
CS 559: Machine Learning
Fundamentals and Applications

4th Set of Notes

Instructor: Philippos Mordohai
Webpage: www.cs.stevens.edu/~mordohai
E-mail: Philippos.Mordohai@stevens.edu

Office: Lieb 215

1

Overview

• Parameter Estimation
– Frequentist or Maximum Likelihood approach

(cont.)
– Bayesian approach (Barber Ch. 8 and DHS

Ch. 3)
• Cross-validation
• Overfitting
• Naïve Bayes Classifier
• Non-parametric Techniques

2

MLE Classifier Example

3

Data

• Pima Indians Diabetes Database
– http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes

– Number of Instances: 768
– Number of Attributes: 8 plus class
– Class Distribution: (class value 1 is interpreted

as "tested positive for diabetes")
– Class Value Number of instances

0 500
1 268

4

Data

Attributes: (all numeric-valued)
1. Number of times pregnant
2. Plasma glucose concentration a 2 hours in an oral

glucose tolerance test
3. Diastolic blood pressure (mm Hg)
4. Triceps skin fold thickness (mm)
5. 2-Hour serum insulin (mu U/ml) 6. Body mass

index (weight in kg/(height in m)^2)
7. Diabetes pedigree function
8. Age (years)
9. Class variable (0 or 1)

5

Simple MLE Classifier
data = dlmread('pima-indians-diabetes.data');

data = reshape(data,[],9);

% use randperm to re-order data.
% ignore if not using Matlab
rp = randperm(length(data));
data=data(rp,:);

train_data = data(1:length(data)/2,:);
test_data = data(length(data)/2+1:end,:);

6

% pick a feature
active_feat = 3;

% training
mean1 =

mean(train_data(train_data(:,9)==0,active_feat))
mean2 =

mean(train_data(train_data(:,9)==1,active_feat))

var1 = var(train_data(train_data(:,9)==0,active_feat))
var2 = var(train_data(train_data(:,9)==1,active_feat))

prior1tmp = length(train_data(train_data(:,9)==0));
prior2tmp = length(train_data(train_data(:,9)==1));

prior1 = prior1tmp/(prior1tmp+prior2tmp)
prior2 = prior2tmp/(prior1tmp+prior2tmp)

7

% testing
correct=0;
wrong=0;

for i=1:length(test_data)
lklhood1 = exp(-(test_data(i,active_feat)-mean1)^2/(2*var1))

/sqrt(var1);
lklhood2 = exp(-(test_data(i,active_feat)-mean2)^2/(2*var2));

/sqrt(var2);

post1 = lklhood1*prior1;
post2 = lklhood2*prior2;

if(post1 > post2 && test_data(i,9) == 0)
correct = correct+1;

elseif(post1 < post2 && test_data(i,9) == 1)
correct = correct+1;

else
wrong = wrong+1;

end
end

8

Training/Test Split

• Randomly split dataset into two parts:
– Training data
– Test data

• Use training data to optimize parameters
• Evaluate error using test data

9

Training/Test Split

• How many points in each set?
• Very hard question

– Too few points in training set, learned
classifier is bad

– Too few points in test set, classifier evaluation
is insufficient

• Cross-validation
• Leave-one-out cross-validation
• Bootstrapping

10

Cross-Validation

• In practice
• Available data => training and validation
• Train on the training data
• Test on the validation data
• k-fold cross validation:

– Data randomly separated into k groups
– Each time k−1 groups used for training and

one as testing

11

Cross Validation and Test Accuracy
• If we select parameters so that CV is highest:

– Does CV represent future test accuracy?
– Slightly different

• If we have enough parameters, we can
achieve 100% CV as well
– e.g. more parameters than # of training data

• But test accuracy may be different
• So split available data with class labels, into:

– training
– validation
– testing

12

Cross Validation and Test Accuracy

• Using CV on
training + validation

• Classify test data
with the best
parameters from CV

13

Overfitting

• Prediction error: probability of test pattern
not in class with max posterior (true)

• Training error: probability of test pattern
not in class with max posterior (estimated)

• Classifier optimized w.r.t. training error
– Training error: optimistically biased estimate

of prediction error

14

Overfitting

Overfitting: a learning algorithm overfits the
training data if it outputs a solution w when
another solution w’ exists such that:

errortrain(w) < errortrain(w’)
AND

errortrue(w’) < errortrue(w)

