CS 559: Machine Learning
Fundamentals and Applications
12t Set of Notes

Instructor: Philippos Mordohai
Webpage: www.cs.stevens.edu/” mordohai
E-mail: Philippos.Mordohai@stevens.edu
Office: Lieb 215

Overview

 Deep Learning

— Based on slides by M. Ranzato (mainly),
S. Lazebnik, R. Fergus and Q. Zhang

Natural Neurons

e Human recognition of digits

— visual cortices

— neuron interaction &- Primary Visual

Cortex (\V1)
Dendirite Axon Terminal O HI /] 1q] A 13 1] 4 3]
Node of S RIEN 72 E 6 5 M
Ranvier © a@mﬁﬂﬂmﬁlilﬂl"—bl
P[] (2] 0] =1 (6] (0] = [€] []]
8 71171 3] 9] (3] [s1 8] (3 [3]
02 FA 707 M/l
¥ 6l 104 6] [7] Ol [1]
Schwann cell ED]@B]E@I@@
Myelin sheath E@@E@ﬂ@
Nucleus E@EE@EEE‘

Recognizing Handwritten Digits

* How to describe a digit to a computer

— "a 9 has a loop at the top, and a vertical stroke in
the bottom right”

— Algorithmically difficult to describe various 9s

99

Perceptrons

* Perceptrons

e 1950s ~ 1960s, Frank Rosenblatt, inspired by earlier
work by Warren McCulloch and Walter Pitts

e Standard model of artificial neurons

|

~

g ﬁ— nutput

453

Binary Perceptrons

* |[nputs
 Multiple binary inputs

e Parameters Xj
g output
 Thresholds & weights

5
e Outputs

: 0 if Y. w;z; < threshold
o Thresholded weighted — guipue = | © 2% = thresho
. . . 1 if > w;z; > threshold
linear combination

Layered Perceptrons

e Layered, complex model

e 1st|ayer, 2" |ayer of
perceptrons

Inputs

e Perceptron rule
 Weights, thresholds

e Similarity to logical @&
functions (NAND) ~——=> ...

0 ifw-z4+b<0
1 ifw-z+b5>0

gutput = {

Sigmoid Neurons

small change In any wolghk (or blaw)
causs Emall change In the cukpuk

e Sigmoid neurons whow
e Stability

 Small perturbation, small
output change

output+doutput

 Continuous inputs 1

e Continuous outputs _ﬁ%_nutput
e Soft thresholds

i3

Output Functions

step function

e Sigmoid neurons

* OUtpUt ofw 21 b) o=

- 1+ 2 21
1 S N T S S S ey S
1+ exp(— D wsz; — b

e Sigmoid vs conventional
thresholds 4

IIIIIIIIIIIIIII

Smoothness & Differentiability

e Perturbations and
De I‘ivativeS Aoutput == Z 0 output Aoy + o output Ab

'EJI_,:I .
i 4

e Continuous function
e Differentiable

e Layers

Input lnyor

e |nput layers, output layers,
hidden layers

Layer Structure Design

e Design of hidden layer

e Heuristic rules

e Number of hidden layers vs.

computational resources e

e Feedforward network

* No loops involved

Cost Function & Optimization

e Learning with gradient descent

. SO /K9
e Cost function
* Euclidean loss

* Non-negative, smooth,
“ I
differentiable L |
i
A\ "

1

O I U O] O —— /

W

Cost Function & Optimization

e Gradient Descent

Al = Eﬁﬂl + Eﬂﬂg,
33}1 6‘@2

e Gradient vector

a
V= §8}§G :
@ﬂl @E}g

A 2 VO A,

p—v =p— VT,

Cost Function & Optimization

e Extension to multiple dimensions
* mvariables v1,...,vx
e Small change in variable 4= (au,..., Av,)"

e Small change in cost AC=VC- As,

1o, el
V= (— }}}}})

Neural Nets for
Computer Vision

Based on Tutorials at CVPR 2012
and 2014 by

Marc’Aurelio Ranzato

Building an Object Recognition System

llCARll

1
1
4

IDEA: Use data to optimize features for the
given task

Building an Object Recognition System

l\CARl'

CLASSIFIER

What we want: Use parameterized function such that
a) features are computed efficiently
b) features can be trained efficiently

