
CS 559: Machine Learning 
Fundamentals and Applications

9th Set of Notes

Instructor: Philippos Mordohai
Webpage: www.cs.stevens.edu/~mordohai
E-mail: Philippos.Mordohai@stevens.edu

Office: Lieb 215

1



Overview
• Logistic Regression

– Notes by T. Mitchell
– Barber Ch. 17
– HTF Ch. 4

• Linear Discriminant Functions (Slides based on 
Olga Veksler’s)
– Optimization with gradient descent
– Perceptron Criterion Function

• Batch perceptron rule
• Single sample perceptron rule

– Minimum Squared Error (MSE) rule
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Overview (cont.)
• Support Vector Machines (SVM)

– Introduction
– Linear Discriminant

• Linearly Separable Case
• Linearly Non Separable Case

– Kernel Trick
• Non Linear Discriminant

– Multi-class SVMs

• See HTF Ch. 12
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Logistic Regression

• Idea: generative models compute P(Y|X) 
by learning P(Y) and P(X|Y)

• Why not learn P(Y|X) directly?
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Logistic Regression

• Consider learning f: X  Y, where
– X is a vector of real-valued features, < X1 … Xn

>
– Y is boolean
– assume all Xi are conditionally independent 

given Y
– model P(Xi | Y = yk) as Gaussian N(μik,σi

2)
– model P(Y) as Bernoulli (π) 

• Y is 1 with probability π
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Derivation of P(Y|X)
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Very Convenient
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Very Convenient
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• Posteriors sum to 1 and remain in [0, 1]

• Logit: ௣
ଵି௣

=α+βx

– is linear in x

• Probability: ௘೗

ଵା௘೗



Logistic Function

• ݌ ൌ 0, 	݈ ൌ log ௣
ଵି௣

ൌ െ∞

• ݌ ൌ ଵ
ଶ
, 		݈ ൌ log ௣

ଵି௣
ൌ 0

• ݌ ൌ 1, 		݈ ൌ log ௣
ଵି௣

ൌ ൅∞
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Decision Boundary

• How to make decisions given
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Logistic Regression More Generally

• Logistic regression when Y is not boolean (but 
still discrete)
– yϵ{y1 … yR}: learn R-1 sets of weights

– for k<R 

– for k=R
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Training Logistic Regression: MCLE

• We have L training examples:

• Maximum likelihood estimate for 
parameters W

• Maximum conditional likelihood estimate
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Training Logistic Regression: MCLE
• Choose parameters <w0 … wn> to maximize 

conditional likelihood of training data

• Training data D=
• Data likelihood = 
• Data conditional likelihood = 
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Conditional Log Likelihood
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Maximizing Conditional Log Likelihood
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Good news: l(W) is concave function of W
Bad news: no closed-form solution to maximize l(W)



Gradient Descent
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Maximize Conditional Log Likelihood:
Gradient Ascent

17



Maximize Conditional Log Likelihood:
Gradient Ascent
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Logistic Regression: Summary
• Consider learning f: X  Y, where

– X is a vector of real-valued features, < X1 … Xn >
– Y is boolean
– assume all Xi are conditionally independent given Y
– model P(Xi | Y = yk) as Gaussian N(μik,σi

2)
– model P(Y) as Bernoulli (π) 

• Then P(Y|X) is of this form and we can directly 
estimate W
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Linear Discriminant Functions
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Augmented Feature Vector
• Linear discriminant function: g(x) = wt x +w0

• Can rewrite it: 

• y  is called the augmented feature vector
• Added a dummy dimension to get a completely 

equivalent new homogeneous problem

Pattern Classification, Chapter 5 21



• Feature augmentation is done for simpler 
notation

• From now on, always assume that we have 
augmented feature vectors
– Given samples x1,…, xn convert them to 

augmented samples y1,…, yn by adding a new 
dimension of value 1
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Training Error
• For the rest of this part, assume we have 2 classes

– Samples: y1,…, yn , some in class 1, some in class 2
• Use samples to determine weights a in the 

discriminant function g(y) = aty
• What should the criterion for determining a be?
• For now, suppose we want to minimize the training 

error (the number of misclassified samples y1,…, yn)

• Recall that:

• Thus training error is 0 if
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g(yi)>0 => yi classified as c1
g(yi)<0 => yi classified as c2



“Normalization”
• Thus training error is 0 if:

• Equivalently, training error is 0 if:

