CS 559: Machine Learning

Fundamentals and Applications
1st Set of Notes

Instructor: Philippos Mordohai
Webpage: www.cs.stevens.edu/” mordohai
E-mail: Philippos.Mordohai@stevens.edu
Office: Lieb 215




Objectives

* Obtain hands-on experience with and be
able to implement fundamental algorithms

— Useful for everyday problems

 Be able to use state of the art machine
learning and pattern recognition tools for
advanced problems



Important Points

e Thisis an elective course. You chose to be
here.

* Expect to work and to be challenged.

« Exams won’t be based on recall. They will

be open book and you will be expected to
solve new problems.



Important Points |

* Always ask:

nat are we classifying?
nat is known, what is unknown?
nich are the classes/labels/options?

nat is the objective function?



Logistics

» Office hours: Tuesday 5-6 and by emalil

« Evaluation:
— Homework assignments (20%)
— Project (25%)
— Pop-up quizzes and participation (10%)
— Midterm (20%)
— Final exam (25%)



Project

* Pick topic BEFORE middle of the
semester

| will suggest ideas and datasets in next
lectures

e Deliverables:
— Project proposal
— Presentation in class
— Poster in CS department event
— Final report (around 8 pages)



Project Examples

e Face detection




Project Examples

Spam filtering

Gender identification from emails
Author recognition from text
Handwriting recognition

Speech recognition

Malicious website detection



Project Examples

-yE-

* Object recognition
on Kinect data

e More than 250,000
labeled RGB-D

Images ‘




Prerequisites

Probability theory

Some linear algebra
— Must not be afraid of eigenvalues

Matlab, python, Java or C/C++ programming

— This could be “language of your choice”, but then
you are responsible for debugging etc.

— | suggest Matlab or python for short development
time

Your grade will be affected by any
weaknesses In these



Textbooks

Bayesian Reasoning and Machine Learning by
[2)81Vi2d Barber, Cambridge University Press,

The Elements of Statistical Learning (2nd
edition) by Trevor Hastie, Robert Tibshirani
and Jerome Friedman, Springer, 2009.

Both are available online
See http://www.cs.stevens.edu/~mordohai/classes/cs559 f16.html



Introduction

o Slides borrowed or adapted from:
— David Barber
— Erik Sudderth
— Dhruv Batra
— Pedro Domingos
— Raquel Urtasun
— Richard Zemel



Question 1

 What is "machine learning”?



Machine Learning

Machine learning, a branch of artificial intelligence, is a scientific
discipline concerned with the design and development of
algorithms that take as input empirical data, such as that from
sensors or databases, and yield patterns or predictions thought
to be features of the underlying mechanism that generated the
data. A learner can take advantage of examples (data) to capture
characteristics of interest of their unknown underlying probability
distribution. Data can be seen as instances of the possible
relations between observed variables. A major focus of machine
learning research is the design of algorithms that recognize
complex patterns and make intelligent decisions based on input
data. One fundamental difficulty is that the set of all possible
behaviors given all possible inputs is too large to be included in
the set of observed examples (training data). Hence the learner
must generalize from the given examples in order to produce a
useful output in new cases.



Machine Learning

* The Artificial Intelligence View. Learning is
central to human knowledge and intelligence,
and, likewise, it is also essential for building
intelligent machines. Years of effort in Al has
shown that trying to build intelligent
computers by programming all the rules
cannot be done; automatic learning is crucial.
For example, we humans are not born with
the ability to understand language — we learn
it — and it makes sense to try to have
computers learn language instead of trying to
program it all it.



Machine Learning

« The Software Engineering View. Machine learning
allows us to program computers by example,
which can be easier than writing code the
traditional way.

* The Statistics View. Machine learning is the
marriage of computer science and statistics:
computational techniques are applied to statistical

oroblems. Machine learning has been applied to a

vast number of problems in many contexts,

peyond the typical statistics problems. Machine
earning is often designed with different
considerations than statistics (e.g., speed is often
more important than accuracy).




Spam Filtering

 Binary classification
problem: Is this e-maill
useful or spam?

* Noisy training data:
Messages previously
marked as spam

o Wrinkle: Spammers
evolve to counter filter
Innovations




Movie Rating Prediction
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Speech Recognition

—_—
. . ] \ .

. Given an audio “f LU o
waveform, robustly TN N
extract & recognize

any spoken words

e Statistical models
can be used to

— Provide greater
robustness to noise

— Adapt to accent of
different speakers

— Learn from training

| i

S. Roweis, 2004
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What is Machine Learning?

* Given a collection of examples (called
“training data”), we want to predict something
about novel examples

— The novel examples are usually incomplete

« Examples:
— Labeling: Spam or ham? How many stars?

