CS 559: Machine Learning
Fundamentals and Applications
10t Set of Notes

Instructor: Philippos Mordohai
Webpage: www.cs.stevens.edu/” mordohai
E-mail: Philippos.Mordohai@stevens.edu
Office: Lieb 215

Ensemble Methods

« Bagging (Breiman 1994,..)
 Random forests (Breiman 2001,...)

* Boosting (Freund and Schapire 1995, Friedman
et al. 1998,..)

Predict class label for unseen data by
aggregating a set of predictions (classifiers
learned from the training data)

Multiple Data
Sets

Multiple
Classifiers

Combined
Classifier

General ldea

Training
Data

Ensemble Classifiers

» Basic idea: Build different “experts” and let them
vote
 Advantages:
* Improve predictive performance
« Different types of classifiers can be directly
included
e Easy to implement
* Not too much parameter tuning
e Disadvantages:
 The combined classifier is not transparent
(black box)
 Not a compact representation

Why do they work?

e Suppose there are 25 base classifiers

« Each classifier has error rate £=0.35

 Assume independence among classifiers

* Probability that the ensemble classifier makes
a wrong prediction:

25

Z(zisj &'(1-£)*" =0.06

=13

Bagging

e Training
o Given a dataset S, at each iteration i, a training set S, is sampled

with replacement from S (i.e. bootstraping)

o A classifier C, is learned for each S,

» Classification: given an unseen sample X

o Each classifier C, returns its class prediction
o0 The bagged classifier H counts the votes and assigns the class

with the most votes to X

Bagging
e Bagging works because it reduces variance
by voting/averaging

o In some pathological hypothetical situations the
overall error might increase

o Usually, the more classifiers the better
 Problem: we only have one dataset

e Solution: generate new ones of size n by
bootstrapping, i.e. sampling with replacement

e Can help a lot if data is noisy

Aggregating Classifiers

 Bagging and Boosting
=» Aggregating Classifiers

e Breiman (1996) found gains in accuracy by
aggregating predictors built from reweighed
versions of the learning set

Bagging
» Bagging = Bootstrap Aggregating

* Reweighing of the learning sets is done by
drawing at random with replacement from

the learning sets

* Predictors are aggregated by plurality

voting

The Bagging Algorithm

B bootstrap samples
 From which we derive:

e B Classifiers € {— 1,1 }Z Cl,Cz,C3,...,CB

o B Estimated probabilities ¢ [(), 1]: pl, pz, p3,..., pB

e The aggregate classifier becomes:

B 1 B
cbag(x)=sign£ébz;cb(x)] or pbag(x)=EbZ=1:pb(x)

Weighting

T T

e

)

x
="
".
E

T

£

e
:

Initial set

Drawing with replacement 1

Classifier 1

K @

-

2

el

@?: : ':E-h“": 2 ..;. : 1 R i1 .'.52;;; i3
Drawing with replacement 2 e R R B TR B o TR

Classifier 2

¢

S

¢

S

IS

11

Aggregation
Sign

(
Classifier 1

|

Classifier 2

|
Classifier 3

|

|

Classifier T
N\

Finalzrule

Initial set

Tiad

ti=
=it
2
e e -

.
Tl

@ 90 929 0 9 90 @ O
D Q@ QU QG
@0 T O 99 e
@ QP Qo 9 9o
a o VY v

Random Forests

Breiman L. Random forests. Machine Learning 2001;45(1):5-32
http://stat-www.berkeley.edu/users/breiman/RandomForests/

13

Decision Forests

for computer vision and medical image analysis

A. Criminisi, J. Shotton and E. Konukoglu

http://research.microsoft.com/projects/decisionforests

14

Decision Trees and Decision Forests

A general tree structure

internal
(split) node

11

12

13

14

terminal (leaf) node

A forest is an ensemble of trees.

one another

A decision tree f§ s

Is bottom Is bottom
part green?) part blue?

The trees are all slightly different from
15

A Input data in feature space

Decision Tree Testing (Runtime)

Split the data at node
h(v,8) € {true, false}

v

il

16

Prediction at leaf

p(clv) = ZP(CIJ’)}J(J’ Iv)

L2

Decision Tree Training (Offline)

Input training data
How to split the data? So = {v, ¢}
h(v,8) € {true,false} ‘

A nput data in feature space 0, = arg max [
OcT;
Vv
I=1(S5;,0)

‘H"HHHH

Binary tree? Ternary?

i)
How big a tree?