• This suggests “normalization” (a.k.a. reflection):
1. Replace all examples from class 2 by:

2. Seek weight vector a such that

– If such a exists, it is called a separating or solution 
vector

– Original samples x1,…, xn can indeed be separated by 
a line
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Normalization

• Seek a hyperplane
that separates 
patterns from different 
categories

• Seek hyperplane that 
puts normalized 
patterns on the 
same(positive) side
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Solution Region
• Find weight vector a such that for all samples:

• In general, there can be many solutions
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Solution Region
• Solution region for a: set of all possible 

solutions  defined in terms of normal a to 
the separating hyperplane
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Optimization
• Need to minimize a function of many 

variables
J(x) =J(x 1,..., xd ) 

• We know how to minimize J(x)
– Take partial derivatives and set them to zero
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Optimization
• However solving analytically is not always 

easy
– For example:

• Sometimes it is not even possible to write 
down an analytical expression for the 
derivative (example later today)
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Gradient Descent
• Gradient            points in direction of steepest increase 

of J(x), and             in direction of steepest decrease
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Gradient Descent for minimizing any function J(x)
– Set k = 1 and x(1) to some initial guess for the weight 

vector
– While

• Choose learning rate η(k)

(update rule)
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Gradient Descent

• Gradient decent is guaranteed to only find 
local minima

• Nevertheless gradient descent is very 
popular because it is simple and applicable to 
any function

32



Gradient Descent
• Main issue: how to set parameter η

(learning rate)
– If η is too small, too many iterations

– If η is too large may 
overshoot the minimum 
and possibly never find it
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LDF Criterion Function
• Find weight vector a such that for all samples y1,…, yn

• Need criterion function J(a) which is minimized when a is a 
solution vector

• Let YM be the set of examples misclassified by a
YM(a) ={ yi s.t. atyi<0 }

• First natural choice: number of misclassified examples
J(a) =|YM(a)|

• Piecewise constant, gradient 
descent is useless
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Perceptron
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Perceptron Criterion Function

• If y is misclassified, aty<0
• Thus Jp(a) >0
• Jp(a)  is ||a|| times the sum of 

distances of misclassified 
examples to decision boundary

• Jp(a) is piecewise linear 
and thus suitable for 
gradient descent
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• Gradient of Jp(a) is: 
– YM are samples misclassified by a(k)

– It is not possible to solve                 analytically 
because of YM

• Update rule for gradient descent:
• Thus the gradient decent batch update rule for 

Jp(a) is:

• It is called batch rule because it is based on all 
misclassified examples

Perceptron Batch Rule
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Perceptron Single Sample Rule
• The gradient decent single sample rule for Jp(a) 

is:
– Note that yM is one sample misclassified by a(k)
– Must have a consistent way of visiting samples

• Geometric Interpretation: 
– yM misclassified by a(k)

– yM is on the wrong 
side of decision hyperplane

– Adding ηyM to a moves the
new decision hyperplane in 
the right direction with 
respect to yM
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Perceptron Single Sample Rule
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Perceptron Example

• Class 1: students who get A
• Class 2: students who get F

O. Veksler 40



• Augment samples by adding an extra 
feature (dimension) equal to 1
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• Normalize:
– Replace all examples from class 2 by their 

negative values
– Seek a such that: 

42O. Veksler



• Single Sample Rule
– Sample is misclassified if 

– Gradient descent single sample rule: 

– Set η fixed learning rate to

43O. Veksler



• Set equal initial weights 
a(1) = [0.25, 0.25, 0.25, 0.25, 0.25]

• Visit all samples sequentially, modifying the 
weights after each misclassified example

• New weights
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• New weights
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• New weights
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• Thus the discriminant function is:

• Converting back to the original features x:

47O. Veksler



• Converting back to the original features x:

• This is just one possible solution vector
• If we started with weights 

a(1)=[0,0.5, 0.5, 0, 0 ], 
• The solution would be [-1,1.5, -0.5, -1, -1]

• In this solution, being tall is the least important feature
48O. Veksler



LDF: Non-separable Example

• Suppose we have 2 features 
and the samples are:
– Class 1: [2,1], [4,3], [3,5]
– Class 2: [1,3] and [5,6]

• These samples are not 
separable by a line

• Still would like to get approximate 
separation by a line 
– A good choice is shown in green
– Some samples may be “noisy”, and we 

could accept them being misclassified

49O. Veksler



LDF: Non-separable Example

• Obtain y1, y2, y3, y4 by 
adding extra feature and 
“normalizing”

50O. Veksler



LDF: Non-separable Example
• Apply Perceptron single 

sample algorithm
• Initial equal weights 

a(1) = [1 1 1]
– Line equation x(1)+x(2)+1=0

• Fixed learning rate η = 1
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LDF: Non-separable Example

52O. Veksler



LDF: Non-separable Example
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LDF: Non-separable Example

O. Veksler 54

• y5
ta(4)=[-1 -5 -6]*[0 1 -4]=19>0

• y1
ta(4)=[1 2 1]*[0 1 -4]=-2<0

• ….



