
CS 559: Machine Learning 
Fundamentals and Applications

2nd Set of Notes

Instructor: Philippos Mordohai
Webpage: www.cs.stevens.edu/~mordohai
E-mail: Philippos.Mordohai@stevens.edu

Office: Lieb 215
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Overview

• Introduction to Graphical Models
• Belief Networks

• Linear Algebra Review
– See links on class webpage
– Email me if you need additional resources
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Example: Disease Testing

• Suppose you have been tested positive for 
a disease; what is the probability that you 
actually have the disease? 

• It depends on the accuracy and sensitivity 
of the test, and on the background (prior) 
probability of the disease
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Example: Disease Testing (cont.)

• Let P(Test=+ | Disease=true) = 0.95
• Then the false negative rate, P(Test=- | Disease=true) 

= 5%. 
• Let P(Test=+ | Disease=false) = 0.05, (the false 

positive rate is also 5%)
• Suppose the disease is rare: P(Disease=true) = 0.01
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Example: Disease Testing (cont.)

• Probability of having the disease given that you 
tested positive is just 16%. 
– Seems too low, but ... 

• Of 100 people, we expect only 1 to have the 
disease, and that person will probably test 
positive. 

• But we also expect about 5% of the others (about 
5 people in total) to test positive by accident. 

• So of the 6 people who test positive, we only 
expect 1 of them to actually have the disease; and 
indeed 1/6 is approximately 0.16. 
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Monty Hall Problem

• You're given the choice of three doors: Behind 
one door is a car; behind the others, goats. 

• You pick a door, say No. 1
• The host, who knows what's behind the doors, 

opens another door, say No. 3, which has a 
goat.

• Do you want to pick door No. 2 instead?
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Host must
reveal Goat B

Host must
reveal Goat A

Host reveals
Goat A

or
Host reveals

Goat B
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Monty Hall Problem: Bayes Rule

• : the car is behind door i, i = 1, 2, 3
•
• : the host opens door j after you pick 

door i
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Monty Hall Problem: Bayes Rule cont.

• WLOG, i=1, j=3

•

•
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•

•

Monty Hall Problem: Bayes Rule cont.
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Monty Hall Problem: Bayes Rule cont.





 You should switch!
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Introduction to Graphical 
Models

Barber Ch. 2
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Graphical Models
• GMs are graph based representations of various 

factorization assumptions of distributions 
– These factorizations are typically equivalent to 

independence statements amongst (sets of) variables 
in the distribution

• Directed graphs model conditional distributions 
(e.g. Belief Networks)

• Undirected graphs represented relationships 
between variables (e.g. neighboring pixels in an 
image)
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Definition

• A graph G consists of nodes (also called 
vertices) and edges (also called links) between 
the nodes

• Edges may be directed (they have an arrow in a 
single direction) or undirected 
– Edges can also have associated weights 

• A graph with all edges directed is called a 
directed graph, and one with all edges 
undirected is called an undirected graph
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More Definitions

• A path A  B from node A to node B is a sequence of 
nodes that connects A to B

• A cycle is a directed path that starts and returns to the 
same node

• Directed Acyclic Graph (DAG): A DAG is a graph G with 
directed edges (arrows on each link) between the nodes 
such that by following a path of nodes from one node to 
another along the direction of each edge no path will 
revisit a node
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More Definitions
• The parents of x4 are pa(x4) = {x1, x2, x3} 
• The children of x4 are ch(x4) = {x5, x6}

• Graphs can be encoded using the
edge list L={(1,8),(1,4),(2,4) …}
or the adjacency matrix
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Belief Networks

Barber Ch. 3
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Belief Networks (Bayesian Networks)

• A belief network is a directed acyclic graph in which each node has 
associated the conditional probability of the node given its parents

• The joint distribution is obtained by taking the product of the 
conditional probabilities:
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Alarm Example

• Sally's burglar Alarm is sounding. Has she 
been Burgled, or was the alarm triggered by 
an Earthquake? She turns the car Radio on 
for news of earthquakes.