Building an Object Recognition System

END-TO-END
RECOGNITION

SYSTEM

« Everything becomes adaptive
« No distinction between feature extractor and classifier
* Big non-linear system trained from raw pixels to labels

Building an Object Recognition System

END-TO-END
RECOGNITION

SYSTEM

Q: How can we build such a highly non-linear system??
A: By combining simple building blocks we can make
more and more complex systems

Building a Complicated Function

Simple Functions

e N
y. N One Example of
. \

/ Sm() \ Complicated Function
og(x) e
- cos(x) 0 log (cos (exp(sin’(x)) U
I".H 3 I.'II -
"‘\\ X /f \\-\.E___________________’_,_./—/ |

N // e Function composition is

N CXP (x) > at the core of deep
~— | learning methods

« Each “simple function”

will

subj

nave parameters
ect to training

Implementing a Complicated Function

Complicated Function

log (cos(exp (sin’(x))))

Intuition Behind Deep Neural Nets

Intuition Behind Deep Neural Nets

\\CAR”
—-

. .—I—>

Each black box can have trainable parameters. Their
composition makes a highly non-linear system.

Intuition Behind Deep Neural Nets

Intermediate representations/features

System produces hierarchy of features

Intuition Behind Deep Neural Nets

TN TN
N NNEEES

Intuition Behind Deep Neural Nets

Intuition Behind Deep Neural Nets

Key ldeas of Neural Nets

IDEA # 1
Learn features from data
IDEA # 2
Use differentiable functions that produce
features efficiently

IDEA # 3

End-to-end learning:

no distinction between feature extractor and

classifier
IDEA # 4

“Deep” architectures:

cascade of simpler non-linear modules

Key Questions

What is the input-output mapping?
How are parameters trained?
How computational expensive is it?

How well does it work?

Supervised Deep Learning

Marc’Aurelio Ranzato

Supervised Learning

{(x;, y;), I=1... P } training set

X; I-th input training example

y; I-th target label

P number of training examples

x-y_'
—

* GGoal: predict the target label of unseen inputs

Supervised Learning Examples

Classification

Denoising

Supervised Deep Learning

Classification

Denoising

OCR

“2345”

Neural Networks

Assumptions (for the next few slides):

 The input image is vectorized (disregard the
spatial layout of pixels)

 The target label is discrete (classification)

Question: what class of functions shall we consider
to map the input into the output?
composition of simpler functions.

Follow-up questions: Why not a linear combination?
What are the “simpler” functions? What is the
interpretation?

later...

Neural Networks: example

X Input
h! 1-st layer hidden units

h? 2-nd layer hidden units
O output

Example of a 2 hidden layer neural network (or 4
layer network, counting also input and output)

Forward Propagation

Forward propagation is the process of
computing the output of the network given its
Input

Forward Propagation

—pp | 20 (0, x)

D

xeR” w'er"™” b'er™ n'er“

h'=max(0,W'x+b")

W1 1st layer weight matrix or weights
b1 1stlayer biases

e The non-linearity u=max(0,v) is called in the DL literature.
« Each output hidden unit takes as input all the units at the
previous layer: each such layer is called

Rectified Linear Unit (RelLU)

IIIIIIIII
'''''''''''''''

Forward Propagation

| 1120 (0, 7" x)

N

hleRNl WQERNEXL

- P'eR KHeR":

h=max (0, W h'+b*)

W2 2nd layer weight matrix or weights
b2 2" |ayer biases

Forward Propagation

—pp- 120 (0.7 x)

N

heRr"

N

N
wieR" "

; N
F’eR" oeR™

o=max (0,W°h*+b°)

W3 3rd layer weight matrix or weights
b3 3 |ayer biases

Alternative Graphical Representations

Interpretation

e Question: Why can't the mapping between layers be
linear?

Because composition of linear functions is a
linear function. Neural network would reduce to (1 layer)
logistic regression.

e Question: What do RelLU layers accomplish?
Piece-wise linear tiling: mapping is locally linear.

Interpretation

Question: Why do we need many layers?

When input has hierarchical structure, the use
of a hierarchical architecture is potentially more efficient
because intermediate computations can be re-used. DL
architectures are efficient also because they use

which are shared across

classes.

