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Project Proposal

e Typical experiments

— Measure benefits due to advanced classifier
compared to simple classifier

» Advanced classifiers: SVMs, boosting, random forests,
HMMs, etc.

« Simple classifiers: MLE, k-NN, linear discriminant functions,
etc.

— Compare different options of advanced classifiers
« SVM kernels
« AdaBoost vs. cascade

— Measure effects of amount of training data available

— Evaluate accuracy as a function of the degree of
dimensionality reduction



Midterm

October 12
Duration: approximately 1:30

Covers everything

— Bayesian parameter estimation only at conceptual
level

— No need to compute eigenvalues

Open book, open notes etc.

No computers, no cell phones, no graphing
calculators



Overview

e Fisher Linear Discriminant (DHS Chapter 3
and notes based on course by Olga
Veksler, Univ. of Western Ontario)

e (Generative vs. Discriminative Classifiers

e Linear Discriminant Functions (notes
based on Olga Veksler’s)



Fisher Linear Discriminant

 PCA finds directions to project the data so
that variance is maximized

e PCA does not consider c/ass /labels

e Variance maximization not necessarily
beneficial for classification

Pattern Classification, Chapter 3



Data Representation vs. Data
Classification

separable
I ] O ® apply PCA not separable
gl o° | — > -XXIN XN,
g © ¢
>

* Fisher Linear Discriminant: project to a line
which preserves direction useful for data
classification

Pattern Classification, Chapter 3 6



Fisher Linear Discriminant

« Main idea: find projection to a line such that
samples from different classes are well
separated

bad line to project to, good line to project to,
classes are mixed up classes are well separated

Pattern Classification, Chapter 3



Suppose we have 2 classes and
d-dimensional samples X4,...,X, where:

— n, samples come from the first class

— n, samples come from the second class
Consider projection on a line

Let the line direction be given by unit vector v

The scalar vix; is the distance
of the projection of x; from the
origin t
Thus, vix: is the projection
of X: into a one dimensional
subspace




The projection of sample x; onto a line in
direction v is given by vix

How to measure separation between
orojections of different classes?

et 1 and 4, be the means of projections of
classes 1 and 2

Let u, and u, be the means of classes 1 and
2

| 14 — 11, | seems like a good measure

z”_v[ zx]

1 X.eC1 1 X.eC1

similarly, f=vu,



 How good is | 1, — i, |as a measure of separation?
— The larger it is, the better the expected separation

A

L A .’dU

Bof 71:-
[
i ﬁz

* The vertical axis is a better line than the horizontal
axis to project to for class separability

» However |/71 _/72 |<| /}1 _/}2 |

Pattern Classification, Chapter 3 10



* The problem with|x -, |is that it does not
consider the variance of the classes

§ IL. ‘"'""""i‘?b.'.

8 :

S S A >
) y7» i,

>

large variance

Pattern Classification, Chapter 3
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 We need to normalize | — 4, | by a factor which
IS proportional to variance |

 Forsamples z,,...,.z,, the sample mean is: 4, = FZ Z;
. i=1
 Define scatter as:

s=Y (z,- )
i=1

Thus scatter is just sample variance multiplied
by n

— Scatter measures the same thing as variance, the
spread of data around the mean

— Scatter is just on different scale than variance

o
larger scatter: ..' ® o smaller scatter: f“g
- °



Fisher Solution: normalize |-, 1 by
scatter

Lety, = viX', be the projected samples
he scatter for projected samples of class
11is ~

312 = Z(yf_ﬁ1)2

y ieClass 1

The scatter for projected samples of class

2 1S
'3"2";’: Z(yf_ﬂz)z

y;eClass 2




Fisher Linear Discriminant

 We need to normalize by both scatter of class 1
and scatter of class 2

 The Fisher linear discriminant is the projection
on a line in the direction vwhich maximizes

want projected means far from each other
Al

f 2
)= %12 +;§2)
1 2
g I

want scatter in class 1 is as want scatter in class 2 is as

small as possible, i.e. samples small as possible, i.e. samples
of class 1 cluster around the  of class 2 cluster around the

projected mean [i, projected mean ji,

Pattern Classification, Chapter 3 14



J(v) = (ﬂ1 A, )2

§2+ 87

 |f we find v which makes J(v) large, we
are guaranteed that the classes are well

separated
projected means are far from each other

A, o,
— mans o-stlo—»
—— -
small §_ implies that small §, implies that
projected samples of projected samples of
class 1 are clustered class 2 are clustered

around projected mean around projected mean

Pattern Classification, Chapter 3 15



Fisher Linear Discriminant - Derivation
J(v)= (/51 12 )2

§2+ 8
* All we need to do now is express J(v) as a
function of v and maximize it

— Straightforward but need linear algebra and calculus

» Define the class scatter matrices S, and S..

