
CS 559: Machine Learning 
Fundamentals and Applications

1st Set of Notes

Instructor: Philippos Mordohai
Webpage: www.cs.stevens.edu/~mordohai
E-mail: Philippos.Mordohai@stevens.edu

Office: Lieb 215
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Objectives

• Obtain hands-on experience with and be 
able to implement fundamental algorithms
– Useful for everyday problems

• Be able to use state of the art machine 
learning and pattern recognition tools for 
advanced problems
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Important Points

• This is an elective course. You chose to be 
here.

• Expect to work and to be challenged.
• Exams won’t be based on recall. They will 

be open book and you will be expected to 
solve new problems.
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Important Points II
• Always ask:

– What are we classifying?
– What is known, what is unknown?
– Which are the classes/labels/options?
– What is the objective function?
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Logistics

• Office hours: Tuesday 5-6 and by email
• Evaluation:

– Homework assignments (20%)
– Project (25%)
– Pop-up quizzes and participation (10%)
– Midterm (20%)
– Final exam (25%)
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Project

• Pick topic BEFORE middle of the 
semester

• I will suggest ideas and datasets in next 
lectures

• Deliverables:
– Project proposal
– Presentation in class
– Poster in CS department event
– Final report (around 8 pages)
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Project Examples

• Face detection
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Project Examples

• Spam filtering
• Gender identification from emails
• Author recognition from text
• Handwriting recognition
• Speech recognition
• Malicious website detection
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Project Examples

• Object recognition 
on Kinect data

• More than 250,000 
labeled RGB-D 
images
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Prerequisites

• Probability theory 
• Some linear algebra

– Must not be afraid of eigenvalues
• Matlab, python, Java or C/C++ programming

– This could be “language of your choice”, but then 
you are responsible for debugging etc.

– I suggest Matlab or python for short development 
time

• Your grade will be affected by any 
weaknesses in these
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Textbooks

• Bayesian Reasoning and Machine Learning by 
David Barber, Cambridge University Press, 
2012.

• The Elements of Statistical Learning (2nd 
edition) by Trevor Hastie, Robert Tibshirani
and Jerome Friedman, Springer, 2009. 

• Both are available online 
• See http://www.cs.stevens.edu/~mordohai/classes/cs559_f16.html
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Introduction

• Slides borrowed or adapted from:
– David Barber
– Erik Sudderth
– Dhruv Batra
– Pedro Domingos
– Raquel Urtasun
– Richard Zemel
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Question 1

• What is “machine learning”?
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Machine Learning
Machine learning, a branch of artificial intelligence, is a scientific 
discipline concerned with the design and development of 
algorithms that take as input empirical data, such as that from 
sensors or databases, and yield patterns or predictions thought 
to be features of the underlying mechanism that generated the 
data. A learner can take advantage of examples (data) to capture 
characteristics of interest of their unknown underlying probability 
distribution. Data can be seen as instances of the possible 
relations between observed variables. A major focus of machine 
learning research is the design of algorithms that recognize 
complex patterns and make intelligent decisions based on input 
data. One fundamental difficulty is that the set of all possible 
behaviors given all possible inputs is too large to be included in 
the set of observed examples (training data). Hence the learner 
must generalize from the given examples in order to produce a 
useful output in new cases.
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Machine Learning

• The Artificial Intelligence View. Learning is 
central to human knowledge and intelligence, 
and, likewise, it is also essential for building 
intelligent machines. Years of effort in AI has 
shown that trying to build intelligent 
computers by programming all the rules 
cannot be done; automatic learning is crucial. 
For example, we humans are not born with 
the ability to understand language — we learn 
it — and it makes sense to try to have 
computers learn language instead of trying to 
program it all it.
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Machine Learning
• The Software Engineering View. Machine learning 

allows us to program computers by example, 
which can be easier than writing code the 
traditional way.

