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Overview

• Parameter Estimation
– Frequentist or Maximum Likelihood approach 

(cont.)
– Bayesian approach (Barber Ch. 8 and DHS 

Ch. 3)
• Cross-validation
• Overfitting
• Naïve Bayes Classifier
• Non-parametric Techniques

2



MLE Classifier Example
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Data

• Pima Indians Diabetes Database
– http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes

– Number of Instances: 768 
– Number of Attributes: 8 plus class 
– Class Distribution: (class value 1 is interpreted 

as "tested positive for diabetes") 
– Class Value Number of instances 

0 500 
1 268
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Data

Attributes: (all numeric-valued) 
1. Number of times pregnant 
2. Plasma glucose concentration a 2 hours in an oral 

glucose tolerance test 
3. Diastolic blood pressure (mm Hg) 
4. Triceps skin fold thickness (mm) 
5. 2-Hour serum insulin (mu U/ml) 6. Body mass 

index (weight in kg/(height in m)^2) 
7. Diabetes pedigree function 
8. Age (years) 
9. Class variable (0 or 1)
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Simple MLE Classifier
data = dlmread('pima-indians-diabetes.data');

data = reshape(data,[],9);

% use randperm to re-order data. 
% ignore if not using Matlab
rp = randperm(length(data));
data=data(rp,:);

train_data = data(1:length(data)/2,:);
test_data = data(length(data)/2+1:end,:);
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% pick a feature 
active_feat = 3;

% training
mean1 = 

mean(train_data(train_data(:,9)==0,active_feat))
mean2 = 

mean(train_data(train_data(:,9)==1,active_feat))

var1 = var(train_data(train_data(:,9)==0,active_feat))
var2 = var(train_data(train_data(:,9)==1,active_feat))

prior1tmp = length(train_data(train_data(:,9)==0));
prior2tmp = length(train_data(train_data(:,9)==1));

prior1 = prior1tmp/(prior1tmp+prior2tmp)
prior2 = prior2tmp/(prior1tmp+prior2tmp)
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% testing
correct=0; 
wrong=0;

for i=1:length(test_data)
lklhood1 = exp(-(test_data(i,active_feat)-mean1)^2/(2*var1)) 

/sqrt(var1);
lklhood2 = exp(-(test_data(i,active_feat)-mean2)^2/(2*var2));

/sqrt(var2);

post1 = lklhood1*prior1;
post2 = lklhood2*prior2;

if(post1 > post2 && test_data(i,9) == 0)
correct = correct+1;

elseif(post1 < post2 && test_data(i,9) == 1)
correct = correct+1;

else
wrong = wrong+1;

end
end
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Training/Test Split 

• Randomly split dataset into two parts:
– Training data
– Test data

• Use training data to optimize parameters 
• Evaluate error using test data
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Training/Test Split 

• How many points in each set?
• Very hard question

– Too few points in training set, learned 
classifier is bad

– Too few points in test set, classifier evaluation 
is insufficient

• Cross-validation
• Leave-one-out cross-validation
• Bootstrapping
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Cross-Validation

• In practice
• Available data => training and validation
• Train on the training data
• Test on the validation data
• k-fold cross validation:

– Data randomly separated into k groups
– Each time k−1 groups used for training and 

one as testing
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Cross Validation and Test Accuracy
• If we select parameters so that CV is highest:

– Does CV represent future test accuracy?
– Slightly different

• If we have enough parameters, we can 
achieve 100% CV as well
– e.g. more parameters than # of training data

• But test accuracy may be different
• So split available data with class labels, into:

– training 
– validation
– testing
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Cross Validation and Test Accuracy

• Using CV on 
training + validation

• Classify test data 
with the best 
parameters from CV
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Overfitting

• Prediction error: probability of test pattern 
not in class with max posterior (true)

• Training error: probability of test pattern 
not in class with max posterior (estimated)

• Classifier optimized w.r.t. training error
– Training error: optimistically biased estimate 

of prediction error
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Overfitting

Overfitting: a learning algorithm overfits the 
training data if it outputs a solution w when 
another solution w’ exists such that:

errortrain(w) < errortrain(w’) 
AND

errortrue(w’) < errortrue(w) 
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Fish Classifier from DHS Ch. 1
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Minimum Training Error



Final Decision Boundary
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Typical Behavior

Slide credit: A. Smola 19



Typical Behavior

Slide credit: A. Smola 20



Bayesian Parameter Estimation

• Gaussian Case
• General Estimation
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Bayesian Estimation