LDF: Non-separable Example
• We can continue this forever
• There is no solution vector a  satisfying for all i

• Need to stop but at a good point

• Solutions at iterations 
900 through 915
– Some are good and 

some are not
• How do we stop at a good 

solution?

55O. Veksler



Convergence of Perceptron Rules

• If classes are linearly separable and we use 
fixed learning rate, that is for η(k) =const

• Then, both  the single sample and batch 
perceptron rules converge to a correct 
solution (could be any a in the solution space)

• If classes are not linearly separable:
– The algorithm does not stop, it keeps looking for a 

solution which does not exist
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Convergence of Perceptron Rules

• If classes are not linearly separable:
– By choosing appropriate learning rate, we can always 

ensure convergence:
– For example inverse linear learning rate: 

– For inverse linear learning rate, convergence in the 
linearly separable case can also be proven

– No guarantee that we stopped at a good point, but 
there are good reasons to choose inverse linear 
learning rate
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Minimum Squared-Error 
Procedures
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Minimum Squared-Error Procedures
• Idea: convert to easier and better understood problem

• MSE procedure
– Choose positive constants b1, b2,…, bn
– Try to find weight vector a such that atyi = bi for all samples yi
– If we can find such a vector, then a is a solution because the bi’s 

are positive
– Consider all the samples (not just the misclassified ones)
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MSE Margins

• If atyi = bi, yi must be at distance bi from the 
separating hyperplane (normalized by ||a||)

• Thus b1, b2,…, bn give relative expected distances or 
“margins” of samples from the hyperplane

• Should make bi small if sample i is expected to be 
near separating hyperplane, and large otherwise

• In the absence of any additional information, set 
b1 = b2 =… = bn = 1
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MSE Matrix Notation

• Need to solve n equations
• In matrix form Ya=b

61



Exact Solution is Rare

• Need to solve a linear system Ya = b
– Y is an n×(d +1) matrix

• Exact solution only if Y is non-singular and 
square (the inverse Y-1 exists)
– a =Y-1 b
– (number of samples) = (number of features + 1)
– Almost never happens in practice
– Guaranteed to find the separating hyperplane
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Approximate Solution
• Typically Y is overdetermined, that is it has more rows 

(examples) than columns (features)
– If it has more features than examples, should reduce 

dimensionality
• Need Ya = b, but no exact solution exists for an over-

determined system of equations
– More equations than unknowns

• Find an approximate solution 
– Note that approximate solution a does not necessarily give 

the separating hyperplane in the separable case
– But the hyperplane corresponding to a may still be a good 

solution, especially if there is no separating hyperplane
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MSE Criterion Function
• Minimum squared error approach: find a which
minimizes the length of the error vector e

e = Ya – b

• Thus minimize the minimum squared error 
criterion function:

• Unlike the perceptron criterion function, we can 
optimize the minimum squared error criterion 
function analytically by setting the gradient to 0
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Computing the Gradient

Pattern Classification, Chapter 5 65



Pseudo-Inverse Solution

• Setting the gradient to 0:

• The matrix YtY is square (it has d +1 rows and columns) 
and it is often non-singular

• If YtY is non-singular, its inverse exists and we can solve 
for a uniquely:
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MSE Procedures
• Only guaranteed separating hyperplane if Ya > 0

– That is if all elements of vector Ya are positive

– where ε may be negative
• If ε1,…, εn are small relative to b1,…, bn, then each element of 

Ya is positive, and a gives a separating hyperplane
– If the approximation is not good, εi may be large and negative,

for some i, thus bi + εi will be negative and a is not a separating 
hyperplane

• In linearly separable case, least squares solution a does not 
necessarily give separating hyperplane
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MSE Procedures
• We are free to choose b. We may be tempted to make 

b large as a way to ensure Ya =b > 0
– Does not work
– Let β be a scalar, let’s try βb instead of b

