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Preface

This book is designed to provide a comprehensive introduction to the design and
analysis of computer algorithms and data structures. In terms M the computer sci-
ence and computer engineering curricula, we have written this book to be primarily
focused on the Junior-Senior level Algorithms (CS7) course, which is taught as a
first-year graduate course in some schools.

Topics

The topics covered in this book are taken from a broad spectrum of discrete algo-
rithm design and analysis, including the following:

Design and analysis of algorithms, including asymptotic notation; worst-
case analysis, amortization, randomization and experimental analysis

Algorithmic design patterns, including greedy method, divide-arid-conquer,
dynamic programming, backtracking and branch-and-bound

Algorithmic frameworks, including NP-completeness, approximation algo-
rithms, on-line algorithms, external-memory algorithms, distributed algo-
rithms, and parallel algorithms

Data structures, including lists, vectors, trees, priority queues, AYL trees, 2-
4 trees, red-black trees, splay trees, B-trees, hash tables, skip-lists, union-find
trees

Combinatorial algorithms, including heap-sort, quick-sort, merge-sort, se-
lection, parallel list ranking, parallel sorting

* Graph algorithms, including traversals (DFS and BFS), topological sorting,
shortest paths (all-pairs and single-source), minimum spanning tree, maxi-
mum flow, minimum-cost flow, and matching

Geometric algorithms, including range searching, convex hulls, segment in-
tersection, and closest pairs

Numerical algorithms, including integér, matrix, and polynomial multipli-
cation, the Fast Fourier Transform (FF1'), extended Euclid's algorithm, mod-
ular exponentiation, and primality testing

Internet algorithms, including packet routing, multicasting, leader election,
encryption, digital signatures, text pattern matching, information retrieval,
data compression, Web caching, and Web auctions
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Preface

For the Instructor

. This book is intended primarily as a textbook for a Junior-Senior Algorithms (CS7)

course, which is also taught as a first-year graduate course. in some schools. This

book containsmany exercises, which are divided between reinforcemént exercises,

creativity exercises, and implementation projects. Certain aspects of this book were

specifically designed with the instructor in mind, including:

Visual justifications (that is, picture proofs), which make mathçmatical ar-

guments more understandable for students, appealing to visual learners. An

example of visual justifications is. our analysis of bottom-up heap constfuc-

tion. This topic has traditionally been difficult for students to understand;

hence, time coñsuming for instructors to explain. The included visual proof

is intuitive, ngorous, and quick

Algorithmic design patterns, which provide general techniques for design-

ing and implementing algonthms Examples include divide-and-conquer, dy-

namic programming, the decorator pattern, and the template method pattern

Use of randomization, which takes advantage of random choices in an al-

gorithin to simplify its dsign and analysis. Such usage replaces complex

average-case analysis of sophisticated data structures with intuitive analy-

sis of simple data structures and algorithths. Examples incluçie skip lists,

randomized uick-sort, randomized quick-select, and randomized primality

testing.
Internet algorithmics topics, which either motivate traditional algonthniic

topics from a new Intérnet. viewpoint or highlight new algorithms that are

derived from Internet applications. Examples include information retrieval,

Web crawling, päcket routing, Web auction algorithms, and Web caching

algorithms. We have found that motivating algorithms topics by their Inter-

net applications significantly improves, student interest in. the study of algo-

rithms. .

Java implementation examples, which cover software design methods, object-

oriented implementation issues, and experimental analysis of algorithms.,

These implementation. examples, provided in separate sections of various

chapters, are Optional, so that insíructors can either cover them in their. lec-

tures, assign them. as additional reading, or skip them altogether.

N

This book is alsd structured to allow the instructor a great deal of freedom in

how to organize and present the material. Likewise, the dependence between chap-

ters is rather flexible, allowing the instructor to customize an algorithms course to

highlight the topics that he or she feels are most important. We .have extensively

disèussed Internet Algorithmics topics, which should prove quite interesting to stu-

dents. In addition, we have inclúded examples of Internet application of traditional

algorithms topics in several nlaces as well.
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Preface

We show in Table 0.1 how this book could be used for a traditional Introduc-

tion to Algorithms (CS7) course, albeit with some new topics motivated from the

Internet.

Algorithm analysis
Dáta structures

3 Searching
Sorting

5 Algorithmic techniques
Graph algorithms
Weighted graphs

Matching and flow

9 Text processing (at least one section)

.12 computational geometry

13 NP-completeness
14 Frameworks (at least one)

Option
Experimental analysis -

Heap Java example
Include one of § 3.2-3.5

In-place quick-sort
The IPT

DFS Java example
Dijkstra Java example

Include at end of course
Tries

Include at end of course
Backtracking

Include at end of course

Table 0.1: Exámple. syllabus sche4ule for a traditional Introduction to Algorithms

(CS7) course, including optional choices. for each chapter.

This book can also. 'be used for a specialized Internet Algorithmics course,

which r views some traditional àlgorithms topics, but in .a new internet-motivated

light, while also covering new algorithmic topics that are derived from Internet ap-

plications. We show in Table 0.2 how this book could be used for a such a course.

Table 0.2: Example syllabus schedule for an Internet AlgorithmiCs course, includ-

ing optional choices for each chapter. .

Option
Ch. Topics

i Algorithm analysis Experimental analysis

2 Data structures (inc. hashing) Quickly review

Searching (inc. § 3.5, skip lists) Search tree Java example

Sorting In-place quick-sort

5 Algorithmic techniques The WI

6 Graph algorithms DFS Java. example

Weighted graphs Skip one MST alg.

Matching and flowS Matching algorithms

Text processing Pattern matching

19 Security & cryptography Java examples.

11 Network algorithms Multi-cásting

13 NP-completeness include at end of course

14 Frameworks (at least two) Include at end of course

Ch. Topics
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Web Added-Value Education

This book comes accompanied by an extensive Web site:

http://www.wiley.com/college/goodrichi
This Web site includes an extensive collection of educational aids that augment the
topics of this book. Specifically for students we include:

Presentation handouts (four-per-page format) for most topics in this book
A database of hints on selected assignments, indexed by problem number
Interactive applets that animate fundamentl data structures and algorithms

.. Source code for the Java examples in this book

We feel that the hint server should be of particular iñterest, particularly for èreativity
problems that can be quite challenging for some students.

For instructors i.ising this book, there is a dedicated portion of the Web site just
for them, which includes the following additional teaching aids

Solutions to seleòted exercises in this book
A database of additional exercises and their solutions
Presentations (one-per-page format) for most topics covered in this book

Readers interested in the implementation of algorithms and data structures can
download JDSL the Data Structures Library in Java, from

http://www.jdsl.org/

Preface

Of course, other optiòns are also possible, including a course that is a mixture of
a traditional Introduction to Algorithms (CS7) course and an Internet Algorithmics
course. We do not belabor this point, however, leaving such creative arrangements
to the interested instructor.

Prerequisites

Wehave written this book assuming that the reader comes to it with cértain knowl-
edge In particular, we assume that the reader has a basic understanding of elemen-
tary data structures, such as arrays and linked lists, and is at least vaguely familiar
with a high-level programming language, such as C, C++, or .Java. Even so, all
álgorithms are described in a high-level "pseudo-code," and specific programming
langùage ëonstructs are only used in the optional lava implementation example
sections.

In terms of mathematical background, we assume the reader is familiar with
topiÇs from first-year college mathematics, including exponents, logarithms, sum-
mations, limits, and elementary probability. Even so, we review most of these

¡
fads in Chapter 1, iñcluding exponénts, logarithms, and summations, and we give
t .suthmary of other useful mathematical facts, including elementary probability, in

Appendix A.
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Chapter :1. Algorithm Analysis

In a classic story, the famous mathematiéian Archimédes was asked to deter-

mine if a golden crown commissioned by the Icing was indeed pure gold, and not

part silver, as an informant had claimed. Archimedes discovered a way to determine

this while stepping into a (Greek) bath. He noted that water spilled out of the bath
in proportion to the amount of him that went in. Realizing the implications of this

fact, he immediately got out of the bath and ran néked through the city shouting,
"Eureka, eureka!," fdr he had discovered an analysis tool (displacement), which,
when combined with a simple scale, could determine if the king's new crown was
good or not. This discovery was unfortunate for the goldsmith, however, for when
Archimedes did his analysis, the crown displaced more water than an equal-weight

lump of pure gold, indicating that the èrown was not, in fact, pure gold.

In this book, we are interested in the design of "good" algorithms and data
structures. Simply put, an algorithm is a step-by-step procedure for performing

some task in a finite amount of time, and a data structure is a systematic way of

organizing and accessing data. These concepts are central to computing, but to

be able to classify some algorithms and data structures as "good:' we must have
precise ways of analyzing them.

The primary analysis tool we will use in this book involves characterizing the
running times of algorithms and data structUre operations, with space usage also
being of interest. Running time is a natural measure of "goodness:' since time is a
precious resource. But focusing on running time as a primary measure of goodness
implies that we will need to use at least a little mathematics to describe running

times and compare algorithms

We begin this chapter by describing the basic framework needed for analyzing
algorithms, which includes the language for describing algorithms, the computa-
tioziál model that language is intended for, and the main factots we count when
considering running time. We also include a brief discussion of how recursive al-
gorithms are analyzed. In Section 1.2, we present the main notation wb use to char-

acterize Pinning timesthe so-called "big-Oh" notation. These tools comprise the

main theoretical tools for designing and analyzing algorithms

In Section 1.3, we take a short break from our development of the framçwork
for algorithm analysis to review some important mathematical facts, including dis-
cussions of summations, logarithms, proof techniques, and basic probability. Givei

this background and our notation for algorithm analysis, we present some case stud-

ies on theoretical algorithm analysis in. Section 1.4. We follow these examples in
Section 1 5 by presenting an interesting analysis technique, known as amortization,

which allows us to account for the group behavior of many individual operations.

Finally, in Section 1.6, we conclude the chapter by discussing an important and

practical analysis tèchnique--experimentation. We discuss both the main princi-
ples of a good experimental framçwork as well as techniques for summarizing and
characterizing data from an experìnental analysis.
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1.1. Methodologies for Analyzing Algorithms

1.1 Methodologies for Analyzing Algorithms
The running time of an algorithm or data structure operation typically depends on
a number of factors, so what should be the proper way of measuring it? If an
algorithm häs been implemeùted, we can study its running time by executing it
on various test, inputs and recording the actual time spent in each execution. Such
measuremeñts can. be taken in an accurate manner 'by using system calls that are
built into the language or operating system for which the algorithm is written. Iii
genei'al, we are interested in determining the dependency of the running time on the
size of the input. In order to determine this, wean perform several experiments
on many different test inputs' of various sizes. We can then visualize the results
of such experiments by plotting the performance of each run of the algorithm as
a point with x-coordinate equal to the input size, n, and y-coordinate equal to the
running time,, t.. (See Figure' 1.1.) To be meaningful, this analysis requires that
we choose good sample inputs and test enough of them to be able to make sound
statistical claims about the algorithm, which is an approach we discuss in more
detailinSectionl.6. '

In genéral, therunning time of an algorithm r data structure method increases
with,the input size; although it may âiso vary for distinct inputs of the same size.
Also, the 'running time is affected by the hardware environment (processor, clock
rate, memory, disk, etc.) .

and' software environment (operating system, program-
ming language, compiler, interpreter, etò.) in which the algorithm is implemented,
compiled, and executed. Ali other' factors being' equal, thé running time of the same
algorithm on the same input data will be smaller if 'the ömputerhas, say, a much
faster processor or if the implementation is done in a program compiled into native
machine code instead of an interpreted implementation run on a virtual machine.