— Interpretation:
 What sentence was just spoken?
 Where are the objects moving in this video?

* When and where have seismic events (earthquakes or
explosions) occurred?



What do we actually do?

Build idealized models of the application area
we’re working

— Probabilistic models with explicit randomness
Derive algorithms and implement in code

Jse historical data to learn numeric
narameters, and sometimes model structure

Use test data to validate the learned model,
guantitatively measure its predictions

Assess errors and repeat...




Optical Character Recognition

 Hard way: Understand handwriting/characters

§ _ E superscript/ base character
| bowl diacritic vowel/matra stem height
| |
——— x 5 , " 4 ------- headline
Ii Tj $Hie T3
] 'R N "T -it-i-irhaﬂﬂlinﬂ
subscript/ knot loop arm vowel killer/
Q_q vowel halant

NERES
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Optical Character Recognition

 Hard way: Understand handwriting/characters
e Lazy way: use more data!

D T VW g\:' ¢ WNe
ﬁ"ﬁd‘\u (4} i"%(} (A

"\I:Uf d‘f\?\)?’&?‘d% O\
'\}H.'\'.'% Q?J? 0 U“"@ """'t*-'b_"

é\": 50: 632“‘8 : ""(f :§'§;E
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ML vs Traditional Approach

e Traditional Programming
Data

Program

Computer [ Output

* Machine Learning
Data

Computer -Program

Output




ML in a Nutshell

* Tens of thousands of machine learning
algorithms

— Hundreds new every year

 Decades of ML research oversimplified:
— All of Machine Learning:
— Learn a mapping from input to output f: X 2> Y
— X: emails, Y: {spam, notspam}



ML in a Nutshell

Input: x (images, text, emails...)
Output: y (spam or non-spam...)

(Unknown) Target Function
- X2>Y (the “true” mapping / reality)

Data
— (X1,¥1), (X2,¥2), - (XnsYN)

Model / Hypothesis
— g XY
— y = g(x) = sign(w'x)



ML in a Nutshell

 Every machine learning algorithm has
three components:
— Representation / Model Class
— Evaluation / Objective Function
— Optimization



Representation / Model Class

Decision trees

Sets of rules / Logic programs
Instances

Graphical models (Bayes/Markov nets)
Neural networks

Support vector machines

Model ensembles

Etc.



Evaluation / Objective Function

e Accuracy

* Precision and recall
e Squared error
 Likelihood

» Posterior probabllity
o Cost / Utllity

e Margin

e Entropy

 K-L divergence

e Etc.



Types of Learning

Supervised learning
— Training data include desired outputs
— Test data only have features, must predict outputs

Unsupervised learning
— Training data do not include desired outputs

Semi-supervised learning
— Training data include a few desired outputs

Reinforcement learning
— Rewards from sequence of actions
— Out of scope in this course



Types of Learning

Supervised Learning

— —

Unsupervised Learning
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Irises: Supervised Classification

sepal length sepal width petal length petal width

sepal length

sepal width

petal length

petal width

virginica
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Irises: Unsupervised Classification

sepal length sepal width petal length petal width

sepal length

sepal width

petal length

petal width

virginica
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Classification Example




N CaSes

=

Feature Encoding

d features (attributes)

Binary

Label

Color Shape Size (cm)
Blue Square 10

Red Ellipse 2.4

Red Ellipse 20.7
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Decision Tree

color

blue other
red

shape size < 10

elhpse / \othel xes/ &10

0,9
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Nearest Neighbor

« Define some notion of distance among input features
» For test examples, assign label of closest training example
 K-NN: Take majority vote among K closest training examples
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Probability Theory Review



The Axioms of Probability

e 0 <=P(A) <=1

e P(True) =1

 P(False) =0

« P(AorB)=P(A)+P(B) - P(A and B)



Overview

Discrete Random Variables
Expected Value

Pairs of Discrete Random Variables
— Conditional Probability
— Bayes Rule

Continuous Random Variables
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Discrete Random Variables

e A Random Variable is @ measurement on

an outcome of a random experiment —
denoted by r.v. x

o Discrete versus Continuous random
variable: an r.v. xis discrete if it can
assume a finite or countably infinite
number of values. An r.v. xis continuous if
It can assume all values in an interval.



Examples

Which of the following random variables are
discrete and which are continuous?