15

Pattern Classification, Chapter 1 16

Fish Classifier from DHS Ch. 1

Pattern Classification, Chapter 1 17

Minimum Training Error

Final Decision Boundary

Pattern Classification, Chapter 1 18

Typical Behavior

Slide credit: A. Smola 19

Typical Behavior

Slide credit: A. Smola 20

Bayesian Parameter Estimation

• Gaussian Case
• General Estimation

21

Bayesian Estimation

• In MLE was assumed fixed

• In BE is a random variable
• Suppose we have some idea of the range

where the parameters θ should be
– Shouldn’t we utilize this prior knowledge in hope

that it will lead to better parameter estimation?

Pattern Classification, Chapter 3 22

Bayesian Estimation

• Let θ be a random variable with prior
distribution P(θ)
– This is the key difference between ML and

Bayesian parameter estimation
– This allows us to use a prior to express the

uncertainty present before seeing the data

– Frequentist approach does not account for
uncertainty in θ (see bootstrap for more on
this, however)

Pattern Classification, Chapter 2 23

Motivation

• As in MLE, suppose p(x|θ) is completely
specified if θ is given

• But now θ is a random variable with prior
p(θ)
– Unlike MLE case, p(x|θ) is a conditional

density

• After we observe the data D, using Bayes
rule we can compute the posterior p(θ|D)

Pattern Classification, Chapter 2 24

Motivation
• Recall that for the MAP classifier we find the

class ωi that maximizes the posterior p(ω|D)
• By analogy, a reasonable estimate of θ is the

one that maximizes the posterior p(θ|D)
• But θ is not our final goal, our final goal is the

unknown p(x)
• Therefore a better thing to do is to maximize

p(x|D), this is as close as we can come to the
unknown p(x) !

Pattern Classification, Chapter 2 25

Parameter Distribution
• Assumptions:

– p(x) is unknown, but has known parametric form
– Parameter vector θ is unknown
– p(x| θ) is completely known
– Prior density p(θ) is known

• Observation of samples provides posterior
density p(θ|D)
– Hopefully peaked around true value of θ

• Treat each class separately and drop subscripts

Pattern Classification, Chapter 3 26

• Converted problem of learning probability
density function to learning parameter
vector

• Goal: compute p(x|D) as best possible
estimate of p(x)

Pattern Classification, Chapter 3 27

p(x) is completely known given θ,
independent of samples in D

 dD)|p(x,D)|p(x

 dDpdDpD)|()|p(x)|(),|p(xD)|p(x

• Links class-conditional density p(x|D) to
posterior density p(θ|D)

Pattern Classification, Chapter 3 28

 dDpdDpD)|()|p(x)|(),|p(xD)|p(x

Bayesian Parameter Estimation:
Gaussian Case

Goal: Estimate using the a-posteriori density
P(| D)

– The univariate case: p(| D)
 is the only unknown parameter

0 and 0 are known
0 is best guess for , 0 is uncertainty of guess

Pattern Classification, Chapter 3 29

),N(~)p(
),N(~) |p(x

2
00

2

Pattern Classification, Chapter 3 30

• α depends on D, not µ
• (1) shows how training samples affect our

idea about the true value of µ

nk

k
k pxp

dpp
ppp

1

)()|(

(1)
)()|(
)()|()|(

D
DD

Pattern Classification, Chapter 3 31

Reproducing density (remains Gaussian)

(1) and (2) yield:

nk

k
k pxp

dpp
ppp

1

)()|(

(1)
)()|(
)()|()|(

D
DD

(2)),(~)|(2
nnNp D

22
0

22
02

022
0

2

22
0

2
0

ˆ

n
and

nn
n

n

nn

Empirical (sample) mean

• µ is linear combination of empirical and prior
information

• Each additional observation decreases
uncertainty about µ

Pattern Classification, Chapter 3 32

22
0

22
02

022
0

2

22
0

2
0

ˆ

n
and

nn
n

n

nn

Pattern Classification, Chapter 3 33

– The univariate case p(x | D)
• p(| D) computed
• p(x | D) remains to be computed*

It provides:

* Desired class-conditional density p(x | Dj, j)

Using Bayes formula, we obtain the
Bayesian classification rule:

Gaussian is)|()|()|(dpxpxp DD
),(~)|(22

nnNxp D

)(),|(,|(jjjj pxpMaxxpMax
jj

DD)

• We have:
– Replaced mean with conditional mean
– Increased variance to account for additional

uncertainty in x due to inexact knowledge of
mean

Pattern Classification, Chapter 3 34

),(~)|(22
nnNxp D

Bayesian Parameter Estimation:
General Theory

– p(x | D) computation can be applied to any
situation in which the unknown density can be
parameterized: the basic assumptions are:

• The form of p(x |) is assumed known, but the
value of is not known exactly

• Our knowledge about is assumed to be
contained in a known prior density p()

• The rest of our knowledge is contained in a set D
of n random variables x1, x2, …, xn that follows p(x)

Pattern Classification, Chapter 3 35

Pattern Classification, Chapter 3 36

The basic problem is:
“Compute the posterior density p(| D)”
then “Derive p(x | D)”

Using Bayes formula, we have:

And by the independence assumption:

nk

k
kxpp

1

)|()|(D

dpp

ppp
)()|(
)()|()|(

D
DD

Recursive Bayes Learning

• Assume that training samples become
available one by one

• Due to independence, result is
independent of order:

Pattern Classification, Chapter 3 37

)|()|()|(1-nn DD pxpp n

nk

k
kxpp

1

)|()|(D

Estimation of p(x|D)
• The basic problem is: Compute p(x | D)

• Compute the posterior density p(| D)

• Then derive p(x | D)
• Repeat for all classes to obtain p(x | i)
• Combine with p(i) to get posteriors

Pattern Classification, Chapter 3 38

dpp

ppp
)()|(
)()|()|(

D
DD

Conjugate Priors

• Prior is conjugate to likelihood if it leads to
itself as posterior

• Closed form representation of posterior
• If the prior on θ, with hyperparameters α,

has some p(θ|α), the posterior given data
D is of the same form but with updated
hyperparameters

p(θ|D,α) = p(θ|α’)

39Barber, Chapter 8

Bayesian Inference of Mean and
Variance

• Uni-variate Gaussian

• Posterior of parameters

• Prior of mean (Gaussian)

40Barber, Chapter 8

Bayesian Inference of Mean and
Variance

• Posterior

after some manipulation …

41Barber, Chapter 8

Bayesian Inference of Mean and
Variance

• Use inverse Gamma distribution for p(σ2)

• Then, posterior is also Gauss-Inverse-
Gamma

42Barber, Chapter 8

ML vs. Bayesian Parameter
Estimation: Summary

43

BE vs. MLE
• BE: p(x|D) can be thought of as the weighted average of

the proposed model for all possible values of θ

• Contrast this with the MLE solution which always gives
us a single model:

ሻߠ|ݔሺ
• When we have many possible solutions, taking their sum

averaged by their probabilities seems better than pick
just one solution

44

Bayesian Estimation vs. MLE

• In practice, it may be hard to do integration
analytically and we may have to resort to
numerical methods

• The MLE solution requires differentiation,
instead of integration, to get

– Differentiation is easy and can always be
done analytically

45

When do Maximum-Likelihood and
Bayes Methods Differ?

• Equivalent asymptotically (for infinite
training data)
– For reasonable prior distributions
– When prior p(θ) is uninformative and p(θ|D) is

peaked
• MLE computationally cheaper, simpler

solutions
• BE uses more information (more general

model)

46

Naïve Bayes Classifier (not BE)

• Simple classifier that applies Bayes' rule with
strong (naive) independence assumptions

• A.k.a. the "independent feature model”

• p(i|x1, x2,…)= α p(x1|i) p(x2|i)… p(i)

• Often performs reasonably well despite
simplicity

47

Naïve Bayes Classifier

• NB is known to produce posteriors closer
to extremes (0 or 1) than true posteriors
– Why?

• NB performs well when only
small amounts of training data
are available
– Why?

