CS 559: Machine Learning

Fundamentals and Applications
Oth Set of Notes

Instructor: Philippos Mordohai
Webpage: www.cs.stevens.edu/” mordohai
E-mail: Philippos.Mordohai@stevens.edu
Office: Lieb 215

Overview

e Logistic Regression
— Notes by T. Mitchell
— Barber Ch. 17
— HTF Ch. 4

« Linear Discriminant Functions (Slides based on
Olga Veksler’s)
— Optimization with gradient descent

— Perceptron Criterion Function
» Batch perceptron rule
» Single sample perceptron rule

— Minimum Squared Error (MSE) rule

Overview (cont.)

e Support Vector Machines (SVM)
— Introduction

— Linear Discriminant

» Linearly Separable Case

» Linearly Non Separable Case
— Kernel Trick

* Non Linear Discriminant

— Multi-class SVMs

e See HTF Ch. 12

Logistic Regression

 |ldea: generative models compute P(Y|X)
by learning P(Y) and P(X|Y)

 Why not learn P(Y|X) directly?

Logistic Regression

e Consider learning f: X =2 Y, where

— X Is a vector of real-valued features, < X, ... X,
>

— Y Is boolean

—assume all X; are conditionally independent
given Y

—model P(X:| Y =y,) as Gaussian N(L,0°)
— model P(Y) as Bernoulli (n)
* Y is 1 with probability n

Derivation of P(Y|X)

P(Y =1)P(X|Yy =1)
P(Y = 1)P(X|Y =1)+ P(Y = 0)P(X|Y = 0)

P(Y =1|X) =

1
P(Y=0)P(X|Y=0)
1+ p(}~’=1)P(,\'=}'=1)
1
P(Y=0)P(X[Y=0)
1 4+ exp(In p(y:l)P(XIY=1))

1

1+ exp((In %) +[22iIn 28((: 33;2(3)

_(-':2_1"“!-)2 /

1
P |) = P R— A
o 2T Z (lf/zO /J*le. + Hi1 — K0
i o 207)
1
P(Y = 1|X) =

1+ exp(wg + X1 wi X;)

Very Convenient

1
1 + exp(wg + X ; w; X;)

P(Y =1|X =< X1,..Xp>) =

implies
exp(wo + >; w; X;)

P(Y =0|X =< Xq1,..Xn>) =
| " 1 + exp(wo + X; w; X;)

implies
P(Y = 0|X)
= exp(wg + > w;X;)
P(Y = 1|X) ’ ; linear
/ classification
implies P(Y = 0[X) rule!
= — X;
P(Y = 1|X) o —I-Zi:wz Z

Very Convenient

e Posteriors sumto 1 and remain in [0, 1]

e Logit: | = logit(p) = log (1%9)=0(+BX

—lis linear in X

el

1+el

* Probability: p =

Logistic Function

0 p
O ° p:z l:log(;):()
acu : P
" 1+ exp(—b) *p=1 I= log (E) = +®
b
P(Y = 1|X) = =

1 + exp(wg + Z§L=1 w; X;)

Decision Boundary

 How to make decisions given
1

1+ exp(wo + > w; X;)

10

Logistic Regression More Generally

» Logistic regression when Y is not boolean (but
still discrete)

— ye{y, .. Yr}: learn R-1 sets of weights

— fork<R P(Y = yi|X) = eXD(U‘Ao + >0 wi X;)

1+ ij exp(u)jo + > wﬂXi)

1
1-|-ZR 1exp(u 0+ i wi; X;)

—fork=R P(Y =yp|X) =

11

Training Logistic Regression: MCLE

We have L training examples:

{(xhyh, . o(xhyh)y
Maximum likelihood estimate for
parameters W

Wyre = argmmzaxP(< XLyls>s o< XEYES W)

=argmax | | P(< X', Y' > |[W
wgmwf}xl:[(< X, Y'>|W)

e Maximum conditional likelihood estimate

Training Logistic Regression: MCLE

Choose parameters <w, .. w,> to maximize
conditional likelihood of training data

1
1+ exp(wg + > w; X;)

exp(wo + > w; X;)
1+ exp(wo + > i w; X;)

P(Y =0|X,W) =

P(Y = 1|X,W) =

Training data D={(X !, Y1) .. (X% vI)}
Data likelihood = HP(XI yHw)
Data conditional likelihood = HP(Y XL w)

WMCLE = arg max P(Y£|VV X)

l 13

Conditional Log Likelihood

(W) =In[[PYYxw) =S InP(Y! X, W)
[[

1
14 exp(wo + 3, w; X;)

P(Y =0|X,W) =

exp(wo + 3; wi X;)

P(Y =1/ X,W) =
(|) 1 4+ exp(wo + X; w; X;)

(W) = Y vinPy'=1x,w)+Q -vHinprPx'=o0x",w)
[
P(Y!=1|xL, W)

— Yiin nP(Y!'=o|x' w
Zl: P(Yl=0|Xl,W)+ (XL W)

ZYI(’UJ‘O + ZleZI) —In(1 4 exp(wg + Zwale))
l U ""‘

14

Maximizing Conditional Log Likelihood

1
P(Y =0|X,W) = - -
1+ exp(wg + 3 w; X;)

exp(wg + ¥; w;X;)

P(Y =1X,W) =
(|) 1+ exp(wg + 3 w;i X;)

(W) = InT[PYY XL w)
[

mn n
= > Y (wo + > w.iX,]f) —In(1 + exp(wo + > w,X,’))
[1 i

Good news: I|(W) is concave function of W
Bad news: no closed-form solution to maximize [(W)

15

Gradient Descent

Gradient

‘ or]
Jw,,

oF OF '
owy’ Owy’

|

| =

VE[@

Training rule:

—nV B[]

A

i.e.,

OE
né‘w,-

Aw,— =

16

Maximize Conditional Log Likelihood:
Gradient Ascent

(W) = InT[PYY XL w)
[

n n
= > Y (wo + > w; XD — In(1 + exp(wo + > w; X))
[2 ?