• In MLE  was assumed fixed

• In BE  is a random variable
• Suppose we have some idea of the range 

where the parameters θ should be
– Shouldn’t we utilize this prior knowledge in hope 

that it will lead to better parameter estimation?
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Bayesian Estimation

• Let θ be a random variable with prior 
distribution P(θ)
– This is the key difference between ML and 

Bayesian parameter estimation
– This allows us to use a prior to express the 

uncertainty present before seeing the data

– Frequentist approach does not account for 
uncertainty in θ (see bootstrap for more on 
this, however)

Pattern Classification, Chapter 2 23



Motivation

• As in MLE, suppose p(x|θ) is completely 
specified if θ is given

• But now θ is a random variable with prior 
p(θ)
– Unlike MLE case, p(x|θ) is a conditional 

density

• After we observe the data D, using Bayes 
rule we can compute the posterior p(θ|D)
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Motivation
• Recall that for the MAP classifier we find the 

class ωi that maximizes the posterior p(ω|D)
• By analogy, a reasonable estimate of θ is the 

one that maximizes the posterior p(θ|D)
• But θ is not our final goal, our final goal is the 

unknown p(x)
• Therefore a better thing to do is to maximize 

p(x|D), this is as close as we can come to the 
unknown p(x) !
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Parameter Distribution
• Assumptions: 

– p(x) is unknown, but has known parametric form
– Parameter vector θ is unknown
– p(x| θ) is completely known
– Prior density p(θ) is known

• Observation of samples provides posterior 
density p(θ|D)
– Hopefully peaked around true value of θ

• Treat each class separately and drop subscripts
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• Converted problem of learning probability 
density function to learning parameter 
vector

• Goal: compute p(x|D) as best possible 
estimate of p(x)

Pattern Classification, Chapter 3 27

p(x) is completely known given θ, 
independent of samples in D
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• Links class-conditional density p(x|D) to 
posterior density p(θ|D) 
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Bayesian Parameter Estimation: 
Gaussian Case

Goal: Estimate  using the a-posteriori density 
P( | D)

– The univariate case: p( | D)
 is the only unknown parameter

0 and 0 are known
0 is best guess for , 0 is uncertainty of guess
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• α depends on D, not µ
• (1) shows how training samples affect our 

idea about the true value of µ
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Reproducing density (remains Gaussian)

(1) and (2) yield: 
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• µ is linear combination of empirical and prior 
information

• Each additional observation decreases 
uncertainty about µ
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– The univariate case p(x | D)
• p( | D) computed
• p(x | D) remains to be computed*

It provides:

* Desired class-conditional density p(x | Dj, j)

Using Bayes formula, we obtain the
Bayesian classification rule:
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• We have:
– Replaced mean with conditional mean
– Increased variance to account for additional 

uncertainty in x due to inexact knowledge of 
mean
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Bayesian Parameter Estimation: 
General Theory

– p(x | D) computation can be applied to any 
situation in which the unknown density can be 
parameterized: the basic assumptions are:

• The form of p(x | ) is assumed known, but the 
value of  is not known exactly

• Our knowledge about  is assumed to be 
contained in a known prior density p()

• The rest of our knowledge  is contained in a set D 
of n random variables x1, x2, …, xn that follows p(x)
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The basic problem is:
“Compute the posterior density p( | D)”
then “Derive p(x | D)”

Using Bayes formula, we have:

And by the independence assumption:
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Recursive Bayes Learning

• Assume that training samples become 
available one by one

• Due to independence, result is 
independent of order:

Pattern Classification, Chapter 3 37

)|()|()|(  1-nn DD pxpp n







nk

k
kxpp

1

)|()|( D



Estimation of p(x|D)
• The basic problem is: Compute p(x | D)

• Compute the posterior density p( | D)

• Then derive p(x | D)
• Repeat for all classes to obtain p(x | i)
• Combine with p(i) to get posteriors
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Conjugate Priors

• Prior is conjugate to likelihood if it leads to 
itself as posterior

• Closed form representation of posterior
• If the prior on θ, with hyperparameters α, 

has some p(θ|α), the posterior given data 
D is of the same form but with updated 
hyperparameters

p(θ|D,α) = p(θ|α’)
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Bayesian Inference of Mean and 
Variance

• Uni-variate Gaussian

• Posterior of parameters

• Prior of mean (Gaussian)
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Bayesian Inference of Mean and 
Variance

