b
s, +As [ |
As = A—s’ As, As, + As, . As,—As;
: o0+ =5
X
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0
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Localization, Path Planning, & Navigation:
Odometry- Differential Drive Robot
Error model
— Assumptions:

* Errors of individual wheels are independent
* Variance of wheel errors are proportional to absolute value of traveled distance

LA 0 (Sections 4.2 and 5.2.4)
Z, = covar(As,, As) = l:’l ] J

0 kjas

Known initial
conditions

T T
S = Vol %, V4V, fE0V, f

op o] [10-ssino+a0/2)
Fy =V, =V, = | L LI = o} ascos(o+a6/2)
0x dy 00 00 :
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Localization, Path Planning, & Navigation:
Odometry- Growth of Pose Uncertainty

Movement on a Circle
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» Errors perpendicular to the direction of movement grow much more quickly

« Error ellipses do not remain perpendicular to the direction of movement ——
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Localization, Path Planning, & Navigation:
Odometry- Calibration of Errors

* Unidirectional square path experiment
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Localization, Path Planning, & Navigation:
Odometry- Calibration of Errors

* Bi-directional square path experiment

Reference Wall

e

pers

\ Curved instead of strai ,qht path ]
. (due to unequal wheel diameters).
\ In the example here, this causes
: a & origntation error.
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1
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Localization, Path Planning, & Navigation:
Odometry- Calibration of Errors
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Localization, Path Planning, & Navigation:
To Localize or Not?
= How to navigate between A and B

= navigation without hitting obstacles
= detection of goal location ﬂ
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Localization, Path Planning, & Navigation: Localization, Path Planning, & Navigation:
Behavior (Sensor) Based Navigation Model (Map) Based Navigation

* Procedural solution to navigation problem * Robot explicitly attempts to localize by collecting sensor data

— Simple and Quick implementation (+) and updates belief about position wrt a map

— Doesn’t translate/scale well to other environments (-) — Requires more upfront effort (-)

— Underlying procedures can be complicated (-) — Architecture can be leveraged to map and navigate a variety of

— Running multiple behaviors at once requires fine tuning (-) environments (+)

—>| communicate data
—>| discover new area
—>| detect goal position
—>| avoid obstacles

—>| follow right / left wall

— Behavior only as good as map (-)

perception |

L]

| localization / map-building |

serar) i

| cognition / planning |

coordination / fusion ©R. Siegwart, ETH Zurich - ASL -
e.g. fusion via vector summation . | motion control l—
©R. Siegwart, ETH Zurich - ASL -
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Localization, Path Planning, & Navigation:

o oee Localization, Path Planning, & Navigation:
Probabilistic, Map-Based Localization

Positioning Beacon Systems- Triangulation

= Consider a mobile robot moving in a known environment. . .
* Robot knows positions of beacons in global reference frame

= As it start to move, say from a precisely known location, it might keep track * Localizes own position in frame through triangulation, i.e.

of its location using odometry. geometry
= However, after a certain movement the robot will get very uncertain about
its position. O &
= update using an observation of its environment. ~
£y

= observation leads also to an estimate of the robots position which can than collection of robots
be fused with the odometric estimation to get the best possible update of with ultrasonic receivers

the robots actual position. . ‘ H
e

ultrasonic
beacons

Lo |

© R. Siegwart, ETH Zurich - ASL © R. Siegwart, ETH Zurich - ASL
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Localization, Path Planning, & Navigation:
Positioning Beacon Systems- Triangulation

Industrial setting example:
— Beacons are retroreflective markers that reflect energy back to robot
— Known positions for optical retroreflectors

— Need 3 beacons in sight to determine position
— High reliability
— Costly setup, only works in that particular environment

[————]
©R. Siegwart, ETH Zurich - ASL
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Localization, Path Planning, & Navigation:
SLAM: Simultaneous Localization and Mapping

* Goal:
— Start robot from an arbitrary initial point

— Autonomous exploration of environment with on-board
sensors

— Acquire knowledge about environment
— Interpret the scene and build an appropriate map
— Localize itself relative to this map
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Localization, Path Planning, & Navigation:
Competencies for Navigation

= Cognition / Reasoning :
= s the ability to decide what actions are required to achieve a certain goal in
a given situation (belief state).
= decisions ranging from what path to take to what information on the
environment to use.
= Today’s industrial robots can operate without any cognition (reasoning)
because their environment is static and very structured.
= In mobile robotics, cognition and reasoning is primarily of geometric
nature, such as picking safe path or determining where to go next.