OL(W)
ow;

Y xlyt - Pyt =11xtw))
[

17

Maximize Conditional Log Likelihood:
Gradient Ascent

(W) = InJ[P XL, w)
[

n T
= 3 V(wo+ 3 wiX]) —In(1 + exp(uo + 3 wi X))
z r? i’

OL(W)

8’(031

=Y xiv! - Py =11x", w))
[

* Gradient ascent algorithm: iterate until change < ¢
For all i, repeat

w; — w; + ’r]ZX,.f(Yl — P(Y!= 1|Xl, W))
[

18

Logistic Regression: Summary

 Consider learning f: X =2 Y, where
— X is a vector of real-valued features, < X, ... X_ >
— Y is boolean
— assume all X, are conditionally independent given Y
— model P(X;| Y =vy,) as Gaussian N(l,,0.?)
— model P(Y) as Bernoulli (n)

 Then P(Y]|X) is of this form and we can directly

estimate W
1

Py = 11X =< Xq.,...X, >) =
(| 1 n>) 14 exp(wo + > w; X;)

Linear Discriminant Functions

Augmented Feature Vector

Linear discriminant function: g(x) = wt X +w,

Can rewrite it;
9(x)=w, w] m =a'y=g(y)

new weight new feature
vector a vector y

y is called the augmented feature vector

Added a dummy dimension to get a completely
equivalent new homogeneous problem

old problem new problem

g(x)=w'x+w, gly)=a'y

* Feature augmentation is done for simpler
notation

 From now on, always assume that we have
augmented feature vectors
— Given samples x4,..., X, convert them to

augmented samples y,,..., Y, by adding a new
dimension of value 1

y-[3)

22

Training Error

For the rest of this part, assume we have 2 classes
— Samples: y,,.., ¥, , Some in class 1, some in class 2

Use samples to determine weights a in the
discriminant function g(y) = aly

What should the criterion for determining a be?

For now, suppose we want to minimize the training
error (the number of misclassified samples y,,..., ¥,,)

Recall that: 9(y)>0 =>Yy; classified as c,
g(y;)<0 =>y, classified as c,

o _ _ (y;)>0 Vy,ec
Thus training error is O if {gg(;.ko V{/je c12

*Normalization”

a'y,>0 Vy.ec,

* Thus training error is 0 if: {a’yf <0 vyee,

ay >0 Vy; € c,

« Equivalently, training error is O if: {a’(— y)>0 vy, eec,

* This suggests “normalization” (a.k.a. reflection):
1. Replace all examples from class 2 by:
Yi—= Y Vy,€ec,
2. Seek weight vector g such that
a'y;>0 Vy,

— If such a exists, it is called a separating or solution
vector

— Original samples xs,..., X,, can indeed be separated by
a line

Normalization

before nhormalization
yh

e Seek a hyperplane
that separates
patterns from different
categories

after “normalization”

y©h

Seek hyperplane that
puts normalized
patterns on the
same(positive) side

25

Solution Region
» Find weight vector a such that for all samples:

d
t _E: (k)
ayf— aky:' >0
k=0

y(2) A

* In general, there can be many solutions

26

Solution Region

« Solution region for a: set of all possible
solutions defined in terms of normal a to
the separating hyperplane

y@ A

27

Optimization

* Need to minimize a function of many
variables
J(X) =J(X 1,---y X4)
 We know how to minimize J(x)
— Take partial derivatives and set them to zero

9 gradient
—dJ
5 : =vJ(x)=0
—dJ
X, (x)

Optimization

 However solving analytically is not always
easy
— For example:

sin(x?+x3)+e* =0

icos(xf +x3)+ .’lr;:q:,;'(Jvrf)’rf =0

e Sometimes it is not even possible to write
down an analytical expression for the
derivative (example later today)

Gradient Descent

« Gradient vJ(x) points in direction of steepest increase
of J(X), and - VJ(x) in direction of steepest decrease

ohe dimension two dimensions
400-
dJ |
A -~Y(a 200- :
J(x) ax @ 0 y
200 e :\
4001 i :
10 AN o
i B 10
0 - S
> > 1010
a X
_aJ _aJ
dx (a) dxiy
€ | —>>
d | a R

30

Gradient Descent

—VJ(X”J)

s | g@
*E—>Cc >® ®
X x@ x3 xk

>

Gradient Descent for minimizing any function J(x)
— Set k = 1 and x(") to some initial guess for the weight
vector
_while 7"|VIx¥)>e
e Choose learning rate n®
xtl= x0 — n 0 g 4(x) (update rule)
k=k+ 1

31

Gradient Descent

« Gradient decent is guaranteed to only find
local minima

J(X)

>

*E—>C< >® ® >
X x(2 x(3 x(k) global minimum

* Nevertheless gradient descent is very
popular because it is simple and applicable to
any function