X = Number of houses sold by real estate
developer per week?

X = Number of heads in ten tosses of a coin?
X = Weight of a child at birth?

X = Time required to run100 yards?



Examples

* Dice
— Probability of rolling 5-6 or two 6s with two
dice
 Deck of cards



Probability Distribution Example: X Is the Sum
of Two Dice

Copyright Christopher Dougherty 1999-2006

red 1 2 3 4 5 6

This sequence provides an example of a discrete random variable. Suppose that you have a red die
which, when thrown, takes the numbers from 1 to 6 with equal probability.



Probability Distribution Example: X Is the Sum

of Two Dice
red 1 2 3 4 5 6
green
1
2
3
4
5
6

Suppose that you also have a green die that can take the numbers from 1 to 6 with equal probability.



Probability Distribution Example: X Is the Sum

of Two Dice
red 1 2 3 4 5 6
green
1
2
3
4
5
6

We will define a random variable X as the sum of the numbers when the dice are thrown.



Probability Distribution Example: X Is the Sum

of Two Dice
red 1 2 3 4 5 6
green

1

2

3

4

5

6 10

For example, if the red die is 4 and the green one is 6, X is equal to 10.



Probability Distribution Example: X Is the Sum

of Two Dice
red 1 2 3 4 5 6
green

1

2

3

4

5 7

6

Similarly, if the red die is 2 and the green one is 5, X is equal to 7.



Probability Distribution Example: X Is the Sum

of Two Dice
red 1 2 3 4 5 6
green
1 2 3 4 5 6 !
2 3 4 5 6 4 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 ! 8 9 10 11
§) 4 8 9 10 11 12

The table shows all the possible outcomes.



Probability Distribution Example: X Is the Sum

of Two Dice
red | 1 2 3 4 5 6 X
green 2
3
1 2 3 4 5 6 7 g
2 3 4 5 6 7 8 6
3 4 5 6 7 8 9 ;
4 5 6 7 8 9 10 9
5 6 7 8 9 10 1 10
11
6 7 8 9 10 11 12 12

If you look at the table, you can see that X can be any of the numbers from 2 to 12.



Probability Distribution Example: X Is the Sum

of Two Dice
red | 1 2 3 4 5 6 X
green 2
3
1 2 3 4 5 6 7 g
2 3 4 5 6 7 8 6
3 4 5 6 7 8 9 ;
4 5 6 7 8 9 10 9
5 6 7 8 9 10 1 ﬂ
6 7 8 9 10 11 12 12

We will now define f, the frequencies associated with the possible values of X.



Probability Distribution Example: X Is the Sum

of Two Dice
red | 1 2 3 4 5 6 X
green 2
3
1 2 3 4 [5] 6 7 4
5 4
2 3 4 [5] 6 7 8 5
3 4 [5] 6 7 8 9 ;
4 5] 6 7 8 9 10 9
5 6 7 8 9 10 1 ﬂ
6 7 8 9 10 11 12 12

For example, there are four outcomes which make X equal to 5.



Probability Distribution Example: X Is the Sum

of Two Dice
red | 1 2 3 4 5 6 X |1
green 2 1
3 |2
1 2 3 4 5 6 7 4 |3
5 | 4
2 3 4 5 6 7 8 6 | 5
3 4 5 6 7 8 9 7|6
8 | 5
4 5 6 7 8 9 10 9 | 4
5 6 7 8 9 10 1 10 |3
11 | 2
6 7 8 9 10 11 12 12 1

Similarly you can work out the frequencies for all the other values of X.



Probability Distribution Example: X Is the Sum

of Two Dice

red | 1 2 3 4 5 6 X p
green 2 1
3 2
1 2 3 4 5 6 7 4 3
5 4
2 3 4 5 6 7 8 6 5
3 4 5 6 7 8 9 7 6
8 5
4 5 6 7 8 9 10 9 4
5 6 7 8 9 10 11 10 3
1 2
6 I 8 9 10 11 12 12 1

Finally we will derive the probability of obtaining each value of X.



Probability Distribution Example: X Is the Sum

of Two Dice

red | 1 2 3 4 5 6 X p
green 2 1
3 2
1 2 3 4 5 6 7 4 3
5 4
2 3 4 5 6 7 8 6 5
3 4 5 6 7 8 9 7 6
8 5
4 5 6 7 8 9 10 9 4
5 6 7 8 9 10 1 10 3
11 2
6 7 8 9 10 11 12 12 1

If there is 1/6 probability of obtaining each number on the red die, and the same on the green die, each
outcome in the table will occur with 1/36 probability.



