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Project Proposal
• Typical experiments

– Measure benefits due to advanced classifier 
compared to simple classifier

• Advanced classifiers: SVMs, boosting, random forests, 
HMMs, etc.

• Simple classifiers: MLE, k-NN, linear discriminant functions, 
etc.

– Compare different options of advanced classifiers
• SVM kernels
• AdaBoost vs. cascade

– Measure effects of amount of training data available
– Evaluate accuracy as a function of the degree of 

dimensionality reduction
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Midterm
• October 12
• Duration: approximately 1:30

• Covers everything
– Bayesian parameter estimation only at conceptual 

level
– No need to compute eigenvalues

• Open book, open notes etc.
• No computers, no cell phones, no graphing 

calculators
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Overview

• Fisher Linear Discriminant (DHS Chapter 3 
and notes based on course by Olga 
Veksler, Univ. of Western Ontario)

• Generative vs. Discriminative Classifiers
• Linear Discriminant Functions (notes 

based on Olga Veksler’s)
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Fisher Linear Discriminant

• PCA finds directions to project the data so 
that variance is maximized

• PCA does not consider class labels 
• Variance maximization not necessarily 

beneficial for classification

Pattern Classification, Chapter 3 5



Data Representation vs. Data 
Classification

• Fisher Linear Discriminant: project to a line 
which preserves direction useful for data 
classification

Pattern Classification, Chapter 3 6



Fisher Linear Discriminant

• Main idea: find projection to a line such that 
samples from different classes are well 
separated

Pattern Classification, Chapter 3 7



• Suppose we have 2 classes and 
d-dimensional samples x1,…,xn where:
– n1 samples come from the first class
– n2 samples come from the second class

• Consider projection on a line
• Let the line direction be given by unit vector v
• The scalar vtxi is the distance 

of the projection of xi from the 
origin

• Thus, vtxi is the projection 
of xi  into a one dimensional 
subspace

Pattern Classification, Chapter 3 8



• The projection of sample xi onto a line in 
direction v  is given by vtxi

• How to measure separation between 
projections of different classes?

• Let     and     be the means of projections of 
classes 1 and 2

• Let μ1 and μ2 be the means of classes 1 and 
2

• seems like a good measure

Pattern Classification, Chapter 3 9
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• How good is               as a measure of separation?
– The larger it is, the better the expected separation

• The vertical axis is a better line than the horizontal 
axis to project to for class separability

• However
Pattern Classification, Chapter 3 10
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• The problem with            is that it does not 
consider the variance of the classes

Pattern Classification, Chapter 3 11
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• We need to normalize               by a factor which 
is proportional to variance

• For samples z1,…,zn, the sample mean is:
• Define scatter as:

• Thus scatter is just sample variance multiplied 
by n
– Scatter measures the same thing as variance, the 

spread of data around the mean
– Scatter is just on different scale than variance

Pattern Classification, Chapter 3 12

|~~| 21  



• Fisher Solution: normalize              by 
scatter

• Let yi = vtxi , be the projected samples 
• The scatter for projected samples of class 

1 is

• The scatter for projected samples of class 
2 is

Pattern Classification, Chapter 3 13
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• We need to normalize by both scatter of class 1 
and scatter of class 2

• The Fisher linear discriminant is the projection 
on a line in the direction v which maximizes

Pattern Classification, Chapter 3 14
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• If we find v which makes J(v) large, we 
are guaranteed that the classes are well 
separated

Pattern Classification, Chapter 3 15



Fisher Linear Discriminant - Derivation

• All we need to do now is express J(v)  as a 
function of v and maximize it
– Straightforward but need linear algebra and calculus

• Define the class scatter matrices S1 and S2. 
These measure the scatter of original samples xi

(before projection)

Pattern Classification, Chapter 3 16



• Define within class scatter matrix

Pattern Classification, Chapter 3 17
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• Similarly

• Define between class scatter matrix

• SB measures separation of the means of 
the two classes before projection

• The separation of the projected means can 
be written as

Pattern Classification, Chapter 3 18



• Thus our objective function can be written:

• Maximize J(v) by taking the derivative 
w.r.t. v and setting it to 0

Pattern Classification, Chapter 3 19
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• If SW has full rank (the inverse exists), we can convert 
this to a standard eigenvalue problem