Gradient Descent

 Main issue: how to set parameter n
(learning rate)

— If n is too small, too many iterations

— If n is too large may \/
overshoot the minimum X

and possibly never find it X

LDF Criterion Function

Find weight vector a such that for all samples yj,..., ¥,
d
a'y, =Y 2,y >0
k=0

Need criterion function J(a) which is minimized when a is a
solution vector

Let Y,, be the set of examples misclassified by a
Yu(@) ={y;s.t. aly;<0}
First natural choice: number of misclassified examples
J(a) =[Yyu(a)l +J(a)

._=
_. :

Piecewise constant, gradient —

descent is useless - - a

Perceptron

Perceptron Criterion Function
Jy(a)=Y (-a'y)

yeYy

If y is misclassified, aty<0
Thus J (a) >0

J(a) is |[a]| times the sum of
distances of misclassified
examples to decision boundary

J(a) is piecewise linear

and thus suitable for Ja)
gradient descent

Perceptron Batch Rule
J,(a)= Y (-a'y)

ye¥Yy

Gradient of J (a) is: V"p(a)=y§M(— y)
— Y,, are samples misclassified by ak
— Itis not possible to solve vJ,(a)=0 analytically
because of Y,
Update rule for gradient descent: x**"= x®—-n ® vy(x)

Thus the gradient decent batch upadate rule for
Jp(@) 18t k) _ 400 +7®) Sy

ye¥y
It IS called batch rule because it is based on all
misclassified examples

Perceptron Single Sample Rule

* The gradient decent S/ng/e sample rule for J(a)
Is: a*V = a4 77 yM
— Note that yy, is one sample misclassified by a(k)
— Must have a consistent way of visiting samples

o Geometric Interpretation:
— y, misclassified by a® (a®) y, <0 R

— Yy IS on the wrong
side of decision hyperplane

— Adding nyy, to a moves the
new decision hyperplane in
the right direction with
respect to |,

Perceptron Single Sample Rule

akt = gk) 4 Oy,

nis too large, previously nis too small, y,, is still
correctly classified sample misclassified
Y, is now misclassified

39

Perceptron Example

features grade
hame good tall? sleepsin | chews
attendance? class? gum?

Jane yes (1) |yes (1), no(-1) | no(-1)

Steve yes (1) | yes(1)| yes(1) | yes (1)

Mary no (-1) no(-1) | no(-1) | yes (1)

> mim>

Peter yes (1) no(-1) | no(-1) | yes (1)

e Class 1: students who get A
e Class 2: students who get F

features grade
name | extra good tall? sleeps in| chews
attendance? class? gum?
Jane 1 yes (1) yes (1) | no(-1) | no (-1) A
Steve | 1 yes (1) yes (1) | yes (1) | yes (1) F
Mary 1 no (-1) no(-1) | no(-1) | yes (1) F
Peter | 1 yes (1) no (-1) | no(-1) | yes (1) A

 Augment samples by adding an extra
feature (dimension) equal to 1

features grade

name | extra good tall? sleeps in| chews

attendance? class? gum?
Jane 1 yes (1) yes (1) | no(-1) | no (-1) A
Steve | -7 yes (-1) yes (-1) | yes (-1) | yes (-1) F
Mary | -1 no (1) no (1) | no(1) |yes(-1) F
Peter | 1 yes (1) no(-1) | no(-1) | yes (1) A
 Normalize:

— Replace all examples from class 2 by their
Yi—=-Yi

negative values
— Seek asuch that:

t
ay,

>0

Vy;ec,
27

features grade

name | extra good tall? sleeps in| chews
attendance? class? gum?

Jane 1 yes (1) yes (1) | no(-1) | no (-1)
Steve | -7 yes (-1) yes (-1) | yes (-1) | yes (-1)
Mary | -1 no (1) no(1) | no(1) |yes(-1)
Peter 1 yes (1) no(-1) | no(-1) | yes (1)

> T m >

e Single Sample Rule
— Sample is misclassified if a'y; = Zak (k) <

— Gradient descent single sample rule aV=a 4yt Ny

yeYy

— Set n fixed learning rate to pk=1: [akV =gk 1y

e Set equal initial weights
all)=[0.25, 0.25, 0.25, 0.25, 0.25]

 Visit all samples sequentially, modifying the
weights after each misclassified example

name aty misclassified?
Jane 0.25%1+0.25*1+0.25"1+0.25%(-1)+0.25%(-1) >0 no
Steve | 0.25%(-1)+0.25%(-1)+0.25%(-1)+0.25%(-1)+0.25%(-1)<0 yes

 New weights

a®=a"+y =[0.25 0.25 0.25 0.25 0.25]+
+[-1 -1 -1 -1 —1]=
=[-0.75 —0.75 —-0.75 —0.75 —0.75]

a? =[-0.75 -0.75 —-0.75 —0.75 -0.75]

name aty misclassified?

Mary | -0.75%(-1)-0.75%1-0.75*1 -0.75 *1 -0.75%(-1) <0 yes

 New weights

a® =a%4+y, =[-0.75 —-0.75 —0.75 —0.75 —0.75]+
+-1 1 11 -1]=

=[-1.75 0.25 0.25 0.25 —1.75]

a® =[-1.75 0.25 0.25 0.25 —1.75]

name aty misclassified?