= already been largely explored in literature for cases in which complete
information about the current situation and the environment exists (e.g. sales
man problem).

©R. Siegwart, ETH Zurich - ASL
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Localization, Path Planning, & Navigation:
Competencies for Navigation

= However, in mobile robotics the knowledge of about the environment and
situation is usually only partially known and is uncertain.
= makes the task much more difficult

= requires multiple tasks running in parallel, some for planning (global), some to
guarantee “survival of the robot”.

= Robot control can usually be decomposed in various behaviors or
functions

= e.g. wall following, localization, path generation or obstacle avoidance.
= In chapter6 we are concerned with path planning and navigation

R. Siegwart, ETH Zurich - ASL
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| oy STEVEN:

= The problem: find a path in the physical space from the initial position to the
goal position avoiding all collisions with the obstacles

= We can generally distinguish between
= (global) path planning and
= (local) obstacle avoidance.

Localization, Path Planning, & Navigation:
Path Planning

©R. Siegwart, ETH Zurich - ASL
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Localization, Path Planning, & Navigation:
Global Path Planning

= Assumption: there exists a good enough map of the environment for
navigation.
= Topological or metric or a mixture between both.

= First step:
= Representation of the environment by a road-map (graph), cells or a potential
field. The resulting discrete locations or cells allow then to use standard
planning algorithms.

= Examples that we will see:
= Visibility Graph
= Voronoi Diagram
= Cell Decomposition -> Connectivity Graph
= Potential Field

©R. Siegwart, ETH Zurich - ASL
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= State or configuration g can be described with k values g;
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Localization, Path Planning, & Navigation:
Path Planning- Configuration Space

Start
2
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6
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),
Configura[t)ion Space:
the dimension of this
space is equal to the Degrees of Freedom (DoF)
of the robot

Work Spaﬂée

©R. Siegwart, ETH Zurich - ASL
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Localization, Path Planning, & Navigation:
Configuration Space- Mobile Robot

= Mobile robots operating on a flat ground have 3 DoF: (x, y, 8)

* For simplification, mobile roboticists assume that the robot is a point. In
this way the configuration space is reduced to 2D (x,y)

* Because we have reduced each robot to a point, we have to inflate each
obstacle by the size of the robot radius to compensate.

©R. Siegwart, ETH Zurich - ASL
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Localization, Path Planning, & Na
Path Planning Overview

vigation:

1. Road Map, Graph construction

= Discriminate
cells

\\
)

= |dentify a set of routes within the free space 2. Cell decomposition

between free and occupied

[~
‘W

l

!

|
__?g__

O

= Where to put the nodes?

= Topology-based: = Topology- and

= Metric-based: 3. Potential Field

= where features disappear or get visible
space

©R. Siegwart, ETH Zurich - ASL

= Where to put the cell boundaries?

« at distinctive locations = where features disappear or get visible

= |Imposing a mathematical function over the

metric-based:
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Localization, Path Planning, & Navigation:
Potential Field Path Planning

= Robot is treated as a point under the

Dase
| influence of an artificial potential field.
‘ = Generated robot movement is similar to
ball rolling down the hill

= Goal generates attractive force
= Obstacle are repulsive forces

R. Siegwart, ETH Zurich - ASL
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Localization, Path Planning, & Navigation:

Road-Map Path Planning- Visibili

ty Graph

Nodes of graph:

— initial and goal positions
— vertices of obstacles
Road map:

— All nodes visible from each other
connected by straight-line segments
to define map

= Pros
= Implementation simple when obstacles are polygons

= Cons
= Number of edges and nodes increases with the number

robot’s radius

= |t is easy to find the shortest path from the start to the goal positions

= Thus it can be inefficient in densely populated environments

= The solution path found by the visibility graph tend to take the robot asclose as
possible to obstacles: the common solution is to grow obstacles by more than

of polygons

© R. Siegwart, ETH Zurich - ASL
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©R. Siegwart, ETH Zurich - ASL

Localization, Path Planning, & Navigation:
Road-Map Path Planning- Voronoi Diagram

Lines constructed from points that are equidistant | Nt
from two or more obstacles