• If a* is a least squares solution to Ya = b, then for any 
scalar β, the least squares solution to Ya = βb is βa*

• Thus if the i th element of Ya is less than 0, that is yi
ta

< 0, then yi
t (βa) < 0,

– The relative difference between components of b matters, 
but not the size of each individual component
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LDF using MSE: Example 1

• Class 1: (6 9), (5 7)
• Class 2: (5 9), (0 4)
• Add extra feature and 

“normalize”
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LDF using MSE: Example 1

• Choose b=[1 1 1 1]T

• In Matlab, a=Y\b solves the
least squares problem

• Note a is an approximation to Ya = b,
since no exact solution exists

• This solution gives a separating 
hyperplane since Ya >0
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LDF using MSE: Example 2
• Class 1: (6 9), (5 7)
• Class 2: (5 9), (0 10)
• The last sample is very far 

compared to others from 
the separating hyperplane
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LDF using MSE: Example 2

• Choose b=[1 1 1 1]T

• In Matlab, a=Y\b solves the
least squares problem

• This solution does not provide a 
separating hyperplane since aty3 < 0
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LDF using MSE: Example 2

• MSE pays too much attention to isolated 
“noisy” examples 
– such examples are called outliers

• No problems with convergence 
• Solution ranges from reasonable to good
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LDF using MSE: Example 2

• We can see that the 4th point is 
vary far from separating hyperplane
– In practice we don’t know this

• A more appropriate b could be
• In Matlab, solve a=Y\b

• This solution gives the separating 
hyperplane since Ya > 0
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Gradient Descent for MSE

• May wish to find MSE solution by gradient 
descent:
1. Computing the inverse of YtY may be too costly
2. YtY may be close to singular if samples are 

highly correlated (rows of Y are almost linear 
combinations of each other) computing the 
inverse of YtY is not numerically stable

• As shown before, the gradient is:
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Widrow-Hoff Procedure

• Thus the update rule for gradient descent is:

• If η(k)=η(1)/k, then a(k) converges to the MSE 
solution a, that is Yt(Ya-b)=0

• TheWidrow-Hoff procedure reduces storage 
requirements by considering single samples 
sequentially
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LDF Summary
• Perceptron procedures

– Find a separating hyperplane in the linearly separable 
case,

– Do not converge in the non-separable case
– Can force convergence by using a decreasing learning 

rate, but are not guaranteed a reasonable stopping point
• MSE procedures

– Converge in separable and not separable case
– May not find separating hyperplane even if classes are 

linearly separable
– Use pseudoinverse if YtY is not singular and not too large
– Use gradient descent (Widrow-Hoff procedure) otherwise
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Support Vector Machines 
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SVM Resources
• Burges tutorial

– http://research.microsoft.com/en-
us/um/people/cburges/papers/SVMTutorial.pdf

• Shawe-Taylor and Christianini tutorial
– http://www.support-vector.net/icml-tutorial.pdf

• Lib SVM
– http://www.csie.ntu.edu.tw/~cjlin/libsvm/

• LibLinear
– http://www.csie.ntu.edu.tw/~cjlin/liblinear/

• SVM Light
– http://svmlight.joachims.org/

• Power Mean SVM (very fast for histogram features)
– https://sites.google.com/site/wujx2001/home/power-mean-svm
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SVMs

• One of the most important developments 
in pattern recognition in the last years

• Elegant theory
– Has good generalization properties

• Have been applied to diverse problems 
very successfully
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Linear Discriminant Functions
• A discriminant function is linear if it can be written as

• which separating hyperplane should we choose?
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Linear Discriminant Functions
• Training data is just a subset of all possible data

– Suppose hyperplane is close to sample xi

– If we see new sample close to xi, it may be on the 
wrong side of the hyperplane

• Poor generalization (performance on unseen data)
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Linear Discriminant Functions
• Hyperplane as far as possible from any sample

• New samples close to the old samples will be 
classified correctly

• Good generalization
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SVM
• Idea: maximize distance to the closest example

• For the optimal hyperplane
– distance to the closest negative example = distance 

to the closest positive example
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SVM: Linearly Separable Case
• SVM: maximize the margin

• The margin is twice the absolute value of distance b of 
the closest example to the separating hyperplane

• Better generalization (performance on test data)
– in practice
– and in theory

85



SVM: Linearly Separable Case

• Support vectors  are the samples closest to the 
separating hyperplane
– They are the most difficult patterns to classify
– Recall perceptron update rule

