
CS 559: Machine Learning
Fundamentals and Applications

10th Set of Notes

Instructor: Philippos Mordohai
Webpage: www.cs.stevens.edu/~mordohai
E-mail: Philippos.Mordohai@stevens.edu

Office: Lieb 215

1

Ensemble Methods

• Bagging (Breiman 1994,…)
• Random forests (Breiman 2001,…)
• Boosting (Freund and Schapire 1995, Friedman

et al. 1998,…)

Predict class label for unseen data by
aggregating a set of predictions (classifiers
learned from the training data)

2

General Idea

S Training
Data

S1 S2 SnMultiple Data
Sets

C1 C2 CnMultiple
Classifiers

HCombined
Classifier 3

Ensemble Classifiers
• Basic idea: Build different “experts” and let them
vote

• Advantages:
• Improve predictive performance
• Different types of classifiers can be directly

included
• Easy to implement
• Not too much parameter tuning

• Disadvantages:
• The combined classifier is not transparent
(black box)

• Not a compact representation
4

Why do they work?

• Suppose there are 25 base classifiers
• Each classifier has error rate
• Assume independence among classifiers
• Probability that the ensemble classifier makes

a wrong prediction:

06.0)1(
25 25i

25

13








 


 i

i i


35.0

5

Bagging
• Training

o Given a dataset S, at each iteration i, a training set Si is sampled

with replacement from S (i.e. bootstraping)

o A classifier Ci is learned for each Si

• Classification: given an unseen sample X
o Each classifier Ci returns its class prediction

o The bagged classifier H counts the votes and assigns the class

with the most votes to X

6

Bagging
• Bagging works because it reduces variance

by voting/averaging
o In some pathological hypothetical situations the

overall error might increase

o Usually, the more classifiers the better

• Problem: we only have one dataset

• Solution: generate new ones of size n by
bootstrapping, i.e. sampling with replacement

• Can help a lot if data is noisy

7

Aggregating Classifiers

• Bagging and Boosting
Aggregating Classifiers

 Breiman (1996) found gains in accuracy by
aggregating predictors built from reweighed
versions of the learning set

FINAL RULE

8

Bagging

• Bagging = Bootstrap Aggregating

• Reweighing of the learning sets is done by

drawing at random with replacement from

the learning sets

• Predictors are aggregated by plurality

voting
9

The Bagging Algorithm

• B bootstrap samples

• From which we derive:

  Bpppp ,...,,, : 1 ,0 321

  Bcccc ,...,,, : 1 ,1 321 B Classifiers

 B Estimated probabilities

 The aggregate classifier becomes:

or

10









 



B

b

b
bag xc

B
signxc

1

)(1)(



B

b

b
bag xp

B
xp

1

)(1)(

Initial set

Classifier 1

Classifier 2

Drawing with replacement 1

Drawing with replacement 2

Weighting

11

Sign

Aggregation

Classifier 1


Classifier 2

Classifier 3

…

Classifier T







Initial set

Final rule
=

12

Random Forests
Breiman L. Random forests. Machine Learning 2001;45(1):5-32
http://stat-www.berkeley.edu/users/breiman/RandomForests/

13

14

Decision Forests
for computer vision and medical image analysis

A. Criminisi, J. Shotton and E. Konukoglu

http://research.microsoft.com/projects/decisionforests

Decision Trees and Decision Forests

A forest is an ensemble of trees. The trees are all slightly different from
one another 15

terminal (leaf) node

internal
(split) node

root node0

1 2

3 4 5 6

7 8 9 10 11 12 13 14

A general tree structure

Is top
part blue?

Is bottom
part green?

Is bottom
part blue?

A decision tree

Decision Tree Testing (Runtime)

16

Input
test
point Split the data at node

Input data in feature space

Prediction at leaf

17

Decision Tree Training (Offline)
How to split the data?

Binary tree? Ternary?
How big a tree?
What tree structure?

Input data in feature space

Input training data

18

Decision Tree Training (Offline)

How many trees?
How different?
How to fuse their outputs?

… …

Decision Forest Model

Basic notation

Output/label space Categorical, continuous? e.g.

Input data point e.g. Collection of feature responses . d=?

Feature response selector Features can be e.g. wavelets? Pixel intensities? Context?

Forest model

tre
e Node weak learner The test function for splitting data at a node j.e.g.

Node objective function (train.) The “energy” to be minimized when training the j-th split nodee.g.

Stopping criteria (train.) e.g. max tree depth = When to stop growing a tree during training

The ensemble model How to compute the forest output from that of individual trees?e.g.

en
se

m
bl

e

Forest size Total number of trees in the forest

Leaf predictor model Point estimate? Full distribution?e.g.

Randomness model (train.) e.g. 1. Bagging,
2. Randomized node optimization

How is randomness injected during training? How much?