Peter | -1.75 *1 +0.25* 1+0.25% (-1) +0.25 *(-1)-1.75*1 <0 yes

 New weights

a¥=a%+y, =[-1.75 0.25 0.25 0.25 —1.75]+
+f1 1 -1 -1 A]=
=[-0.75 1.25 -0.75 -0.75 —0.75]

a® =[-0.75 1.25 -0.75 —0.75 —0.75]
name 3t y misclassified?
Jane | -0.75%*1 +1.25*1 -0.75*1-0.75 *(-1) -0.75 *(-1)+0 no
Steve | -0.75%(-1)+1.25%(-1) -0.75%(-1) -0.75%(-1)-0.75%(-1)>0 no
Mary -0.75 *(-1)+1.25%1-0.75*1 -0.75 *1 =0.75*(-1) >0 no
Peter | -0.75 *1+ 1.25*1-0.75* (-1)-0.75* (-1) -0.75 *1 >0 no

 Thus the discriminant function is:
g(y)=-0.75*y® +1.25*y" _0.75* y@ _0.75* y® —0.75 * y¥)

* Converting back to the original features x:
g(x)=1.25*x"-0.75* x? -0.75* x® -0.75* x*) —0.75

Converting back to the original features x:

1.25* x" -0.75* x® -0.75* x®) - 0.75* x*) > 0.75 = grade A
1.25* x" -0.75* x? -0.75* x® - 0.75* x*) < 0.75 = grade F

4 4 P N

good tall sleepsinclass chews gum
attendance

This is just one possible solution vector
If we started with weights
a(1=[0,0.5,0.5,0, 0],
The solution would be [-1,1.5, -0.5, -1, -1]
1.5*x"-0.5* x? - x¥ _ x9 5 1= grade A
1.5*x"-0.5*x? - x® _ x4 < 1 grade F

In this solution, being tall is the least important feature

O. Veksler 48

LDF: Non-separable Example

e Suppose we have 2 features
and the samples are:

_ Class 1: [2,1], [4,3], [3,5] Z
— Class 2:[1,3] and [5,6] 2
 These samples are not >
separable by a line L R
« Still would like to get approximate
separation by a line
— A good choice is shown in green

— Some samples may be “noisy”, and we
could accept them being misclassified

LDF: Non-separable Example

» Obtain yy, ¥a V3 V4 DY
adding extra feature and

“normalizing”

y,= y,= ys;=

-) -
WA -

IU-IQ-*I

1
Yi.= _; y5=__5

O. Veksler 50

LDF: Non-separable Example

* Apply Perceptron single O

sample algorithm

 |nitial equal weights
all=[111]
— Line equation x(W+x{+1=0
e Fixed learningrate n=17 a*"=a%+y,

y1=[%] yfm VSZE Vf[_::ﬂ ysz{:_é]

=] —e] (] o wn =3}
-
<

/é

2 3 4 5

- ytal=[111]P[121]'>0 ¥
= ya=[1 111 43]'>0 ¥
= ya=[111][135]>0 ¥

LDF: Non-separable Example

- + 6 .
a"=[111 a*=a%+y, | =
1 AR —1 _[-12 I
P
NI []
n yf4a(1)=[1 1 1]*[-1 -1 -3]t= -5< 0 _1_"\::’ 13(2)
I) 2

a?=a"+y, =[111]+[-1-1-3]=[00-2]
* yt-ad=[00-2][-1-5-6]t=12>0 Vv

=yt a?=[00-2]'[121]'<0
a®=a%+y, =[00-2]+[121]=[1 2 -1]

O. Veksler

52

LDF: Non-separable Example

ad=[12-1 a*V=a®4y,

ol o ol] 3

g yfz 3(3)

143P[12-1]t=6>0 ¥ & + &+ oF :
= yt.a®=[1 35][12-1]!>0 ¥
* ¥, @d=[-1-1-3][12-1]'=0

a¥=a®+y, =[12-1]+[-1-1-3]=[01-4]

O. Veksler 53

LDF: Non-separable Example

6| o
a¥=[01-4] a*"=a%4+y, | “'m
1 1 1 —1 -1 i B
= 2 = 4 = 3 = —1 = —5 b @ ‘
RS B R I LA

o ysta(4)=[-1 -5 -6]*[0 1 -4]=19>0
e y,la®=[121]*[0 1 -4]=-2<0

O. Veksler

54

LDF: Non-separable Example

We can continue this forever
There is no solution vector @ satisfying for all 7

5
ty, _ (k)
ay=ay" >0
k=0

Need to stop but at a good point

Solutions at iterations
900 through 915

— Some are good and
some are not

How do we stop at a good
solution?

T Y — SO R O S S - 1

—_
[
—
ra
w b
P
o

Convergence of Perceptron Rules

* |f classes are linearly separable and we use
fixed learning rate, that is for N =const

 Then, both the single sample and batch
perceptron rules converge to a correct
solution (could be any a in the solution space)

* |f classes are not linearly separable:

— The algorithm does not stop, it keeps looking for a
solution which does not exist

Convergence of Perceptron Rules

 |f classes are not linearly separable:

— By choosing appropriate learning rate, we can always
ensure convergence: %) 50 as k — w ()

— For example inverse linear learning rate: ,](k) _n

k

— For inverse linear learning rate, convergence in the
linearly separable case can also be proven

— No guarantee that we stopped at a good point, but
there are good reasons to choose inverse linear
learning rate