• Choosing an ordering
– Without loss of generality, we can write

p(A,R,E,B) = p(A|R,E,B)p(R,E,B)
= p(A|R,E,B)p(R|E,B)p(E,B)
= p(A|R,E,B)p(R|E,B)p(E|B)p(B)
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Alarm Example

• Assumptions:
– The alarm is not directly influenced by any report 

on the radio,
p(A|R,E,B) = p(A|E,B)

• The radio broadcast is not directly influenced 
by the burglar variable,
p(R|E,B) = p(R|E)

• Burglaries don't directly `cause' earthquakes, 
p(E|B) = p(E)

• Therefore
p(A,R,E,B) = p(A|E,B)p(R|E)p(E)p(B)
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Alarm Example

The remaining data are p(B = 1) = 0.01 and p(E = 1) = 0.000001
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Alarm Example: Inference

• Initial evidence: the alarm is sounding
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Alarm Example: Inference

• Additional evidence: the radio broadcasts an 
earthquake warning
– A similar calculation gives 

p(B = 1 | A = 1, R = 1) ≈ 0,01
– Initially, because the alarm sounds, Sally thinks that 

she's been burgled. However, this probability drops 
dramatically when she hears that there has been an 
earthquake.

– The earthquake `explains away' to an extent the fact 
that the alarm is ringing
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Wet Grass Example
• One morning Tracey leaves her house and realizes that her grass is 

wet. Is it due to overnight rain or did she forget to turn off the 
sprinkler last night? Next she notices that the grass of her neighbor, 
Jack, is also wet. This explains away to some extent the possibility 
that her sprinkler was left on, and she concludes therefore that it has 
probably been raining.

• Define:
R ∈ {0, 1} R = 1 means that it has been raining, and 0 otherwise
S ∈ {0, 1} S = 1 means that Tracey has forgotten to turn off the 
sprinkler, and 0 otherwise
J ∈ {0, 1} J = 1 means that Jack's grass is wet, and 0 otherwise
T ∈ {0, 1} T = 1 means that Tracey's Grass is wet, and 0 otherwise
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Wet Grass Example

• The number of values that need to be 
specified in general scales exponentially 
with the number of variables in the model 
– This is impractical in general and motivates 

simplifications
• Conditional independence: 

p(T|J,R,S) = p(T|R,S)
p(J|R,S) = p(J|R)
p(R|S) = p(R)
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Wet Grass Example

• Original equation
p(T,J,R,S) = p(T|J,R,S)p(J,R,S)
= p(T|J,R,S)p(J|R,S)p(R,S)
= p(T|J,R,S)p(J|R,S)p(R|S)p(S)
• Becomes
p(T,J,R,S) = p(T|R,S)p(J|R)p(R)p(S)
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Wet Grass Example
• p(R = 1) = 0.2 and p(S = 1) = 0.1 
• p(J = 1|R = 1) = 1, p(J = 1|R = 0) = 0.2 (sometimes 

Jack's grass is wet due to unknown effects, other 
than rain) 

• p(T = 1|R = 1, S = 0) = 1, 
p(T = 1|R = 1, S = 1) = 1, 
p(T = 1|R = 0, S = 1) = 0.9 (there's a small chance 
that even though the sprinkler was left on, it didn't 
wet the grass noticeably)

• p(T = 1|R = 0, S = 0) = 0
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Wet Grass Example

• Note that ΣJp(J|R)p(R)=p(R) 
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Wet Grass Example

29



Independence in Belief Networks

• In (a), (b) and (c), A, B are conditionally independent given C

• In (d) the variables A,B are conditionally dependent given C: 
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Independence in Belief Networks

• In (a), (b) and (c), A, B are marginally dependent
• In (d) the variables A, B are marginally independent
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Intro to Linear Algebra

Slides by Olga Sorkine
(ETH Zurich)
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Vector space

• Informal definition: 
– V   (a non-empty set of vectors)

– v, w  V  v + w  V (closed under addition)

– v  V,  is scalar  v  V (closed under multiplication by 
scalar)

• Formal definition includes axioms about associativity and 
distributivity of the + and  operators.  

