
CS 559: Machine Learning
Fundamentals and Applications

9th Set of Notes

Instructor: Philippos Mordohai
Webpage: www.cs.stevens.edu/~mordohai
E-mail: Philippos.Mordohai@stevens.edu

Office: Lieb 215

1

Overview
• Logistic Regression

– Notes by T. Mitchell
– Barber Ch. 17
– HTF Ch. 4

• Linear Discriminant Functions (Slides based on
Olga Veksler’s)
– Optimization with gradient descent
– Perceptron Criterion Function

• Batch perceptron rule
• Single sample perceptron rule

– Minimum Squared Error (MSE) rule

2

Overview (cont.)
• Support Vector Machines (SVM)

– Introduction
– Linear Discriminant

• Linearly Separable Case
• Linearly Non Separable Case

– Kernel Trick
• Non Linear Discriminant

– Multi-class SVMs

• See HTF Ch. 12

3

Logistic Regression

• Idea: generative models compute P(Y|X)
by learning P(Y) and P(X|Y)

• Why not learn P(Y|X) directly?

4

Logistic Regression

• Consider learning f: X  Y, where
– X is a vector of real-valued features, < X1 … Xn

>
– Y is boolean
– assume all Xi are conditionally independent

given Y
– model P(Xi | Y = yk) as Gaussian N(μik,σi

2)
– model P(Y) as Bernoulli (π)

• Y is 1 with probability π

5

Derivation of P(Y|X)

6

Very Convenient

7

Very Convenient

8

• Posteriors sum to 1 and remain in [0, 1]

• Logit: ௣
ଵି௣

=α+βx

– is linear in x

• Probability: ௘೗

ଵା௘೗

Logistic Function

• ݌ ൌ 0, 	݈ ൌ log ௣
ଵି௣

ൌ െ∞

• ݌ ൌ ଵ
ଶ
, 		݈ ൌ log ௣

ଵି௣
ൌ 0

• ݌ ൌ 1, 		݈ ൌ log ௣
ଵି௣

ൌ ൅∞

9

Decision Boundary

• How to make decisions given

10

Logistic Regression More Generally

• Logistic regression when Y is not boolean (but
still discrete)
– yϵ{y1 … yR}: learn R-1 sets of weights

– for k<R

– for k=R

11

Training Logistic Regression: MCLE

• We have L training examples:

• Maximum likelihood estimate for
parameters W

• Maximum conditional likelihood estimate
12

Training Logistic Regression: MCLE
• Choose parameters <w0 … wn> to maximize

conditional likelihood of training data

• Training data D=
• Data likelihood =
• Data conditional likelihood =

13

Conditional Log Likelihood

14

Maximizing Conditional Log Likelihood

15

Good news: l(W) is concave function of W
Bad news: no closed-form solution to maximize l(W)

Gradient Descent

16

Maximize Conditional Log Likelihood:
Gradient Ascent

17

Maximize Conditional Log Likelihood:
Gradient Ascent

18

Logistic Regression: Summary
• Consider learning f: X  Y, where

– X is a vector of real-valued features, < X1 … Xn >
– Y is boolean
– assume all Xi are conditionally independent given Y
– model P(Xi | Y = yk) as Gaussian N(μik,σi

2)
– model P(Y) as Bernoulli (π)

• Then P(Y|X) is of this form and we can directly
estimate W

19

Linear Discriminant Functions

20

Augmented Feature Vector
• Linear discriminant function: g(x) = wt x +w0

• Can rewrite it:

• y is called the augmented feature vector
• Added a dummy dimension to get a completely

equivalent new homogeneous problem

Pattern Classification, Chapter 5 21

• Feature augmentation is done for simpler
notation

• From now on, always assume that we have
augmented feature vectors
– Given samples x1,…, xn convert them to

augmented samples y1,…, yn by adding a new
dimension of value 1

22

Training Error
• For the rest of this part, assume we have 2 classes

– Samples: y1,…, yn , some in class 1, some in class 2
• Use samples to determine weights a in the

discriminant function g(y) = aty
• What should the criterion for determining a be?
• For now, suppose we want to minimize the training

error (the number of misclassified samples y1,…, yn)

• Recall that:

• Thus training error is 0 if

23

g(yi)>0 => yi classified as c1
g(yi)<0 => yi classified as c2

“Normalization”
• Thus training error is 0 if:

• Equivalently, training error is 0 if:

• This suggests “normalization” (a.k.a. reflection):
1. Replace all examples from class 2 by:

2. Seek weight vector a such that

– If such a exists, it is called a separating or solution
vector

– Original samples x1,…, xn can indeed be separated by
a line

24

Normalization

• Seek a hyperplane
that separates
patterns from different
categories

• Seek hyperplane that
puts normalized
patterns on the
same(positive) side

25

Solution Region
• Find weight vector a such that for all samples:

• In general, there can be many solutions

26

Solution Region
• Solution region for a: set of all possible

solutions defined in terms of normal a to
the separating hyperplane

27

Optimization
• Need to minimize a function of many

variables
J(x) =J(x 1,..., xd)

• We know how to minimize J(x)
– Take partial derivatives and set them to zero

28

Optimization
• However solving analytically is not always

easy
– For example:

• Sometimes it is not even possible to write
down an analytical expression for the
derivative (example later today)

29

Gradient Descent
• Gradient points in direction of steepest increase

of J(x), and in direction of steepest decrease

30

Gradient Descent for minimizing any function J(x)
– Set k = 1 and x(1) to some initial guess for the weight

vector
– While

• Choose learning rate η(k)

(update rule)

31

Gradient Descent

Gradient Descent

• Gradient decent is guaranteed to only find
local minima

• Nevertheless gradient descent is very
popular because it is simple and applicable to
any function

32

Gradient Descent
• Main issue: how to set parameter η

(learning rate)
– If η is too small, too many iterations

– If η is too large may
overshoot the minimum
and possibly never find it

33

LDF Criterion Function
• Find weight vector a such that for all samples y1,…, yn

• Need criterion function J(a) which is minimized when a is a
solution vector

• Let YM be the set of examples misclassified by a
YM(a) ={ yi s.t. atyi<0 }

• First natural choice: number of misclassified examples
J(a) =|YM(a)|

• Piecewise constant, gradient
descent is useless

34

Perceptron

35

Perceptron Criterion Function

• If y is misclassified, aty<0
• Thus Jp(a) >0
• Jp(a) is ||a|| times the sum of

distances of misclassified
examples to decision boundary

• Jp(a) is piecewise linear
and thus suitable for
gradient descent

36

• Gradient of Jp(a) is:
– YM are samples misclassified by a(k)

– It is not possible to solve analytically
because of YM

• Update rule for gradient descent:
• Thus the gradient decent batch update rule for

Jp(a) is:

• It is called batch rule because it is based on all
misclassified examples

Perceptron Batch Rule

37

Perceptron Single Sample Rule
• The gradient decent single sample rule for Jp(a)

is:
– Note that yM is one sample misclassified by a(k)
– Must have a consistent way of visiting samples

• Geometric Interpretation:
– yM misclassified by a(k)

– yM is on the wrong
side of decision hyperplane

– Adding ηyM to a moves the
new decision hyperplane in
the right direction with
respect to yM

38

Perceptron Single Sample Rule

39

Perceptron Example

• Class 1: students who get A
• Class 2: students who get F

O. Veksler 40

• Augment samples by adding an extra
feature (dimension) equal to 1

41O. Veksler

• Normalize:
– Replace all examples from class 2 by their

negative values
– Seek a such that:

42O. Veksler

• Single Sample Rule
– Sample is misclassified if

– Gradient descent single sample rule:

– Set η fixed learning rate to

43O. Veksler

• Set equal initial weights
a(1) = [0.25, 0.25, 0.25, 0.25, 0.25]

• Visit all samples sequentially, modifying the
weights after each misclassified example

• New weights

44O. Veksler

• New weights

45O. Veksler

• New weights

46O. Veksler

• Thus the discriminant function is:

• Converting back to the original features x:

47O. Veksler

• Converting back to the original features x:

• This is just one possible solution vector
• If we started with weights

a(1)=[0,0.5, 0.5, 0, 0],
• The solution would be [-1,1.5, -0.5, -1, -1]

• In this solution, being tall is the least important feature
48O. Veksler

LDF: Non-separable Example

• Suppose we have 2 features
and the samples are:
– Class 1: [2,1], [4,3], [3,5]
– Class 2: [1,3] and [5,6]

• These samples are not
separable by a line

• Still would like to get approximate
separation by a line
– A good choice is shown in green
– Some samples may be “noisy”, and we

could accept them being misclassified

49O. Veksler

LDF: Non-separable Example

• Obtain y1, y2, y3, y4 by
adding extra feature and
“normalizing”

50O. Veksler

LDF: Non-separable Example
• Apply Perceptron single

sample algorithm
• Initial equal weights

a(1) = [1 1 1]
– Line equation x(1)+x(2)+1=0

• Fixed learning rate η = 1

51

LDF: Non-separable Example

52O. Veksler

LDF: Non-separable Example

53O. Veksler

LDF: Non-separable Example

O. Veksler 54

• y5
ta(4)=[-1 -5 -6]*[0 1 -4]=19>0

• y1
ta(4)=[1 2 1]*[0 1 -4]=-2<0

• ….