Probability Distribution Example: X Is the Sum

of Two Dice
red | 1 2 3 4 5 6 X p
green 2 1 1/36
3 2 2/36
1 2 3 4 5 6 7 4 3  3/36
5 4  4/36
3 4 5 6 7 8 9 7 6 6/36
8 5 5/36
4 5 6 7 8 9 10 9O 4 43
5 6 7 8 9 10 1 10 3  3/36
11 2 2/36

Hence to obtain the probabilities associated with the different values of X, we divide the frequencies by
36.



Probability Distribution Example: X Is the Sum

probability Of TWO che

2 3 4 5 6 7 8 910 11 12 X

The distribution is shown graphically. in this example it is symmetrical, highest for X equal to 7 and
declining on either side.



Overview

Discrete Random Variables
Expected Value

Pairs of Discrete Random Variables
— Conditional Probability
— Bayes Rule

Continuous Random Variables
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Expected Value

 Definition of £(.X), the expected value of X
E(X)=Xp, +...+ X, P, :ixi P;

* The expected value of a random variable,
also known as its population mean, is the
weighted average of its possible values,
the weights being the probabilities
attached to the values



Expected Value Example

X P; Xi Pi X P; Xi Pj
X, P, X Py 2 1/36 2/36
X P,  X,P, 3 2/36 6/36
Xy  P3 X3P 4 3/36 12/36
Xy  Ps X4P4 5 436 20/36
Xe  Ps XgPe 6 5/36 30/36
Xe¢ Pg  XgPeg 7 6/36 42/36
X P, X/p; 8 5/36 40/36
X¢ Pg  XgPsg 9 436 36/36
Xg Py XgPg 10 3/36 30/36
X0 Pio Xi0Pr1o 11 2/36 22/36
Xy Py Xy Py 12 1/36 12/36

2 X pi = E(X) 252/36 = 7



Expected Value Properties

e Linear
E(X +Y) = E(X) + E(Y)
E(bX) = bE(X)
E(b) =b

Y  =b,+byX
E(Y) =E(b, +b,X)
= E(b;) + E(b,X)
= b, + b, E(X)

* Also denoted by L



Variance

Var(X) = E[(X- |.1)2] = Z(Xi —11)*P(X =)

Var(X) = o2

Var(X) = E[(X- n)3 = E[X?] - (E[X])?
(Prove it.)



Overview

Discrete Random Variables
Expected Value

Pairs of Discrete Random Variables
— Conditional Probability
— Bayes Rule

Continuous Random Variables
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Pairs of Discrete Random Variables

 Let x and y be two discrete r.v.

e For each possible pair of values, we can
define a joint probability p,;=Pr{x=x;, y=y|]
 We can also define a joint probability mass
function P(x,y) which offers a complete

characterization of the pair of r.v.
PX) =D P(x,y)

yeY Marginal distributions

P,(y) =Y P(xy)

XeX
Note that P, and P, are different functions



Statistical Independence

Two random variables xand y are said to be independent, if

and only if

P(X,y)=Py(x) Py(y)
that is, when knowing the value of xdoes not give us

additional information for the value of y.

Or, equivalently

E[f(x)g(y)] = E[f(x)] E[g(y)]

for any functions f(x) and g(y).



Conditional Probability

When two r.v. are not independent,
knowing one allows better estimate of the
other (e.g. outside temperature, season)
Prix=X;,y=yj]

Prly =yl

If independent P(x|y)=P(x)

Prix=x; |y =y,]=




Sum and Product Rules (1/7)

« Example:
— We have two boxes: one red and one blue
— Red box: 2 apples and 6 oranges
— Blue box: 3 apples and 1 orange

— Pick red box 40% of the time and blue box
60% of the time, then pick one item of fruit

OO0
OO0Q| |0
000 OO

C.M. Bishop, “Pattern Recognition and Machine Learning”, 2006




Sum and Product Rules (2/7)

* Define:
— B random variable for box picked (r or b)
— F identity of fruit (a or 0)
 p(B=r)=4/10 and p(B=b)=6/10
— Events are mutually exclusive and include all

possible outcomes => their probabilities must
sum to 1



Sum and Product Rules (3/7)

&
—
Marginal Probability
Y5 Lz } Tj B G
p(X =) = =
L
Joint Probability Conditional Probability
p(X =25, Y =y;) = - p(Y = y;|X = ;) = 2
19 J N 7 Lg e