Interpretation
1T 1T0001T01T00001T1T01...] motorbike

0 0100001001100 1O0...] tuek

Interpretation

prediction of class

high-level e Distributed
parts representations
mid-level * Feature sharing
parts

o Compositionality

low level R TN
parts 9 ™

InpUt image ‘ - -

45

Interpretation

Question: What does a hidden unit do?

It can be thought of as a classifier or feature
detector.

Question: How many layers? How many hidden units?

Cross-validation or hyper-parameter search
methods are the answer. In general, the wider and the
deeper the network the more complicated the mapping.

Question: How do | set the weight matrices?

Weight matrices and biases are learned. First, we
need to define a measure of quality of the current
mapping. Then, we need to define a procedure to adjust
the parameters.

How Good is a Network

p(cfc:1|x):

C
2., ¢

j=1

e (Per-sample) Loss; e.g., negative log-likelihood (good for
classification of small number of classes):

Lix,y:0)==3 v logplcx)

Training

e Learning consists of minimizing the loss (plus some
regularization term) w.r.t. parameters over the whole
training set.

P
0" =arg mmezn L(x",y",0)

Question: How to minimize a complicated function of the
parameters?

Chain rule, a.k.a. | That is the
procedure to compute gradients of the loss w.r.t.
parameters in a multi-layer neural network.

Key Idea: Wiggle to Decrease Loss

e Let's say we want to decrease the loss by adjusting W1i,j.
 We could consider a very small e=1e-6 and compute:
L (x ’ y ;9)

L(x,y,0\W, W, +e¢)

i,]

 Then update:
W <—W}’j+e5gn(L(x,y;9)—L(x,y;9\W}}_}.,Wi)_}.+e))

i,]

Backward Propagation

oL 0L Oo oL 0L Oo

ow® 0o oW’ on* 0o on’

Backward Propagation

0L
Given —= we can compute now:

oh

oL oL oI 0L OL ON

OW?> Oh oW’ on' on® on'

Backward Propagation

ivan
JIvVeri

oh' v

0L _ 0L oh
ow' on' ow'

Optimization

Stochastic Gradient Descent

0 —0 niﬁ,ne(o,l)

Or one of its many variants

Convolutional Neural
Networks

Marc’Aurelio Ranzato

Fully Connected Layer

Example: 200x200 image
- 40K hidden units
m) ~2B parameters!!!

- Spatial correlation is local
- Waste of resources + we have not enough
training samples anyway..

Locally Connected Layer

r .
P
e
‘4 J
¥ 7 7 e —
R | - .
) o
4
v
-

Example: 200x200 image
40K hidden units
Filter size: 10x10
4M parameters

N\ Note: This parameterization is good
when input image is registered (e.g.,
. face recognition).

Convolutional Layer

J"..; v

S
....
T "

Share the same parameters across
different locations (assuming input is
stationary):

Convolutions with learned kernels

Convolutional Layer

Convolutional Layer

VAVAANAVANAN

Convolutional Layer

VAVAMAAN

Convolutional Layer

Convolutional Layer

e
G
101 [THS

101 = i
101 |

v

62

Convolutional Layer

E.g.: 200x200 image
100 Filters
Filter size: 10x10
10K parameters

Convolutional Layer

h" —max (0, z B

/ s &
output Input feature Kkernel
feature map map

Conv.

kn—l
! layer

n—1
hz

64

Convolutional Layer

n n—1 n
— sk
h':=max (0, k:}jzk }V@)
/7 /7 /7
0utp‘ut iﬁp'u't feature Kernel

feature map map

65

Convolutional Layer

/h =max (0 Z 1/ / W)
/ | /7SS
output input feature kernel

feature map map

66

Convolutional Layer

Question: What is the size of the output? What's the computational
cost?

It is proportional to the number of filters and depends on
the stride. If kernels have size KxK, input has size DxD, stride is 1,
and there are M input feature maps and N output feature maps then:
- the input has size MxDxD
- the output has size Nx (D-K+1) x(D-K+1)
- the kernels have MxNxKxK coefficients (which have to be learned)
- cost: MxKxKxNx(D-K+1)x(D-K+1)

Question: How many feature maps? What's the size of the filters?