LDF: Non-separable Example
• We can continue this forever
• There is no solution vector a satisfying for all i

• Need to stop but at a good point

• Solutions at iterations
900 through 915
– Some are good and

some are not
• How do we stop at a good

solution?

55O. Veksler

Convergence of Perceptron Rules

• If classes are linearly separable and we use
fixed learning rate, that is for η(k) =const

• Then, both the single sample and batch
perceptron rules converge to a correct
solution (could be any a in the solution space)

• If classes are not linearly separable:
– The algorithm does not stop, it keeps looking for a

solution which does not exist

56

Convergence of Perceptron Rules

• If classes are not linearly separable:
– By choosing appropriate learning rate, we can always

ensure convergence:
– For example inverse linear learning rate:

– For inverse linear learning rate, convergence in the
linearly separable case can also be proven

– No guarantee that we stopped at a good point, but
there are good reasons to choose inverse linear
learning rate

57

Minimum Squared-Error
Procedures

58

Minimum Squared-Error Procedures
• Idea: convert to easier and better understood problem

• MSE procedure
– Choose positive constants b1, b2,…, bn
– Try to find weight vector a such that atyi = bi for all samples yi
– If we can find such a vector, then a is a solution because the bi’s

are positive
– Consider all the samples (not just the misclassified ones)

59

MSE Margins

• If atyi = bi, yi must be at distance bi from the
separating hyperplane (normalized by ||a||)

• Thus b1, b2,…, bn give relative expected distances or
“margins” of samples from the hyperplane

• Should make bi small if sample i is expected to be
near separating hyperplane, and large otherwise

• In the absence of any additional information, set
b1 = b2 =… = bn = 1

60

MSE Matrix Notation

• Need to solve n equations
• In matrix form Ya=b

61

Exact Solution is Rare

• Need to solve a linear system Ya = b
– Y is an n×(d +1) matrix

• Exact solution only if Y is non-singular and
square (the inverse Y-1 exists)
– a =Y-1 b
– (number of samples) = (number of features + 1)
– Almost never happens in practice
– Guaranteed to find the separating hyperplane

62

Approximate Solution
• Typically Y is overdetermined, that is it has more rows

(examples) than columns (features)
– If it has more features than examples, should reduce

dimensionality
• Need Ya = b, but no exact solution exists for an over-

determined system of equations
– More equations than unknowns

• Find an approximate solution
– Note that approximate solution a does not necessarily give

the separating hyperplane in the separable case
– But the hyperplane corresponding to a may still be a good

solution, especially if there is no separating hyperplane

63

MSE Criterion Function
• Minimum squared error approach: find a which
minimizes the length of the error vector e

e = Ya – b

• Thus minimize the minimum squared error
criterion function:

• Unlike the perceptron criterion function, we can
optimize the minimum squared error criterion
function analytically by setting the gradient to 0

64

Computing the Gradient

Pattern Classification, Chapter 5 65

Pseudo-Inverse Solution

• Setting the gradient to 0:

• The matrix YtY is square (it has d +1 rows and columns)
and it is often non-singular

• If YtY is non-singular, its inverse exists and we can solve
for a uniquely:

66

MSE Procedures
• Only guaranteed separating hyperplane if Ya > 0

– That is if all elements of vector Ya are positive

– where ε may be negative
• If ε1,…, εn are small relative to b1,…, bn, then each element of

Ya is positive, and a gives a separating hyperplane
– If the approximation is not good, εi may be large and negative,

for some i, thus bi + εi will be negative and a is not a separating
hyperplane

• In linearly separable case, least squares solution a does not
necessarily give separating hyperplane

67

MSE Procedures
• We are free to choose b. We may be tempted to make

b large as a way to ensure Ya =b > 0
– Does not work
– Let β be a scalar, let’s try βb instead of b

• If a* is a least squares solution to Ya = b, then for any
scalar β, the least squares solution to Ya = βb is βa*