• But SBx for any vector x, points in the same direction as 
μ1 - μ2

• Based on this, we can solve the eigenvalue problem 
directly

Pattern Classification, Chapter 3 21



Example
• Data

– Class 1 has 5 samples 
c1=[(1,2),(2,3),(3,3),(4,5),(5,5)]

– Class 2 has 6 samples 
c2=[(1,0),(2,1),(3,1),(3,2),(5,3),(6,5)]

• Arrange data in 2 separate 
matrices

• Notice that PCA performs very 
poorly on this data because the 
direction of largest variance is not 
helpful for classification

Pattern Classification, Chapter 3 22



• First compute the mean for each class

• Compute scatter matrices S1 and S2 for each class

• Within class scatter:
– it has full rank, don’t have to solve for eigenvalues

• The inverse of SW is:

• Finally, the optimal line direction v is:

Pattern Classification, Chapter 3 23



• As long as the line has 
the right direction, its 
exact position does not 
matter

• The last step is to 
compute the actual 1D 
vector y
– Separately for each 

class

Pattern Classification, Chapter 3 24



Multiple Discriminant Analysis
• Can generalize FLD to multiple classes

– In case of c classes, we can reduce 
dimensionality to 1, 2, 3,…, c-1 dimensions

– Project sample xi to a linear subspace yi = Vtxi

– V  is called projection matrix

Pattern Classification, Chapter 3 25



• Within class scatter matrix:

• Between class scatter matrix

• Objective function

Pattern Classification, Chapter 3 26
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• Solve generalized eigenvalue problem

• There are at most c-1 distinct eigenvalues 
– with v1...vc-1 corresponding eigenvectors

• The optimal projection matrix V  to a 
subspace of dimension k  is given by the 
eigenvectors corresponding to the largest 
k  eigenvalues

• Thus, we can project to a subspace of 
dimension at most c-1

Pattern Classification, Chapter 3 27



FDA and MDA Drawbacks
• Reduces dimension only to k = c-1 

– Unlike PCA where dimension can be chosen 
to be smaller or larger than c-1

• For complex data, projection to even the 
best line may result in non-separable 
projected samples

Pattern Classification, Chapter 3 28



FDA and MDA Drawbacks
• FDA/MDA will fail:

– If J(v) is always 0: when μ1=μ2

• If J(v) is always small: classes have large 
overlap when projected to any line (PCA will also 
fail)

Pattern Classification, Chapter 3 29



Generative vs. Discriminative 
Approaches
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Parametric Methods vs. 
Discriminant Functions

• Assume the shape of 
density for classes is 
known p1(x|θ1), p2(x| θ2),…

• Estimate θ1, θ2,… from 
data

• Use a Bayesian classifier 
to find decision regions

• Assume discriminant 
functions are of known 
shape l(θ1), l(θ2), with 
parameters θ1, θ2,…

• Estimate θ1, θ2,… from 
data

• Use discriminant 
functions for classification
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Parametric Methods vs. 
Discriminant Functions

• In theory, Bayesian classifier minimizes the 
risk
– In practice, we may be uncertain about our 

assumptions about the models
– In practice, we may not really need the actual 

density functions
• Estimating accurate density functions is much 

harder than estimating accurate discriminant 
functions
– Why solve a harder problem than needed?
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Generative vs. Discriminative 
Models

Training classifiers involves estimating f: X  Y, or P(Y|X)

Discriminative classifiers
1. Assume some functional form for P(Y|X)

2. Estimate parameters of P(Y|X) directly from training data

Generative classifiers
1. Assume some functional form for P(X|Y), P(X)

2. Estimate parameters of P(X|Y), P(X) directly from training data

3. Use Bayes rule to calculate P(Y|X= xi)
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Generative vs. Discriminative Example

• The task is to determine the language that 
someone is speaking 

• Generative approach:
– Learn each language and determine which 

language the speech belongs to

• Discriminative approach: 
– Determine the linguistic differences without 

learning any language – a much easier task!