Usually, there are more output feature maps than input
feature maps. Convolutional layers can increase the number of
hidden units by big factors (and are expensive to compute). The
size of the filters has to match the size/scale of the patterns we want
to detect (task dependent).

Key Ideas

A standard neural net applied to images:
— scales quadratically with the size of the input
— does not leverage stationarity

Solution:

— connect each hidden unit to a small patch of the
Input

— share the weight across space

This is called: convolutional layer

A network with convolutional layers is called
convolutional network

Pooling Layer

Let us assume filter is an “eye” detector.

Q.: how can we make the detection robust to
the exact location of the eye?

Pooling Layer

By “pooling” (e.g., taking max) filter

responses at different locations we gain
robustness to the exact spatial location
of features.

Pooling Layer

Question: What is the size of the output? What's the
computational cost?

The size of the output depends on the stride
between the pools. For instance, if pools do not overlap
and have size KxK, and the input has size DxD with M
iInput feature maps, then:

- output is Mx(D/K)x(D/K)
- the computational cost is proportional to the size of the
input (negligible compared to a convolutional layer)

Question: How should | set the size of the pools?

It depends on how much “invariant” or robust to
distortions we want the representation to be. It is best to
pool slowly (via a few stacks of conv-pooling layers).

Local Contrast Normalization

Local Contrast Normalization

hH_I(X, y):hi(x,y_)—mi(N(x,y))

o'(N(x,y))

Local Contrast Normalization

Local Contrast Normalization

hipxp,}', mi’iw(x;,}")

h —_—

i+1,x,y
O-rf,N(x,.},’)
 —
1 0
11 0.5
1.0 LCN |9

N I T
[S

ConvNets: Typical Stage

One stage (zoom)

Rectification
' i
Contrast
Normalization

Filter Bank
courtesy of
K. Kavukcuoglu

ConvNets: Typical Architecture

One stage (zoom)

Input
Image
—

Whole system

Fully Conn. |
Layers

3" stage

2" stage

1° stage

Class
Labels

_..

77

ConvNets: Typical Architecture

Whole system

Input Class
Image | Fully Conn. |Labels
Layers
1°' stage 2"! stage 3" stage

Conceptually similar to:
SIFT = k-means - Pyramid Pooling 2> SVM

Engineered vs. learned features

Label

Convolutional filters are trained in a
supervised manner by back-propagating
classification error

Label

Pooling

Dh B e

Feature extraction

Image |

Image

slide credit: S. Lazebnik

Image
Pixels

>

SIFT Descriptor

Apply gradient

o m

Spatial pool (EELMEE

(Sum)

Normalize to unit
length

Feature
Vector

slide credit: R. Fergus

AlexNet

e Similar framework to LeCun’98 but:
e Bigger model (7 hidden layers, 650,000 units, 60,000,000 params)
e More data (10° vs. 103 images)
e GPU implementation (50x speedup over CPU)

e Trained on two GPUs for a week

A. Krizhevsky, I. Sutskever, and G. Hinton,

ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012

. i'n. j"" s - - -
N 31 Af 1
193 192 128 2048 2048 \dense
27 128 T]]
RN 13 \ 13
""" & i L
s 13 T i 13 dense | |dense
i 1000
192 192 128 pax 1| L]
Max 128 Max pooling 2948 2048
pooling pooling

category

Total nr. params: 60M *predicﬁon Total nr. flops: 832M
4M LINEAR 4M
|
16M FULLY CONNECTED 16M
37M FULLY CONNECTED 37M

442K 74M

1.3M
884K

224M
149M

307K 293 M

35K 105M

Input

Conv Nets: Examples

» Pedestrian detection

Conv Nets: Examples

e Scene Parsing

84

Conv Nets: Examples

e Denoising

noised
VIR

85

Conv Nets: Examples

e Object Detection

86

Conv Nets: Examples

* Face Verification and Identification (DeepFace)

REPRESENTATION

& Cl: M2 C3: L4: L5: Lb: F7:
Calista_Flockhort_0002.ipg Frontaization; 21416 32631332 16691332 6xON16 I6xTaTXI6 16xSx5elé 4096d
Detection & Localization @152X152x3 @142x142 @71x71 @Hax63 5565 B®25x25 @21X%21

SFEC labels

87

Conv Nets: Examples

 Regression (DeepPose)
\ -