- u1,111! LIII l'i
50 100

(a) , (b)

Figure 1 1 Results of an expenmental study on the running time of an algonthm
A dot with coordinates (n, t) indicates that on an input of size n, the running time of
the algorithm is t milliseconds (ms) '(a) The algorithm executed on a fast computer;
(b) the algorithm execuied on a slow computer.
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Chapter 1. Algòrithm Anslysis

Requirements for a General Analysis Methodology

Experimental studies on running times are useful, as we explore in Section 1.6, but
they. have some limitations:

Experiments can be done only on a limited set of test inputs, andcare múst
- be taken to make sure these are representative.

It is difficult to compare the efficiency of two algonthms unless experiments
on their runmng times have been performed in the same hardware and soft-
wate environments.
It is necessary to implement and execute an algorithm in Order to study its
running time experimentally.. . . .

Thus, while experimentation has animportant.role.to play in algorithm analysis,
it alone is ñot sufficient. Therefore, in addition to experimentation, we desire an
analytic framework that

. Takes into accoùnt all possible inputs
Allows us to evaluate the relative efficiency of any two algonthms in a way
that is independent from the hardware and software environmént:
Can be performed by studying a high-level description of the algorithm with-
out.actuallyímplementing it or rünning experiments on it.

This methodology aims at associating with each algorithm a function f(n) that
characterizes the runmng time of the algorithm in terms of the mput size n Typical
functions that will be encountered include n and n2 For example, we will write
statements of the type "Algorithm A runs in time proportional to n," meamng that
if we were to perform experiments, we would find that the actual running time of
algorithm A on any input of size n never exceeds cri, where c is a constant that
depends on the hardware and software environment used in the experiment. Given
two algorithms A and B, where A runs in time proportional:. to n and B runs intime
proportional to n2, we will prefer A to B, since the function n grows at a smaller
rate than the function n2.

We are now ready to "roll up our sleeves" and start developing our method-
ology for algorithm analysis.. There are several components to this methodology,
including the following:

A language for describing algorithms
A computatiOnal model that.algorithms execute within.
A metric for measuring algorithm running time
An approach for charactenzrng running times, mcluding those for recursive
algorithms.

We describe these components in more detail in the remainder of this section.
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1.1. Methodologies for Analyzing Algorithms

1.1;1 Pseudo-Code

Programmers are Often asked to describe algorithms in a way that is intended for
human eyes only. Such descriptions are not computer programs, but are more struc-
tured than usual prose. They also facilitate the high-level analysis of a data structure
or algorithm, We call these descriptions pseudo-code.

An Example of Pseudo-Code

The array-maximum problem is the simple problem of finding the maximum ele-
ment in an array A stonng n integers To solve this problem, we can use an algo-
nthm called arrayMax, which scans through the elements of A using a for loop

The pseudo-code description of algorithm a rrayM ax is. shown iii Algorithm 1.2.

Algorithm arrayMax(A,n):
Input: An array A storing n 1 integers.
Output: The maximum elemeñt in A.

currentMax *- A [O}

fori4-1 ton-1 do
if currentMax <A [i] then

currentMax 'e- A [i]

return currentMax

Algorithm 1.2: Algorithm arrayMax..

Note that the pseudo-code is more compact thañ an equivalent actual software
code fragment would be. In addition, the pseudo-code is easier to reád and under-
stand.

Using Pseudo-Code to Prove Algorithm, Correctness

By inspecting the pseudo-code, we can argué about. the correctness of algorithm
arrayMax with a simple argument. Variable currçntMax starts out being equal to
the first element of A. We claim that at the beginning of the ith iteration of the loop,
currentMax is equal to the maximum of the first ¡ ¿lements in A Since we compare
currentMax to A [z] in iteration t, if this claim is true before this iteration, it will be
true after it for t + 1 (which is the next value of counter z) Thus., after n - i itera-
Pons, currentMax will equal the maximum element in A As with this example, we
want our pseudo-code descriptions to always be detailed enough to fully justify the
correctness of the algorithm they. desóribe, while being simple enough for hùman
readers to understand. .
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What Is Pseudo-Code?

Pseudo-code is a mixture of natural language and high-level programming con-

structs that dèscribe the main ideas behind a generic implementation of a data1

strubture or algorithm. There really is no precise definition of thepseudo-code lan-'

guage, however, because of its reliance on natural language At the same time, to

help achievé clarity, pseudo-code mixes natural language with standard program-.

ming language constructs. The programming language constructs we choose are.

thòsè consistent with modem high-level languages such as C, C++, and Java. These

constructs include the following:

Expressions We use standard mathematical symbols to express numenc
and Boolean expressions We use the left arrow sign (E-) as the assignment

operator in assignment statements (equivalent to the = operator in C, C++,

and Javá) and we usé thé equal sign (=) as the equality relation in Boolean

expressions. (equivalent to the "==" relation in C, C++, and Java).

Method declaratioús: Algorithm name(paraml , param2 ,...) declares a new
method "name" and its parameters.

Decision structurés: if condition, then true-actions [else false-actions]. We
use iñdentation to indicate what actions should be included in the true-actions

and false-actions. . i

While-loops: while condition . do actièns. We use indentation to indicaté
what actions should be included in the loop actions

Repeat-loops: repeat actions until condition. We usè indentation to indicate

whit actions should be included in the loop actions

For-loops for variable-increment-definition do actions We use indentation

to indicate what actions should be included among the loop actions

Array iùdexing: A[i] represents the ith 'cell inthearray A The cells' of an
n-celled array A are indexed from A[O] toA[n 1] (consistent with .C, C+-i-,

and Java).

s Method calls: object.method(args) (object is optional if it is understood).

Method returns: return value This operation returns the value specified to

the method that callS this one.

Whqn we write pseudo-code, we must keep in mind that we are writing for a
human reader, not a computer. Thus, we should strive to communicate high-level
ideas, not low-level implementation details At the same time, we should not gloss

over important steps Like many forms of human communication, finding the nght

balance is an important skill that is refined through practice

Now that we have developed a high-level way of describing algorithms, let us

next discuss how wel can analytiOally characterize algorithms written in pseudo-

code.
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1.1.2 The Random Access Machine (RAM)ModèI

As we noted above, experimental analysis is valuable, but it has its limitations. If.
we wish to analyze a particular algonthm without perfonrnng expenments on its
running time, we can take the following more analytic approach directly on the
high-leel code or pseüdó-codé. Wé dèfine à sèt of high-level primitive operations
that are largely independent from the programming language used and can be iden-
tified also in the pseudo-code. Primitive operatioñs include the fQllowing: .

Assigning .a value to a variable
Calling a method
Perfonning an arithmetic operation (for example, adding two numbers).
Comparing two numbers
Indexing, into an array
Following an object reference
Returning, from a method.

Specifically, a primitive operation corresponds to a low-level instruction with an
execution time that depends on the hardware and software environment but is, nev-
ertheless constant Instead of trying to determine the specific execution tithe of
each primitive operation, we will simply couñt how many primitive operations are
executed, and use this number t as a high-level estimate of the running time of the
algonthm This operation count will correlate to an actual running time in a spe-
cific hardware and software environment, for each pnmitive operation corresponds
to a constant-time instruction, and there are only a fixed number of pnmitive opera-
tions The implicit assumption in this approach is that the running times of different
pnmitive operations will be fairly similar Thus, the number, t, of pnmitive opera-
tions an algorithm performs will.be proportional to the actual running time of that
algorithm. .

RAM Machine ModelDefinition

This approach of simply counting pnmitive operations gives nse to a computational
model called the Randérn Aécèss Machine (RAM) This model, which should not
be confused with "random access nemory," views a computer simply as a C?U
connected to a bank of memory Oeils. Each memòry cell stores a word, which can
be a number, a character stung, or an address, that is, the value of a base type The
tèrm "random access" refers to the ability of the CPUtö access an arbitrary memory
cell with one primitive peration. To keep the model simple, we do not place
any specific limits on the size of numbers that can be stored in words of memory
We assume the CPU in the RAM model can perform any pnmitive operation in
a constant number of steps, which do not depend on the size of the input. Thus,
an accurate bound on the number of pnmitive operations an algonthm performs
cörresponds directly to the running time of4hat algorithm in the RAM model.
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1 1 3 Counting Primitive Operations

We now show how to count the numbçr of primitive operations executed by an al-
gonthm, using as an example algonthm arrayMax, whose pseudo-code was given
back in Algorithm 1.2. We do this analysIs by focusing on each step of the algo-
rithm and counting the primitive operations that it takes, taking into consideration
that some operations are repeated, because they are enclosed in the body of. a loop.

Initializing the variable currentMwc to A [OJ corresponds to two primitive op-
erations (indexing into an array and assigning a value to a variable) and is

executed only once at the beginning of the algorithm. Thus, it contributes

two units to the count.

At the beginning of the for loop, counter i is initialized to 1. This action corre-.
sponds to exeéuting one primitive operation (assigning a value to a variable).

Before entenng the body of the for loop, condition i <n is verified This
action corresponds th executing one primitive instruction (comparing two
numbers).. Since counter i starts at O and.is incremented, by i at the end of
each iteration of the loop, the comparison i <n is performed n times. .Thus,

it contributes n units to the count.

The body of the for loop is executed n - 1 times (for values 1,2, ,n - i
of the counter) At each iteration, A [i] is compared with currentMax (two
primitive operations, indexing and comparing),

:4 [currentMax] is possibly
assigned to currentMax (two primitive operations, indexing and assigning),
and, the counter i is incremented (two primitive operations, summing and
assigmng) Hence, at each iteration of the loop, either four or six pnimtive
operations are performed, depending on whether A[i] currentMax or A [i]>
currentMax. Thérefore, thè body Of the ioop contributes between 4(n - 1)

and 6(n - 1) units to the count.

Returning the value of variable currentMax corresponds to one primitive op-
eration, and is executed only once.

To summarize, the number of primitive operations t(n) executed by algorithm a
rayMax is at least . /

2+1+n+4(n-1)+'1=5n
and at most,'.

2±1+n+6(n-1)±l=7n-2..
The best case (t(n) = 5n) occurs when A[O] is the maximum element, so that vari-
able ciirrentMax is never reassigned The worst case (t(n) = 7n 2) occurs when
the elements are sorted in increasing order, so that variable currentMax is reas-
signed at each iteration of the for loop
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Average-Case and Wor -Case Analysis

Like the arrayMax meth , an algorithm may run faster on some inputs than it does
on others In such case' ie may wish to express the running time of such an algo-
rithm as an average tal. t over all possible iñputs. AlthoUgh such an average case
analysis would often be valuable, it is typically quite challenging. 1t requires us to
define a probability distribution on the set of inputs, which is typically a difficult
task Figure 1 3 schematically shows how, depending on the input distnbution, the
runmng time of an algonthm can be anywhere between the worst-case lime and the
best-case time For example, what if inputs are really only of types "A" or "D")

An average-case analysis also typically requires that we calculate eipected run-
ning times based on a given input distribution. Such an analysis often requires
heavy mathematics andprobability theory.