• Thus if the i th element of Ya is less than 0, that is yi
ta

< 0, then yi
t (βa) < 0,

– The relative difference between components of b matters,
but not the size of each individual component

68

LDF using MSE: Example 1

• Class 1: (6 9), (5 7)
• Class 2: (5 9), (0 4)
• Add extra feature and

“normalize”

69

LDF using MSE: Example 1

• Choose b=[1 1 1 1]T

• In Matlab, a=Y\b solves the
least squares problem

• Note a is an approximation to Ya = b,
since no exact solution exists

• This solution gives a separating
hyperplane since Ya >0

70




















944.0
045.1
66.2

a





















11.1
61.0
28.1
44.0

Ya

LDF using MSE: Example 2
• Class 1: (6 9), (5 7)
• Class 2: (5 9), (0 10)
• The last sample is very far

compared to others from
the separating hyperplane

71

LDF using MSE: Example 2

• Choose b=[1 1 1 1]T

• In Matlab, a=Y\b solves the
least squares problem

• This solution does not provide a
separating hyperplane since aty3 < 0

72

LDF using MSE: Example 2

• MSE pays too much attention to isolated
“noisy” examples
– such examples are called outliers

• No problems with convergence
• Solution ranges from reasonable to good

73

LDF using MSE: Example 2

• We can see that the 4th point is
vary far from separating hyperplane
– In practice we don’t know this

• A more appropriate b could be
• In Matlab, solve a=Y\b

• This solution gives the separating
hyperplane since Ya > 0

74

Gradient Descent for MSE

• May wish to find MSE solution by gradient
descent:
1. Computing the inverse of YtY may be too costly
2. YtY may be close to singular if samples are

highly correlated (rows of Y are almost linear
combinations of each other) computing the
inverse of YtY is not numerically stable

• As shown before, the gradient is:

75

Widrow-Hoff Procedure

• Thus the update rule for gradient descent is:

• If η(k)=η(1)/k, then a(k) converges to the MSE
solution a, that is Yt(Ya-b)=0

• TheWidrow-Hoff procedure reduces storage
requirements by considering single samples
sequentially

76

LDF Summary
• Perceptron procedures

– Find a separating hyperplane in the linearly separable
case,

– Do not converge in the non-separable case
– Can force convergence by using a decreasing learning

rate, but are not guaranteed a reasonable stopping point
• MSE procedures

– Converge in separable and not separable case
– May not find separating hyperplane even if classes are

linearly separable
– Use pseudoinverse if YtY is not singular and not too large
– Use gradient descent (Widrow-Hoff procedure) otherwise

77

Support Vector Machines

78

SVM Resources
• Burges tutorial

– http://research.microsoft.com/en-
us/um/people/cburges/papers/SVMTutorial.pdf

• Shawe-Taylor and Christianini tutorial
– http://www.support-vector.net/icml-tutorial.pdf

• Lib SVM
– http://www.csie.ntu.edu.tw/~cjlin/libsvm/

• LibLinear
– http://www.csie.ntu.edu.tw/~cjlin/liblinear/

• SVM Light
– http://svmlight.joachims.org/

• Power Mean SVM (very fast for histogram features)
– https://sites.google.com/site/wujx2001/home/power-mean-svm

79

SVMs

• One of the most important developments
in pattern recognition in the last years

• Elegant theory
– Has good generalization properties

• Have been applied to diverse problems
very successfully

80

Linear Discriminant Functions
• A discriminant function is linear if it can be written as

• which separating hyperplane should we choose?

81

Linear Discriminant Functions
• Training data is just a subset of all possible data

– Suppose hyperplane is close to sample xi

– If we see new sample close to xi, it may be on the
wrong side of the hyperplane

• Poor generalization (performance on unseen data)

82

Linear Discriminant Functions
• Hyperplane as far as possible from any sample

• New samples close to the old samples will be
classified correctly

• Good generalization

83

SVM
• Idea: maximize distance to the closest example

• For the optimal hyperplane
– distance to the closest negative example = distance

to the closest positive example

84

SVM: Linearly Separable Case
• SVM: maximize the margin

• The margin is twice the absolute value of distance b of
the closest example to the separating hyperplane

• Better generalization (performance on test data)
– in practice
– and in theory

85

SVM: Linearly Separable Case

• Support vectors are the samples closest to the
separating hyperplane
– They are the most difficult patterns to classify
– Recall perceptron update rule