Node test parameters Parameters related to each split node:
i) which features, ii) what geometric primitive, iii) thresholds.

Randomness Model

20

1) Bagging (randomizing the training set)

The full training set

The randomly sampled subset of training data made available for the tree t

Forest training

Efficient training

Randomness Model

21

The full set of all possible node test parameters

For each node the set of randomly sampled features

Randomness control parameter.
For no randomness and maximum tree correlation.
For max randomness and minimum tree correlation.

2) Randomized node optimization (RNO)

Small value of ; little tree correlation. Large value of ; large tree correlation.

The effect of

Node weak learner

Node test params

Node training

The Ensemble Model

An example forest to predict
continuous variables

Training and Information Gain

B
ef

or
e

sp
lit

Information gain

Shannon’s entropy

Node training

Sp
lit

 1
Sp

lit
 2

Overfitting and Underfitting

24

Classification Forest

25

Training data in feature space

?

?

?

Entropy of a discrete distribution

with

Classification tree
training

Obj. funct. for node j (information gain)

Training node j

Output is categorical

Input data point

Node weak learner

Predictor model (class posterior)

Model specialization for classification

(is feature response)

(discrete set)

Weak Learners

26

Node weak learner

Node test params

Splitting data at node j

Weak learner: axis aligned Weak learner: oriented line Weak learner: conic section

Examples of weak learners

Feature response
for 2D example.

With a generic line in homog. coordinates.

Feature response
for 2D example.

With a matrix representing a conic.

Feature response
for 2D example.

In general may select only a very small subset of features

With or

27

Prediction Model
What do we do at the leaf?

leaf
leaf

leaf

Prediction model: probabilistic

28

Classification Forest: Ensemble Model

Tree t=1 t=2 t=3

Forest output probability

The ensemble model

Effect of Tree Depth

Effect of Weak Learner Model and Randomness
D=

5
D=

13

Parameters: T=400 predictor model = prob.

Weak learner: axis aligned Weak learner: oriented line Weak learner: conic section

Testing posteriors

Effect of Weak Learner Model and Randomness

Parameters: T=400 predictor model = prob.

Testing posteriors
D=

5
D=

13

Weak learner: axis aligned

Body tracking in Microsoft Kinect for XBox 360

left
hand

right
shoulder neck

right
foot

Input depth image Training labelled data Visual features

Objective function

Node training

Labels are categorical

Input data point

Predictor model

Classification forest

Visual features
Node parameters

Weak learner

Feature response

33

Body tracking in Microsoft Kinect for XBox 360

Input depth image (bg removed) Inferred body parts posterior

Advantages of Random Forests
• Very high accuracy – not easily surpassed by other

algorithms
• Efficient on large datasets
• Can handle thousands of input variables without

variable deletion
• Effective method for estimating missing data, also

maintains accuracy when a large proportion of the
data are missing

• Can handle categorical variables
• Robust to label noise
• Can be used in clustering, locating outliers and semi-

supervised learning

34
L. Breiman’s web page

Boosting

35

Boosting Resources

• Slides based on:
– Tutorial by Rob Schapire
– Tutorial by Yoav Freund
– Slides by Carlos Guestrin
– Tutorial by Paul Viola
– Tutorial by Ron Meir
– Slides by Aurélie Lemmens
– Slides by Zhuowen Tu

36

Code

• Antonio Torralba (Object detection)
– http://people.csail.mit.edu/torralba/shortCours

eRLOC/boosting/boosting.html

• GML AdaBoost
– http://graphics.cs.msu.ru/ru/science/research/

machinelearning/adaboosttoolbox

37

Boosting

• Invented independently by Schapire
(1989) and Freund (1990)
– Later joined forces

• Main idea: train a strong classifier by
combining weak classifiers
– Practically useful
– Theoretically interesting

38

Boosting

• Given a set of weak learners, run them
multiple times on (reweighted) training data,
then let learned classifiers vote

• At each iteration t:
– Weight each training example by how incorrectly

it was classified
– Learn a hypothesis – ht

• The one with the smallest error
– Choose a strength for this hypothesis – αt

• Final classifier: weighted combination of
weak learners

39

Learning from Weighted Data

• Sometimes not all data points are equal
– Some data points are more equal than others

• Consider a weighted dataset
– D(i) – weight of i th training example (xi,yi)
– Interpretations:

• i th training example counts as D(i) examples
• If I were to “resample” data, I would get more samples

of “heavier” data points

• Now, in all calculations the i th training
example counts as D(i) “examples”

40

Definition of Boosting

• Given training set (x1,y1),…, (xm,ym)
• yi ϵ{-1,+1} correct label of instance xiϵX
• For t=1,…,T

– construct distribution Dt on {1,…,m}
– find weak hypothesis
– ht: X {-1,+1} with small error εt on Dt