These measure the scatter of original samples x.
(before projection)

S, = Z(xf—ﬂ1)(xi—ﬂ1)f

Xx;eClass 1

Sz = Z(Xi _ﬂz)(xf _ﬂz)t

Xx;eClass 2




e Define within class scatter matrix

S, =5,+8,
§12 = Z(yf _ﬁ1)2
y ;e Class 1

e y.=ViX;and &, = V' u,
§7= Y vix,-viy,)?

y;eClass 1

= ( X _4”1 f( (X _4”1

Y€ Class 1

)
= (X - 1) )t( ﬂ1)rVJ

Vi eCIass 1

= th(){,-—ﬂT)(X’-—‘uT)rV:V’S1V

yeClass 1

Pattern Classification, Chapter 3
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Similarly s2 - yts v
§2+82=Vv'Sv+v'S,vy=v'S, v
Define between class scatter matrix

Sp = (/11 — K )(ﬂ1 — MKy )

Sz measures separation of the means of
the two classes before projection

he separation of the projected means can
be written as
(- F =g -vip)

= v (g — 1y )ty — 11, )' v

=v'S,v




* Thus our objective function can be written:

J(v) = (2, /72) _Vv'Spv

$2+82 v's,v

 Maximize J(v) by taking the derivative
w.r.t. vand setting itto O

(dv S v)v S,V - [;/ V‘SWVJV’SBV
(v"‘SWv)2
_(2Sgv)v's,v-(2S,v)v'S,v

(v"‘SWv)2

J()

=0




Need to solve V'S, v(S,v)-v'S,v(S,v)=0

V'S, v(Ssv) Vv'Syv(S,v) _

— 0

V'S, v v'S, v

= Sgv =4S,V
\ v /
generalized eigenvalue problem

Pattern Classification, Chapter 3 20



Sgv=AS,Vv
« If S,y has full rank (the inverse exists), we can convert
this to a standard eigenvalue problem

-1
S, Sgv=Av
« But Sgx for any vector X, points in the same direction as

Hi - Ho @
Sex =t — Ny — 11, ) x =(ﬂ1—ﬂz)@ alu; - p,)

« Based on this, we can solve the eiaenvalue problem
directly

V:S;(fh_ﬂz)

Sv}iss\[sv}i (Juf —H; )]J: Sv_1/1 [a(ﬂf —H; )
Y
v

VTVT(ﬂf _ﬂz)] )

v

= a[S
l_'_k
A

Pattern Classification, Chapter 3 21



Example

e Data
— Class 1 has 5 samples
¢;=1(1,2),(2,3),(3,3).(4,5),(5,9)]
— Class 2 has 6 samples
¢,=1(1,0).(2,1),(3,1).(3,2),(5,3),(6,5)]
e Arrange data in 2 separate
matrices

1 2 10
c,=|: : c.=1|: -
" |55 |6 5

* Notice that PCA performs very
poorly on this data because the
direction of largest variance is not
helpful for classification

e - e - T - N Y, B -

(=N

[

I

a2 08



» First compute the mean for each class

) t
i, = mean (c,)=[3 3.6] i, = mean (c,)=[3.3 2]
« Compute scatter matrices S, and S, for each class
S, =4=cov (cT)=[g_% ‘;g} S,=5xcov (cz)=[117é3 ;g]

27.3 24
 Within class scatter: Sy =5,+S5; = [ 24 23_2]

— it has full rank, don’t have to solve for eigenvalues

e Theinverse of S\, iS: A_ . - 0.
"TSy = '”V(Sw):[-ob?% 094?}

« Finally, the optimal line direction v is:

V=35, (4 -u,)= [_o?éggJ



« Aslong astheline has s
the right direction, its 5 LA
exact position does not S
matter 3 .. -fj.-

» The last step is to IR ¢
compute the actual 1D ' PO
vector y 0 °
— Separately for each T 2 4

class

Y,=viei=[-0.65 0.73]|]"

Y, =vic! = [-0.65 0.73][3 R

Pattern Classification, Chapter 3

g] = [0.81---0.4]

]:[_0.65---—0.25]

24



Multiple Discriminant Analysis

e Can generalize FLD to multiple classes

— In case of cclasses, we can reduce
dimensionality to 1, 2, 3,..., c-1 dimensions

— Project sample x; to a linear subspace y; = Vix
— V is called projection matrix

Pattern Classification, Chapter 3
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e Within class scatter matrix:

Sy —ZS Z Z(Xk i)(xk

i=1 X eclass i

 Between class scatter matrix
C

_ﬂf)t

t
Sp = Z n,(u; - ﬂ&ﬂ)

) / .'=1 \mean of all data

maximum rank is c -1 :

* Objective function

det (V'S,V)
det(V's, V)

J(V)=

Pattern Classification, Chapter 3

mean of class i
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(V) det(VrSBV)
det (V'S, V)
Solve generalized eigenvalue problem
Sgv=AS,Vv

There are at most c-1 distinct eigenvalues
— with v,...v__ 4 corresponding eigenvectors
he optimal projection matrix V to a
subspace of dimension Kk is given by the

eigenvectors corresponding to the largest
k eigenvalues

hus, we can project to a subspace of
dimension at most c-1




FDA and MDA Drawbacks

 Reduces dimension only to k = c-1
— Unlike PCA where dimension can be chosen
to be smaller or larger than c-1
 For complex data, projection to even the
best line may result in non-separable
projected samples



FDA and MDA Drawbacks

« FDA/MDA will fail:
— If J(v) is always 0: when p=L,
O 53
OO
PCA perf
reasonably uﬁz{l o PCA also

here: ——=——— falls; = =

 If J(v) is always small: classes have large
overlap when projected to any line (PCA will also

fail)

Pattern Classification, Chapter 3 29



Generative vs. Discriminative
Approaches



Parametric Methods vs.
Discriminant Functions

* Assume the shape of * Assume discriminant
density for classes is functions are of known
known p4(x|6;), po(X| 6,),.. shape 1(0,), 1(8,), with

« Estimate 6,, 0,,... from parameters 6y, 6,,...
data « Estimate 04, 0,,... from

« Use a Bayesian classifier data
to find decision regions * Use discriminant

functions for classification

C
C, 2

Cq



Parametric Methods vs.
Discriminant Functions

* |n theory, Bayesian classifier minimizes the
risk
— In practice, we may be uncertain about our
assumptions about the models
— In practice, we may not really need the actual
density functions
« Estimating accurate density functions is much
harder than estimating accurate discriminant
functions

— Why solve a harder problem than needed?



Generative vs. Discriminative
Models

Training classifiers involves estimating f: X =2 Y, or P(Y|X)

Discriminative classifiers
1. Assume some functional form for P(Y|X)
2. Estimate parameters of P(Y|X) directly from training data

Generative classifiers

1.  Assume some functional form for P(X|Y), P(X)

2. [Estimate parameters of P(X]|Y), P(X) directly from training data
3. Use Bayes rule to calculate P(Y|X= x))

Slides by T. Mitchell (CMU) 33



Generative vs. Discriminative Example

* The task is to determine the language that
someone Is speaking
* Generative approach:

— Learn each language and determine which
language the speech belongs to

e Discriminative approach:

— Determine the linguistic differences without
learning any language - a much easier task!



Generative vs. Discriminative Taxonomy

 (Generative Methods
— Model class-conditional pdfs and prior probabilities
— “Generative” since sampling can generate synthetic data points

— Popular models
» Multi-variate Gaussians, Naive Bayes
» Mixtures of Gaussians, Mixtures of experts, Hidden Markov Models (HMM)
« Sigmoidal belief networks, Bayesian networks, Markov random fields

e Discriminative Methods
— Directly estimate posterior probabilities
— No attempt to model underlying probability distributions
— Focus computational resources on given task- better performance

— Popular models

Logistic regression

« SVMs

Traditional neural networks
Nearest neighbor

Conditional Random Fields (CRF)



What is the difference asymptotically?