Maximizes distance between robot and obstacles
Initial and goal states mapped to diagram by
drawing line to edge along which its distance to
the boundary of the obstacle increases the fastest

Direction of movement selected so the distance to
the boundaries increases fastest

Easy to execute: maximize sensor readings
Works for map-building: move on Voronoi edges

8 goal

= Pros
= Using range sensors like laser or sonar, a robot can navigate along the Voronoi
diagram using simple control rules

= Cons
= Because the Voronoi diagram tends to keep the robot as far as possible from
obstacles, any short range sensor will be in danger of failing

= Peculiarities
= when obstacles are polygons, the Voronoi map consists of straight and
parabolic segments

==
32 | Fall2013
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Localization, Path Planning, & Navigation: Localization, Path Planning, & Navigation:

Road-Map Path Planning- Cell Decomposition Exact Cell Decomposition
= Divide space into simple, connected regions called cells ©R. Siegwart, ETH Zurich - ASL
* Boundary of cells based on critical
. g)l?atglzmine which open sells are adjacent and construct a connectivity geometry

¢ Cells are either completely free or

Find cells in which the initial and goal configuration (state) lie and search completely occupied
for a path in the connectivity graph to join them.

¢ Robot position in free cell does not

From the sequence of cells found with an appropriate search|a|gorithm, matter

th withi h cell. -
compiieaipamiiseachicel. ) * Robot ability to traverse from free cell

= e.g. passing through the midpoints of cell boundaries or by sequence .
of wall following movements. to adjacent free cell matters

w e # of cells and planning computation
= Possible cell decompqg|t|ons: efficiency depends on density and
= Exact cell decomposition " complexity of obstacles in

= Approximate cell decomposition:
« Fixed cell decomposition
+ Adaptive cell decomposition

s environment (-)

Connectivity Graph

o || * Inlarge sparse environments, very

) ) «"‘ . small # of cells and efficient (+)
©R. Siegwart, ETH Zurich - ASL Q@ 0} @ @}
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Localization, Path Planning, & Navigation: Localization, Path Planning, & Navigation:
Approximate Cell Decomposition- Grids Adaptive Cell Decomposition

i ETH Zurich -
SR, Siegwart, ETH Zurich _ASL

* Fixed grid-sized decomposition * Free space externally bounded by
rectangle and internally bounded by ©R. Sieguart, ETH Zurich - ASL

3 polygons At

¢ Cell size not dependant on
particular objects in environment

* Recursively decompose rectangle
into 4 smaller rectangles

¢ Cellis either free or obstacle-filled

* Low computational complexity for
path planning (+)

e At each resolution, only cells whose [
interiors lie entirely in free space are
used to construct connectivity graph

* Fundamental cost is memory

— Even sparse environment must be
represented in its entirety (-)

¢ Adapts to complexity of
environment

© goal

* Narrow passageways can be lost (-)
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Localization, Path Planning, & Navigation:
Path/Graph Search Strategies

Wavefront Expansion
Breadth-First Search
Depth-First Search
A*

37 | Fall2013
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Localization, Path Planning, & Navigation:
Path/Graph Search Strategies

* Wavefront Expansion
(grassfire)

— Starting from goal position,
mark each cell its distance to the
to the goal cell

obstacle cell

— Continue until start position is

=

reached .
12 | cell with
* Estimate of robots distance to goal 4 distance value
— Planner:

* Links together cells that are
adjacent and always closer to the
goal =path

©R. Siegwart, ETH Zurich - ASL

38 | Fall2013 ME 598, Lecture 10

Localization, Path Planning, & Navigation:
Depth-First Search vs. Breadth-First Search

Depth-first search Breath-first search

1 1
[ ]

SN N

AN AN AT AN
\ \

9% 106
[One branch at a time] [All branches at same time]

[Choset et al.]