• 0  V  always!
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Subspace - example

• Let  l be a 2D line though the origin
• L = {p – O | p  l} is a linear subspace of R2

x

y

O
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Subspace - example

• Let   be a plane through the origin in 3D
• V = {p – O | p  } is a linear subspace of 

R3

y

z

x

O
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Linear independence

• The vectors {v1, v2, …, vk} are a linearly 
independent set if:
1v1 + 2v2 + … + kvk = 0     i = 0  i

• It means that none of the vectors can be 
obtained as a linear combination of the 
others.
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Linear independence - example

• Parallel vectors are always dependent:

• Orthogonal vectors are always linearly
independent

v
w

v = 2.4 w  v + (2.4)w = 0

37O. Sorkine, 2006



Basis of V

• {v1, v2, …, vn} are linearly independent
• {v1, v2, …, vn} span the whole vector space V:

V = {1v1 + 2v2 + … + nvn | I scalars}

• Any vector in V is a unique linear combination 
of the basis

• The number of basis vectors is called the 
dimension of V
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Basis - example
• The standard basis of R3 – three unit orthogonal 

vectors x, y, z: (sometimes called i, j, k or e1, e2, e3)

y

z

x
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Basis – another example

• Grayscale NM images:
– Each pixel has value between 

0 (black) and 1 (white)
– The image can be interpreted 

as a vector  RNM

M

N
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The “standard” basis (44)
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Linear combinations of the basis

*1  +  *(2/3)  +  *(1/3)  =  

42O. Sorkine, 2006



Matrix representation
• Let {v1, v2, …, vn} be a basis of V
• Every vV has a unique representation   

v = 1v1 + 2v2 + … + nvn

• Denote  v by the column-vector:

• The basis vectors are therefore denoted:
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Linear operators

• A : V   W is called linear operator if:
– A(v + w) = A(v) + A(w)
– A( v) =  A(v)

• In particular, A(0) = 0
• Linear operators we know:

– Scaling
– Rotation, reflection
– Translation is not linear – moves the origin
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Linear operators - illustration

• Rotation is a linear operator:

v

w

v+w
R(v+w)

v

w
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Linear operators - illustration

• Rotation is a linear operator:

v

w

v+w
R(v+w)

v

wR(w)
R(v)

R(v)+R(w)

R(v+w) = R(v) + R(w)
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Matrix operations

• Addition, subtraction, scalar multiplication –
simple…

• Multiplication of matrix by column vector:
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Matrix by vector multiplication

• Sometimes a better way to look at it:
– Ab is a linear combination of A’s columns!
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Matrix operations

• Transposition: make the rows to be the 
columns

• (AB)T = BTAT
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Matrix properties

• Matrix A (nn) is non-singular if B, AB = BA = I
• B = A1 is called the inverse of A
• A is non-singular   det A  0

• If A is non-singular then the equation Ax=b
has one unique solution for each b

• A is non-singular  the rows of A are linearly 
independent (and so are the columns)
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Orthogonal matrices

• Matrix A (nn) is orthogonal if A1 = AT

• Follows: AAT = ATA = I
• The rows of A are orthonormal vectors!

Proof:

I = ATA = 
v1

v2

vn

=     vi
Tvj =    ij

v1 v2 vn

 <vi, vi> = 1  ||vi|| = 1; <vi, vj> = 0 
51O. Sorkine, 2006



The Trace

• The trace of a square matrix denoted by 
tr(A) is the sum of the diagonal elements
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The Determinant

• For a square matrix A, the determinant is 
denoted by |A| or det(A)
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The Determinant

• |A| = |AT|
• |AB| = |A| |B|
• |A| = 0, if and only if A is singular

– Else, |A-1| = 1/|A|
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The Covariance Matrix 
(Interlude)
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Covariance

• Covariance is a numerical measure  that 
shows how much two random variables 
change together