Minimum Squared-Error
Procedures

Minimum Squared-Error Procedures

« |dea: convert to easier and better understood problem

a'y; > 0 for all samples y;
solve system of linear inequalities

J

a'y; = b; for all samples y;
solve system of linear equations

« MSE procedure
— Choose positive constants b, b,,..., b,
— Try to find weight vector a such that a'y, = b, for all samplesy;

— If we can find such a vector, then a is a solution because the b;’s
are positive

— Consider all the samples (not just the misclassified ones)

MSE Margins

If ay. = b, y; must be at distance b, from the
separating hyperplane (normalized by [[al])

Thus by, b,,...,, b, give relative expected distances or
“margins” of samples from the hyperplane

Should make b, small if sample i is expected to be
near separating hyperplane, and large otherwise

In the absence of any additional information, set
b,=b,=.=b,=1

MSE Matrix Notation

: [T
- Need to solve n equations | #¥+=5
e In matrix form Ya=b a'y,=b,
BZREZ KR A I
78 2 2l | DA D)
- . 1 |= E
A\ A J \ J

Y 1

Y
Y a b

Exact Solution is Rare

 Need to solve a linear system Ya=Db
—Y is an nx(d +1) matrix

o Exact solution only if Y is non-singular and
square (the inverse Y-1 exists)
—a=Y"b
— (number of samples) = (humber of features + 1)
— Almost never happens in practice
— Guaranteed to find the separating hyperplane

Approximate Solution

Typically Y is overdetermined, that is it has more rows
(examples) than columns (features)

— If it has more features than examples, should reduce
dimensionality

Need Ya = b, but no exact solution exists for an over-
determined system of equations
— More equations than unknowns

Find an approximate solution

— Note that approximate solution a does not necessarily give
the separating hyperplane in the separable case

— But the hyperplane corresponding to a may still be a good
solution, especially if there is no separating hyperplane

MSE Criterion Function

 Minimum squared error approach: find a which
minimizes the length of the error vector e .

e=Ya-b 4

Ya
e Thus minimize the minimum squared error

criterion function: n
J,(a)=|va-b* =) (a'y,-b,)
i=1
e Unlike the perceptron criterion function, we can
optimize the minimum squared error criterion

function analytically by setting the gradient to O

Computing the Gradient
J(a)=|Ya- b = ;(a*y,- -b,f

.

0 | gy o
aJs " da i da

vJd.(a)=

S

oa,

Pseudo-lnverse Solution

vd.(a)=2Y'(Ya-b)
Setting the gradient to O:

2Y'(Ya-b)=0 = Y'Ya=Y'b

The matrix Y'Y is square (it has d +1 rows and columns)
and it is often non-singular

If Y'Y is non-singular, its inverse exists and we can solve
for a uniquely:

a=(v'v)'vb

pseudo inverse of Y
k(v*v)”v*)v =(y'y)'(vty)=1

MSE Procedures

Only guaranteed separating hyperplane if Ya > 0
— That is if all elements of vector Ya are positive
b, +¢, |
Ya = :

b, +¢,

— where € may be negative

If ,,.., €, are small relative to b,,..,, b,, then each element of
Ya |s posmve and a gives a separatlng hyperplane
— If the approximation is not good, €, may be large and negative,

for some i, thus b; + &; will be negatlve and a is not a separating
hyperplane

In linearly separable case, least squares solution a does not
necessarily give separating hyperplane

MSE Procedures

 We are free to choose b. We may be tempted to make
b large as a way to ensure Ya=b >0

— Does not work
— Let B be a scalar, let’s try Bb instead of b

* |If a*is a least squares solution to Ya = b, then for any
scalar B3, the least squares solution to Ya = b is fa*

argmin|Ya— pb|’ = argming*|Y(a/B)-b|" = pa*

« Thus ifthei! element of Yais less than 0, that is y'a
<0, theny;'(Ba) <0,

— The relative difference between components of b matters,
but not the size of each individual component

LDF using MSE: Example 1

+ Class 1: (6 9), (5 7) | -e
. Class 2: (59), (0 4) r o
 Add extra feature and
“normalize” | m
HESH = R
Yi=16| Y.=|3| V;=(-3| Y,=| 0
9 7 -9 —4
- g o
1 7
Y=l_1-5_9
-1 0-4

LDF using MSE: Example 1

Choose b=[1111]" |
In Matlab, a=Y\b solves the o
least squares problem J
[2.66 | 2|
a=| 1.045 %

—0.944 |

Note a is an approximation to Ya = b,
since no exact solution exists

This solution gives a separating
hyperplane since Ya >0

Ya

10.44
1.28
0.61

111

LDF using MSE: Example 2

Class 1: (6 9), (5 7) oo
Class 2: (5 9), (0 10) : 0

The last sample is very far :
compared to others from
the separating hyperplane

LDF using MSE: Example 2

+ Choose b=[1111]T E -
* In Matlab, a=Y\b solves the
least squares problem o o

2 T

d= . .
_04 Ya=| _004|%|1
SRt - 1.16| |1

* This solution does not provide a
separating hyperplane since aly; <0

LDF using MSE: Example 2

« MSE pays too much attention to isolated
“noisy” examples

— such examples are called outliers

MSE solution

desired solution

* No problems with convergence
e Solution ranges from reasonable to good

LDF using MSE: Example 2

10-

We can see that the 4th point is
vary far from separating hyperplane

— |In practice we don’t know this 1]
A more appropriate b could be b=| !
10

Moo M R o O
: : T

1
p..