• Posterior

after some manipulation …
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Bayesian Inference of Mean and 
Variance

• Use inverse Gamma distribution for p(σ2)

• Then, posterior is also Gauss-Inverse-
Gamma

42Barber, Chapter 8



ML vs. Bayesian Parameter 
Estimation: Summary
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BE vs. MLE
• BE: p(x|D) can be thought of as the weighted average of 

the proposed model for all possible values of θ

• Contrast this with the MLE solution which always gives 
us a single model: 

෠ሻߠ|ݔሺ݌
• When we have many possible solutions, taking their sum 

averaged by their probabilities seems better than pick 
just one solution
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Bayesian Estimation vs. MLE

• In practice, it may be hard to do integration 
analytically and we may have to resort to 
numerical methods

• The MLE solution requires differentiation, 
instead of integration, to get

– Differentiation is easy and can always be 
done analytically
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When do Maximum-Likelihood and 
Bayes Methods Differ?

• Equivalent asymptotically (for infinite 
training data)
– For reasonable prior distributions
– When prior p(θ) is uninformative and p(θ|D) is 

peaked
• MLE computationally cheaper, simpler 

solutions
• BE uses more information (more general 

model)
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Naïve Bayes Classifier (not BE)

• Simple classifier that applies Bayes' rule with 
strong (naive) independence assumptions

• A.k.a. the "independent feature model”

• p(i|x1, x2,…)= α p(x1|i) p(x2|i)… p(i)

• Often performs reasonably well despite 
simplicity
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Naïve Bayes Classifier

• NB is known to produce posteriors closer 
to extremes (0 or 1) than true posteriors
– Why?

• NB performs well when only 
small amounts of training data 
are available
– Why?
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Non-parametric Classification
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The Histogram
• The simplest form of non-parametric density estimation is the 

histogram
– Divide sample space in number of bins 
– Approximate the density at the center of each bin by the fraction of points 

that fall into the bin
– Two parameters: bin width and starting position of first bin (or other 

equivalent pairs)
• Drawbacks:

– Depends on position of bin 
centers

• Often compute two 
histograms, offset by 
½ bin width

– Discontinuities as an artifact 
of bin boundaries

– Curse of dimensionality
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Introduction
• All parametric densities are unimodal (have a single local 

maximum), whereas many practical problems involve 
multi-modal densities

• Non-parametric procedures can be used with arbitrary 
distributions and without the assumption that the forms of 
the underlying densities are known

• There are two types of non-parametric methods:
– Estimate P(x | j ) 
– Bypass density function and go directly to posterior probability 

estimation
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Density Estimation

– Probability that a vector x will fall in region R is:

– P is a smoothed (or averaged) version of the density 
function p(x) if we have a sample of size n; therefore, 
the probability that k points fall in R is:

and the expected value for k is:

E(k) = nP (3)
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ML Estimate

ML estimation of  P = 
is reached for

Therefore, the ratio k/n is a good estimate for the 
probability P and hence for the density function 
p(x) (for large n) 
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Assumptions

p(x) is continuous and the region R is so small that p does 
not vary significantly within it, we can write:

where x is a point within R and V the volume enclosed by 

R.

Combining equation (1) , (3) and (4) yields:
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• The volume V needs to approach 0, if we want to use this 
estimate

• Practically, V cannot be allowed to become small since the number of 
samples is always limited

• One will have to accept a certain amount of variance in the ratio k/n

• Theoretically, if an unlimited number of samples is available, we can 
circumvent this difficulty
To estimate the density of x, we form a sequence of regions

R1, R2,…containing x: the first region contains one sample, the 
second two samples and so on.

Let Vn be the volume of Rn, kn the number of samples falling in Rn and 
pn(x) be the nth estimate for p(x):

pn(x) = (kn/n)/Vn (7)
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Three necessary conditions should apply if we want pn(x) to converge to p(x):

There are two different ways of obtaining sequences of regions that satisfy these 
conditions:

(a) Shrink an initial region where Vn = 1/n and show that 

This is called “the Parzen-window estimation method”

(b) Specify kn as some function of n,  such as kn = n; the volume Vn is grown until 
it encloses kn neighbors of x. This is called “the kn-nearest neighbor estimation 
method”
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Parzen Windows
– The Parzen-window approach to estimate 

densities assumes that the region Rn is a d-
dimensional hypercube

– ((x-xi)/hn) is equal to unity if xi falls within the 
hypercube of volume Vn centered at x and equal 
to zero otherwise
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– The number of samples in this hypercube is:

By substituting kn in equation (7), we obtain the following 
estimate:

Pn(x) estimates p(x) as an average of functions of x and 
the samples {xi} (i = 1,… ,n). These functions  can be general
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Window Functions

• Conditions for estimating legitimate 
density function
– Non-negative
– Integrate to 1

• In other words, the window function should 
be a probability density function 
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• The behavior of the Parzen-window method
– Case where p(x) N(0,1)
– Let              

and (h1: known parameter)

Thus:

is an average of normal densities centered at the samples xi
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Numerical Results
For n = 1 and h1=1
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For n = 10 and h = 0.1, the contributions of the individual samples 
are clearly observable 
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Analogous results are also obtained in two dimensions as illustrated:
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– Case where p(x) = 1U(a,b) + 2T(c,d)
• unknown density, mixture of a uniform and a triangle density
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Classification

• In classifiers based on Parzen-window 
estimation:

– We estimate the densities for each category 
and classify a test point by the label 
corresponding to the maximum posterior

– The decision region for a Parzen-window 
classifier depends upon the choice of window 
function as illustrated in the following figure

Pattern Classification, Chapter 4 69



Pattern Classification, Chapter 4 70

Remember discussion on overfitting



K - Nearest Neighbor Estimation
• Goal: a solution for the problem of the unknown “best” window 

function
– Let the cell volume be a function of the training data
– Center a cell about x and let it grow until it captures kn samples 

(kn = f(n))
– kn are called the kn nearest-neighbors of x

• Benefits
– If density is high near x, the cell will be small which provides a 

good resolution
– If density is low, the cell will grow large and stop when higher 

density regions are reached

We can obtain a family of estimates by setting kn=k1 /√݊ and 
choosing different values for k1
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Illustration

For kn = = 1 ; the estimate becomes:

Pn(x) = kn / nVn = 1 / V1 =1 / 2|x-x1|

(goes to infinity at x1)
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Estimation of Posterior Probabilities

• Goal: estimate P(i | x) from a set of n labeled samples
• Place a cell of volume V around x and capture k samples
• ki samples amongst k turned out to be labeled i then: 

pn(x, i) = ki /nV
An estimate for pn(i| x) is:
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– ki/k is the fraction of the samples within the 
cell that are labeled i

– For minimum error rate, the most frequently 
represented category within the cell is 
selected 

=> This is equivalent to posterior estimation

– If k is large and the cell sufficiently small, the 
performance will approach the best possible 
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The Nearest–Neighbor Rule
• Let Dn = {x1, x2, …, xn} be a set of n labeled prototypes

• Let x’  Dn be the closest prototype to a test point x then the 
nearest-neighbor rule for classifying x is to assign it the label 
associated with x’

• The nearest-neighbor rule leads to an error rate greater than the 
minimum possible: the Bayes rate

• If the number of prototypes is large (unlimited), the error rate of the 
nearest-neighbor classifier is never worse than twice the Bayes rate 
(it can be proven!)

• If n  , it is always possible to find x’ sufficiently close so that:
P(i | x’) ≈ P(i | x) 

Pattern Classification, Chapter 4 77



78

Pattern Classification, Chapter 4



The k–Nearest-Neighbor Rule

• Goal: Classify x by assigning it the label 
most frequently represented among the k 
nearest samples 

• Use a voting scheme
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Matlab Example
data = dlmread('pima-indians-diabetes.data');

data = reshape(data,[],9);

% use randperm to re-order data. ignore if not using Matlab
rp = randperm(length(data));
data=data(rp,:);

%split = length(data)/2;
split = 300;

train_data = data(1:split,:);
test_data = data(split+1:end,:);
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% pick features
active_feat = [1:3];

% training
% NOT NEEDED

% testing
correct=0;
wrong=0;
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for i=1:length(test_data)

sample=test_data(i,active_feat);

dist = train_data(:,active_feat)-repmat(sample,length(train_data),1);
dist = dist*dist';

% we are only interested in the diagonal elements
% DON’T USE QUADRATIC DISTANCE COMPUTATION IN PRACTICE
fin_dist = diag(dist); 
[min_d index] = min(fin_dist);

if(test_data(i,9) == train_data(index,9))
correct = correct+1;

else
wrong = wrong+1;

end    
end
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