• Positive covariance: if one increases, the 
other is likely to increase

• Negative covariance: …
• More precisely: the covariance is a measure 

of the linear dependence between the two 
variables
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Covariance Example
Relationships between the returns of different stocks
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Correlation Coefficient

• One may be tempted to conclude that if 
the covariance is larger, the relationship 
between two variables is stronger (in the 
sense that they have stronger linear 
relationship)

• The correlation coefficient is defined as:
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Correlation Coefficient

• The correlation coefficient, unlike covariance, is 
a measure of dependence that is free of scales 
of measurement of Yij and Yik

• By definition, correlation must take values 
between −1 and 1

• A correlation of 1 or −1 is obtained when there is 
a perfect linear relationship between the two 
variables
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Covariance Matrix
• For the vector of repeated measures, Yi = (Yi1, 

Yi2, ..., Yin), we define the covariance matrix, 
Cov(Yi):

• It is a symmetric, square matrix
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Variance and Confidence Intervals

• Single Gaussian (normal) random variable
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Multivariate Normal Density

– The multivariate normal density in d dimensions is:

where:
x = (x1, x2, …, xd)t

 = (1, 2, …, d)t mean vector
 = d×d covariance matrix
|| and -1 are the determinant and inverse respectively
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Confidence Intervals: 
Multi-Variate Case

• Same concept: how large is the area that 
contains X% of samples drawn from the 
distribution

• Confidence intervals are ellipsoids for normal 
distribution
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Confidence Intervals: 
Multi-Variate Case

• Increasing X%, increases the size of the 
ellipsoids, but not their orientation and aspect 
ratio
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The Multi-Variate Normal Density

• Σ is positive semi definite (xtΣx>=0)
– If xtΣx =0 for non-zero x then det(Σ)=0. This 

case is not interesting, p(x) is not defined
The feature vector is a constant (has zero 

variance)
Two or more features are linearly dependent

• So we will assume Σ is positive definite 
(xtΣx >0)

• If Σ is positive definite then so is Σ-1

65O. Veksler



Confidence Intervals: 
Multi-Variate Case

• Covariance matrix 
determines the 
shape
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Confidence Intervals: 
Multi-Variate Case

• Case I:  = 2I
• All variables are uncorrelated and have equal 

variance

• Confidence intervals are circles
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Confidence Intervals: 
Multi-Variate Case

• Case II:  diagonal, with unequal elements
• All variables are uncorrelated but have different 

variances

• Confidence intervals are axis-aligned 
ellipsoids
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Confidence Intervals: 
Multi-Variate Case

• Case III:  arbitrary
• Variables may be correlated and have different 

variances

• Confidence intervals are arbitrary 
ellipsoids
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Eigen-interlude

Based on D. Barber’s slides
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Eigenvalues and Eigenvectors

• For an n×n square matrix A, e is an 
eigenvector with eigenvalue λ if

Ae = λe
• Or

(A- λI)e=0
• If (A- λI) is invertible, the only solution is 

e=0 (trivial)
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Eigenvalues and Eigenvectors

(A- λI)e=0
• For non-trivial solutions:

det(A- λI)=0
• Above equation is called the “characteristic 

polynomial”
• Solutions are not unique

– If e is an eigenvector αe is also an 
eigenvector
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Simple Example

• For a 2×2 matrix
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The solutions are =0 and =5

The eigenvector for the first eigenvalue, =0 is:

One solution for both equations is x=2, y=-1
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For the other eigenvalue, =5:
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Properties

• The product of the eigenvalues = |A|

• The sum of the eigenvalues = trace(A)

• The eigenvectors are pairwise orthogonal
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Spectral Decomposition

• A symmetric matrix has real eigenvalues
• A real symmetric matrix can be written as:
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Back to the Covariance Matrix
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Geometric Interpretation

• Start from N(0,I) and construct multi-
variate distribution with desired covariance 
matrix
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translation
rotation anisotropic scaling



Eigenvectors of the Covariance Matrix

• New basis aligned with ellipsoids
• Major axis  eigenvector with max 

eigenvalue
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2D Examples
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