48

Non-parametric Classification

49

The Histogram
• The simplest form of non-parametric density estimation is the

histogram
– Divide sample space in number of bins
– Approximate the density at the center of each bin by the fraction of points

that fall into the bin
– Two parameters: bin width and starting position of first bin (or other

equivalent pairs)
• Drawbacks:

– Depends on position of bin
centers

• Often compute two
histograms, offset by
½ bin width

– Discontinuities as an artifact
of bin boundaries

– Curse of dimensionality

50

Introduction
• All parametric densities are unimodal (have a single local

maximum), whereas many practical problems involve
multi-modal densities

• Non-parametric procedures can be used with arbitrary
distributions and without the assumption that the forms of
the underlying densities are known

• There are two types of non-parametric methods:
– Estimate P(x | j)
– Bypass density function and go directly to posterior probability

estimation

Pattern Classification, Chapter 4 51

Density Estimation

– Probability that a vector x will fall in region R is:

– P is a smoothed (or averaged) version of the density
function p(x) if we have a sample of size n; therefore,
the probability that k points fall in R is:

and the expected value for k is:

E(k) = nP (3)

 (1) ')'(dxxpP

(2))1(knk
k PP

k
n

P

Pattern Classification, Chapter 4 52

ML Estimate

ML estimation of P =
is reached for

Therefore, the ratio k/n is a good estimate for the
probability P and hence for the density function
p(x) (for large n)

Pattern Classification, Chapter 4 53

P
n
k
̂)|P(Max k

Assumptions

p(x) is continuous and the region R is so small that p does
not vary significantly within it, we can write:

where x is a point within R and V the volume enclosed by

R.

Combining equation (1) , (3) and (4) yields:

Pattern Classification, Chapter 4 54

(4) V)x(p'dx)'x(p

V
n/k)x(p

• The volume V needs to approach 0, if we want to use this
estimate

• Practically, V cannot be allowed to become small since the number of
samples is always limited

• One will have to accept a certain amount of variance in the ratio k/n

• Theoretically, if an unlimited number of samples is available, we can
circumvent this difficulty
To estimate the density of x, we form a sequence of regions

R1, R2,…containing x: the first region contains one sample, the
second two samples and so on.

Let Vn be the volume of Rn, kn the number of samples falling in Rn and
pn(x) be the nth estimate for p(x):

pn(x) = (kn/n)/Vn (7)

Pattern Classification, Chapter 4 55

Three necessary conditions should apply if we want pn(x) to converge to p(x):

There are two different ways of obtaining sequences of regions that satisfy these
conditions:

(a) Shrink an initial region where Vn = 1/n and show that

This is called “the Parzen-window estimation method”

(b) Specify kn as some function of n, such as kn = n; the volume Vn is grown until
it encloses kn neighbors of x. This is called “the kn-nearest neighbor estimation
method”

Pattern Classification, Chapter 4 56

0n/klim)3

klim)2

0Vlim)1

nn

nn

nn

)x(p)x(p
nn

Pattern Classification, Chapter 4 57

Parzen Windows
– The Parzen-window approach to estimate

densities assumes that the region Rn is a d-
dimensional hypercube

– ((x-xi)/hn) is equal to unity if xi falls within the
hypercube of volume Vn centered at x and equal
to zero otherwise

Pattern Classification, Chapter 4 58

otherwise0

d , 1,...j
2
1u 1

(u)

:functionwindow following the be (u) Let
) ofedge the of length :(h hV

j

nn
d
nn

– The number of samples in this hypercube is:

By substituting kn in equation (7), we obtain the following
estimate:

Pn(x) estimates p(x) as an average of functions of x and
the samples {xi} (i = 1,… ,n). These functions can be general

Pattern Classification, Chapter 4 59

ni

i n

i
n h

xxk
1

 n

i
ni

1i n
n h

xx
V
1

n
1)x(p

Window Functions

• Conditions for estimating legitimate
density function
– Non-negative
– Integrate to 1

• In other words, the window function should
be a probability density function

Pattern Classification, Chapter 4 60

 1)(dxx

0(x)

• The behavior of the Parzen-window method
– Case where p(x) N(0,1)
– Let

and (h1: known parameter)

Thus:

is an average of normal densities centered at the samples xi

Pattern Classification, Chapter 4 61

 n

i
ni

1i n
n h

xx
h
1

n
1)x(p

Illustration

2

2

2
1)(

u

eu

n
hhn

1

Numerical Results
For n = 1 and h1=1

Pattern Classification, Chapter 4 62

)1,()(
2
1)()(p 1

2
1

2/1
11 xNxxexxx

Pattern Classification, Chapter 4 63

For n = 10 and h = 0.1, the contributions of the individual samples
are clearly observable