Therefore, except for expenmental studies or the analysis of algonthms that are
themselves randomized, we will, for the remainder of this book, typically charac-
terize running times in ternis of the worst case. Wè say, for example, that algorithm
arrayMax executes t(n) = in 2 primitive operations in the worst case, meaning
that the maximum number of primitive Operations executed by the algorithm, taken
over all inputs of size n, is 7n 2.

This type of analysis is much easier than an average-case analysis, as it does
not require probability theory, it just requires the ability to identify the worst-case
input, which is often straightforward In addition, taking a worst-case approach can
actually lead to better algorithms. Making the Standard of success that of having an
algòrithm perform well in the worst case necessarily requires that it perform well on
every input That is, desigmng for the worst case can lead to stronger algonthmic
"muscles," much like a track star who always practices by running up hill.

- - - - - - - worst-case time

average-case time?

i-I 'I-

-- best-case time

C D B

Input Instance

Figure 13: The difference between best-case and worst-case time Each bar repre-
sents the running time of some algorithm on a different possible input.
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1 1.4 Analyzing Récursive Algorithms

Iteration is not the only interesting way of solving a problem. Another useful tech-

nique, which is emplòyed by many algorithms, is to. use recursion. In this tech-

nique, we define a procedure P thät is allowed to make calls to itself as a subrou-

tine, provided those calls to p are for solving subproblems. of smaller. sue. The

subroutine calls to P on smaller instances are called "recursive calls?' A recur-

sive procedure should always define a base. case, which is small enough that the

algorithm can solve it directly without using recursion

We give a recursive solution to the array maximum problem in Algorithm 1.4,

This algonthm first checks if the array contains just a single item, which in this case

must be the maximum; hence, in this. simple base case we can immediately solve

the problem Otherwise, the algonthm recursively computes the maximum of the

first n - i elements in the array and then returns the maximum of this value and the

last element in the array.

As with this example, recursive algorithms are oftén quite elegant. Analyzing

the running time of a recursive algorithm takes a bjt of additional work, however*

In particular, to analyze such a running time, we use a recurrence equation, which

defines mathematical statements that the running time of a recursive algorithm must

satisfy. Weintroduce a function T(n) thàt denotes the running time of the algorithm.

on an input of size n, and we wnte equations that T(n) must satisfy For example,

we can haracterize thé running time, 1(n), of the recursiveMax algorithm as

J3 ifn=i
T(n) T(n i)+7 otherwise,

assuming that we count each comparison, array reference, recursive call, max cal

culation, or return as a single primitive operation. Ideally, we would like to char-

acterize a recurrence equation like that above in closedform, where no references

to the funötion T appear on the righthand side; For the recursiveMax algoritIm,

it isn't too hard to see that a closed form wouldbe T(n) = 7(n 1) + 3 = 7n 2.
Ingeneral, determining closed form solutions to. recurrence equations can be much

more challenging than this, and we study some specific examples of recurrence

equations in Chapter 4, when we study some sorting and selection algorithms We

study methods for solving 'recurrence equations of a general form in Section 5.2.

Algorithm recu rsiveM ax(A, n):

Input: An array A storing n i integers.
Output: The maximum element in A.

.jfzr1then
returnA[O]

return max{recursiveM.ax(A,n 1),A[n 11}

Algorithm 1.4: Algorithm reçursiveMax.
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1.2 Asymptotic Notation

We have clearly gone into laborious detail for evaluating the running time of such
asimple algorithm as arrayMax and its, recursive coúsin, recursiveMax. Such an
approach would clearly prOve cumbersome if we had to perform it for more compli-
cated algonthms In general, each step in a pseudo-code descnption and each state-

ment in a high-level language implementation corresponds to a small number of

pnmitive operations that does not depend on the input size Thus, we can perform

a simplified analysis that estimates the number of primitive operations 'executed up

to a constant faötor, by counting the steps of the pseudo-code or the statements of

the high-level language executed Fortunately, there is a notation that allows us to
characterize the main factors affecting an algorithm's running time without going

into all the details of exactly how many primitive operations are performed for each

constant-time set of instructions.

1.2.1 The "Big-Oh" Notation.

Let f(n) and g(n) be functions mapping nonnegative integers to real numbers We

say that f(n) is O(g(n)) if there is a real constant c > O and an integer constant

n0 i such that f(n) cg(n) for every integer n nj. This definition is often
referred to as the "big-Oh" notation, for it is sometimes pronounced as "f(n) is big-

Oh of g(n)." Alternatively, we can also say "f(n) is order g(n)." (This definition
is illustrated in Figure 1.5.)

Figure 1.5: illustrating the "big-Oh" notation. The function f(n) is Ü(g(n)), for

f (n) g(n) when n? flo

no Input Size
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Example 1.1: 7n-2isO(n).
Proof: By the big-Oh definition, we need to find a real constant c> O and an
integer constant 0 i such that7n 2 Ç cn for every integer n no. It is easy to
see that a possible choice is c =7 and no = i Indeed, this is one of infinitely many
choices available because any real number greater than or equal to 7 will work for
c, and any.integer greater than or equal to i will work for no.

The big-Oh notation allows us to say that a function of n is "less than or equal
to" another function (by the inequality "<"in the defimtion), up to a constant factor
(by the constant c in the definition) and in the asymptotic sense as n grows toward
infinity (by the statement "n n0" in the definition)

The big-Oh notation is used widely to charaeterize running times and space
bounds in terms of some parameter n, which varies from problem to problem, but
is usually defined as an intuitive notion of the "size" of the problem For example, if
we are interested in finding the largest eement in an array of integers (see arrayMax
given in Algorithm 1.2), it would be most nat ral to let n denote the number of
elements of the array. For example, we can write the following precise statement
on the running timeof algorithm arrayMax from Algorithm 1.2.

Theorem 1.2: The running time of algorithm arrayMax for computing the maxi
mum element In an array of n.integers is 0(n).

Proof: As shown in Section 1. 1.3,. the numbér of primitive operations executed
by algorithm arrayMax is at most 7w 2. We may therefore apply the big-Oh
definition with c 7 and n =1 and öonclude that the running time of algorithm
arrayMaxisO(n). . .

Let us consider a few additional examples that illustiate the big-Oh notatioñ.

Example 1.3: 20n3+lOnlogn±5is0(n3).

Proof: 20n3+Ïønlogn+535n3,forn 1.

In fact, any polynomm.1 aknk + ak_ink_i + + ao will always be 0(nk)

Example 1.4: 3logn+loglogniso(logn). . . . I

Proof: 3logn + loglogn Ç 4logn, for n 2.. Note that loglogn is not even
definedforn=1. Thatiswhweusen>2. i
Example 1.5: 2100 is 0(1).

Proof' 2100 <2i00 1, for n 1 Note that variable n does not appear in the
inequality, since we are dealing with constant-valued functions. M

Example 1.6: 5/n lis 0(1/n).

Proof: 5/n < 5(1/n), forn i (even though this is actually a decreasing func-
tion). .
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In general, we should use the big-Oh nitation to characterize a function as
closely as possible. While it is true that f(n) 4n3 + 3n4/3 i 0(n5), it is more
accurate to say that f(n) is 0(n3). Consider, by Way of analogy, a scenario where
a hungry traveler driving along a long country road happens upon a local farmer
walking home from a market. If the traveler àsks the farmer how much longer he
must drive before he can find some food, it may be truthful for the farmèr to say,
"certainly no longer than 12 hours," but it is muòh more aècurate (and helpful) for
him to say, "you can find a market just a few minutes' drive up this road."

Instead of always applying the big-Oh definition directly to obtain a big-Oh
characterization, we can use the following rules to simplify notation.

Theorem 1.7: L et d(n), e(i), fin), and g(n) be functions mapping nonñegative
integers to nonnegative reals. Then

if d(n) is 0(f(n)), then ad(n) ià 0(f(n)), for anyconstanta >0.
ifd(n) is 0(f(n)) and e(n)is 0(g(n)), then d(n) + e(ñ) is 0(f(n) + g(n)).
if d(n) is O(f(n)) and e(n) is 0(g(n)), then d(n)e(n) is 0(f(ñ)g(n)).
If d(n) is 0(f(n)) andf(n) is 0(g(n)), then d(n)is 0(g(ñ)).
if f(n) is a polynomial of degree d (that is, f(n) = ao + à1n ± + adn'),
then f(n)iso(n").
ltisO(au')foranyfixedx>.Øanda>.L
logî? is 0(logn) fotanyfixedx>0.
bC n is 0(nY) for any fixed constants x> O and y > 0.

It is considered poor taste to include constant factors and lower order terms in
the big-Oh notation. For example, it is not fashionable to say that the function 2n1
is 0(4n2 + 6nlogn), although this is completely correct. We shoùld strive instead
to describe the function in the big-Oh in simplest terms.

Example 1.8: 2n3 +4n2bogn is 0(n3).
Proof: We can apply the rules of Theorem 1.7 as follows:

logzis0(n)(Rule8).
4n2bogn is 0(4n3) (Rule 3).
2n3 ± 4n2 logn is 0(2n3 + 4n3) (Rule 2).
2n3 +4n3 is 0(n3) (Rule S orRulel).
.2n3 +4n2logn is 0(n3) (Rule 4).

Some functions appear often in the aùalysis of algorithms and data struétures,
and we often usespecial terms to refer to them. Table 1.6 shows some térms cöm-
monly used in algorithm analysis.

Thble 1.6:: Terminology for classes f functions.

logarithmic linear quadratic polynomial exponential
bogn) 0(n) 0(n2) :Ü(nc)(k>1) O(aa>1)
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Using the Big-Oh Notation

It is considered poor taste, in general, to say "f(n) O(g(n))," since the big-Oh

already denotes the "lçss-than-or-equal-to" concept. Likewise,. although common,

it is not completely'correct to say "f(n) = O(g(n))" (with the usual understanding

of the "=" relation), and it is actually incorrect to say "f(n) O(g(n))" or "f(n) >
O(g(n))." It is best to say "f(n) is Of/g(n))?' For the more,mathematically inclined,

it is also correct to say, t
'7(n)EO(g(n)),"

for the big-Oh notation is, technically speaking, denoting a whole collection of

functions.
Even with this interpretation, there is considerable freedom in how we can use

arithmetic operations with the big-Oh notation, provided the connection to the def-

inition of the big-Oh is clear. For instance, we can lay,

"f(n) is g(n) + O(h(n)),"

which would nìean that there are constants r > O and no i such that f(n) <
g(n) + ch(n) for n no. As in this example, we may sornetimçs wish to give jhe

exact leading term in an asymptotic charactérization.. In that case, we would say

that "f(n) is g(n) + 0(h(n))," where h(n) grows slower than g(n). For example,

we could say that 2îìlogn +4n + lO/i is 2nlogn + 0(n).

