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Project Proposal

Dataset
— How many instances

Classes (or what is being predicted)

Inputs
— Include feature extraction, if needed

— If your inputs are images or financial data, this must
be addressed

Methods

— At least one simple classifier (MLE with Gaussian
model, Naive Bayes, KNN)

— At least one advanced classifier (SVM, Boosting,
Random Forest, CNN)



Project Proposal

e Typical experiments

— Measure benefits due to advanced classifier
compared to simple classifier

— Compare different classifier settings
e kin kNN
e Different SVM kernels
 AdaBoost vs. cascade
o Different CNN architectures

— Measure effects of amount of training data
available

— Evaluate accuracy as a function of the degree of
dimensionality reduction using PCA



Project Proposal

 Email me a pdf with all these

* | must say “approved” in my response,
otherwise address my comments and
resubmit



Overview

* Linear Regression
— Barber Ch. 17
—HTF Ch. 3



Simple Linear Regression

 How does a single variable of interest
relate to another (single) variable?

— Y = outcome variable (response,
dependent...)

— X = explanatory variable (predictor, feature,
independent...)

e Data: n pairs of continuous observations
(X1,Y1) e (%0, Yr)



Example

 How does systolic blood pressure (SBP) relate to age?

&0 “0 £ i

» Graph suggests that Y relates to X in an approximately
linear way



Regression: Step by Step

. Assume a linear model: Y =3, + 3, X

. Find the line which “best” fits the data, i.e.
estimate parameters 3, and 3,

. Does variation in X help describe
variationin Y ?

. Check assumptions of model
. Draw inferences and make predictions



Straight-line Plots

intercept
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intercept




Assumptions of Linear Regression

* Five basic assumptions

1. Existence: for each fixed value of X, Y is
a random variable with finite mean and

variance

2. Independence: the set of Y, are
independent random variables given X



Assumptions of Linear Regression

3. Linearity: the mean value of Y is a linear
function of X

Hy|x = E[Y|X] =By + b1 X

Y
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Assumptions of Linear Regression

4. Homoscedasticity: the variance of Y is the
same for any X

5. Normality: For each fixed value of X, Y
has a normal distribution (by assumption
4, 0% does not depend on X)

Y ~ N(uy x, 62)



Formulation
= By + P X+ g
g;~ N(0,62) independent
= ¥, are N(B, + B,X, c?) given X,
:>E(Y|X) = B, + Bl
Var (Y, |X.) = o2 = variability of Y, about Wy,
e Y. are linear function of X. plus some random
error

g, =error (=Y, - u, " )

~A

bl-:

— B.X, is called the "residual" for ¥
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Linear Regression
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Estimating 3, and 3,

e Find “best” line

 Criterion for “best”: estimate 3, and 3, to
minimize:

* This is the residual sum of squares, sum of

squares due to error, or sum of squares about
regression line

o Least Squares estimator



Rationale for LS Estimates

» £2 measures the “deviance” of Y; from the
estimated model

e The “best” model is the one from which the data
deviate the least
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Least Squares Estimators

« Taking derivatives with respect to 3, we obtain

n

. 2(X-X)v-Y) s
p="— S = 5
> (X, - X) Sy

/

s n

1
By=Y - pX

e The residual variance is



Example: SBP/age data

X =45.13 Y =142.53
$2=23391 S;=50991 S, =227.10

F Sy _ 227.10
. 233.91

/X =142.53-0.97(45.13) = 98.71

= [J.DF

52
/}o — )7_
y =98.71+.97x

.97mm Hg T for every
1yrT inage
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Using the Model

Using the parameter estimates, our best guess
forany Y given X is
) Y =B, + B X
Hence at X
By+BX =V -BX)+BX =Y

Every regression line goes through (X, Y)

Fal

Also y =Y + g (X - X)



Correlation and Regression Coefficient

S S
=—— and r, = —=~
A S? “ 55,
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Suppose we have: x| y
1] 2 =3
5| 4 )?—1+2_1+3+4—18
_ - —1.
110 _ 2+4+0+4+6
3 4 V = 5 =3.2
4| 6
Calculate r: — — — —
_ _ X, =X y, =V (X, - %)y, - %)
2 (X -X)(y,-¥) -1.8=-0.8|2-3.2 = -1.2 | (-0.8)(-1.2) = 0.96

1.2]43.2= 0.8 (1.2)(0.8) =0.96

r: 1 1.
v _ 78S (v —v)P | 2-1.8=02]4-3.2= 08| (0.2)(0.8) =0.16
V(=% Sy, -7) | 2
3-1.8 =
4-18= 2.2| 6-3.2= 2.8 (2.2)(2.8) = 6.16

8
8
8=-28|0-32=-32|(-2.8)(-3.2) = 8.96
8
8

0 0 17.2




3 (x, - %) =(-0.8)" +(0.2)" +(-2.8)" +(1.2)" +(2.2)" =14.8
S (v, -7) =(-1.2) +(0.8)" +(-3.2)° +(0.8)" +(2.8)° =20.8
s = M8 49

4
s, = 208 _ 5 59

4
o172 _gog

Estimated regression lineis y, =1.11+1.16x,
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Example

Fitted values are the y, = 3, + f.x,

y,=1.11+1.16(1) = 2.27
y,=1.11+1.16(2) = 3.43

y,=111+1.16(-1)=-0.05

Residuals =

y,=1.11+1.16(3) = 4.59
y. =1.11+1.16(4) =5.75

~

Y,V =§ (y,-—};,-)z
2-2.27 = -0.27 (-0.27)2= 0.073
4-3.43 = 0.57 (0.57)2=0.345
0-(-0.05) = 0.05 (0.05)2 = 0.0025
4-4.59 = -0.59 (-0.59)2 = 0.348
6-5.75 = 0.25 (0.25)2 =0.0625

Sgizz(y,'_yf)zo

> (y,-,) =0.811

6 =+.270 =0.520
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y =1.11+1.16x

At x=3:
y; — }’}j =4-459=_-_59
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