• The Statistics View. Machine learning is the 
marriage of computer science and statistics: 
computational techniques are applied to statistical 
problems. Machine learning has been applied to a 
vast number of problems in many contexts, 
beyond the typical statistics problems. Machine 
learning is often designed with different 
considerations than statistics (e.g., speed is often 
more important than accuracy).
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Spam Filtering

• Binary classification 
problem: Is this e-mail 
useful or spam?

• Noisy training data: 
Messages previously 
marked as spam

• Wrinkle: Spammers 
evolve to counter filter 
innovations
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Movie Rating Prediction
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Speech Recognition

• Given an audio 
waveform, robustly 
extract & recognize 
any spoken words

• Statistical models 
can be used to
– Provide greater 

robustness to noise
– Adapt to accent of 

different speakers
– Learn from training
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What is Machine Learning?

• Given a collection of examples (called 
“training data”), we want to predict something 
about novel examples
– The novel examples are usually incomplete

• Examples:
– Labeling: Spam or ham? How many stars?
– Interpretation:

• What sentence was just spoken?
• Where are the objects moving in this video?
• When and where have seismic events (earthquakes or 

explosions) occurred?
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What do we actually do?

• Build idealized models of the application area 
we’re working
– Probabilistic models with explicit randomness

• Derive algorithms and implement in code
• Use historical data to learn numeric 

parameters, and sometimes model structure
• Use test data to validate the learned model, 

quantitatively measure its predictions
• Assess errors and repeat…
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Optical Character Recognition

• Hard way: Understand handwriting/characters
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Optical Character Recognition
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• Hard way: Understand handwriting/characters
• Lazy way: use more data!



What Makes a 2?
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ML vs Traditional Approach

25

• Traditional Programming

• Machine Learning
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ML in a Nutshell

• Tens of thousands of machine learning 
algorithms
– Hundreds new every year

• Decades of ML research oversimplified:
– All of Machine Learning:
– Learn a mapping from input to output f: X  Y
– X: emails, Y: {spam, notspam}
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ML in a Nutshell
• Input: x   (images, text, emails…)

• Output: y (spam or non-spam…)

• (Unknown) Target Function
– f: X  Y (the “true” mapping / reality)

• Data  
– (x1,y1), (x2,y2), …, (xN,yN)

• Model / Hypothesis
– g: X  Y
– y = g(x) = sign(wTx)
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ML in a Nutshell

• Every machine learning algorithm has 
three components:
– Representation / Model Class
– Evaluation / Objective Function
– Optimization

28



Representation / Model Class

• Decision trees
• Sets of rules / Logic programs
• Instances
• Graphical models (Bayes/Markov nets)
• Neural networks
• Support vector machines
• Model ensembles
• Etc.
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Evaluation / Objective Function
• Accuracy
• Precision and recall
• Squared error
• Likelihood
• Posterior probability
• Cost / Utility
• Margin
• Entropy
• K-L divergence
• Etc.
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Types of Learning
• Supervised learning

– Training data include desired outputs
– Test data only have features, must predict outputs

• Unsupervised learning
– Training data do not include desired outputs

• Semi-supervised learning
– Training data include a few desired outputs

• Reinforcement learning
– Rewards from sequence of actions
– Out of scope in this course
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Types of Learning 
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Classificationx y

Regressionx y

Discrete

Continuous

Clusteringx y Discrete ID

Dimensionality
Reduction

x y Continuous

Supervised Learning

Unsupervised Learning



Irises: Supervised Classification
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Irises: Unsupervised Classification
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Classification Example
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Feature Encoding
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Decision Tree

37



Nearest Neighbor

• Define some notion of distance among input features
• For test examples, assign label of closest training example
• K-NN: Take majority vote among K closest training examples
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Probability Theory Review
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The Axioms of Probability

• 0 <= P(A) <= 1
• P(True) = 1
• P(False) = 0
• P(A or B) = P(A) + P(B) - P(A and B)
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Overview

• Discrete Random Variables
• Expected Value
• Pairs of Discrete Random Variables

– Conditional Probability
– Bayes Rule

• Continuous Random Variables
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Discrete Random Variables

• A Random Variable is a measurement on 
an outcome of a random experiment —
denoted by r.v. x

• Discrete versus Continuous random 
variable: an r.v. x is discrete if it can 
assume a finite or countably infinite 
number of values. An r.v. x is continuous if 
it can assume all values in an interval.
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Examples

• Which of the following random variables are 
discrete and which are continuous?