1.2.2 "Relatives" of the Big-Oh

Just as the big-Oh notation provides an asymptOtic way of saying that a function

is "less thañ nE equal to" another function, there are other notations that povide
asymptotic ways of making other types of comparisons.

Big-Omega and Big-Theta

Let f(n) and g(n) be functions mapping integers to real numbers. We say that f(n)
is Q(g(n)) (pronounced '7(n) is big-Omega of g(n)") if g(n) is O(f(n)); that is,
there is a real constant c > O and an integer constant no i such that f(n) cg(n),

for n no. This definitioa allows us to say asymptotically that one function is
greater than or equal to another, up to a constant factor Likewise, we say that f(n)

is O(g(n)) (pronounced "f(n) is big-Theta of g(n)") if f(n) is 0(g(n)) and f(n) is
Q(g(n)); 'that is, there are real constants ¿ > O and ¿' > O, and an integer constant

no i such that ¿g(n) Ç f(n) Ç c"g(rz), fOr n no.
The big-Theta allows us to say that two functions are asymptotically equal, up

to a constant factor. We cohsider some examples of these notations below.
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Example 19: 310g n + log logn is Q(logn).

Proof 3logn+loglogn 3logn, forn 2

this examplè shows that lower order terms are nOt dominant in establishing
lower bounds with the big-Omega notation Thus, as the next example sums up,
lower order terms are not dominant in the big-Theta notation either

Example 11th 3logn+ loglogn is O(logn).

Proof: This follows from Exalfiples 1.4 and 1.9.

Sçme Words of Caution

A few words of caution about asymptotic notation are in order at this point First,
note that the use of the big-Oh and related notations can be somewhat misleading
should the constant factors they "hide" be very large For example, while it is true

that the function 1O«n is 0(n), if this is the running time of an algonthm being
compared to one whose running time is lOnlogn, we should prefer the e(n log n)

time algonthm, even though the hnear-time algorithm is asymptotically faster This
preference is because the constant factdr, 10i00 which is called "one googol," is
believed by many astronomers to be an upper bound on the number of atoms in
the observable universe So we are unlikely to ever have a real-world problem that
has this number as its input size Thus, even when using the big-Oh notation, we
should at least be somewhat mindful of the constañt factors and lower order terms

we are "hdiríg."
The aboveobservanon raises the issue of what constitutes a 'tfast" algorithm.

Generally speaking, any algorithm running in 0(nlogn) time (with a reasonable
constanifactor) should be considered efficient. Even an 0(n2) time méthod may be

fast enough in sorné contexts, that is, when n is small. But an algorithm running in
0(r) time should never be considered efficient This fact is illustratedby a famous

story about the inventor of thé game of chess. He asked only that his king pay him

i grain of rice for the first square on the board, 2 grains for the second 4 grains
for the third, 8 for the fourth, and so on. But try to imagine the sight of 2M grains

stacked on the last square! In fact, this number cannot even be represented as a
standàfd long integer in most programming languages.

Therefore, if we. must draw 1a line between efficiçnt and inefficient algorithms,
it is natural to make this distinction be that between those algorithms running in
polynomial time and those equiring exponential time That is, make the distinction
between algorithms with a running time that is 0(n'<), for sorne constant k 1, and

those with a running time that is 0(c"), for some constant c> 1. Like so-many
notions we have discussed in this section, this too should be taken with a "grain of

salt," for an algonthm running in 0(n'°°) time shonild probably not be considered
"efficient" Even so, the distinction between pólynomial-time and exponential-time

algorithms is considered a robust measure of tractability.
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"Distant Cousins" of the Big-Oh:. Little-Oh and Little-Omega

There are also some ways of saying that one function is strictly less than or strictly
greater than another asymptotically, but these are not used as often as the big-Oh,
big-Omega, and big-Theta. Nevertheless, for the sake of completeness, we give
theirdefinitionsas well.

Let f(n) and g(n) be funetions mapping integers to real numbers. We say that
f(n) is o(g(n)) (pronounced "f(n) is little-oh df g(n)") if, for any constant c> 0,
there is a constant n0 > O such that f(n) cg(n) for n n0. Likewise, we say that
f(n) is (g(n)) (pronounced "f(n) is little-omega of g(n)") if g(n) is o(f(n)), that
is, if, for any constant c > 0, there is a constant no > O such that g(n) Ç cf(n) for
n n0. Intuitively, (.) is analogous to "less than" in anasymptotic. sense, and co()
is analogous to "greater than" in an asymptotic sense

Example 1.11: The function f(n) 12n2 ± 6n is o(n3) and 0(n).

Proof: Let us first show that f(n) is o(n3). Let c > O be any constant. If we take
n0 = (12+6)/c, then, forn no, we have

cn3 : 12n2+6n2 12n±6n.

Thus, f(n) is o(n3).
To show thatf(n) is «n), letc>O again be any citant If we take no = c/12,

then, forn> no, we ha s'è

12n2+6n12n2cn.
Thus, f(n) is (n).

For thereader familiar with limits, we note that f(n) is o(g(n)) if and only if

um
f(n)

noc g(n)

provided this limit exists; The main differ6nce between the littlC-oh and big-Oh
notions is that f(n) is O(g(n.)) if there exist constants c> 0 and nij i such that
f(n) Ç cg(n), for n no; wheréas f(n) is o(g(n)) iffor all constants c > O there is

a constant no such that f(n) cg(n), for n no. Intuitively, f(n) is o(g(n)) if f(n)
becomes insignificant compared to g(n) as n. grows toward infinity. As previously
mentioned, asymptotic notation is useful because it allows us to concentrate on the
main factor determiûing a function's growth.

To summarize, the asymptotic notations of big-Oh, big-Omega, and big-Theta,
as. well as little-oh and littlsomega provide a convenient language for us to analyze
data structures ànd algorithms. As mentioned earlier, these notations provide con-
veniènce because they let us concentrate on the "big picture" rather than low-level
details. .
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1.2.3 The Importance ¿f Asymptotics

Asymptotic notation has many important benefits, which might not be immediately
obvious. Specifically, we illustrate one important aspect of the asymptotic view-

point in Table 1 7 This table explores the maximum size allowed for an input

instanòe for various running times to be solved in i second, 1 minute, and 1 hour,
assuming each operation can be processed in i microsecond (1 jis). It also shows

the importance of algorithm design, because an algorithm with an asymptotically

show, running time. (for example, one that is 0(n2)) is beaten in the long. run by

an algorithm with an asymptotically faster running time (for example, one that is

O(nlogn)), even if the constant factor for the faster algorithm is worse.

Table 1.7: Maximum size of a problem that can be solved in one second, one

minute, and one hour, for various running times measured in microseconds.

The importance of good algorithm design goes beyond just what can be solved

effectively on a given computer, however. As shown in Table 1.8, even if we

achieve a dramatIc speedup in hardware, we still cannot overcome the handicap

f an asymptotically slow algorithm. This table shows the new maximum problem

size achievable for any fixed amount of time, assuming algorithms with the given

running tithes are now run on a compUter 256 times faster than the previous one.

Table 1.8:. Increase in the maximum size of a problem that can be solved in a certain

fixed amount of time, by using a computer that is 256 times faster than the previous

one, for various running times of the algorithm Each entry is given as a function

of m, the previous maximum problem size. . .

Running
Time

Maximum Problem Size (n)
1 second :1 minute 1 hour

400n 2,500 150,Q00 9,000,000

20n [log n] 4,096 166,666 7,826,087
2112 707 5,477 42,426

n 31 '88 244

r. .
19 25 31

Running
Time

New Maximum
. Problem Site

400n
20n [16g nl

2n2

n4r

256m
approx. 256((logm) / (7 ± log m))m

16m
. 4m

. m+8
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Ordering Functions by Their Growth Rates

Suppose two algorithms solving the sameproblem. are available an a1orithm A,
which has a running timé of 9(n), and an algorithm B, which has a running time

of 9(n2). Which one is better7 The little-oh notation says that n is o(n2), which
implies that algorithm A is asymptotically better than algorithm B, although. for a

given (small) value of n, it is possible for algorithm B to have lower running time
than algorithm A. Still, in the long run, as shown in .the above tables, the benefits
of algorithm A over algorithm B will become clear.

In general, we can use the little-oh notation to order classes of functions by
asymptotic growth rate. In Table 1:9, we show a list of functions ordered by in,-.

creasing growth rate, that is, if a function f(n) precedes a function g(n) in the list,
then f(n) is o(g(n)).

Table 1.,: An orderéd list of simple functions Note that, using common terminol-
ogy, one of the above functions is logarithmic, two are pólylogarithmic, three are
sublinear, one is linear, one is quâdratic, one is cubic, and one is exponential.

In Table 110, we illustrate the difference in the growth rate of all but one of the

functions shown in Table 1.9.

Table 1.10: Growth of several functions.

n logn vtW n niogn .2"

2 1 1.42 2 4 .- .. 4 H

4.
8

2 2
3 2,8

4
8

8,
24

i6
64

64
512

16
256

16 4 4 16. 64 256 4,096 65,536

32 5 5.7 32 160 1,024 32,768 4,294,967,296

64 6 8 64 384 4,096 262,144 1.84x iø'
128 7. ii 128 896 i6,384 2,097,152 3,40x1038

256 $ 16 256 2,048 65,536 .. 16,777,216 1.15 x

512 9 23 512 4,608 262,144 134,217,728 134x10154

1,024 10 32 1024 16,240 Ï,048,576 1,073,741,824: . 1.79x1038

Functions Ordered by Growth Rate

logn
log2 n

n
nlogn

n2

n3

2
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1.3 A Quick Mathematical Reviçw

In this section, we briefly review some of the fundamental concèpts from discrete
mathematics that will arise in several of our discussions. In addition tè these fun-
damental coñcepts, Appendix A includes a list of other useful mathematical facts
that apply in the context of data structure and algorithm analysis.

1.3.1 Summations

A notation that appeais again and again in the analysis pf data structures and algo-
rithms is the summation, which is defined as

b

Ef@) =f(a)+f(a+1)+f(a+2)+ +f(b).
i=a

SummationE arise in data structure and algorithm analysis because the tunning
timesôf loops naturally give rise to summations. For example, a summation that
often arises in data structure and algorithm analysis is the gèometric summation.

Theorem 1 12 For any integer n O and any real number O <a $ 1, consider

Ea'=1+a+a2+ +a't

(remembering that a0 = i ifa > O) This summation is equal to

1a
Summations s shown in Theorem 1 12 are called geometric summations, be-

cause each term is geometncally larger than the previous one if a> 1 That is, the
terms in such a geometric summation exhibit exponential growth For example,
eveiyope working in computing should know that

1-(2+4+8+ +2'=2-1,
for this is the largest integer that can be represented in binary notation using n bits.

Another summatiOn that arises in several contexts is

1=1+2+3+ +(n-2)+(n-1)+n

This summation often anses in the analysis of loops in eases where the number of
operations performed inside the loop increases by a fixed, constant amount with
each iteration This summation also has an interesting history In 1787, a German
elementary schoolteacher decided to keep his 9- and 10-year-old pupils occupied
wIth the task of adding up all the numbers from 1 to 100. But almost immediately
after giving this assignment, one of the children claimed to have the answer-5,050.
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That elementary school student was none. other than Karl Gauss, who would

grow up to be one of the greatest mathematicians of the 19th century It is widely

suspected that young Gauss derived the answer to his teacher's assignment using

the following identity.