In Matlab, solve a=Y\b 10| = o
—1.1 -

az{ 1.7} : i

-09] | 10|,

This solution gives the separating
hyperplane since Ya >0

Gradient Descent for MSE

J,(a)=|Ya- b

 May wish to find MSE solution by gradient
descent:
1. Computing the inverse of Y'Y may be too costly

2. YYY may be close to singular if samples are
highly correlated (rows of Y are almost linear
combinations of each other) computing the
inverse of YtY is not numerically stable

* As shown before, the gradient is:
vJ.(a)=2Y'(Ya-b)

Widrow-Hoff Procedure

vJ.(a)=2Y'(Ya- b)
* Thus the update rule for gradient descent is:
a) = gk _ pklyt(ya®) _ p)

e |f n=n0/k, then ak) converges to the MSE
solution a, that is Y{(Ya-b)=0
* The Widrow-Hoff procedure reduces storage

requirements by considering single samples
sequentially

a*) = a® —pWy (yia® - b))

LDF Summary

* Perceptron procedures

— Find a separating hyperplane in the linearly separable
case,

— Do not converge in the non-separable case

— Can force convergence by using a decreasing learning
rate, but are not guaranteed a reasonable stopping point

 MSE procedures
— Converge in separable and not separable case

— May not find separating hyperplane even if classes are
linearly separable

— Use pseudoinverse if Y'Y is not singular and not too large
— Use gradient descent (Widrow-Hoff procedure) otherwise

Support Vector Machines

SVM Resources

Burges tutorial

— http://research.microsoft.com/en-
us/um/people/cburges/papers/SVMTutorial.pdf

Shawe-Taylor and Christianini tutorial

— http://www.support-vector.net/icml-tutorial. pdf

Lib SVM

— http://www.csie.ntu.edu.tw/~cjlin/libsvm/

LibLinear

— http://www.csie.ntu.edu.tw/~cjlin/liblinear/

SVM Light

— http://svmlight.joachims.org/

Power Mean SVM (very fast for histogram features)

— https://sites.google.com/site/wujx2001/home/power-mean-svm

SVMs

* One of the most important developments
in pattern recognition in the last years

* Elegant theory
— Has good generalization properties

 Have been applied to diverse problems
very successfully

Linear Discriminant Functions

e A discriminant function is linear if it can be written as

gx) =wx +w,

g(x)>0 = xeclass 1
g(x)<0 = xe class 2

« which separating hyperplane should we choose?

81

Linear Discriminant Functions

e Training data is just a subset of all possible data
— Suppose hyperplane is close to sample x;

— If we see new sample close to x;, it may be on the
wrong side of the hyperplane

2) A [

* Poor generalization (performance on unseen data)

Linear Discriminant Functions

 Hyperplane as far as possible from any sample

« New samples close to the old samples will be
classified correctly

 (Good generalization

SVM

* |dea: maximize distance to the closest example

2) H)
x X

» x(1) .
smaller distance larger distance

* For the optimal hyperplane

— distance to the closest negative example = distance
to the closest positive example

84

SVM: Linearly Separable Case

e SVM: maximize the margin

x(2) 4

 The marginis twice the absolute value of distance b of
the closest example to the separating hyperplane

« Better generalization (performance on test data)
— In practice
— and in theory

SVM: Linearly Separable Case

X2 & -

o Support vectors are the samples closest to the
separating hyperplane
— They are the most difficult patterns to classify
— Recall perceptron update rule
« Optimal hyperplane is completely defined by support

vectors
— Of course, we do not know which samples are support
vectors without finding the optimal hyperplane

SVM: Formula for the Margin

g(x) =wx +w,

Absolute distance between x
and the boundary g(x) =0

WX +w,
\ \

w] |
Distance is unchanged for hyperplane
g;(X)=0g (X)

‘a'w’x+ awo‘ ~ ‘ w‘x+w0‘

ow| —|w|

Let x; be an example closest to the boundary (on the

positive side). Set: WX, W, =1

Now the largest margin hyperplane is unique

SVM: Formula for the Margin

« For uniqueness, set |wx+w,|=1 for any sample
X: closest to the boundary

» The distance from closest sample x; to
9X)=0iS g w| 1

 Thus the margin is

_ 2
wl

m

88

SVM: Optlmal Hyperplane

Maximize margin |m= HWH

: _ ;w‘x,. +W,>1 if x, Is positive example
Subject to constraints \w'x, +w, <-1 if x; is negative example

L et z,=1 if x; is positive example
c =-1 if X, is negative example

Can convert our problem to minimize

minimize J(w)=%HwH2

constrained to z,(w'x, +w,)>1 Vi

J(w) is a quadratic function, thus there is a single
global minimum

SVM: Optimal Hyperplane

e Use Kuhn-Tucker theorem to convert our
problem to:

maximize Ly(a)= a,-—%ZZa,ajz,-zjxjxj
1 i=1 j=1

n

constrainedto «,20 Vvi and Y a,z,=0

=1

 g+a,.., a,;} are new variables, one for
each sample

* Optimized by quadratic programming

90

SVM: Optimal Hyperplane

 After finding the optimal @ = {a,,.., 8}
 Final discriminant function:

g(x)= [Zaiz,x,]t X+W,

 where S /s the set of support vectors

S={X,- Ia,-;tO}

SVM: Optimal Hyperplane

n

maximize Zar ——szxa!z,z!xfx!