• X = Number of houses sold by real estate 
developer per week?

• X = Number of heads in ten tosses of a coin?
• X = Weight of a child at birth?
• X = Time required to run100 yards?
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Examples

• Dice
– Probability of rolling 5-6 or two 6s with two 

dice

• Deck of cards
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red 1 2 3 4 5 6

This sequence provides an example of a discrete random variable.  Suppose that you have a red die 
which, when thrown, takes the numbers from 1 to 6 with equal probability.
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Copyright Christopher Dougherty 1999–2006

Probability Distribution Example: X is the Sum 
of Two Dice



red 1 2 3 4 5 6
green

1

2

3

4

5

6

Suppose that you also have a green die that can take the numbers from 1 to 6 with equal probability.

Probability Distribution Example: X is the Sum 
of Two Dice
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red 1 2 3 4 5 6
green

1

2

3

4

5

6

We will define a random variable X as the sum of the numbers when the dice are thrown.
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Probability Distribution Example: X is the Sum 
of Two Dice



For example, if the red die is 4 and the green one is 6, X is equal to 10.

red 1 2 3 4 5 6
green

1

2

3

4

5

6 10
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Probability Distribution Example: X is the Sum 
of Two Dice



red 1 2 3 4 5 6
green

1

2

3

4

5 7

6

Similarly, if the red die is 2 and the green one is 5, X is equal to 7.
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Probability Distribution Example: X is the Sum 
of Two Dice



red 1 2 3 4 5 6
green

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 9 10

5 6 7 8 9 10 11

6 7 8 9 10 11 12

The table shows all the possible outcomes.
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Probability Distribution Example: X is the Sum 
of Two Dice



red 1 2 3 4 5 6
green

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 9 10

5 6 7 8 9 10 11

6 7 8 9 10 11 12

X

2
3
4
5
6
7
8
9

10
11
12

If you look at the table, you can see that X can be any of the numbers from 2 to 12.
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Probability Distribution Example: X is the Sum 
of Two Dice



red 1 2 3 4 5 6
green

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 9 10

5 6 7 8 9 10 11

6 7 8 9 10 11 12

X f

2
3
4
5
6
7
8
9

10
11
12

We will now define f, the frequencies associated with the possible values of X.
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Probability Distribution Example: X is the Sum 
of Two Dice



red 1 2 3 4 5 6
green

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 9 10

5 6 7 8 9 10 11

6 7 8 9 10 11 12

X f

2
3
4
5 4
6
7
8
9

10
11
12

For example, there are four outcomes which make X equal to 5.
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Probability Distribution Example: X is the Sum 
of Two Dice



red 1 2 3 4 5 6
green

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 9 10

5 6 7 8 9 10 11

6 7 8 9 10 11 12

X f

2 1
3 2
4 3
5 4
6 5
7 6
8 5
9 4

10 3
11 2
12 1

Similarly you can work out the frequencies for all the other values of X.
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Probability Distribution Example: X is the Sum 
of Two Dice



red 1 2 3 4 5 6
green

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 9 10

5 6 7 8 9 10 11

6 7 8 9 10 11 12

X f p

2 1
3 2
4 3
5 4
6 5
7 6
8 5
9 4

10 3
11 2
12 1

Finally we will derive the probability of obtaining each value of X. 
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Probability Distribution Example: X is the Sum 
of Two Dice