Theorem 1.13: Foranyintegern 1, we have

Proof: We give two "visual" justifications of Theorem 1.13 in Figure 1.11, both

of which are based oil computing the area of a collection of rectangles representing
the numbers 1 through n. In Figure 1.1 la we draw a big triangle over an ordering

of the rectangles, noting that the area Of the rectangles is the same as that of the
big triangle (n2 /2) plus that of n small triangles, each of. area 1/2. In Figure 1.1 lb,

which applies when n is even, we note that i plus n is n + 1, as is 2 plus n 1, 3
plus n 2, and so on. There are n/2 such pairings.

3 n '
1 2 n12

(a) (b)

Figure 1.11: Visual justifications ofTheorem 1.13. Both illustrations visualize the

identity in terms of the total area covered by n unit-width rectangles with heights

1,2, ,n In (a) the rectangles are shown to cover a big tnangle of area n2/2 (base

n and height n) plus n small triangles of area 1/2 each (base i and height 1) In

(b), which applies thy when n is. even, the rectangles are shown to cover a big

rectangle of base n/2 and height n + 1.
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1.3.2 Logarithms and Exponents

One of the interesting and sometimes even surpnsing aspects of the analysis of data
structures and algonthms is the ubiquitous presence of loganthms and exponents,
where we say

loga=c if a=rbC.

As is the custom in the computing literature, we omit writing the base b of the
logarithm when b 2. For example, log 1024 lo.

There are a number of important rules for logarithms and exponents, including
the following:

Theorem 1.14: Let a, b, and c be positive real numbers. We have:

logac=loga+logc
logy a/c = logo a - logs c
loga'=cloga
loga = (loga)/logb

5 ¿,Iogc a 1og b

bab=bI+
b9/fr = ba_c.

Also, as a notational shorthand, we use log" n to denote the function (log n)'
and we use loglogn to denote log(logn). Rather than show how we could derive
eaph of the above identities, which all follow from the definition of logarithms and
exponents, let us instead illustrate these identities with a few examples of their
usefulness.

Examplé 1.15: We illustrate some interesting cases when the base of a logarithm
or exponent is 2. Thé mies cited refer to Theorem 1; 14.

log(2nlogn) = i +logn +loglogn, by raie L(twice)
log(n/2) = logn log2 logn 1, by rule 2
log/i= log(n)"2 = (logn) 12, by rule 3
loglog.J = log(logn)/2 =loglogn 1, by rules 2 and 3
log4n = (logn)/log4 = (logn)/2, by rule 4
log2=n,byrule3
2b0I2=n,byrule5
!22J0gn (2b0g)2 = ¡2 by rules Sand 6
4=(22)=22",bymle6
23logn = n2 n3 = n5, by rules 5, 6, and 7

s 4'/T 22n/2n 22nn byrules6and.8
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The Floor and Ceiling Functions

One additional comment concerning logarithms .is in order. The value of -a loga-
nthm is typically not an integer, yet the running time of an algonthm is typically
expressed by means of an integer quantity, such as the number of operations per-
formed. Thus, an âlgorithm analysis may sometimes involve the use of the so-called

- "floor" and "ceiling" functions, which are defined respectively as follows:

[xj = the largest integer less than or equal to x.
[x] the smallest integer greater than or equal to x,

These functions give us a way to convert real-valued fundtiôns into integer-valued
functions. Even so, functions used to analyze data structures and algorithms are
often expressed simply as real-valued functièns (for example, nlogn or n312). We
should read such a running time as having a "big" ceiling function surrounding it.1

1.3.3 Simple Justification Techniques

We will sometimes wish to make strong claims abóut a certain data structure or al-
gorithm. We may, for example, wiÑh to show that our algorithm is correct or that it
runs fast. In order to rigorously make such claims, wemust use mathematical lan-
guage, andin order to back üp such claims, we must justify orprove our atements.
Fortunately, there are several simple ways to do this / -

By Example -

Some claims are cff the generic form, "There is an element x in a set S that has
property P" To justify such a claim, we need only produce a particular t E S that
has property P. Likewise, some hard-to-believe claims are of the generic form, -
"Every element x in a set S has property P?' To jusiify that such a claim is false, we
need to only produce .a particular x from Sthat does not have property P. Such an
instance is called a counterexample. -

Example 1.16: A certain Professor Arnongus claims that every number of the
form 21 - i is a prime, wheñ i is an intéger greater than 1. Professor Amongus is
wrong. - -

P roo!: To pro ve Professor Amongus is-wrong, we need to lind a counter-example.
Fortunately, we need not look too far, for 2 - 1 = 15 = 35. - u

1Real-valued running-time functions are almost always used in conjunction with the asymptotic
notation described in Section 1.2, for which the se of the ceiling function would usually be redundant
anyway. (See Exercise -R-1.24.)
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The "Contra" Attack

Another set of justification techniques involves the use of the negative. The two
primary such methods are the use of the contrapositive and the contradiction. The
use of the contrapositive method is like looking through a negative mirrot To
justify the statement "if p is true, then q is true" we instead establish that "if q is
not true, then p is not true?' Logically, these two statements are the samé, but the
latter, which is called the contrapositive of the first>may be easier to think about.

Example 1 17 If ab is odd, then a is odd orb is even

Proof: To justify this claim, consider the contrapositive, "ifa is even Sd b is odd,
thei ab is evén." So, supposta = 2i, for some integer i. Then ab = (2i)b = 2(ib);
hence, ab is even.

Besides showing a use of the contrapositive justification technique, the previous
example also contains an application of DeMorgan's Law. This law helps us deal
with negations, for it states that the negation of a statement of the form "p or q" is
"not p and not q." Likewise, it states that the negation of a statement of the form
"p and q" is "not p or not q?'

Another negative justification technique is proof by contradiction, which also
often involves using DeMorgan's Law. In applying the proof by contradiction tech-
nique, we establish that a statement q is true by first supposing that q isfalse and
then showing that this assumption leads to a contradiction (such as 2 $2 or i > 3).
By reaching such a contradiction, we show that no consistent situation exists with
q being false, so q must be true Of course, in order to reach this conclusion, we
must be sure our situation is consistent before we assume q is false

Example 1.18: If ab is odd, thena is odd orb is even.

Proof: Let ab be odd. We wish to show that a is odd ór b is even. So, with the
hope of leathng to a contrathction, let us assume the opposite, namely, suppose a
is even and b is odd. Then a - 2i for some integer i. Hence, ab = (2i)b = 2(ib),
that is, ab is even. But this is à contradiction: tib cannot simultaneously be odd and
éven. Therefore a is odd or b is even. i

Induction

Most of the claims we make about a running time or a space bound involve an inte-
ger parameter n (usually denoting an intuitive notion of the "size" of the problem).
Moreover, most of these claims are equivalent to saying some statement q(n) is true
"for all n 1?' Since this is making a claim about an infinite set of numbers, we
cannot justify this exhaustively in a direct fashion

We cafi often justify claims such as those above às true, however, by using the
techniqñe of induction. This technique amounts to showing that, for any particular
n 1, there is a finite sequence of implicatiOns that starts with something known
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to be true and ultimately leads to showing that q(n) is true. Specifically, we begin

aproof by induction by showing that q(n) is ne for n = i (and possibly some

other values n = 2,3,.. , k, for some constant k). Then we justify that the inductive

"step" is ne for h> k, naméy, we show "if q(i) is ne for i < n, thtn q(n) is true?'

The cothbination of these two pieces completes thç proof by induction.

Example 1 19 Consider the Fibonacci sequence F (1) = 1, F (2) = 2, and F(n) =

F(n_1)+F(n_2)t0rfl>2.w1mthat'(hz)<2.
Proof: We will, show our claim is right by induction.

Basecases: (n<2). F(1)= 1<2=21 andF(2)2<4T22.
Induction step: (n > 2). Suppose ourclaim is true for n' <n. Consider F (n). Since

n>2,F(nYF(n_1)+F(2).
can apply the indàctive assumption (sometimes called the "inductive 'hypothesis")

to imply that F(n) <T'1 + T'2. In addition,
2n_i +2n_2 <21 +2n_1

TIjis completes the proof.

Let us do anothér inductive argument, this time for a fact we have seen before.

Theàrem 1.2O (which is the same as Theorem 1.13)
n n(n+1)

2.

Proof: We will .justify this equality by induction.

Base case:. n = 1. Trivial, for 1 = n(n+ 1)/2, if n = 1.

Induction step: n 2. Assume the claim is true for n' <n. Consider n.

n ni
E i.

i=1 i=l

By the indúction hypothesis, then

Ei=n

=22"' =2g.
R

(n-i 1)n2'
which. we can simplify as

(n-1)n 2n+nn n2+n n(n+1)

2 - 2 2 2

This completes the proof.
I

We may sometimes feel overwhelmed by the task of justifying something true

fèr all n 1. We should remember, however, the concreteness of.the indûctive tech-

nique It shows that, for any particular n, there is a finite step-by-step sequence of

implications that starts with something true and leads to the truth about n In short,

the indúctivé argument isa formulá fór building a sequence of direct justifications.
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Loop In½rian.ts

The final justificatioh technique we discuss in this section is the loop invariant.

To prove some statement S about a loop is correçt, define S in terms
of a series of smaller statements 8o,S,. . , 5k where:.

i. Thè initial claim, So, is true before the loop begins

2 If Si-1 is true before iteration i begins, then one can show that S

will be true after iteration i is ovet
3. The final statement, Sk' implies the statement S that we wish to

justify as being true,

We have, in fact, already seen the loop-invariant justification technique at work

in Section 1.1.1 (for the correctness of arrayMax), but let us nevertheless giv9 one

more example here. In particular, let us consider applying the. loop invariant níethod

to justify the correctness of Algorithm arrayFind, shown in Algorithm 1.12, which

searches for n element x in an array A.
To show arrayFind to be correct, we use a loop invariant argument. That is,

we inductively define statements, S, for i = 0, 1,... , n, that lead to the correctness

of arrayFind. Specifically, we claim the following to be ne. at the beginning of

iteration i: . .

x is not equal to any of the first i elements of A.

This claim is ne at the beginning of the first iteration of the loop, since there

are no elements ämong the first O in A (this kind of a trivially-ne claim is said to

hold vacuously). In iteration i, we compare element x to element A [i] and return the

index i if these two elements are equal, which is clearly correct. If the two elements

X and A [i] are not equal, then we have found one more element not equal to x and we

increment the index i. Thus, the claim S will be true for this new value of i, forthe

beginning of the next itèration. If the while-loop terminates without ever returning

an iñdex in A, then S is truethere are no elements of A equal to x. Therefore, the

algorithm is correct to return the nonindex value 1, as required.

Algorithm arrayFind(x,A):
Input: An element x andan n-element array, A.
Output: The index i such that x = A [i] or 1 if no element of A is equal to x.

i.0
whilei<ndo . .

¡Ix =A[iI then
return i

else

.