What tree structure? 17

Decision Tree Training (Offline)

MM.Y,;

it

b

Decision Forest Model

AN
Fa Vv
. . :,;1)
_Basic notation
Input data point eg v= (m], Vi ,md) c R4 Collection of feature responses Zg=?
Output/label space eg. {Ck} > B 7 Categorical, continuous?

Feature response selector

Features can be e.g. wavelets? Pixel intensities? Context?

Forest model
[

Node test parameters

Node objective function (train.)
Node weak learner

Leaf predictor model

Randomness model (train.)

Stopping criteria (train.)

Forest size

The ensemble model

0cT
eg = I(Sj, 0)
eg. h(v,8;)c {true, false}

es. plclv)

€.g. 1. Bagging,
2. Randomized node optimization

e.g. maxtreedepth= [J

i

ZP:(C|V)

eg. plelv) =

Parameters related to each split node:
i) which features, ii) what geometric primitive, iii) thresholds.

The “energy” to be minimized when training the j-th split node
The test function for splitting data at a node j.
Point estimate? Full distribution?

How is randomness injected during training? How much?

When to stop growing a tree during training

Total number of trees in the forest

How to compute the forest output from that of individual trees?

Randomness Model

1) Bagging (randomizing the training set)
p

SO The full training set

Sg C SO The randomly sampled subset of training data made available for the tree t

Forest training

So
v

Efficient training 20

Randomness Model

2) Randomized node optimization (RNO)
A

T
Ea

p=1Tj|

The full set of all possible node test parameters

For each node the set of randomly sampled features

Randomness control parameter.
For p = |7| no randomness and maximum tree correlation.
For pe=1 max randomness and minimum tree correlation.

Node training
p

Node weak learner

h(V, 9.1)

Node test params

el

The effect of p

Small value of p; little tree correlation. Large value of p; large tre

A\

21

The Ensemble Model

An example forest to predict
continuous variables

1 5
plylv) ==Y m@lv) p(ulv) = Hpt(yIV)
A A ‘ A n
p2(ylv) p(ylv)

B

|v) p(y|v) } \

Training and Information Gain

S,

S'¥ st

Information gain

15,0)=H(S)~ ¥ %H(S‘)

ie{L,R}

Shannon’s entropy

H(S) =~) p(c)log(p(c))

ceC

Node training

@ = arg max 1(S;, 6)
OcT;

Split1 Before split

Split 2

data before split

°%. B8
G ox

o) @Q ‘..‘.

Info Gain =0.40

P e

';ﬁ;'.""'. -

o ‘.o‘
e

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

class distribution

pliNE

top

' i

left

|

bottom

right

error

A

Overfitting and Underfitting

underfitting overfitting

too little model capacity too much model capacity

best generalization

test set error

training set error

M

model capacity (e.g. tree depth)

24

Classification Forest

T .
A Training data in feature space CEERIIEEMELEE So ‘pﬂ(dv}
training
T ? !

:.0.. V C

° °
oici o ? g0 e pralelv)
o o ° Pl e
° * o >
o ® o
L o O C
e © ° L
® e
o 5 ()
°® =" Prag(clv)
o o °
’ ¢ o
e
gl Ug
- C
Model specialization for classification ~
Input data point v (5'317 . ?md) c R4 c Entropy of a discrete distribution
Output is categorical ¢ wWith € {0} (discrete set) H(S) =— ZP(C) log(p(c))
ceC
Node weak learner h(v,8) € {true, false} .
|Sz with C(V) : R — c
Obj. funct. for node j _XL:R 5; | (information gain)
Training node j 8. —arcnas I(S .6
OcT;
Predictor model p(clv) = ZP(C|J)P(J|V; (class posterior) 25

I 4

Examples of weak learners

/\.’L‘z
°
e ®le o
o % ol .
o.'.o o’ @
° Y A .. [J
'Y el .'
[]
)
® °
° o °
.. [] byt
° :"
o :L-l

Weak learner: axis aligned
P

Weak Learners

. Weak learner: oriented line

Splitting data at node |

[

Node weak learner

h(V7 93)