=1 11;1

constrained to o, >0 Vi and Zaz -

* Lp(a) depends on the number of samples, not
on dimension
— samples appear only through the dot products x/x;
* This will become important when looking for a
nonlinear discriminant function, as we will see
soon

SVM: Non-Separable Case

o Data are most likely to be not linearly separable,
but linear classifier may still be appropriate

A X2

outliers

e Can apply SVM in non linearly separable case

« Data should be "almost” linearly separable for
good performance

SVM: Non-Separable Case

» Use slack variables ¢,,..., ¢, (one for each sample)

« Change constraints from zWw'x+w,)>1 vi to
z(wix, +w,)21-¢& Vi

e ¢; Is a measure of deviation

from the ideal for x; ’ .

— &> 7. x;is on the wrong side ' SO
of the separating hyperplane "

— 0< &;<T. x;is on the right side
of separating hyperplane but
within the region of maximum
margin

— §,< 0: is the ideal case forx;

AX?)

x(1)

94

SVM: Non-Separable Case

We would like to minimize

1 # of samples
Jw,é,,....E)= §||w|| y; not in ideal location

if & >0
where 1&>0)=1g 1% %g

Constrained to z(w'x, +w,)>1-¢& and & >0 vi
B is a constant that measures the relative

weight of first and second term

— If B is small, we allow a lot of samples to be in not
ideal positions

— If B is large, few samples can be in non-ideal
positions

SVM: Non-Separable Case

1 # of examples
Jw,&,,....E)= E”w|| Sy not in ideal location

4 X@ e

large B, few samples not in small 5, a lot of samples
ideal position not in ideal position

96

SVM: Non-Separable Case

* Unfortunately this minimization problem is
NP-hard due to the discontinuity of I(g;)

* Instead, we minimize

1 a measure of
JWw,é,,....&,) = E”W” ot ;%- of misclassified
examples

* Subjectto (,(yix yw)>71-£ vi
6_20 Vi

SVM: Non-Separable Case

e Use Kuhn-Tucker theorem to convert to:

maximize LD(af)zzn:a'— ZZaazzxx
i=1

i=1 j=1

constrainedto 0<e,<p Vi and Za,.z,.zo
i=1

* Wis computed using: w=> a;zx,
i=1

e Rememberthat g(x [ZMXJHWG

x,eS

Nonlinear Mapping

o Cover’s theorem: “g pattern-classification problem
cast in a high dimensional space non-linearly is

more likely to be linearly separable than in a low-
dimensional space”

 One dimensional space, not linearly separable

—Bk9——-—a-g
3 -2 012 35

* Lift to two dimensional space with @(x)=(x,x?)

Nonlinear Mapping

e To solve a non linear classification problem with a linear

1.

classifier
Project data xto high dimension using function ¢(x)

2. Find a linear discriminant function for transformed data ¢(x)
3. Final nonlinear discriminant function is g(x) = wt@(x) +w,

PX)=(X,X?) o

L L (1)
In 2D, the discriminant function is linear gﬂi‘é,Dz[wT wg]["(”)}wo
In 1D, the discriminant function is not linear g(x)=w,x+w,x*+w,

100

Nonlinear Mapping

 However, there always exists a mapping of
N samples to an N-dimensional space in
which the samples are separable by
hyperplanes

101

Nonlinear SVM

o Can use any linear classifier after lifting data to a
higher dimensional space. However we will have
to deal with the curse of dimensionality

— Poor generalization to test data
— Computationally expensive

 SVM avoids the curse of dimensionality problems

— Enforcing largest margin permits good generalization
* It can be shown that generalization in SVM is a function of
the margin, independent of the dimensionality
— Computation in the higher dimensional case is
performed only implicitly through the use of kerne/
functions

Kernels
SVM optimization:

maximize L ()= Za: ——ZZa-a-Z-z-x-x

i=i=jnitj
r_1;1

Note this optimization depends on samples x; only
through the dot product x/x;

If we lift x;to high dlmensmn using @(x), we need to
compute hlgh dimensional product ¢(x;) ¢(x;)

>

i=1 j

i“i=i<j

maximize Ly(@)=>a -
1

i=

zn:a'azz 0
=1

I\)I—L

Idea: find kernel function K(x;,x)) s.t. K(x;X;) = ¢(X;)'¢(X))

Kernel Trick

» Then we only need to compute K(x;,x;)
instead of @(x;)! @(x;)
e “kernel trick”: do not need to perform

operations in high dimensional space
explicitly

Kernel Example

e Suppose we have two features and K(x,y) =
(X'y)?
« Which mapping ¢@(x) does this correspond to?
K(x,y)=(x"yf = [[X“’ X(Z’]BZ))D= (xy® + x@y@F
(xMyOF 4 2(xVy M) x@y @)1 (x@y@
t
=l vxox (¥ v2yoye (o]

o)=L} 2 (e}

Choice of Kernel

* How to choose kernel function K(x;,x;)?

— K(x;,X;) should correspond to @(x;)' @(x;) in a
hlgher dimensional space

— Mercer’s condition tells us which kernel function
can be expressed as dot product of two vectors

— If Kand K’ are kernels aK+bK’ is a kernel
 |ntuitively: Kernel should measure the
similarity between x;and x;

— As inner product measures similarity of unit
vectors

— May be problem-specific

Choice of Kernel

e Some common choices:
— Polynomial kernel

K(xi,xj)z(x,ij+1)‘°

— Gaussian radial Basis kernel

K(x,-,xj)= exp(— 2;_2

2

— Hyperbolic tangent (sigmoid) kernel

K(x;,%;) = tanh(k x;’x; +)

* The mappings @(x) never have to be computed!!