• Optimal hyperplane is completely defined by support
vectors
– Of course, we do not know which samples are support

vectors without finding the optimal hyperplane
86

SVM: Formula for the Margin

• Absolute distance between x
and the boundary g(x) = 0

• Distance is unchanged for hyperplane

• Let xi be an example closest to the boundary (on the
positive side). Set:

• Now the largest margin hyperplane is unique
87

SVM: Formula for the Margin

• For uniqueness, set |wTxi+w0|=1 for any sample
xi closest to the boundary

• The distance from closest sample xi to
g(x) = 0 is

• Thus the margin is

88

SVM: Optimal Hyperplane
• Maximize margin

• Subject to constraints

• Let

• Can convert our problem to minimize

• J(w) is a quadratic function, thus there is a single
global minimum

89

SVM: Optimal Hyperplane

• Use Kuhn-Tucker theorem to convert our
problem to:

• a ={a1,…, an} are new variables, one for
each sample

• Optimized by quadratic programming

90

SVM: Optimal Hyperplane

• After finding the optimal a = {a1,…, an}
• Final discriminant function:

• where S is the set of support vectors

91

SVM: Optimal Hyperplane

• LD(a) depends on the number of samples, not
on dimension
– samples appear only through the dot products xj

txi

• This will become important when looking for a
nonlinear discriminant function, as we will see
soon

92

SVM: Non-Separable Case
• Data are most likely to be not linearly separable,

but linear classifier may still be appropriate

• Can apply SVM in non linearly separable case
• Data should be “almost” linearly separable for

good performance

93

SVM: Non-Separable Case
• Use slack variables ξ1,…, ξn (one for each sample)
• Change constraints from to

• ξi is a measure of deviation
from the ideal for xi
– ξi >1: xi is on the wrong side

of the separating hyperplane
– 0 < ξi <1: xi is on the right side

of separating hyperplane but
within the region of maximum
margin

– ξi < 0 : is the ideal case forxi

94

SVM: Non-Separable Case
• We would like to minimize

• where
• Constrained to
• β is a constant that measures the relative

weight of first and second term
– If β is small, we allow a lot of samples to be in not

ideal positions
– If β is large, few samples can be in non-ideal

positions

95

SVM: Non-Separable Case

96

SVM: Non-Separable Case
• Unfortunately this minimization problem is

NP-hard due to the discontinuity of I(ξi)
• Instead, we minimize

• Subject to

97

SVM: Non-Separable Case
• Use Kuhn-Tucker theorem to convert to:

• w is computed using:

• Remember that

98

Nonlinear Mapping
• Cover’s theorem: “a pattern-classification problem

cast in a high dimensional space non-linearly is
more likely to be linearly separable than in a low-
dimensional space”

• One dimensional space, not linearly separable

• Lift to two dimensional space with φ(x)=(x,x2)

99

Nonlinear Mapping
• To solve a non linear classification problem with a linear

classifier
1. Project data x to high dimension using function φ(x)
2. Find a linear discriminant function for transformed data φ(x)
3. Final nonlinear discriminant function is g(x) = wtφ(x) +w0

• In 2D, the discriminant function is linear

• In 1D, the discriminant function is not linear

100

Nonlinear Mapping

• However, there always exists a mapping of
N samples to an N-dimensional space in
which the samples are separable by
hyperplanes

101

Nonlinear SVM
• Can use any linear classifier after lifting data to a

higher dimensional space. However we will have
to deal with the curse of dimensionality
– Poor generalization to test data
– Computationally expensive

• SVM avoids the curse of dimensionality problems
– Enforcing largest margin permits good generalization

• It can be shown that generalization in SVM is a function of
the margin, independent of the dimensionality

– Computation in the higher dimensional case is
performed only implicitly through the use of kernel
functions

102

Kernels
• SVM optimization:

maximize

• Note this optimization depends on samples xi only
through the dot product xi

txj
• If we lift xi to high dimension using φ(x), we need to

compute high dimensional product φ(xi)t φ(xj)

maximize

• Idea: find kernel function K(xi,xj) s.t.

103

Kernel Trick

• Then we only need to compute K(xi,xj)
instead of φ(xi)t φ(xj)

• “kernel trick”: do not need to perform
operations in high dimensional space
explicitly

104

Kernel Example
• Suppose we have two features and K(x,y) =

(xty)2

• Which mapping φ(x) does this correspond to?