C.M. Bishop, “Pattern Recognition and Machine Learning”, 2006



Sum and Product Rules (4/7)

——
Sum Rule
e 1 L
Y; Mg }T‘ SR T P
i p(X_a,z)—N—NjZImJ
L
T = Zp(Xz:Lz,YzyJ)
=1
Product Rule
;i Ni: Cq
p( s Z) N ¢i N

= p(Y =y;| X =2i)p(X = 23)

C.M. Bishop, “Pattern Recognition and Machine Learning”, 2006
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Sum and Product Rules (5/7)

e« Sum Rule p(X) =) p(X,Y)

* ProductRule p(X,Y)=p(Y|X)p(X)

C.M. Bishop, “Pattern Recognition and Machine Learning”, 2006
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Law of Total Probability

 If an event A can occur in mdifferent ways
and if these m different ways are mutually
exclusive, then the probability of A
occurring is the sum of the probabilities of

the sub-events

P(X :Xi):ZP(X = X |Y :yj)P(Y — yj)



Sum and Product Rules (6/7)

e Back to the fruit baskets
— p(B=r)=4/10 and p(B=b)=6/10
~p(B=r) + p(B=b) = 1

« Conditional probabilities
—p(F=a|B=r)=1/4
—p(F=0|B=r)=3/4

—p(F=a| B =Db)=3/4

—p(F=0|B=Db)=1/4




Sum and Product Rules (7/7)

Note: p(F=a|B=r)+p(F=0|B=r)=1

p(F=a) = p(F=a | B = r) p(B=r) + p(F=a | B = b) p(B=D)
= 1/4*4/10 + 3/4 * 6/10 = 11/20

Sum rule: p(F=0) = 7?



Conditional Probability Example

e A jar contains black and white marbles.
 Two marbles are chosen without replacement.

* The probability of selecting a black marble and then a
white marble is 0.34.

 The probability of selecting a black marble on the first
draw is 0.47.

» What is the probability of selecting a white marble on the
second draw, given that the first marble drawn was
black?



Conditional Probability Example

e A jar contains black and white marbles.
 Two marbles are chosen without replacement.

* The probability of selecting a black marble and then a
white marble is 0.34.

 The probability of selecting a black marble on the first
draw is 0.47.

» What is the probability of selecting a white marble on the

second draw, given that the first marble drawn was
black?

P(Black AWhite) 0.34 0.7 PRI PE)
P(Black) 047 T

Ais black in first draw, B is white in second draw P{Aand B)

P(White | Black) =




Law of Total Probability

P.(X)=> P(x,Y)

P(X,Y)
P(y)

P(x]y) =



Bayes Rule

P(x,y) _ P(y[x)P(x)

P(x]y) = =
P(y) D P(x)
XeX
. likelihood * prior
posterior =

evidence
e xIs the unknown cause
v Is the observed evidence

 Bayes rule shows how probability of x
changes after we have observed y



Bayes Rule on the Fruit Example

 Suppose we have selected an orange.
Which box did it come from?

3 4

_X_
p(B:rlF:O):p(F_O|B_r)p(B_r):4 1022
p(F =0) 9 3

20



Overview

Discrete Random Variables
Expected Value

Pairs of Discrete Random Variables
— Conditional Probability
— Bayes Rule

Continuous Random Variables
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Continuous Random Variables

« Examples: room temperature, time to run
100m, weight of child at birth...

e Cannot talk about probability of that x has
a particular value

 Instead, probability that xfalls in an
interval => probability density function

Pr[x e (a,b)] = } p(x)dx

p(x) > 0and T p(x)dx =1



Expected Value

E[X]=u= Txp(x)dx
ELF (0] = [ £(X)p()

Var[x]=oc* = T(x—y)z p(x)dx

- Bayesrule p(x|y)=— PP
| p(y [%) p(x)dx

likelihood* prior

posterior = _
evidence



Normal (Gaussian) Distribution

e Central Limit Theorem: under various
conditions, the distribution of the sum of d
Independent random variables approaches
a limiting form known as the normal

distribution T
p(X)_\/ﬂGe - (ILI’G)

90 01 02 03 04

& 2 o " e o =
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Normal (Gaussian) Distribution

09

TrTtT
mnnun
Nooo
QQaQQQ
| o T SN T S A ]
I mn —
SUn—O
b oo

08 f

0.7

0.6

05 F

04 r

03

02 F

0.1

0



Uniform Distribution

for a<=x<=b
p(X)= -
for x<a or x>b

1
b—a
0

I
—----9
o