Intersection Kernel

Feature vectors are histograms

K (X, X;) :Zn:min(xik,xjk)

When K(x;,x;) is small, x; and x; are
dissimilar
When K(x;,x;) is large, x; and x; are similar

The mapping @(Xx) does not exist

More Additive Kernels

1 2
x2 kernel k=3 e

k=1 X T Yy

Hellinger's kernel Ku =2 /X
k=1

Designed for feature vectors that are
histograms

— Can be used for other feature vectors
Offer very large speed-ups

The Kernel Matrix

 a.k.a the Gram matrix

K(1,1) |K(1,2) [K(1,3) |... K(1,m)

K(2,1) |K((2,2) [K(2,3) |... K(2,m)
K=

Km,1) | K(m,2) [K(m,3) |... K(m,m)

« Contains all necessary information for the
learning algorithm

 Fuses information about the data and the
kernel (similarity measure)

Bad Kernels

The kernel matrix is mostly diagonal
— All points are orthogonal to each other

Bad similarity measure

Too many irrelevant features in high
dimensional space

We need problem-specific knowledge to
choose appropriate kernel

Nonlinear SVM Step-by-Step

« Start with data x4,..,X, which live in feature space of
dimension d

 Choose kernel K(x;,x;) or function @(x;) which lifts sample
X; to a higher dimensional space

e Find the maximum margin linear discriminant function in
the higher dimensional space by using quadratic
programming package to solve:

maximize L,(a) Za——ZZaazfzjK(X,-,xj)

f—T j=1

constrainedto 0<e;<p Vi and Za'z =

Nonlinear SVM Step-by-Step

Weight vector w in the high dimensional space:
W= ZaZga (x,)

_ where S is the set of support vectors

Linear discriminant function of maximum margin in
the high dimensional space:
'\t

alp(x) = w'o(x) - Zazolx) | ol

Non linear discriminant function in the original
space:

)= | Zazolx)| o) - Saze (ko) = TazK(x,

decide class 1 if g(x) > 0, otherwise decide class 2

Nonlinear SVM

e Nonlinear discriminant function

g(x)= Y |az]

K(x;, X)

XfES

o)=Y [

+1

most important
“training samples,
l.e. support vectors

K(x,,x)= exp(—

“Inverse distance”
from X to
support vector X;

207

1 2
X)

114

SVM Example: XOR Problem

e Class 1: x4y =[1,-1], x, = [-1,1] u
o Class 2: x5 =[1,1], X, = [-1,-1]
« Use polynomial kernel of degree 2: O

K(x,X) = (X, X;+ 1)?

— This kernel corresponds to the mapping
(0(,‘(): [1 \/Ex“} \/Ex{ﬂ \/EX(”X(Z} (X(1))2 (X(2J)2r

Need to maximize

4 3
Ly(e)= Z Q;)
i=1 =1

constrained to 0<e, Vi and a,+a,-a,-a, =0

ia,a-z-z-(x:xj + 1)2

i“i%j
j=1

I

SVM Example: XOR Problem

o After some manipulation ...
* The solutionisa=a,=a;=a,=0.25
— satisfies the constraints
Vi, 0<¢a,and a,+a,-a,—a, =0

* All samples are support vectors

SVM Example: XOR Problem
0=f 2x0 vax® Jaxoxe (x0F (x|

 The weight vector w is:

W= ia,.z,.qa(x,.) = 0.25((0()(1)"'(0()(2)_ (0()(3)— (5()(4))
- =lo 0 0 -v2 0 o

 Thus the nonlinear discriminant function is:

g(=Wo X) ZW cp @(@X{fJx{z}) _ _2X{1)X(2)

SVM Example: XOR Problem

g(x)=-2x"x®@
J2x ¢

decision boundaries nonlinear decision boundary is linear

118

SVM Summary

« Advantages:
— Based on very strong theory
— Excellent generalization properties
— Objective function has no local minima
— Can be used to find non linear discriminant functions

— Complexity of the classifier is characterized by the
number of support vectors rather than the
dimensionality of the transformed space

e Disadvantages:
— Directly applicable to two-class problems
— Quadratic programming is computationally expensive
— Need to choose kernel

Multi-Class SVMs

 One against all
« Pairwise

 These ideas apply to all binary classifiers
when faced with multi-class problems

One-Against-All

« SVMs can only handle two-class outputs
 What can be done?

 Answer: learn N SVM’s
—SVM 1 learns "Output==1" vs "Output != 1"
— SVM 2 learns “Output==2" vs “Output |= 2”

— SVM N learns “Output==N" vs “Output != N”

One-Against-All

e Original idea (Vapnik, 1995): classify x as
w; if and only if the corresponding SVM
accepts x and all other SVMs reject it

2>

><

e

T~

One-Against-All

* Modified idea (Vapnik, 1998): classify x
according to the SVM that produces the
highest value (use more than sign of
decision function)

2o
e

Pairwise SVMs

e Learn N(N-1)/2 SVM’s
— SVM 1 learns "Output==1" vs “Output == 2"
— SVM 2 learns "Output==1" vs “Output == 3”

— SVM M learns "Output==N-1" vs "Output == N”

Pairwise SVMs

* To classify a new input, apply each SVM
and choose the label that “wins” most

often