Node test params R

0cT;

(Weak learner: conic section

h(v,8) = [11 > ¢(V) - ¢ > 73]

Feature response T
for 2D example. ¢(V) — (:E]_ T2 1)
Y= (013

| With =(104¢3) or

h(v,8) = |r > &(v) - ¥ > 7]

Feature response ¢(v) — (1-1 T9 I)T

for 2D example.
\With P e R’? a generic line in homog. coordinates.

h(v.0) = |11 > 6" (v) % $(v) > 2

Feature response ¢(v) = (331 I2 I)T

for 2D example.
With 4 € R** a matrix representing a conic.

I
In general g may select only a very small subset of features

o(v) : RY — RIH, & << d

26

Prediction Model

-" leaf

1 £
1€dl

What do we do at the leaf?

~N

Ve

\

(Prediction model: probabilistic

v

27

Classification Forest: Ensemble Model

Effect of Tree Depth

Ao Training points: 4-class mixed

ad” @ = &g = of L

T=200,D=3,w.l.= T=200,D=0,w.l.= T=200, D=15, w. l. = conic
conic conic

max tree depth, D

underfitting overtitting

Effect of Weak Learner Model and Randomness

Testing posteriors

Weak learner: axis aligned Weak learner: oriented line

Randomness: p = 500 Parameters: T=400 predictor model = prob.

Effect of Weak Learner Model and Randomness

andomness: p =

Weak learner: axis aligned Parameters: T=400 predictor model = prob.

Body tracking in Microsoft Kinect for XBox 360

4 0%

,‘- "‘ j hand

llght

right foot
shnulder neck

';/L 7‘1'7%

Input depth image

Training labelled data

Classification forest

£ S \
Labels are categorical ¢ € {1.hand,r.hand, head,...} Objective function I=H(S;) - Z :S :
. i=LA
Input data point p € R*
Node parameters 8 — (r, 7-)
: _ d
Visual features vipl . v PR
ini Lo Y A
. \ Node training 93 — dro Ignax I(SJ, 0)
Feature response =Jip] J o €T;
Weak learner altv @) —lolvr) >~ 7
Predictor model IJ(C|V)
<

Body tracking in Microsoft Kinect for XBox 360

Input depth image (bg removed) Inferred body parts posterior

Advantages of Random Forests

* Very high accuracy - not easily surpassed by other
algorithms

« Efficient on large datasets

« Can handle thousands of input variables without
variable deletion

« Effective method for estimating missing data, also

maintains accuracy when a large proportion of the
data are missing

« Can handle categorical variables
 Robust to label noise

 Can be used in clustering, locating outliers and semi-
supervised learning

L. Breiman’s web page

Boosting

Boosting Resources

» Slides based on:
— Tutorial by Rob Schapire
— Tutorial by Yoav Freund
— Slides by Carlos Guestrin
— Tutorial by Paul Viola
— Tutorial by Ron Meir
— Slides by Aurélie Lemmens
— Slides by Zhuowen Tu

Code

* Antonio Torralba (Object detection)

— http://people.csail.mit.edu/torralba/shortCours
eRLOC/boosting/boosting.html

 GML AdaBoost

— http://graphics.cs.msu.ru/ru/science/research/
machinelearning/adaboosttoolbox

37

Boosting

* Invented independently by Schapire
(1989) and Freund (1990)

— Later joined forces

 Main idea: train a strong classifier by
combining weak classifiers

— Practically useful
— Theoretically interesting

Boosting

 Given a set of weak learners, run them
multiple times on (reweighted) training data,
then let learned classifiers vote

At each iteration ¢

— Weight each training example by how incorrectly
it was classified

— Learn a hypothesis - A,
 The one with the smallest error

— Choose a strength for this hypothesis - g,

* Final classifier: weighted combination of
weak learners

Learning from Weighted Data

e Sometimes not all data points are equal
— Some data points are more equal than others

e Consider a weighted dataset
— D(i) - weight of i t" training example (x;,Y;)
— Interpretations:

e i "training example counts as D(i) examples

 If | were to “resample” data, | would get more samples
of “heavier” data points

« Now, in all calculations the /% training
example counts as D(i) “examples”