Pattern Classification, Chapter 4 64

Analogous results are also obtained in two dimensions as illustrated:

Pattern Classification, Chapter 4 65

Pattern Classification, Chapter 4 66

– Case where p(x) = 1U(a,b) + 2T(c,d)
• unknown density, mixture of a uniform and a triangle density

Pattern Classification, Chapter 4 67

Pattern Classification, Chapter 4 68

Classification

• In classifiers based on Parzen-window
estimation:

– We estimate the densities for each category
and classify a test point by the label
corresponding to the maximum posterior

– The decision region for a Parzen-window
classifier depends upon the choice of window
function as illustrated in the following figure

Pattern Classification, Chapter 4 69

Pattern Classification, Chapter 4 70

Remember discussion on overfitting

K - Nearest Neighbor Estimation
• Goal: a solution for the problem of the unknown “best” window

function
– Let the cell volume be a function of the training data
– Center a cell about x and let it grow until it captures kn samples

(kn = f(n))
– kn are called the kn nearest-neighbors of x

• Benefits
– If density is high near x, the cell will be small which provides a

good resolution
– If density is low, the cell will grow large and stop when higher

density regions are reached

We can obtain a family of estimates by setting kn=k1 /√݊ and
choosing different values for k1

Pattern Classification, Chapter 4 71

Illustration

For kn = = 1 ; the estimate becomes:

Pn(x) = kn / nVn = 1 / V1 =1 / 2|x-x1|

(goes to infinity at x1)

Pattern Classification, Chapter 4 72

Pattern Classification, Chapter 4 73

Pattern Classification, Chapter 4 74

Estimation of Posterior Probabilities

• Goal: estimate P(i | x) from a set of n labeled samples
• Place a cell of volume V around x and capture k samples
• ki samples amongst k turned out to be labeled i then:

pn(x, i) = ki /nV
An estimate for pn(i| x) is:

Pattern Classification, Chapter 4 75

k
k

),x(p

),x(p)x|(p i
cj

1j
jn

in
in

– ki/k is the fraction of the samples within the
cell that are labeled i

– For minimum error rate, the most frequently
represented category within the cell is
selected

=> This is equivalent to posterior estimation

– If k is large and the cell sufficiently small, the
performance will approach the best possible

Pattern Classification, Chapter 4 76

The Nearest–Neighbor Rule
• Let Dn = {x1, x2, …, xn} be a set of n labeled prototypes

• Let x’ Dn be the closest prototype to a test point x then the
nearest-neighbor rule for classifying x is to assign it the label
associated with x’

• The nearest-neighbor rule leads to an error rate greater than the
minimum possible: the Bayes rate

• If the number of prototypes is large (unlimited), the error rate of the
nearest-neighbor classifier is never worse than twice the Bayes rate
(it can be proven!)

• If n , it is always possible to find x’ sufficiently close so that:
P(i | x’) ≈ P(i | x)

Pattern Classification, Chapter 4 77

78

Pattern Classification, Chapter 4

The k–Nearest-Neighbor Rule

• Goal: Classify x by assigning it the label
most frequently represented among the k
nearest samples

• Use a voting scheme

Pattern Classification, Chapter 4 79

Pattern Classification, Chapter 4 80

Matlab Example
data = dlmread('pima-indians-diabetes.data');

data = reshape(data,[],9);

% use randperm to re-order data. ignore if not using Matlab
rp = randperm(length(data));
data=data(rp,:);

%split = length(data)/2;
split = 300;

train_data = data(1:split,:);
test_data = data(split+1:end,:);

81

% pick features
active_feat = [1:3];

% training
% NOT NEEDED

% testing
correct=0;
wrong=0;

82

for i=1:length(test_data)

sample=test_data(i,active_feat);

dist = train_data(:,active_feat)-repmat(sample,length(train_data),1);
dist = dist*dist';

% we are only interested in the diagonal elements
% DON’T USE QUADRATIC DISTANCE COMPUTATION IN PRACTICE
fin_dist = diag(dist);
[min_d index] = min(fin_dist);

if(test_data(i,9) == train_data(index,9))
correct = correct+1;

else
wrong = wrong+1;

end
end

83