• Output final hypothesis Hfinal

41

AdaBoost
• Constructing Dt

– D1=1/m
– Given Dt and ht:

where Zt is a normalization
constant

• Final hypothesis:

42

The AdaBoost Algorithm

43

The AdaBoost Algorithm

44

with minimum

The AdaBoost Algorithm

45

The AdaBoost Algorithm

46

Toy Example

47

D1

Toy Example: Round 1

48

D2

ε1=0.3
α1=0.42

Toy Example: Round 2

49

D3

ε2=0.21
α2=0.65

Toy Example: Round 3

50

ε3=0.14
α3=0.92

Toy Example: Final Hypothesis

51

Hfinal

How to choose Weights

Training error of final classifier is bounded by:

where:

52

Notice that:

How to choose Weights
Training error of final classifier is bounded by:

where

In final round:

53

How to choose Weights
• If we minimize ΠtZt, we minimize our

training error
– We can tighten this bound greedily, by

choosing αt and ht in each iteration to
minimize Zt

• For boolean target function, this is
accomplished by [Freund & Schapire ’97]:

54

Weak and Strong Classifiers

• If each classifier is (at least slightly) better
than random
– εt < 0.5

• AdaBoost will achieve zero training error
(exponentially fast):

• Is it hard to achieve better than random
training error?

55

Important Aspects of Boosting

• Exponential loss function
• Choice of weak learners
• Generalization and overfitting
• Multi-class boosting

56

Exponential Loss Function
• The exponential loss function is an upper

bound of the 0-1 loss function
(classification error)

• AdaBoost provably minimizes exponential
loss

• Therefore, it also minimizes the upper
bound of classification error

57

Exponential Loss Function
• AdaBoost attempts to minimize:

(*)

• Really a coordinate descent procedure
– At each round add atht to sum to minimize (*)

• Why this loss function?
– upper bound on training (classification) error
– easy to work with
– connection to logistic regression

58

Coordinate Descent Explanation

59

Weak Learners
• Stumps:

– Single-axis parallel partition of space

• Decision trees:
– Hierarchical partition of space

• Multi-layer perceptrons:
– General nonlinear function approximators

60

Y

Y=1 Y=-1

X<5 X≥5

Decision Trees
• Hierarchical and recursive partitioning of the

feature space
• A simple model (e.g. constant) is fit in each region
• Often, splits are parallel to axes

61

Decision Trees – Nominal Features

62

Decision Trees - Instability

63

Boosting: Analysis of Training Error

• Training error of final classifier is bounded
by:

• For binary classifiers with choice of αt as
before, the error is bounded by

64

Analysis of Training Error

• If each base classifier is slightly better than random such
that there exists γ such that γt>γ for all t

• Then the training error drops exponentially fast in T

• AdaBoost is indeed a boosting algorithm in the sense that
it can efficiently convert a true weak learning algorithm into
a strong learning algorithm
– Weak learning algorithm: can always generate a classifier with a

weak edge for any distribution
– Strong learning algorithm: can generate a classifier with an

arbitrarily low error rate, given sufficient data

65

)2exp()2exp(22 T
t

t   

Generalization Error

• T – number of boosting rounds
• d – VC dimension of weak learner, measures

complexity of classifier
– The Vapnik-Chervonenkis (VC) dimension is a

standard measure of the “complexity” of a space
of binary functions

• m – number of training examples

66

Overfitting

• This bound suggests that boosting will overfit
if run for too many rounds

• Several authors observed empirically that
boosting often does not overfit, even when
run for thousands of rounds
– Moreover, it was observed that AdaBoost would

sometimes continue to drive down the
generalization error long after the training error
had reached zero, clearly contradicting the bound
above

67

Analysis of Margins

• An alternative analysis can be made in terms of
the margins of the training examples. The margin
of example (x,y) is:

• It is a number in [-1, 1] and it is positive when the
example is correctly classified

• Larger margins on the training set translate into a
superior upper bound on the generalization error

68

Analysis of Margins

• It can be shown that the generalization
error is at most:

– Independent of T

• Boosting is particularly aggressive at
increasing the margin since it concentrates
on the examples with the smallest margins
– positive or negative

69

Error Rates and Margins

70

Margin Analysis

• Margin theory gives a qualitative explanation
of the effectiveness of boosting

• Quantitatively, the bounds are rather weak
• One classifier can have a margin distribution

that is better than that of another classifier,
and yet be inferior in test accuracy

• Margin theory points to a strong connection
between boosting and the support-vector
machines

71

Advantages of Boosting
•Simple and easy to implement
•Flexible – can be combined with any learning
algorithm

•No requirement on data being in metric space
– data features don’t need to be normalized,
like in kNN and SVMs (this has been a central
problem in machine learning)

•Feature selection and fusion are naturally
combined with the same goal for minimizing
an objective error function