Definition of Boosting

Given training set (X{,Y1)s (X0,Yim)

y. €{-1,+1} correct label of instance x.eX
Fort=1,... T

— construct distribution D, on {1,...m}

— find weak hypothesis
— h;: X-> {-1,+1} with small error g, on D,

et = Prjup, [hi(xi) # i

Output final hypothesis H;,_,

AdaBoost

» Constructing D,
— Dy=1/m

— Given D, and h;: p; (i) =

Dy(i) et if y; = hy(a;)
Zf f v lf ”!- _'_ f.f?t(,.!‘f.' }

- -E‘Xp(vt Y f’rfl:,r!-))

Zt

where Z, is a normalization 7 — Z Dy (i) exp(—ayy:hy(x;))
1=1

constant

* Final hypothesis:

(1)
n;—-_glll; f;f:-(}

Hgpar(2) = s1gn

\ {

-rl”‘f nfhf(.r)

., \ €
\ f

/

42

The AdaBoost Algorithm

Given: (z1,v1),-- -, (Tm, Ym) Where z; € X, y; € Y = {—1,+1}
Initialize D4 (z) = 1/m.
Fort=1,...,T:

e Train base learner using distribution Dj.
e Get base classifier h; : X — R.
e Choose a; € R.
e Update:
, Dy (2) exp(—apyihe(z;
Dt_|_1('3) — f() (Z fyi f(3))
t
where Z; is a normalization factor (chosen so that D;,; will be a distribu-
tion).

Output the final classifier:

T
H(z) = sign (Z atht(m)) :

t=1

The AdaBoost Algorithm

Given: (z1,v1),-- -, (Tm, Ym) Where z; € X, y; € Y = {—1,+1}
Initialize D, (z) = 1/m.
Fort=1,...,T:

Train base learner using distribution Dj.
Get base classifier h; : X — R. ¢ with minimum € f
Choose a; € R.
Update:

Dy(7) exp(—awyihi(z;))
Z

where Z; is a normalization factor (chosen so that D;,; will be a distribu-
tion).

Dyiq(2) =

Output the final classifier:

T
H(z) = sign (Z atht(m)) :

t=1

44

The AdaBoost Algorithm

Given: (1,91),-- -5 (Tm,Ym) Where z; € X, y, € Y = {—1,+1}
Initialize Dy (2) = 1/m.
Fort=1,...,1"

e Irain base learner using distribution .
Get base classifier h; : X — R. | 1 —¢
Choose oy € R. « 0 = 35 In ()
Update: €t

D (2 — o Rz,
Diy1(i) = (%) exp(z:fftyahi(h))

€ — PI'?:MHT; [h,l.g(.ﬂi‘_:i) 7£ y,]

I

1 . .
= Z?:l Df('g) i;l Df(?)a(hf (:fé) 7= 'y'r')

£t

The AdaBoost Algorithm

D - data
P e P - distribution
ea
D h,
Leamer
Weak
D . Learner
f
a T
]
|]
h v}
J’ i Weak T T

] 0

Learner

Toy Example

47

Toy Example: Round 1

@ —
= D €,=0.3
By — _ 0,=0.42
l —
by
==
Sl
D, |, - _
+ —

48

Toy Example: Round 2

+ B £,=0.21
©

49

Toy Example: Round 3

£,=0.14
= ® =T 0,=0.92

Toy Example: Final Hypothesis

How to choose Weights

Training error of final classifier is bounded by:

m

> 6(H () # y) < Y exp(—yif ()
1=1

1
M i=1

where: f(z) =) ahi(z); H(z) = sign(f(x))
t

Notice that: ¢ yillei) > 1 it y; # H(x;)

How to choose Weights

Training error of final classifier is bounded by:

L3N S(H @) #) < = 3 exp(-uif) = [[2
=1 1=1 l

i

where Z: = Y D:(i) exp(—awy;hi(z;))
1=1
, .__1
1 | cXp ('y_.f.j?(.l-'f_h,f (}")J

m 11 Z4

Dfnal (") —

In final round:

How to choose Weights

* |[f we minimize [1,Z,, we minimize our
training error
— We can tighten this bound greedily, by

choosing a,and h, in each iteration to
minimize Z,
Zy = Y Di(@) exp(—apy;hi(x;))
1=1
e For boolean target function, this is
accomplished by [Freund & Schapire '97].