.

r return i
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1.3.4 Basic Probability

When we analyze algorithms that use randomization or if we wish to analyzethe
averàge-cas performance of an algorithm, thén we need to use- some basic facts

from probability theòry. The most basic is that any statement about a probability

is defined upon a Ñample space S, which is 'defined as the set of all possible .öut-

comes from some experiment. We leave the terms "outcomes" and "experiment"

undefined in any formai sense, however.'

Example 1.21: Consider an experiment that consists. of the outcome from flip-

ping a coin five times This sample space has 2 different outcomes, one for each

different ordering of possi bi e flips that can occur.

Sample spaces can also be infinite, as the following example illustrates.

Example 1.22: Consider an experiment that consists of flipping a coin until it

comes up heads This sample space is infinite, with each outcome being 'a sequence

of i tails followed by a single flip that comes up heads, for i e {O, 1,2,3,. . . }.

A probability space is a sample space S together with a probability function,
Pr, that maps subsets of S to real numbers in the interval [0, 1]. It captures math-.
ematically the notion of the probability of ceçtain "events" occurring. FormalÍy,.

each subset A of S is called an event, and the probability function Pr i assumed to'
possess the following basic properties with respect to events defined from S:'

1. Pr(ø)=O.
.2. Pr(S) = 1.

O<Pr(A)<1,foranyAÇS.
IfA,BÇSatidAflB=ø,theriPr(AUB)=Pr(A)+Pr(B).

Independence

Two events A and B are independent if

Pr(A fl B) = Pr(A) .Pr(B)

A collection of events {Ai ,A2, ... ,A} is mutually independent if

Pr(A3 flA2 n.. flAik) = 1r(A1)Pr(A2) . . .Pr(A).

for any subset {Ajl,4i2,...,Aïk}. . -

Example 1.23: LetA be the event that the roll of a die is a 6,letB be the event
that the roll of a second die is a 3, and let C bèìhe event that the sum of these two

dice is a 10. Then A and B are independent events; but C is not inciçpendent with

eithetA orB.
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Conditional Probability

The conditional probability that an event A occurs, given an event B, is denoted as

Pr (AjB), and is defined as
Pr(A n B)

Pr(AIB)= Pr(B)
assüming that Pr(B) > O.

Example 1.24: Let A be the event that a roll of two dice sunis to 10, and let B

be the event that the roll of the first die is a 6. Note that Pr(B) = 1/6. and that
Pr(A flB) = 1/36, for there is only one way two dicecan sum to 10 if the first one

is a 6 (namely, if the second is a 4). Thus, Pr(AIB) = (1/36)/(1/6) = 1/6:

Random Variables and Expectation

An elegant .way for dealing with events iS in terms.of random variables. Intuitively,
random variables aré variables whose values depend upon the outcome of sorne.

experiment. Formally, a random variable is a function X that maps outcomes from

some samplé space S to Sl numbers. An indicator random variable is a random
variable that maps outcomes to the set {0, l}. Often in algorithm analysis we use

a random. variable X that has a discrete set of possible outcomes to characterize

the running time of a randómizèd algorithm. In this case, the sample space S is

defined by all possible outcomes of the random sources used in the algorithm. We

are usually most interested in the typical, average, or "expected" value of such a

random variable. The expected value of a discrete random variable X is defined as

E(X)=xPr(X=.x),

where the summation is defined over the range of X.

Theorem 1.25 (TheLiflearity of Expectation): LetX andY be two arbitrary

random variables. TheñE(X+Y) =E(X)+E(Y).

Proof: .

E(X+Y) _L /x+y)Pr(X=xflYy)
X y.

xPr(X=xflY=y) -t-yPr(X=xflY )

X y x.y
= ExPr(X=xflYY) +yPr(YyflXX)

X.. y

= Y.xPr(X=rx) + yPr(Y y)

= E(X)+E(Y).
Noie that this proof does not depend on any independence assumptions about the

events when X and Y take on their reÑpective values.
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Example 1.26: LetX be a.random variable that assigns the outcome of the roll of

two fair dice to the s um of the number of dots showing. Then E(X) 7..

P roof: To justify this claim, let Xi and X2 be random variabls corresponding to
.the number of dots én each the, respectively. Thus, X1 = X2 (that is, they are tWo
instances of the same function) and E (X) = E (X1 + X2) = E(Xi) + E (X2). Each
outcome of thé roll of a fair die occurs with probability 1/6. Thus1234567
fori=1,2. ThereforeE(X)=7.

Two random variables X and Y are independent if

Pr(X=xjY=y) = Pr(X=x),

for all real numbers x and y.

Theorem 1.27: If two random variables X and Y are independent, then

E(XY)=E(X)E(Y).

Example 1.28: LetX be a random variable that assigns the outcome of a roll of
two fair dice to the product of the number of dots showing. Then E (X) = 49/4.

Proof: Let Xi and be random variables denoting the number of dots on each

die. The variables X1 and X2 are clearly independent; hence

E(X) = E(X1X2) = E(X)E(X2) = (7/2)2 49/4

Chernoff.,Bounds

It is often necessary in the analysis of randomized algorithms to bound the sum
of a set of random variables. One set of inequalities that makes this tractable is
the set of Chernoff Bounds. Let X1 ,X2, ... ,X, be a set of mutually independent
indicator random variables, such that each X is 1 with some probability p > O and

O otherwise. Let X = = iZ be the sum of these random variables, and let p denote
the mean of X, that is, p = E (X) = ZL 1p. We give the following without proof

Theorem 1.29: LetX be as above. Thén, forS >0,

e8
Pr(X> (1 + 8)ji)

< (1+ 5)0+8) Y

and,-for0 <

Pr(X < (1 - 8)í') <e_2/2
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Having presented the general framework for describing and analyzing algorithms,

we now consider some case .studies in algorithm analysis. Specifically, we show

how to use the big-Oh notation to analyze two algorithms that solve the same prob-

lem but have different running times.

The problem we focus on in this section is the one of computing the so-called

prefix averages of a sequence of numbers. Namely, given an array X storing n

numbers, we want to compute an array A such that A{i] is the average of elements

X[O],...,X[i],fori=O,...fl_1that15

A[i] YZ_0X[j]
i±1

Computing prefix averages has many applications in economics and statistics. For

example, given the year-by-year returns of a mutual fund, an investor will typically

want to see the fund's average anñual returns for the last year, the last three years,

the last five years, and the last ten years. The prefix average is also useful as a

"smoothing" function for a parameter that is quickly changing, as illustrated in

Figure 1.13.
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Figure 1.13: An illustratiol! of the piiefix áveragë function and how it is, useful for

smoothing â quickly. changing sequence of values.
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1.4.1 A Quadratic-Time Prefix Averages Algorithm

Our first algorithm for the prefix averages problem, called prefixAveragesi, is

shown in Algorithm 1.14. It computes every element of A separately, following
the definition.

Algorithm prefixAveragesl(X):
Input: An n-element array X of numbers.
Output: An n-element array A of numbers such that A [i] is

the average of elements X {O],. . . , X [i].

Let A be an array of n numbers.
forieOtonido

for j <- O to i do
a4aH-X[j]

A[i}a/(i+1)
return array A

Algorithm 1.14: Algorithm prefixAveragesi.

Let us analyze the prefixAveragesi algorithm.

Initializing and returning array A at the beginning and eìid can be done with

a constant number of primitive operations per element, and takes 0(n) time

There are two nested for loops, which are controlled by counters i and j,
respectively. The body of the outer loop, controlled by counter i, is exequted
n times, for i = O.....,n - 1. Thus, statements a = O andA[i] = a/(i+ 1) are
executed n times each. This implies that these two statements, plus the incre-
menting and testing of counter i, contribute a number of primitive operations.
proportional to n, that is,0(n) time.

The body of the inner loop, which is controlled by counter j, is executed
i +1 times, depending on the current value of the outer loop counter i, Thus,
statement a = a + X [j] in the inner ioop is executed 1+2±3+ ....+ n times.
By reòalling Theorem 1.3, we know that 1+2+3 +« +n = n(n+ 1)j2,
whiçh implies that the statement in the inner loop contributes 0(n2) time.
A similar argument can be done for the primitive operations associated with
incrementing and testing counter j, which also take 0(n2) time

The running time Of algorithm prefixAveragesi is given by the sum of three terms.
The first and the second term are 0(n), and the third term is 0(n2). By a simple
application of Theorem.1.7, the running time of prefixAveragesi is 0(n2).
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1.4.2 A Linear-Time Prefix AveragesAlgorithm'

In order to compute prefix averages more efficiently, we can observe that two cori-
secutive averages A [i - 1] ad A [i] &re similar:

A[i 1] = (X[O] +X[l] + +X[i 1])/i
= (x[O] +X[1] +. ±X[i 1] +X{i])/i+ 1).

If we denote with S the prefli sum X[O].+X[i] + ... +X[i, we can compute
the prefix averages as A[i] = S/(i + 1). It is easy to keep track of the currént prefix
sum while scanning array X with a ioop. We present the details in Algorithm 1.15
(prefixAverages2).

Algorithm prefixAverages2(X):
Input: An n-element array X of numbers.
Output: An n-element array A of numbers such that A[i] is

the averagé of elements X [O],. .. ,X [i].

Let A be an array of n numbers.

for i--Oton.-1do
s*s+X[i]
A[i] es/(i+1)

return array A

Algorithm 1.15: Algorithm prefixAverages2.

The analysis, of the running time of algorithm prefixAverages2 follows:

e Initializing and returning al-ray A at the beginning and end can be.done with
a constant number of primitive operations per element, and takes 0(n) time.

Imtiahzrng variable s at the beginmng takes 0(1) time

There is a single for loop, which is controlled by counter i. The body of the
loop is execu.ted n times, for i = O,... ,n 1. Thus, statements s = s +X[i]
and A [i] = s/ (i + 1) a?e executed n times each. This implies 'that 'these two
statements plus the incrementing and testing of counter z contnbute a number
of primitive operations proportional to n, that is, 0(n) time.

The running time of algorithm prefixAverages2 is given by the sum of three terms.
The first and the third term are 0(n),ßnd the second term is 0(F).. By a 'simple
application of Theorem 1.7, the running time of prefixAverages2 is 0(n), which is
much better than the quadratic-time algorithm prefixAveragesi.
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1.5 Amortization
An important analysistool useful for understanding the running. times of algorithths

that have steps with widely varying performance is amortization. The term "amor-

tization" itself comes from the field of accounting, which provides an intuitive mon-

etary metaphor for algorithm analysis, as we shall see in this section.

The typical data structure usually supports a wide variety of different methods

for accessing and updating the elements it stores. Likewise, some algorithms oper-

ate iteratively, with each iteration performing a varying amount of work. In some

cases, we can effectively analyze the performance of these data structures and al-

gorithms on the basis of the worst-case running time of each individual operation.

Amortization takes a different viewpoint. Rather than focusing on each operation

separately, it considers the interactions between all the operations by studying the

running time of a series of these operations.

The Clearable Table Data Structure

As an example, let us introduce a simple abstract data type (ADT), the clearable

table. This ADT stores a table of elements, which can be accessed by their index in

the table. In addition, the clearable table also supports the following two methods:

add (e): Add the the element, e to the next availabe cell in the

table.

clearO: Empty the table by removing all its elements.