Slides by S. Srihari (U. Buffalo) 34



Generative vs. Discriminative Taxonomy
• Generative Methods

– Model class-conditional pdfs and prior probabilities
– “Generative” since sampling can generate synthetic data points
– Popular models

• Multi-variate Gaussians, Naïve Bayes
• Mixtures of Gaussians, Mixtures of experts, Hidden Markov Models (HMM)
• Sigmoidal belief networks, Bayesian networks, Markov random fields

• Discriminative Methods
– Directly estimate posterior probabilities
– No attempt to model underlying probability distributions
– Focus computational resources on given task– better performance
– Popular models

• Logistic regression 
• SVMs
• Traditional neural networks 
• Nearest neighbor
• Conditional Random Fields (CRF)
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What is the difference asymptotically?

Notation: let                denote error of hypothesis learned via 
algorithm A, from m examples

• If assumed model correct (e.g., naïve Bayes model), and 
finite number of parameters, then

• If assumed model incorrect

Note: assumed discriminative model can be correct even 
when generative model incorrect, but not vice versa
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Generative Approach
• Advantage

– Prior information about the structure of the data is often most 
naturally specified through a generative model P(X|Y) 

• For example, for male faces, we would expect to see heavier eyebrows, a 
more square jaw, etc.

• Disadvantages
– The generative approach does not directly target the classification 

model P(Y|X) since the goal of generative training is P(X|Y)
– If the data x are complex, finding a suitable generative data model 

P(X|Y) is a difficult task
– Since each generative model is separately trained for each class, 

there is no competition amongst the models to explain the data
– The decision boundary between the classes may have a simple 

form, even if the data distribution of each class is complex

Barber, Ch. 13 37



Discriminative Approach
• Advantages 

– The discriminative approach directly addresses finding an 
accurate classifier P(Y|X) based on modelling the decision 
boundary, as opposed to the class conditional data 
distribution

– Whilst the data from each class may be distributed in a 
complex way, it could be that the decision boundary 
between them is relatively easy to model

• Disadvantages 
– Discriminative approaches are usually trained as “black-

box” classifiers, with little prior knowledge built used to 
describe how data for a given class is distributed

– Domain knowledge is often more easily expressed using 
the generative framework

Barber, Ch. 13 38



Linear Discriminant Functions
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LDF: Introduction
• Discriminant functions can be more general than 

linear
• For now, focus on linear discriminant functions

– Simple model (should try simpler models first)
– Analytically tractable

• Linear Discriminant functions are optimal for 
Gaussian distributions with equal covariance

• May not be optimal for other data distributions, but 
they are very simple to use

• Knowledge of class densities is not required when 
using linear discriminant functions
– We can call it a non-parametric approach
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LDF: Two Classes
• A discriminant function is linear if it can be written as

g(x) = wtx + w0
• w  is called the weight vector and w0 is called the bias 

or threshold
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LDF: Two Classes
• Decision boundary g(x) = wtx + w0 = 0  is a 

hyperplane
– Set of vectors x, which for some scalars a0,…, 

ad, satisfy a0+a1x(1)+…+ adx(d) = 0
– A hyperplane is:
– a point in 1D
– a line in 2D
– a plane in 3D
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LDF: Two Classes
g(x) = wtx + w0

• w  determines the orientation of the decision 
hyperplane

• w0 determines the location of the decision surface
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LDF: Multiple Classes

• Suppose we have m classes
• Define m linear discriminant functions

gi (x) = wi
tx + wi0

• Given x, assign to class ci if
– gi (x)> gj(x), i≠j

• Such a classifier is called a linear machine
• A linear machine divides the feature space 

into c decision regions, with gi(x) being the 
largest discriminant if x is in the region Ri
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LDF: Multiple Classes
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LDF: Multiple Classes
• For two contiguous regions Ri and Rj, the 

boundary that separates them is a portion 
of the hyperplane Hij defined by:

• Thus wi – wj is normal to Hij

• The distance from x to Hij is given by:
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LDF: Multiple Classes
• Decision regions for a linear machine are convex

• In particular, decision regions must be spatially 
contiguous

Pattern Classification, Chapter 5 47



LDF: Multiple Classes
• Thus applicability of linear machine mostly 

limited to unimodal conditional densities p(x|θ)
– Even though we did not assume any parametric 

models

• Example:

• Need non-contiguous decision regions
• Linear machine will fail
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