72

Advantages of Boosting (cont.)
•Can show that if a gap exists between positive
and negative points, generalization error
converges to zero

•No parameters to tune (maybe T)
•No prior knowledge needed about weak
learner

•Provably effective
•Versatile – can be applied on a wide variety of
problems

•Non-parametric

73

Disadvantages of Boosting

• Performance of AdaBoost depends on data
and weak learner

• Consistent with theory, AdaBoost can fail if
• weak classifier too complex – overfitting
• weak classifier too weak - underfitting

• Empirically, AdaBoost seems especially
susceptible to uniform noise

• Decision boundaries are often rugged

74

Multi-class AdaBoost
• Assume yϵ{1,…,k}
• Direct approach (AdaBoost.M1):

• can prove same bound on error if
• else: abort

75

Limitation of AdaBoost.M1
• Achieving may be hard if k

(number of classes) is large

• [Mukherjee and Schapire, 2010]: weak
learners that perform slightly better than
random chance can be used in multi-class
boosting framework
– Out of scope for now

76

Reducing to Binary Problems

• Say possible labels are {a,b,c,d,e}
• Each training example replaced by five {-1,+1}

labeled examples

77

AdaBoost.MH

• Formally

where

Can prove that

78

Used to be X {-1, +1}

Random Forests vs. Boosting

• RF Pros:
– More robust
– Faster to train (no reweighting, each split is on a

small subset of data and features)
– Can handle missing/partial data
– Easier to extend to online version

• RF Cons:
– Feature selection process is not explicit
– Weaker performance on small size training data
– Weaker theoretical foundations

79

Applications of Boosting

Real time face detection using a
classifier cascade [Viola and
Jones, 2001 and 2004]

80

The Classical Face Detection Process

Smallest
Scale

Larger
Scale

50,000 Locations/Scales

81

Classifier is Trained on Labeled Data

• Training Data
– 5000 faces

• All frontal
– 108 non faces
– Faces are normalized

• Scale, translation

• Many variations
– Across individuals
– Illumination
– Pose (rotation both in plane and out)

82

Key Properties of Face Detection

• Each image contains 10,000 – 50,000
locations/scales

• Faces are rare 0 - 50 per image
– 1000 times as many non-faces as faces

• Goal: Extremely small rate of false
negatives: 10-6

83

“Support Vectors”

84

Challenging negative
examples are extremely
important

Classifier Cascade (Viola-Jones)

• For real problems results are only as good as the
features used...
– This is the main piece of ad-hoc (or domain) knowledge

• Rather than the pixels, use a very large set of simple
functions
– Sensitive to edges and other critical features of the image
– Computed at multiple scales

• Introduce a threshold to yield binary features
– Binary features seem to work better in practice
– In general, convert continuous features to binary by

quantizing

85

Boosted Face Detection: Image Features

“Rectangle filters”

Similar to Haar wavelets

000,000,6100000,60 
Unique Binary Features



 


otherwise

)(if
)(

t

titt
it

xf
xh











  
t

t bxhxC)()(

86

Feature Selection

• For each round of boosting:
– Evaluate each rectangle filter on each

example
– Sort examples by filter values
– Select best threshold for each filter
– Select best filter/threshold (= Feature)
– Reweight examples

87

Example Classifier for Face Detection

ROC curve for 200 feature classifier

A classifier with 200 rectangle features was learned using AdaBoost

95% correct detection on test set with 1 in 14084
false positives.

88

Building Fast Classifiers
• In general, simple classifiers are more efficient, but

they are also weaker

• We could define a computational risk hierarchy
– A nested set of classifier classes

• The training process is reminiscent of boosting…
– Previous classifiers reweight the examples used to train

subsequent classifiers

• The goal of the training process is different
– Minimize errors, but also minimize false positives

89

Cascaded Classifier
1 Feature 5 Features

F

50%
20 Features

20% 2%
FACE

NON-FACE

F

NON-FACE

F

NON-FACE

IMAGE
SUB-WINDOW

• A 1-feature classifier achieves 100%
detection rate and about 50% false positive
rate

• A 5-feature classifier achieves 100%
detection rate and 40% false positive rate
– using data from previous stage

• A 20-feature classifier achieve 100%
detection rate with 10% false positive rate

90

Output of Face Detector on Test Images

91

Solving other “Face” Tasks

Facial Feature Localization

Demographic
Analysis

Profile Detection

92

Feature Localization
• Surprising properties of Viola-Jones framework

– The cost of detection is not a function of image size
• Just the number of features

– Learning automatically focuses attention on key
regions

• Conclusion: the “feature” detector can include a
large contextual region around the feature

Sub-windows rejected
at final stages

93

Feature Localization
• Learned features reflect the task

94

Profile Detection

95

Profile Features

96