Let S be a clearable table with n elements implemented by means of an array,

with â fixed upper bound, N,.on its size. Operation clear takes Ei(n) time, since we

should dereference all the elements in the table in order to really empty it.

Nòw consider a series of n operations on an initially, empty clearable tablé S.

If we take a worst-case viewpoint, we may say that the running time of this series

of operations is '0(n2), since the worst case of a single clear operation in the series.

is 0(n), and there may be as many as 0(n) clear operations in this series. While

this analysis is correct, It is also an overstatement, since an analysis that takçs into

account the interactions between the operations shows that the running time of the

'entire series is actually 0(n).

Theorem 1.30: A series of n operations on an initially empty clearable table im-

plemented with an array takes 0(n) time.

Proof: Let M0,.. . ,M_1 be the series of operations performed on S, and let

M0,... ,Mjk_l be the k clear operations within the series. We have

Oio<...ik_1n1
Let us also define i_ = 1 The running time of operation M, (a clear operation)

is 0(iy - iii), because at most ij - j...i - I elements could have been added into
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the table (using the add operation) since the previous clear operatioi-i My or since
the beginhing of the series. Thus, the runñing time of all the clear opetations is

(k-1-
(i1 - i»_i)

¼J=O

A summation such as this is known as a telescoping sum, for all terms other than
the first and last cancel each other out. That is, this summation is O(ikl - i_i),
which is 0(n). All the remaining operations of the series take 0(1) time each.
Thus, we conclude that a series of .n operations performed on an initially empty
clearable table takes 0(n) time. u /

Theorem 1.30 indicates that the average running time of any operation on a
clearable table is o(i), where the average iÑ taken over an arbitrary series of oper-
ations, starting with an initially empty clearable table.

AmortizingHan Algorithm's Running Time

The above example provides a motivation for the amortization technique, which
gives us a worst-case way of performing an average-case analysis. Formally, we
define the amortized running time of an operation within a seriés of operations as
the wòrst-case running time Of the series of operations divided by the number of
operations. When the series of operations is not specified, it is usually assumed to
be a series of operations from the repertoire of a certain data structure, starting from
an empty structure. Thus, by Theorem 1.30, we can say that the amortized running
time of each operation in the clearable table ADT is 0(1) when we implement that
clearable table with an array Note that the actual running time of an operation may
be much higher than its amOrtized mnning time (for example, a particular clear
operation may take 0(n) time).

The advantage of using amortization is that it gives us a way to do a robust
average-case analysis without using any probability. It simply requires that: we have
some way of charactenzing the worst-case running time for performing a senes of
operations We can even extend the notion of amortized running time so as to assign
each individual operation in a senes of operations its own amortized runmng time,
provided the total actual time taken to process the entire senes of operations is no
more than the sum of amortized bounds given to the individual operations

There are several ways of doing an amortized analysis The most obvious way
is to use a direct argument to derive bounds on the total time needed to perforth
a senes of operations, which is what we did in the proof of Theorem 1 30 While
direct arguments can often be found for a simple series of operations, perforniing an
amortized analysis of a nontnvial senes of operations is often easier using special
techniques for amortized analysis.
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1.5.1 Amortization Techniques

There 'are two fundamental techniques for performing an amortized analysis, one
based on a financial modelthe accounting methodand the other based an

energy modelthe potential function method.

The Accounting Method

The accounting method for performing an amortized analysis is to use a scheme of
credits and débits for keeping track of the rùnniñg time of the different operations

in the series. The basis of the accounting method is simple. We. view the computer.

as a coin-operated appliance that requires the payment of one . cyber-dollar for a
constant amount of computing time We also view an operation as a sequence of
constant tithe primitive operations, which each cost one cyber-dollar to be exe-
.cuted. When an operation is executed, we should have enough cyber-dollars avail-

able to pay for its running time Of course, the most obvious approach is to charge

an operation a number of cyber-dollars equal to the number of primitivé opera-

tions performed. However, the interesting aspect of using the accounting method
is that we do not have to be fair in the way we charge the operations. Namely, we

can overcharge, some operations that execute few primitive operations and use the

profit made on them to help out other operations that execute many primitive oper-

ations. This mechanism may allow us to charge the same amount a of cyber-dollars
to each operation in the series, without ever running out of cyber-dollars to pay for
the computer time Hence, if we can set up such a scheme, called an amortiza-
tion scheme, we can say that each operation in the, series has an amortized running
time that is O(a) When designing an amortization scheme, it is often convement

to think of the unspent cyber-dollars as being "stored" in certain places of the data
structure, for example, at the elements of a table

An alternative amortization scheme charges different amounts .to the various
operations In this case, the amortized runmng time of an operation is proportional

to the total charges made divided by the number of operations

We now go back to the clearable table example and present an amortization
scheme for it that yields an alternative proof of Theorem 1 30 Let us assume that
one cyber-dollar is enough to pay for the execution of operation of an index access

or an add operation, and for the time spent by operation clear to dereference one
element We shall charge each operation two cyber-dollars This means under-
charging 'operation clear and overcharging all the other operations by. one cyber-
dollar. The cyber-dollar profiíed in an add operation will be stored at the elemeni
inserted by the operation.. (See Figure 1.16.) When a clear operation is executed,
the cyber-dollar stored at each element in the table is used to pay for the time speni

dereferencing it Hence, we have a valid amortization scheme, where each oper

.ation is charged two cyber-dollars, and all the computing time is paid fot Jhi5
simple amortization scheme implies the result of Theorem 1.30.
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Figure 1.16: Cyber-dóllars stored at the elements of a clearable table S in the amor-
tized analysis of a series of operations on S.

Nôtice that the worst cEse for the running time occurs for a series of add oper-
ations followed by a single clear operation. In other cases, at the end of the series
of operations, we may end up with some unspent cyber-dollars, which are those

profited from index access operations and those stored at thefl elements still in the

sequence. Indeed, the computing time for executing a series of n operations can
be paid for with the amount of c.yber-dollars between n and 2n. Our amortiza-
tion scheme accounts for the worst case by always charging two cyber-dollars per

peration. .

At this point, we should stress that the accounting method is simply an analysis

tool. It does not require that we modify a data structure or the execution of an
algorithm in any way. In particular, it does not require that we add objects for
keeping tr:ck of the cyber-dollars spent.

Potential Fuictions

Another useful technique for performing an amortized analysis is based on an en-

ergy model. In this approach, we associate with our structure a value, tj, which

represents the current energy state of our system. Each operation that we perform

will contribute some additional amount, known as the amortized time, to b, but
then also extracts value from 't in proportion to the amount of time actually spent

Formally, we let .«o O denote the initial value of Q, before we perform any op-
erations, and we use Q to denote the value of the potential function, Q, after we
perform the ith operation. The main idea of using the potential function argument
is to use the change in potential for the ith operation, Qj - i' to characterize the

amortized time needed for that operation.
Let us focus more closely on the action of the th operation, letting t1 denote its

actual running time We define the amortized running time of the ith operation as

tfffti+Qi-Qi1.
that is, the amortized cost of the ith operation is the actual running time plus, the

net change ih potential that operation causes (which maybe positive or negative).

Or, put. another way,

= tI + -' -
that is, the actual time spent is the amortized cost plurthe net drop in potential.

1.5. Amortization 37
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Denote by T' the total amortized time fór performing n operations on our struc-
ture. That is, rt
Then the total actual time, T, taken by our n operations can be bounded as

1ti

=

= tÇ+X(ibi)
= T'+((Di(b,)
= T'+(bo(b,

¿

since the second term above forms a telescoping sum. In other words, the total
actual time spent is equal to the total amortized time plus the net.drop in potential
over the entire sequence of operations. Thus, so long as (b, (Do, then T < T', the
actual time spent is no more than the am[ortized time

To make this concept more concrete, let us repeat our analysis of the clearable
table using a potential argument. In this case, we choose the potential (I) of our
system to be the actual number of elements in our clearable table. We claim that
the amortized time for any Qperation is 2, that is, t = 2, for i 1,... , n. To justify
this, let us consider the two possible methods for the ith operation.

add(e): inserting the elemeiit e into the table increases (b by i and the actuai
time needed is i unit of timé S9, in this case,

1=t=4+c_i-41=2-1,
which is clearly true.

dea rO: removing all iñ elements from the table requires no more than rn +2
units of timern units to do the removal plus at most two ùnits for the method
çall and its overhead. But this operation also drops the potential (b of our
system froth rn to O (we even allow for m = O). So, in this case

rn+2==t = tÇ+(bj_i (be = 2+m,
which clearly holds.

Therefore, the amortized time to perform any operation on a clearable table is O(1).
Moreover, since (b (be, for any i 1, the actual time, T, to perform n operations
on an initially empty clearable table is 0(n).
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1 5 2 Analyzing an Extendable Array Implementation

A major weakness of the simple array implementation for the clearable table ADT

given above is that it requires advance specification of a fixed capacity, N, for the
total number of elements that may be stored in the table. If the actual number of
elements, n, of the table is muçksmaller than N, then this implementation will
waste space. Wòrse, if n increases past N, then this implementation will crash.

Let us provide a means to grow the array A that stores the elements of a table S.

Of course, in any conventional programming language, such as C, C++, and Java,

we cannot actually grow the array A; its capacity is fixed at some number N. In-
stead, when an overflow occurs, that is, when n = N and method add is called, we

perform the following steps:

i . Allocate a new array B of capacity 2N

CopyA[i]toB[i],fori=O,....,Nl
LetA B, that is, we use Has the array supporting S.

This arrày replacement strategy is known as an extendable array. (See Fig-

ure 1.17.) Intuitively, this strategy is much like that of the hermit crab, which

moves into a larger shell when it outgrows its previous one.

r i i i i i ii

Figure 1.11: An illustration of the three steps for "growing" an extendable array:

(a) create new array B; (b) copy elements from A to B; (c) reassign reference A to

the new array. Not shown is the future garbage collection of the old array.

In teim of efficiency, this array replacement strategy might at first seem slow,

for performing a single array replacement of size n required by some element in-

sertion takes (3(n) time Still, notice, that after we perform an array replacement,

our new array allowsus to add n new elements to the table before the array must be

replaced again. This simple fact allows us to showthat the running time of a series

of opérations performed on an initially empty extendable table is actually quite ef-

ficient. As a shorthand notation, let us refer to the insertion of an element to be the

last element in a vector as an "add" operation. Using amortization, we can show

that performing a sequence of such add operations on a table implemented with an

extendable array is actually quite efficient

1.5. AmortizatiOn 39:

j
j un.

(a) (b) (e)
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Theorem 1 31 Let S be a table implemented by means of an extendable array
A, as described above. The total time to petform a series of n add operations in S,
starting from S being empty andA having size N.= 1,is 0(n).

Proof: We justify this theorem using the accounting method for amortization. To
perform this analysis, we again view the computer as a coin-operated appliance that
requires the payment of one èyber-dollar for constant amount of computing time
When an operation is executed, we should have enough cyber-dollars available in
our current "bank account" to pay for that operation's running time. Thus, the total
-amount of cyber-dollars spent for any computation will be proportional to the total
time spent on that computation. The beauty of this analysis is that we can over
charge some operations to save up cyber-dollars to pay for others.