1 —
tht:%hl(Et)
€t

Weak and Strong Classifiers

 If each classifier is (at least slightly) better
than random

-£,<0.5

* AdaBoost will achieve zero training error
(exponentially fast):

- T
% > 0(H(x) #yi) <] Zi < exp (2 > (1/2- Et)z)

e |s it hard to achieve better than random
training error?

Important Aspects of Boosting

Exponential loss function
Choice of weak learners
Generalization and overfitting
Multi-class boosting

Exponential Loss Function

* The exponential loss function is an upper
bound of the 0-1 loss function
(classification error)

 AdaBoost provably minimizes exponential
loss

* Therefore, it also minimizes the upper
bound of classification error

Exponential Loss Function
 AdaBoost attempts to minimize:

HZ} ;ZEKP —yif(xi)) (*)

/

* Really a coordinate descent procedure
— At each round add a;h, to sum to minimize (*)

* Why this loss function?
— upper bound on training (classification) error
— easy to work with
— connection to logistic regression

Coordinate Descent Explanation

L(Aq..... AN) = Z exp | —y; Z Ajgj(xi)
j

;

e AdaBoost is actually doing coordinate descent on this
optimization problem:
» initially, all A; =0
» each round: choose one coordinate A; (corresponding to
h:) and update (increment by o)
» choose update causing biggest decrease in loss

e powerful technique for minimizing over huge space of
functions

59

Weak Learners

o Stumps:
— Single-axis parallel partition of space

* Decision trees:
— Hierarchical partition of space

« Multi-layer perceptrons:
— General nonlinear function approximators

X<5

X>5

60

Decision Trees

« Hierarchical and recursive partitioning of the

feature space
« A simple model (e.g. constant) is fit in each region

o Often, splits are parallel to axes

R,

—] -... H.
e :

Decision Trees - Nominal Features

mweel SOHF

Cherry Grape

level ()

level |

level 3

62

Decision Trees - Instability

L
- K] - 0.6 ‘I I:-
8 . Ry
& | |
a 8% m<03 x<08l 05
£
a :: -'\- \ll'\
| * \
. . 3] m =033 Wy = wE I
& [
[] . L} ('rr/\
al
L] - r'-l-l - 0 ml L:I: m]
[]
0 PRI }
2 4 - B L
X3
. 2, <033 [0
- [] /\
=
o | 0 m<ll® xm<0f .70
R, . .)
& -
. m; 0 T O
) 7
+ . /\
- — (04 (1]
-+ L |
R
. ' =
[
[]
["B
a . f I i —l—ie K]

63

Boosting: Analysis of Training Error

Training error of final classifier is bounded

by:
y _i\{frl:ﬂ # it < —Z“” —vif HZ

Tri

e Yilli : 1 1f Yi 7’i H (x;)

For binary classifiers with choice of a,as
before, the error is bounded by

HZ — H[/ (L —e)] = H\Vfl—4”;f;_“) < exp (—Z#Zw;‘})

W — 1/2 — €

Analysis of Training Error

» If each base classifier is slightly better than random such
that there exists y such that y>y for all t

e Then the training error drops exponentially fastin T
2 2
exp(=2) 1) <exp(-2y°T)
t

 AdaBoost is indeed a boosting algorithm in the sense that
it can efficiently convert a true weak learning algorithm into
a strong learning algorithm

— Weak learning algorithm: can always generate a classifier with a
weak edge for any distribution

— Strong learning algorithm: can generate a classifier with an
arbitrarily low error rate, given sufficient data

Generalization Error

erroryue(H) < erroryain(H) + O (v m)

* T - number of boosting rounds
 d-VC dimension of weak learner, measures
complexity of classifier

— The Vapnik-Chervonenkis (VC) dimension is a
standard measure of the “complexity” of a space
of binary functions

 m - number of training examples

Overfitting

* This bound suggests that boosting will overfit
if run for too many rounds

e Several authors observed empirically that
boosting often does notoverfit, even when
run for thousands of rounds