red 1 2 3 4 5 6
green

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 9 10

5 6 7 8 9 10 11

6 7 8 9 10 11 12

X f p

2 1
3 2
4 3
5 4
6 5
7 6
8 5
9 4

10 3
11 2
12 1

If there is 1/6 probability of obtaining each number on the red die, and the same on the green die, each 
outcome in the table will occur with 1/36 probability.
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Probability Distribution Example: X is the Sum 
of Two Dice



red 1 2 3 4 5 6
green

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 9 10

5 6 7 8 9 10 11

6 7 8 9 10 11 12

X f p

2 1 1/36
3 2 2/36
4 3 3/36
5 4 4/36
6 5 5/36
7 6 6/36
8 5 5/36
9 4 4/36

10 3 3/36
11 2 2/36
12 1 1/36

Hence to obtain the probabilities associated with the different values of X, we divide the frequencies by 
36.
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Probability Distribution Example: X is the Sum 
of Two Dice



The distribution is shown graphically.  in this example it is symmetrical, highest for X equal to 7 and 
declining on either side.

6__
36

5__
36

4__
36

3__
36

2__
36

2__
36

3__
36

5__
36

4__
36

probability

2 3 4 5 6 7 8 9 10 11 12 X

1
36

1
36
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Probability Distribution Example: X is the Sum 
of Two Dice



Overview

• Discrete Random Variables
• Expected Value
• Pairs of Discrete Random Variables

– Conditional Probability
– Bayes Rule

• Continuous Random Variables
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Expected Value

• Definition of E(X), the expected value of X:

• The expected value of a random variable, 
also known as its population mean, is the 
weighted average of its possible values, 
the weights being the probabilities 
attached to the values
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Expected Value Example
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xi pi xi pi xi pi   xi pi  

x1 p1 x1 p1 2 1/36 2/36
x2 p2 x2 p2 3 2/36 6/36
x3 p3 x3 p3 4 3/36 12/36
x4 p4 x4 p4 5 4/36 20/36
x5 p5 x5 p5 6 5/36 30/36
x6 p6 x6 p6 7 6/36 42/36
x7 p7 x7 p7 8 5/36 40/36
x8 p8 x8 p8 9 4/36 36/36
x9 p9 x9 p9 10 3/36 30/36
x10 p10 x10 p10 11 2/36 22/36
x11 p11 x11 p11 12 1/36 12/36

 xi pi = E(X) 252/36 = 7



Expected Value Properties

• Linear
E(X + Y) = E(X) + E(Y)
E(bX) = bE(X)
E(b) = b

Y = b1 + b2X
E(Y) = E(b1 + b2X)

= E(b1) + E(b2X)
= b1 + b2 E(X) 

• Also denoted by µ
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Variance

Var(X) = E[(X- µ)2] =

Var(X) = σ2

Var(X) = E[(X- µ)2] = E[X2] – (E[X])2

(Prove it.)
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Overview

• Discrete Random Variables
• Expected Value
• Pairs of Discrete Random Variables

– Conditional Probability
– Bayes Rule

• Continuous Random Variables
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Pairs of Discrete Random Variables

• Let x and y be two discrete r.v. 
• For each possible pair of values, we can 

define a joint probability pij=Pr[x=xi, y=yj]
• We can also define a joint probability mass 

function P(x,y) which offers a complete 
characterization of the pair of r.v.

65Note that Px and Py are different functions

Marginal distributions
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Statistical Independence

Two random variables x and y are said to be independent, if 

and only if

P(x,y)=Px(x) Py(y)   

that is, when knowing the value of x does not give us 

additional information for the value of y.