Numbers on each node reflect the order in which nodes are
expanded in the search
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Localization, Path Planning, & Navigation:
Depth-First Search (Choset el
A AN AN AN AN AN
7 sl S 1 7
(‘,/!{ G/!'l G/]I-I
/] /]
|
AN A AN, AN A A A
s o SINCS TN SN TN
L A A AN A NP A KNP A N
“E LT ay e AL ANATANAT A
Il 0 [ T (1 (T it
AN,
SN B
/1 N
AL
Pritt Acintal :
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Localization, Path PIa.nnlng, & Navigation: Localization, Path Planning, & Navigation:
A A ABreadth-Flrst SAearch A A (Chosetetal] Search Algorithms
1 N <IN <IN, TN TN, 7N
7 L LN E/G/;rl e E/G/i \,'G\. E/G/ifl \f\‘ » Depth-first: fastest solution to find a path
7! * Breadth-first: shortest path to start node in terms of link lengths
*  Wavefront: shortest path with respect to Manhattan distance (graph with
i 7N o i edge lengths = 1)
e y ./ /:r \IG\I 7 /:F \f\ /% \i\ * Shortest-path length may not always be the only metric want to optimize
v AT ANAT AAT A — Energy, time, traversability, safety, etc.
| [ | [ |
N i . Min.imiz.e the' # c.>f nodes to be visited to locate the goal node subject to path
al oo o oo B optimality criteria
D/I'G/ c/j; i D/,'G/i: /i i - — Optimality: measures path
[ AR | [ A : A=initial — Efficiency: measures the search (# of nodes visited to determine path)
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Localization, Path Planning, & Navigation: Localization, Path Planning, & Navigation:
Search Algorithms A* Algorithm

* Searches a graph efficiently with respect to a chosen heuristic

+ Define a heuristic: an expected but not necessarily actual, — "“Good” heuristic, efficient search
cost to the goal node — “Bad” heuristic, path will be found, inefficient search, suboptimal path
— “Optimistic” heuristic will return an optimal path

* Example: o
. * Heuristic always returns a value less than or equal to the cost of the
— Search may choose explore next node that has shortest Euclidean shortest path from the current node to the goal node

distance to goal bc/ node has highest possibility (based on local info)
of getting closest to goal

— No guarantee that node will lead to (globally) shortest path in the
graph to goal

— Good guess, based on information that is available

[Choset et al.]

ME 598, Lecture 10
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Localization, Path Planning, & Navigation:
A* Search Example

[Choset et al.]

* Nodes: A~ |
¢ Heuristic values inside node icon

* Edge costs represented by #'s
adjacent to edges

* Start node =0 (highest priority)

B{3) r’ H{3) |~# No expansion
ni4) A B(3) [ GOAL(S)
Ci4) cid) T = Ed) B GOAL)
115 D(5) L(5}
G{7) I(5) Ji5)
F{7)
G(7)
ﬁ] STEVENS - | FaIIZ(Jl . ME 598, Lecture 10

Localization, Path Planning, & Navigation:
A* Algorithm

[Choset et al.]

Input: A graph
Output: A path between start and goal nodes

1: repeat

2:  Pick npest from O such that f(npest) < f(n),¥n € O.

3:  Remove nges from O and add to C.

4 If nyegt = qgoar, EXIT.

5. Expand npeg: for all z € Star(npes) that are not in C.

6: if x ¢ O then

7 add z to O.

8:  else if g(npest) + c(Npest, ) < g(x) then

9: update z’s backpointer to point to npest

10:  end if

11: until O is empty

* O =open set: priority queue

* C=closed set: all processed nodes

o Star(n) represents the set of nodes which are adjacent to n.

o ¢(nq,ny) is the length of edge connecting ny and ny.

e g(n) is the total length of a backpointer path from n to gsare-

o h(n) is the heuristic cost function, which returns the estimated cost of
shortest path from n to ggoat-

e f(n) = g(n)+ h(n) is the estimated cost of shortest path from gstar¢ to
Ggoal Via n.

.......... ’ | Fall2013 ME 598, Lecture 10

Localization, Path Planning, & Navigation:
A* Special Cases

* Greedy Search: f(n) = h(n)
— Search is only considering what it “believes” is the best

Localization, Path Planning, & Navigation:
A* on a Grid

* Heuristic values (h) are set
* Backpointers (b) and priorities (f) are not

path to the goal from the current node
* Dijkstra’s Algorithm: f(n) = g(n)
— Planner is not using any heuristic information
— It grows a path that is shortest from the start until it

encounters the goal

S| STEVENS

| Fall 2013
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[Choset et al.]