— Moreover, it was observed that AdaBoost would
sometimes continue to drive down the
generalization error long after the training error

had reached zero, clearly contradicting the bound
above

Analysis of Margins

e An alternative analysis can be made in terms of
the margins of the training examples. The margin

of example (x,y) Is:

marging(z,y) = 3 A
| Z ren Z en

e Itis anumberin[-1, 1] and it is positive when the
example is correctly classified

e Larger margins on the training set translate into a
superior upper bound on the generalization error

Analysis of Margins

|t can be shown that the generalization

error Is at most:
Pr [111311‘;__!_,'i11 J-(:f.'._ y) < ()] +0 (\/ {i)‘)
- mb*]

— Independent of T

 Boosting is particularly aggressive at
increasing the margin since it concentrates
on the examples with the smallest margins

— positive or negative

Error Rates and Margins

cumulative distribution

L . % il 0.5 05 1
rounds margin

Figure 2: Error curves and the margin distribution graph for boosting C4.5 on
the letter dataset as reported by Schapire et al. [69]. Lefi: the tramning and test
error curves (lower and upper curves, respectively) of the combined classifier as
a function of the number of rounds of boosting. The horizontal lines indicate the
test error rate of the base classifier as well as the test error of the final combined
classifier. Right: The cumulative distribution of margins of the traming examples
after 5, 100 and 1000 1terations, indicated by short-dashed, long-dashed (mostly
hidden) and solid curves, respectively.

70

Margin Analysis

Margin theory gives a qualitative explanation
of the effectiveness of boosting

Quantitatively, the bounds are rather weak

One classifier can have a margin distribution
that is better than that of another classifier,
and yet be inferior in test accuracy

Margin theory points to a strong connection
between boosting and the support-vector
machines

Advantages of Boosting

e Simple and easy to implement

* Flexib
algorit

e - can be combined with any learning
nm

*No rec

uirement on data being in metric space

- data features don’t need to be normalized,

ke In

KNN and SVMs (this has been a central

oroblem in machine learning)
 Feature selection and fusion are naturally

combined with the same goal for minimizing
an objective error function

Advantages of Boosting (cont.)

e Can show that if a gap exists between positive
and negative points, generalization error
converges to zero

* No parameters to tune (maybe T)

* No prior knowledge needed about weak
learner

* Provably effective

\Versatile - can be applied on a wide variety of
problems

* Non-parametric

Disadvantages of Boosting

 Performance of AdaBoost depends on data
and weak learner

* Consistent with theory, AdaBoost can fall if
» weak classifier too complex - overfitting
» weak classifier too weak - underfitting

 Empirically, AdaBoost seems especially
susceptible to uniform noise

» Decision boundaries are often rugged

Multi-class AdaBoost
Assume ye{1,...,k}
Direct approach (AdaBoost.M1):
B =& /(1 — ¢)
1

hig, (@) = arg max E log —
" yey D
th(x)=y ’

can prove same bound on error if ¢ < 1/2
else: abort

Limitation of AdaBoost.M1

1/2

* Achieving ¢+ = /< may be hard if k
(number of classes) is large

* [Mukherjee and Schapire, 2010]: weak
learners that perform slightly better than
random chance can be used in multi-class
boosting framework

— Out of scope for now

Reducing to Binary Problems

e Say possible labels are {a,b,c,d,e}

e Each training example replaced by five {-1,+1}
labeled examples

oo oW

(
|
|
:
|
.:'.C—){
I
|
I
|
L

AT T S AT e e,
o e e SRR e

4
A
£,
A
A

g

AdaBoost.MH

. Formally hy X xY 5 { 1.+1}or®) Usedtobe X> {-1, +1}

f)f(i.y)
Z

Dy, 1(3’.;;) — +6?~1p((¢ f';‘(!f‘) f’f(*";'-ﬂ))

Hgpap(2) = arg may s aphy(x. y)
IS

oo ko
Can prove that traming error(Hgy) < 5 - 117

78

Random Forests vs. Boosting

* RF Pros:

— More robust

— Faster to train (no reweighting, each splitis on a
small subset of data and features)

— Can handle missing/partial data
— Easier to extend to online version

e RF Cons:

— Feature selection process is not explicit
— Weaker performance on small size training data
— Weaker theoretical foundations

Applications of Boosting

Real time face detection using a

classifier cascade [Viola and
Jones, 2001 and 2004]