Notation: let €(ha.,) denote error of hypothesis learned via
algorithm A, from m examples

« |f assumed model correct (e.g., naive Bayes model), and
finite number of parameters, then

E(hDis,oo) — 6(hGen,oo)

 If assumed model incorrect

G(hDis,oo) < 6(hGen,oo)

Note: assumed discriminative model can be correct even
when generative model incorrect, but not vice versa



Generative Approach

 Advantage

— Prior information about the structure of the data is often most

naturally specified through a generative model P(X|Y)
» For example, for male faces, we would expect to see heavier eyebrows, a
more square jaw, etc.
« Disadvantages

— The generative approach does not directly target the classification
model P(Y|X) since the goal of generative training is P(X|Y)

— If the data x are complex, finding a suitable generative data model
P(X|Y) is a difficult task

— Since each generative model is separately trained for each class,
there is no competition amongst the models to explain the data

— The decision boundary between the classes may have a simple
form, even if the data distribution of each class is complex



Discriminative Approach

« Advantages

— The discriminative approach directly addresses finding an
accurate classifier P(Y|X) based on modelling the decision
boundary, as opposed to the class conditional data
distribution

— Whilst the data from each class may be distributed in a
complex way, it could be that the decision boundary
between them is relatively easy to model

 Disadvantages

— Discriminative approaches are usually trained as “black-
box” classifiers, with little prior knowledge built used to
describe how data for a given class is distributed

— Domain knowledge is often more easily expressed using
the generative framework



Linear Discriminant Functions



LDF: Introduction

Discriminant functions can be more general than
linear

For now, focus on linear discriminant functions

— Simple model (should try simpler models first)

— Analytically tractable

Linear Discriminant functions are optimal for
Gaussian distributions with equal covariance

May not be optimal for other data distributions, but
they are very simple to use

Knowledge of class densities is not required when
using linear discriminant functions

— We can call it a non-parametric approach



LDF: Two Classes

A discriminant function is linear if it can be written as
ax) = wx + w,
e w is called the weight vector and w,, is called the bias
or threshold

g(x)>0 = xeclass 1
g(x)<0 = xe class 2
g(x)=0 = either class

decision boundary g(x) = 0

41



LDF: Two Classes

» Decision boundary g(x) =wix +w,=0 is a
hyperplane

— Set of vectors x, which for some scalars a,,...,
a,, satisfy agtax(W+.+ax@=0

— A hyperplane is:
— apointin 1D

— alinein 2D

— aplanein 3D




LDF: Two Classes

g(x) = wix + w,
e W determines the orientation of the decision
hyperplane

* W, determines the location of the decision surface

43



LDF: Multiple Classes

Suppose we have m classes
Define m linear discriminant functions
gi (X) = WX + wy,
Given X, assign to class ¢, if
— g; (x)> g;(x), i#]
Such a classifier is called a linear machine

A linear machine divides the feature space
into ¢ decision regions, with g,(x) being the
largest discriminant if X is in the region R,



LDF: Multiple Classes

45



LDF: Multiple Classes

» For two contiguous regions R. and Rj, the
boundary that separates them is a portion
of the hyperplane H; defined by:

9i(X)=9g,(X) SwXx+w,=w;X+W,
oW -w,)x+wy-wg)=0
* Thus w;-w; is normal to H;

* The distance from x to H; is given by:

RN CIREIC)
T wiw|




LDF: Multiple Classes

e Decision regions for a linear machine are convex

y,Ze R,-:>Q'V+(1—a)Ze R. y

R.

I

vjzi g,/y)2g,ly) and g,(z)29,(z) &
evizi glay+(-a)z)2g,(ay+(1-a)z)

 |n particular, decision regions must be spatially

contiguous

7

A

R; is a valid R; is not a valid

decision region decision region

47



LDF: Multiple Classes

Thus applicability of linear machine mostly
limited to unimodal conditional densities p(x|0)

— Even though we did not assume any parametric
models

Example:

Need non-contiguous decision regions
Linear machine will fall

48