S| STEVENS

gy e

[8 point connectivity]

| Fall 2013

s TR B e HeL{rlstlc: .
6| f= ol KA o T Horizontal/Vertical Step: length =1

b=0 b | b=0 | be0 |%80R ; I

64 heod | Be2A | Bed | B Diagonal Step: length = 1.4 = optimistic(<+2)
i L A A B Edge (step) Cost:

b=() b=) [b=0 | b=0 b=() .

he68 neas |ne2s | he24 | h2 | Step from free space to obstacle pixel = 1000
*| & bo | b0 | oo | beo | Step from free space to free space =1

h=72 h=42 [ h=38 | h=34 h=3
3| f= f= f= f= f=

b=0 b= [b=0 | b=0 | be 9 2, [ | et

he76 | h=66 | h=56 he48 | h=id | h=4 I c(x1x9)=1.4
2| f= f= f= f= f= f=

8 I 7]xa (x1,x8)=10000,if x8 is in

be0 | b=) | b=0 b= | b=0 | b= O X2 xE, .

h=80 | h=70 | h=66 | h=62 | h=58 | h=54 | h=5 | obstacle,x1 s a freecell
L8 A oo L I L L= x7 "Gl (x1,x9)=10000.4, if x9 is i

b = = = - c(x1,x9)= .4, isin

/¢ b-:) v?‘ L 3 b-‘o b g L 2 b70 obstacle, x1 is a freecell
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Localization, Path Planning, & Navigation: Localization, Patr PIannln%, & Navigation:
A* on a Grid ATonaGri
* Expand the start node, update priority queue, set backpointers:
 Start node is put on the priority queue, with f = h: h=6 h=s | h=2 | h=1 | h=0 | B crosereras
f= f= f= f= f= 3,1 | 7.6 |
_ b=() b=() | b=0 | b=0 | b=0 EED
o I e h=64 h=34 | h=24 | h=14 | h=l st | ¢
b=0 | b=0 | b=0 f= = f= f= f=
h=24 | h=14 | h=1 b=() b=() b=() b=() b=()
e - h=638 h=38 | h=28 | h=24 | h=2
b=() b=() b=()
h=28 | h=24 [ h=2 f= f= = f= f=
f f = f= b=() b=() b=() b=() b=()
b=0 b=0 b=0 h=72 h=42 | h=38 | h=34 h=3
h=38 h_—?l h=3 f= f= - f= f=
b | b0 | be0 b=0 b=) | b=) | b=0 | b=0
h=48 [ h=44 | h=4 h=48 | h=44 h =4
f f= f=
b=0 | b= | b=o i ol 5
h=58 | h=54 | h=5 b=() b=() b=()
¢ £ b h=58 | h=54 h=5 | |
[Choset et al.] b=0 b=0 b=0 = f= f=
b=() b=() b=()
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Localization, Path Planning, & Navigation: Localization, Path Planning, & Navigation:
A* on a Grid A* on a Grid
* Expand cell with highest priority next (lowest f) _ _

- = T o s ez S » Continue until goal state gets expanded
= = f= * Since priority value of goal cell is lower than the priorities of all
;;)4 hb;?‘l E;(i other cells in queue, the path is optimal, and A* terminates
= = £= * Trace the backpointers to find optimal path from start to goal
=0 b=() b=( h=3 [h=2 | HAl
=28 | h=24 h=2 £27.
- - f= b=) | b=(65)
=38 | h=34 h=3 :i(:-:v;) ,
o | | o E
=0 | b=0 | b=0 i
=48 | h=44 | h=4 ? 0
= = f=
=0 b=() b=()
=5.8 | h=54 h=5
= = f=
=() b=() b=()
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Localization, Path Planning, & Navigation:

Obstacle Avoidance
(Local Path Planning)

© R. Siegwart, ETH Zurich - ASL

= The goal of the obstacle avoidance
algorithms is to avoid collisions with
obstacles

= |tis usually based on local map

= Often implemented as a more or less
independent task

= However, efficient obstacle avoidance
should be optimal with respect to

= the overall goal

= the actual speed and kinematics of the
robot

= the on boards sensors
= the actual and future risk of collision

tﬁ'«.JSTEVEN
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Localization, Path Planning, & Navigation:
Obstacle Avoidance- Bugl Algorithm

= Following along the obstacle to avoid it

= Each encountered obstacle is once fully circled before it is left at the point
closest to the goal

© R. Siegwart, ETH Zurich - ASL

Localization, Path Planning, & Navigation:
Obstacle Avoidance- Bug2 Algorithm

= Following the obstacle always on the left or right side

= L eaving the obstacle if the direct connection
between start and goal is crossed