• Optimal hyperplane is completely defined by support 
vectors
– Of course, we do not know which samples are support 

vectors without finding the optimal hyperplane
86



SVM: Formula for the Margin

• Absolute distance between x 
and the boundary g(x) = 0

• Distance is unchanged for hyperplane

• Let xi be an example closest to the boundary (on the 
positive side). Set:

• Now the largest margin hyperplane is unique
87



SVM: Formula for the Margin

• For uniqueness, set |wTxi+w0|=1 for any sample 
xi closest to the boundary

• The distance from closest sample xi to
g(x) = 0 is

• Thus the margin is
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SVM: Optimal Hyperplane
• Maximize margin

• Subject to constraints

• Let 

• Can convert our problem to minimize

• J(w) is a quadratic function, thus there is a single 
global minimum
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SVM: Optimal Hyperplane

• Use Kuhn-Tucker theorem to convert our 
problem to:

• a ={a1,…, an} are new variables, one for 
each sample

• Optimized by quadratic programming
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SVM: Optimal Hyperplane

• After finding the optimal a = {a1,…, an}
• Final discriminant function:

• where S is the set of support vectors
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SVM: Optimal Hyperplane

• LD(a) depends on the number of samples, not 
on dimension 
– samples appear only through the dot products xj

txi

• This will become important when looking for a 
nonlinear discriminant function, as we will see 
soon
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SVM: Non-Separable Case
• Data are most likely to be not linearly separable, 

but linear classifier may still be appropriate

• Can apply SVM in non linearly separable case
• Data should be “almost” linearly separable for 

good performance
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SVM: Non-Separable Case
• Use slack variables ξ1,…, ξn (one for each sample)
• Change constraints from                                to

• ξi is a measure of deviation
from the ideal for xi
– ξi >1: xi is on the wrong side 

of the separating hyperplane
– 0 < ξi <1: xi is on the right side 

of separating hyperplane but 
within the region of maximum 
margin

– ξi < 0 : is the ideal case forxi
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SVM: Non-Separable Case
• We would like to minimize

• where
• Constrained to
• β is a constant that measures the relative 

weight of first and second term
– If β is small, we allow a lot of samples to be in not 

ideal positions
– If β is large, few samples can be in non-ideal 

positions
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SVM: Non-Separable Case
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SVM: Non-Separable Case
• Unfortunately this minimization problem is 

NP-hard due to the discontinuity of I(ξi)
• Instead, we minimize

• Subject to 
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SVM: Non-Separable Case
• Use Kuhn-Tucker theorem to convert to:

• w is computed using:

• Remember that 
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Nonlinear Mapping
• Cover’s theorem: “a pattern-classification problem 

cast in a high dimensional space non-linearly is 
more likely to be linearly separable than in a low-
dimensional space”

• One dimensional space, not linearly separable

• Lift to two dimensional space with φ(x)=(x,x2 )
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Nonlinear Mapping
• To solve a non linear classification problem with a linear 

classifier
1. Project data x to high dimension using function φ(x)
2. Find a linear discriminant function for transformed data φ(x)
3. Final nonlinear discriminant function is g(x) = wtφ(x) +w0

• In 2D, the discriminant function is linear

• In 1D, the discriminant function is not linear
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Nonlinear Mapping

• However, there always exists a mapping of 
N samples to an N-dimensional space in 
which the samples are separable by 
hyperplanes
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Nonlinear SVM
• Can use any linear classifier after lifting data to a 

higher dimensional space. However we will have 
to deal with the curse of dimensionality
– Poor generalization to test data
– Computationally expensive

• SVM avoids the curse of dimensionality problems
– Enforcing largest margin permits good generalization

• It can be shown that generalization in SVM is a function of 
the margin, independent of the dimensionality

– Computation in the higher dimensional case is 
performed only implicitly through the use of kernel 
functions
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Kernels
• SVM optimization: 

maximize   

• Note this optimization depends on samples xi only 
through the dot product xi

txj
• If we lift xi to high dimension using φ(x), we need to 

compute high dimensional product φ(xi)t φ(xj)

maximize 

• Idea: find kernel function K(xi,xj) s.t.
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Kernel Trick

• Then we only need to compute K(xi,xj) 
instead of φ(xi)t φ(xj)

• “kernel trick”: do not need to perform 
operations in high dimensional space 
explicitly
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Kernel Example
• Suppose we have two features and K(x,y) = 

(xty)2

• Which mapping φ(x) does this correspond to?
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Choice of Kernel
• How to choose kernel function K(xi,xj)?