Or, equivalently

E[f(x)g(y)]  = E[f(x)] E[g(y)]

for any functions f(x) and g(y).
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Conditional Probability

• When two r.v. are not independent, 
knowing one allows better estimate of the 
other (e.g. outside temperature, season)

• If independent P(x|y)=P(x)
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Sum and Product Rules (1/7)
• Example:

– We have two boxes: one red and one blue
– Red box: 2 apples and 6 oranges
– Blue box: 3 apples and 1 orange
– Pick red box 40% of the time and blue box 

60% of the time, then pick one item of fruit

C.M. Bishop, “Pattern Recognition and Machine Learning”, 2006 68



Sum and Product Rules (2/7)

• Define:
– B random variable for box picked (r or b)
– F identity of fruit (a or o)

• p(B=r)=4/10 and p(B=b)=6/10
– Events are mutually exclusive and include all 

possible outcomes => their probabilities must 
sum to 1

C.M. Bishop, “Pattern Recognition and Machine Learning”, 2006 69



Sum and Product Rules (3/7)

C.M. Bishop, “Pattern Recognition and Machine Learning”, 2006 70



Sum and Product Rules (4/7)

C.M. Bishop, “Pattern Recognition and Machine Learning”, 2006 71



Sum and Product Rules (5/7)

C.M. Bishop, “Pattern Recognition and Machine Learning”, 2006 72

• Sum Rule

• Product Rule



Law of Total Probability

• If an event A can occur in m different ways 
and if these m different ways are mutually 
exclusive, then the probability of A 
occurring is the sum of the probabilities of 
the sub-events
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Sum and Product Rules (6/7)

• Back to the fruit baskets
– p(B=r)=4/10 and p(B=b)=6/10
– p(B=r) + p( B=b) = 1

• Conditional probabilities
– p(F=a | B = r) = 1/4
– p(F=o | B = r) = 3/4
– p(F=a | B = b) = 3/4
– p(F=o | B = b) = 1/4

C.M. Bishop, “Pattern Recognition and Machine Learning”, 2006 74



Sum and Product Rules (7/7)

Note: p(F=a | B = r) + p(F=o | B = r) = 1

p(F=a) = p(F=a | B = r) p(B=r) + p(F=a | B = b) p(B=b)
=  1/4 * 4/10 + 3/4 * 6/10 = 11/20

Sum rule: p(F=o) = ?

C.M. Bishop, “Pattern Recognition and Machine Learning”, 2006 75



Conditional Probability Example
• A jar contains black and white marbles. 
• Two marbles are chosen without replacement. 
• The probability of selecting a black marble and then a 

white marble is 0.34.
• The probability of selecting a black marble on the first 

draw is 0.47. 
 What is the probability of selecting a white marble on the 

second draw, given that the first marble drawn was 
black? 
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Conditional Probability Example
• A jar contains black and white marbles. 
• Two marbles are chosen without replacement. 
• The probability of selecting a black marble and then a 

white marble is 0.34.
• The probability of selecting a black marble on the first 

draw is 0.47. 
 What is the probability of selecting a white marble on the 

second draw, given that the first marble drawn was 
black? 
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A is black in first draw, B is white in second draw
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Law of Total Probability
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Bayes Rule

• x is the unknown cause
• y is the observed evidence
• Bayes rule shows how probability of x

changes after we have observed y
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Bayes Rule on the Fruit Example

• Suppose we have selected an orange. 
Which box did it come from?

C.M. Bishop, “Pattern Recognition and Machine Learning”, 2006 80

3
2

20
9
10
4

4
3

)(
)()|()|( 








oFp

rBprBoFpoFrBp



Overview

• Discrete Random Variables
• Expected Value
• Pairs of Discrete Random Variables

– Conditional Probability
– Bayes Rule

• Continuous Random Variables
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Continuous Random Variables
• Examples: room temperature, time to run 

100m, weight of child at birth…
• Cannot talk about probability of that x has 

a particular value
• Instead, probability that x falls in an 

interval => probability density function
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Expected Value

• Bayes rule
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Normal (Gaussian) Distribution

• Central Limit Theorem: under various 
conditions, the distribution of the sum of d
independent random variables approaches 
a limiting form known as the normal 
distribution
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Normal (Gaussian) Distribution
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Uniform Distribution
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ab 
1

p(x)=
for a<=x<=b

0      for x<a or x>b