_ L ]
_~""goal
-

© R. Siegwart, ETH Zurich - ASL
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Localization, Path Planning, & Navigation:
Mobile Robot General Architecture

Position
Position

Perception to
Avoidance
Feedback
Paih

Environment
Model
Local Map
Real World
Environment
Perception —

© R. Siegwart, ETH Zurich - ASL
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Localization, Path Planning, & Navigation:
Tiered Navigation Architecture

* Path Planning
— Strategic level decision making

. . . . Path plannin
— Uses global information (in non-real-time) P 9

to identify sequence of local actions for e
robot

+ Real-time controller Executive

— Requires high-band width and tight sensor- e
effector loops

Real-time controller
behavior 1 | behavior 2 | behavior 3

— Includes lower level behaviors that may
switch or run in parallel

PID motion control
* Executive e

— Responsible for mediating interface

between planning and execution Robot Hardware

— Manages the activation of behaviors,
failure recognition, and re-initiating
planner

©R. Siegwart, ETH Zurich - ASL
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Localization, Path Planning, & Navigation:
Two-Tiered Architecture for Off-line Planning

¢ Executive must contain a priori all relevant
schemes for traveling to desired
destinations

* Not useful as general solution to navigation Executive

* Good for static route-based applications e
— Factory or warehouse settings

Real-time controller
behavior 1 | behavior 2 | behavior 3

— Number of discrete goal positions small enough
that executive can cache paths required to reach
each goal rather than generic map which a
planner could search for solution paths

PID motion control

* Good for extreme reliability demands e
— Can't afford a bad plan, compute it off-line ahead
of time Robot Hardware

— Example: contingency flight plans for space
shuttle in advance of shuttle flights

©R. Siegwart, ETH Zurich - ASL
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Localization, Path Planning, & Navigation:
Three-Tiered Episodic Planning Architecture

Path planning

Global e Local
map ]

Executive

[

Real-time controller
behavior 1 | behavior 2 | behavior 3

PID motion control

Robot Hardware | ©R. Siegwart, ETH Zurich - ASL

* Strategic, global map

* Short-term, local knowledge
* Executive decides when to trigger
planner based on local information
— Path blockage, failure, etc.
* Executive will then update global
knowledge base accordingly

Fall 2013 ME 598, Lecture 10

Localization, Path Planning, & Navigation:
Integrated Planning and Execution Architecture

Global
knowledge, map

* Allintegrated, no temporal decoupling 3

between planner and executive layer Real-time controller
behavior 1 | behavior 2 | behavior 3

Global Executive

* Planning is one small part of executives :
o PID motion control
cycle of activities 1
— More functions than just navigation

Robot Hardware

* Requires execution speed of path planner to
run within basic control loop of executive

. . ©R. Siegwart, ETH Zurich - ASL
— Very computationally challenging

— Example:

* large off-road vehicle traveling over partially know
terrains at high speeds

* Local and global representations are the same
— Not possible in complex environments with
current processor speeds

Fall 2013 ME 598, Lecture 10




Localization, Path Planning, & Navigation: Localization, Path Planning, & Navigation:

Example- The RoboX Architecture Extra References
Robot Plil - Windows 2000
Supervisor People Scenario Face .
Dot (oA erﬂetecﬂﬂn ;‘,T,b\(Cﬂn"ﬂ‘mf LHWH@ * J. Borenstein, H. Everett, L. Feng, Where am I? Sensors and
T e | [ | | [o] Methods for Mobile Robot Positioning. Ann Arbor, University
lotorola Interface Out Controller Matrix Controller . . .
9 -~ Facetiackng | [ e, % of Michigan, 1996. Available at http://www-
Led matrix A0z 1 PowerPC 750 - XO/2 . -
= Eye movemenis Mk P = personal.umich.edu/~johannb/shared/pos96rep.pdf
Microchi nterface lanner ontroller
@ k (Sé’;ee: II('IE'?;J)I Security action T

Multirobot
Planner

Buttons

* H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L.

Design I Kavarki, and S. Thrun, Principles of Robot Motion: Theory,
. Algorithms, and Implementation, MIT Press, Boston, 2005
Qs omigre S [ ] o] | o] http://www.cs.cmu.edu/~biorobotics/book/

Feat, extraction 1

Localization

Tactile sensors

I?a(::lll(‘lpacle ©R. Siegwart, ETH Zurich - ASL

Bumpers
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