– K(xi,xj) should correspond to φ(xi)t φ(xj)  in a 
higher dimensional space

– Mercer’s condition tells us which kernel function 
can be expressed as dot product of two vectors

– If K and K’ are kernels aK+bK’ is a kernel
• Intuitively: Kernel should measure the 

similarity between xi and xj
– As inner product measures similarity of unit 

vectors
– May be problem-specific
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Choice of Kernel
• Some common choices:

– Polynomial kernel

– Gaussian radial Basis kernel

– Hyperbolic tangent (sigmoid) kernel

• The mappings φ(xi) never have to be computed!!
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Intersection Kernel

• Feature vectors are histograms

• When K(xi,xj) is small, xi and xj are 
dissimilar 

• When K(xi,xj) is large, xi and xj are similar 

• The mapping φ(x) does not exist
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More Additive Kernels

• χ2 kernel

• Hellinger’s kernel

• Designed for feature vectors that are 
histograms
– Can be used for other feature vectors

• Offer very large speed-ups
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The Kernel Matrix
• a.k.a the Gram matrix

• Contains all necessary information for the 
learning algorithm

• Fuses information about the data and the 
kernel (similarity measure)
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Bad Kernels
• The kernel matrix is mostly diagonal

– All points are orthogonal to each other

• Bad similarity measure
• Too many irrelevant features in high 

dimensional space 

• We need problem-specific knowledge to 
choose appropriate kernel

111



Nonlinear SVM Step-by-Step

• Start with data x1,…,xn which live in feature space of 
dimension d

• Choose kernel K(xi,xj) or function φ(xi) which lifts sample 
xi to a higher dimensional space

• Find the maximum margin linear discriminant function in 
the higher dimensional space by using quadratic 
programming package to solve:
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Nonlinear SVM Step-by-Step
• Weight vector w in the high dimensional space:

– where S is the set of support vectors
• Linear discriminant function of maximum margin in 

the high dimensional space:

• Non linear discriminant function in the original 
space:

• decide class 1 if g(x ) > 0, otherwise decide class 2
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Nonlinear SVM

• Nonlinear discriminant function
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SVM Example: XOR Problem
• Class 1: x1 = [1,-1], x2 = [-1,1]
• Class 2: x3 = [1,1], x4 = [-1,-1]
• Use polynomial kernel of degree 2:

– This kernel corresponds to the mapping

• Need to maximize

constrained to 
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SVM Example: XOR Problem

• After some manipulation …
• The solution is a1= a2 = a3 = a4 = 0.25

– satisfies the constraints

• All samples are support vectors
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SVM Example: XOR Problem

• The weight vector w is:

• Thus the nonlinear discriminant function is:
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SVM Example: XOR Problem
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SVM Summary
• Advantages:

– Based on very strong theory
– Excellent generalization properties
– Objective function has no local minima
– Can be used to find non linear discriminant functions
– Complexity of the classifier is characterized by the 

number of support vectors rather than the 
dimensionality of the transformed space

• Disadvantages:
– Directly applicable to two-class problems
– Quadratic programming is computationally expensive
– Need to choose kernel 
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Multi-Class SVMs

• One against all
• Pairwise

• These ideas apply to all binary classifiers 
when faced with multi-class problems
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One-Against-All

• SVMs can only handle two-class outputs
• What can be done?
• Answer: learn N SVM’s

– SVM 1 learns “Output==1” vs “Output != 1”
– SVM 2 learns “Output==2” vs “Output != 2”
– …
– SVM N learns “Output==N” vs “Output != N”
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One-Against-All

• Original idea (Vapnik, 1995): classify x as 
ωi if and only if the corresponding SVM 
accepts x and all other SVMs reject it
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One-Against-All
• Modified idea (Vapnik, 1998): classify x 

according to the SVM that produces the 
highest value (use more than sign of 
decision function)
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Pairwise SVMs

• Learn N(N-1)/2 SVM’s
– SVM 1 learns “Output==1” vs “Output == 2”
– SVM 2 learns “Output==1” vs “Output == 3”
– …
– SVM M learns “Output==N-1” vs “Output == N”
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Pairwise SVMs

• To classify a new input, apply each SVM 
and choose the label that “wins” most 
often
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