105

Choice of Kernel
• How to choose kernel function K(xi,xj)?

– K(xi,xj) should correspond to φ(xi)t φ(xj) in a
higher dimensional space

– Mercer’s condition tells us which kernel function
can be expressed as dot product of two vectors

– If K and K’ are kernels aK+bK’ is a kernel
• Intuitively: Kernel should measure the

similarity between xi and xj
– As inner product measures similarity of unit

vectors
– May be problem-specific

106

Choice of Kernel
• Some common choices:

– Polynomial kernel

– Gaussian radial Basis kernel

– Hyperbolic tangent (sigmoid) kernel

• The mappings φ(xi) never have to be computed!!

107

K(xi,xj) = tanh(k xi
txj + c)

Intersection Kernel

• Feature vectors are histograms

• When K(xi,xj) is small, xi and xj are
dissimilar

• When K(xi,xj) is large, xi and xj are similar

• The mapping φ(x) does not exist

108





n

k
jkikji xxxxK

1
),min(),(

More Additive Kernels

• χ2 kernel

• Hellinger’s kernel

• Designed for feature vectors that are
histograms
– Can be used for other feature vectors

• Offer very large speed-ups

109


 


n

k kk

kk

yx
yxK

1

2
2





n

k
kkH yxK

1

The Kernel Matrix
• a.k.a the Gram matrix

• Contains all necessary information for the
learning algorithm

• Fuses information about the data and the
kernel (similarity measure)

110

Bad Kernels
• The kernel matrix is mostly diagonal

– All points are orthogonal to each other

• Bad similarity measure
• Too many irrelevant features in high

dimensional space

• We need problem-specific knowledge to
choose appropriate kernel

111

Nonlinear SVM Step-by-Step

• Start with data x1,…,xn which live in feature space of
dimension d

• Choose kernel K(xi,xj) or function φ(xi) which lifts sample
xi to a higher dimensional space

• Find the maximum margin linear discriminant function in
the higher dimensional space by using quadratic
programming package to solve:

112

Nonlinear SVM Step-by-Step
• Weight vector w in the high dimensional space:

– where S is the set of support vectors
• Linear discriminant function of maximum margin in

the high dimensional space:

• Non linear discriminant function in the original
space:

• decide class 1 if g(x) > 0, otherwise decide class 2

113

Nonlinear SVM

• Nonlinear discriminant function

114

SVM Example: XOR Problem
• Class 1: x1 = [1,-1], x2 = [-1,1]
• Class 2: x3 = [1,1], x4 = [-1,-1]
• Use polynomial kernel of degree 2:

– This kernel corresponds to the mapping

• Need to maximize

constrained to

115

SVM Example: XOR Problem

• After some manipulation …
• The solution is a1= a2 = a3 = a4 = 0.25

– satisfies the constraints

• All samples are support vectors

116

SVM Example: XOR Problem

• The weight vector w is:

• Thus the nonlinear discriminant function is:

117

SVM Example: XOR Problem

118

SVM Summary
• Advantages:

– Based on very strong theory
– Excellent generalization properties
– Objective function has no local minima
– Can be used to find non linear discriminant functions
– Complexity of the classifier is characterized by the

number of support vectors rather than the
dimensionality of the transformed space

• Disadvantages:
– Directly applicable to two-class problems
– Quadratic programming is computationally expensive
– Need to choose kernel

119

Multi-Class SVMs

• One against all
• Pairwise

• These ideas apply to all binary classifiers
when faced with multi-class problems

120

One-Against-All

• SVMs can only handle two-class outputs
• What can be done?
• Answer: learn N SVM’s

– SVM 1 learns “Output==1” vs “Output != 1”
– SVM 2 learns “Output==2” vs “Output != 2”
– …
– SVM N learns “Output==N” vs “Output != N”

121

One-Against-All

• Original idea (Vapnik, 1995): classify x as
ωi if and only if the corresponding SVM
accepts x and all other SVMs reject it

122

?

One-Against-All
• Modified idea (Vapnik, 1998): classify x

according to the SVM that produces the
highest value (use more than sign of
decision function)

123

Pairwise SVMs

• Learn N(N-1)/2 SVM’s
– SVM 1 learns “Output==1” vs “Output == 2”
– SVM 2 learns “Output==1” vs “Output == 3”
– …
– SVM M learns “Output==N-1” vs “Output == N”

124

Pairwise SVMs

• To classify a new input, apply each SVM
and choose the label that “wins” most
often

125