The Classical Face Detection Process

JUIUIUIY YR

S
e e %S -
F = - A ~
- i & e <
E) T = - L
Foi. ; = | ekl W P
i - - 1 & |
" = o
- ‘ " o y
; s = 2
i E R S ¢ l‘
4 ; o R ' y 3 £
i i
T i [7
Al 4
[|
1
3 {
B
¥

50,000 Locations/Scales
81

Classifier is Trained on Labeled Data

e Training Data
— 5000 faces
o All frontal
— 108 non faces
— Faces are normalized
o Scale, translation
 Many variations
— Across individuals
— [llumination
— Pose (rotation both in plane and out)

82

Key Properties of Face Detection

 Each image contains 10,000 - 50,000
locations/scales

 Faces are rare 0 - 50 per image
— 1000 times as many non-faces as faces

 Goal: Extremely small rate of false
negatives: 10-°

"Support Vectors”

NON-FACES
] L
u L] O O O - Challenging negative
L L] 0 0O o O examples are extremely
. | B o~ [] B important
aﬂ# ****** .. iE []]
- vy = \\EH am] -
O Lo E- R
O o O ~ e U
Q O - \\ ’:
Hcoo oY o B BT
QO Q O [N "-I o
O & ® &
O O O \
0,00 0 miE
“ “Faces O 1 O
- 84

Classifier Cascade (Viola-Jones)

 Forreal problems results are only as good as the

features used...
— This is the main piece of ad-hoc (or domain) knowledge

« Rather than the pixels, use a very large set of simple

functions
— Sensitive to edges and other critical features of the image

— Computed at multiple scales

 Introduce a threshold to yield binary features
— Binary features seem to work better in practice

— In general, convert continuous features to binary by
quantizing

85

Boosted Face Detection: Image Features

“‘Rectangle filters”

Similar to Haar wavelets

t\ 7

h (%)= a, if f(x)>6,]
S, otherwise

C(x)= e(Z hy(X) + bj 60,000 %100 = 6,000,000
t

Unique Binary Features

86

Feature Selection

* For each round of boosting:

— Evaluate each rectangle filter on each
example

— Sort examples by filter values

— Select best threshold for each filter

— Select best filter/threshold (= Feature)
— Reweight examples

Example Classifier for Face Detection

A classifier with 200 rectangle features was learned using AdaBoost

95% correct detection on test set with
false positives.

1

1 in 14084

088
056 - :
o :
i :
W oge :
c H
= :
T 5 . .
i . 1 -
s !
'E !
e .27 —
8 :
UBB ..]
D_S_‘I_....................E. ... —
[)==) S T .
! '
" 0.5 | 1 1] 1 1 1 1
4] 4] o4 0. 0.8 1 12 1.4 15 1.8 =
. BkEa pozitive rate * 107

ROC curve for 200 feature classifier

Building Fast Classifiers

In general, simple classifiers are more efficient, but
they are also weaker

We could define a computational risk hierarchy
— A nested set of classifier classes

The training process is reminiscent of boosting...

— Previous classifiers reweight the examples used to train
subsequent classifiers

The goal of the training process is different
— Minimize errors, but also minimize false positives

Cascaded Classifier

50% 20% 2%
IMAGE > . —»(20 Features) ——» F ACE
SUB-WINDOW

lF lF lF

NON-FACE NON-FACE NON-FACE

* A 1-feature classifier achieves 100%
detection rate and about 50% false positive
rate

o A S5-feature classifier achieves 100%
detection rate and 40% false positive rate
— using data from previous stage

* A 20-feature classifier achieve 100%
detection rate with 10% false positive rate

Output of Face Detector on Test Images

JUDYBATS 5

91

Solvmg other "Face” Tasks

s

Profile Detection

Facial Feature Localization

Demographic i ae=ta A .' M +4.192

Analysis M +3.042

=

92

Feature Localization

e Surprising properties of Viola-Jones framework
— The cost of detection is not a function of image size
« Just the number of features
— Learning automatically focuses attention on key
regions
* Conclusion: the “feature” detector can include a
Iarge contextual region around the feature

Sub-windows rejected
| at final stages

93

Feature Localization

e | earned features reflect the task

94

95

Profile Features