Let us assume that one cyber-dollar is enough to pay for the execution of each
add operation in S, excluding the time for grOwing, the array.. Also, let us assume
that growing the array from size k to size 2k requires k cyber-dollars for the time
spent copying the elements. We shall charge each add operation three cyber-dollars.
Thüs, we over charge each add operation not causing an overflow by two cyber-
dollars Think of the two cyber-dollars profited in an insertion that does not grow
the array as being "stored" at the element inserted. An overflow occurs when the
table S has 21 elements, for some integer ï O,. and the size of the array used by S
is 2'. Thus, doubling the size of the array will require 2' cyber-dollars; Fortunately,
these cyber-dollars can be found at the elements stored in cells 2 'through 2 - 1.
(See Figure. 1 ..l 8.) Note that the previous overflow occurred whén the number of
elements became larger than 2 for the first time, and thus the cyber-dollars stored
in cells 2j1 ùrough 2 - 1 were not previously spent. Therefore, we have a valid
amortization scheme in which each operation. is charged three cyber-dollars and
all thé computing time is paid for. That is, we can pay for the execution of n add
operations using 3n cyber-dollars. . . S

(a)

(b)

01234567

.O 1 2 3 4- 5 6 7 8 9 10 11 12 13 14 15

Figure 1.18: A costly add operation: (a) à full 8-cell with two cyber-dollars for cells
4 through 7, (b) an add doubles the capacity Copying elements spends the cyber-
dollars in the table, inserting the new element spends one cyber-dollar charged to
the add, and two cyber-dollars profited are stòred at cell 8.
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(a)
Figure 1 19 Running times of a senes of add operations on an extendable table In

(a) the size is doubled .with each expansion; and in (b) it .is..simpiy incremented by

capacityincrement = 3.. . .

.:, :.
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A table can be doubled iii size with each extension, as we have described it, or
we can specify an explicit capacityl ncrement parameter that determines the fixed
amount an array should grow with each expansion That is, this parameter is set
to a value, k, then the array adds k new cells when it grows We must utilize such
a parameter with caution, however For most applications, doubling in size is the
right choice, as the following theoreth shows.

Theorem 1.32: If we create an initially èmpty table with a fixed positive ca paci-
ty!ncrèment value, then performing a señes of n add operations on this vector takes

C(n2) time

Proóf: Let c> O be the capàcitylncrement value, and let c > O denote the.
initial size of the array. An overflow will be caused by an add operation when the
current number of elements in the table is + w, for z = O, , m - 1, where m =

[(n - co)/cj Hence, by Theorem 113, the total time for handling the overflows is

proportional to

nt-1 mi
. m(in-1)

E(cò+.cz) = con+c = com+c
2

i=O . jØ

which is U(n2). Thus, performing the n add operations takes Q(n2) time

Figure 1.19 compares thé running times of a series of add operations on an
initialÏy enìpty table, for two initial values of capacityincrement.

We discuss applications of amortization further when we discuss splay trees
(Section 3.4) and a tree structure for performing unions and finds in set partitions

(Section 4.2.2).
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1.6 Experimentation
Using asymptotic analysis to bound the. running time

fan algorithm is a deductive

process. We study a pseudo-code description of the algorithm. We reason about
whàt would be. worst-case. choices for this algorithm, and wé use mathematical.
tools, such as amortization, summations, and recurrence equations, to characterize

the running time of the agòrithm.
This approach is very powerful, but. it has its limitations.. The deductive ap-

proach to asymptotic analysis doesn't always provide insight into the constant fac-

tors that are "hiding" behind the big-Oh in an algorithm analysis. Likewise, the

deductive approach gives us little guidance into the breakpoint between wheú we

should use an asymptotically slow algorithm with a small constant factor and an
asymptotically fast algorithm with a larger constant In addition, the deductive ap-

proach focuses primarily on worst-cáse inputs, which may not be representative
of the typical input for a certain problem. Finally, the. deductive approach breaks
down when an algorithm is too complicated to allow us t effectively bound its p9r-

formance. In such cases, experimentation can often help us perform our algorithn

analysis.
J section, we discuss some techniques and principles for performing ex-

perimental algorithm analysis.

1.6.1 Experimental Setup

In performing an experiment, there are several steps that must be performed in order

to set it up. These steps require thought and deliberation, Sd should be performed

with care.

Choosing the Question .

The first thing to determine in setting up an experiment is to decide what to test. In
the realm of algorithm analysis, there are several possibilities:

Estimate the asymptotic running time of an algorithm in the average case.

Test which of two competing algorithms is faster for a given range of input.
values [no,ni].
For an algorithm that has numeric parameters, such as constants cc or e, that
determine its behavior, find the values of these parameters that yield the best

performance.
.. For an algorithm that tries to minimize or maximize some function of an

input, test how close the algorithm comes to the optimal value.

Once we have determined which Of these questions, or even an alternative question,

we would like to answer empirically, we can then move to the next step in our
experimental setup. . . .. . . . . /
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Once we have décided what it is we wish t measure, we then must generate
test data upon which to run our algorithm and collect statistiès.

1.6. Experimentation 43

Deciding What to Measure

Once we know what question to ask, we should next focus on quantitative mea-.
surements that can be used to answer that question. In the case of an optimization
problem, we should measuS the function that we wish to maximize or minimize
In the case of running time, the factor to measure is not as obvious as we might at
first think.

We can, of course, measure that actual running time of an algorithm. Using a
proéedure call that returns the time of day, we can measure the time of day before
and after running our algorithm and then subtract to determine how much time
passed as the algorithm was running. This measurement of time is most Useful,
however, if the computer we are running on is representative of "typical" computers
that we will wish to use for this algorithm.

Moreover, we should recognize that the so-called "wall clock" time for runnigg
an implementation of an algorithm can be affected by Other factors, including pro-
grams that are running concurrently on our computer, whether or not our algorithm
makes effective us& of a memory cache, and whether or not our algorithm uses so
much memory that its data is swapping in and out from secondary memory. All of
these additioñal factors can slow down an otherwise fast algorithm, so if we are us-
ing wall clock time to measure algorithm speed, we should make surethese effects

are minimized.
An alternative approach is to measure speed Ïn a platform-independent manner,

counting the number Of times some primitive operation is used repeatedly in .our.
algorithm. Examples of such primitive operations that have been used effectively
in algorithm analysis include the following:

Memory references. Iy counting memory references in a data intensive al-
gorithm we get a measure that will correlate highly with the running time for
this algorithm on any machine.

Comparisòns. In an algorithm, such as sorting, that processes data primarily
by pertormihg comparisons between pairs of elements, a count of the com-
parisons mäde by the algOrithm will be highly correlated to the running time

of that algorithm

Arithmetic operations. In numerical algorithms, which are dominated by
manyarithmetic computations, counting the nuber of additions and/or mul-

tiplicationscan be an effective measure of running time Such a measure can
be translated into running times on a given. còmputer, 4y factoring in the
performance achieved by whether this computer has a math co-processor or

not
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Generating Test Data

Our goals in generating test data include the following:

We wish to generate enough samples so that taking averages yields statisti-
cally significant results.
We wish to generate sample inputs of varying sizes;. to be able to make ed-
uc ted guèsses about the performance of our algorithm over wide ranging
input sizes.
We wish to generate test data that is representative of the lund of data that we
expect our algorithm to be given in practice.

Generating data thit satisfies the first two points is simply a matter of coverage;
satisfying the third criteria takes thought. We need to think about the input distri-
bution', and genèrate test data àccording to that disthbution. Simply generating data
uniformly at random is often not the appropriate choice here. For example, if,our
algorithm performs searches based on w rds found in a natural language document,
then the distribution of requests should not be uniform . Ideally, we would like. ,to
find some wày of gathering actual data in a sufficient ônough quantity that it gives
rise to statistiOally valid conclusiOns. When such data is.only partially available, we
can compromise. by generating random data that matches key statistical properties
of the available actual data In any case, we should strive to create test data that will
enable us to derive general conclusions that support or refute specific 'hypotheses
about our algorithm.

Coding the Solution and Performing the Experiment

The necessary stép of coding up .our algorithm correctly and efficiently involves a
certain amount of programming skill. Moreover, if we are comparing our algorithm
to another, then we must be sure to code up the competing algorithm using the
same level of skill as we are using for oùr own. The degree of code optimization
between two algorithm implementations that wè wish to compare should be as close
as possible. Achieving a level playing field for comparing algorithms empirically
is admittedly subjective, but we should still work as hard as we can, to achiève
a fair comparison in such cases. Ultimâtely, we should strive for results that are
reproducible, that is, a different programmer with similar skill should be able to
reproduce the same results by performing similar experiments.

Once we have our program completed and . we have generated our test data,
then s'e are ready to actually perform our experiments and collect our data. Of
course, we should perform our experiment$ in as "sterile" an environment as pos-
sible, elimiñating as best we can any. sources of noise in our data collection. We
should take specific note of the details of the coiputational environment we are
using, including the number of CPUs, the speed/of the CPUs, the main memory
size, and the speed of the memory bus. .
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1.6.2 Data Analysis and Visualization

Viewing data in tables is common, but it is often not nearly as useful as a graphical
plot A complete discussion of such data analysis and visualization techmques
is beyond the scope of this book, but we nevertheless discuss two analysis and
visualization techniques useful for algorithm analysisin this section.

The Ratio Test

In the ratio test, we use knowledge ¿f our algorithm to denve a function f(n) n'
for the main term in our algorithm's rUnning time, for some constant c > 0. Our
analysis is thén1 designed to test if the average running time of our algorithm is
e(nC) or not: Let t(n) denôte the actual running time of our algorithm on a specific
problem instance of size n The ratio test is to plot the ratio r(n) = t(n)/f(n), using
several experimentally gathered values for t (n). (See Figure 1.20.)

If r(n) grows s n increases, then our f(n) under estimates the running time
«n). If, on the other hand, r(n) converges to O, then our f(n) is an over estimate.
But if the rallo function r(n) converges to some constant b greater than 0, then we
have föund a good estimate for the growth rate oft(n). In addition, the constant b
gives us a good estimate for the constant factor in the running time t (n).

Still, we should récognize that any empirical study can only test a finite number
of inputs and input sizes, hence, the ratio test approach cannot be used to find an

exact value of the exponent c > 0. Also, its accuracy is limited to polynomial
functions for f(n), and even then studies have shown that the best it can achieve
for determining the exponent c is to within the range [c - 0.5, c + 0.5].
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Figure 1.20: An example plot of a ratio test estimating that r(n) = 7.
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The Päwer Test

In the power test we can produce a good estimate for the running time, t (n), of an
algorithm without producing a good guess for that running tim.e in advance. The
idea is to take experimentally gathered data pairs (x, y) such that y = t (x), where z
is the size of a sample input, and apply the transformation (x,y) -* (x',y') where
z' = logx andy' = logy. Then we plot all the (x',y') pairs and examine the..results.

Note that if t(n) = b,t for some constants b > O and c > O, then .the log4og
transformation implies that y' = cx' + b. Thus, if the (i,y') pairs are close to form-
ing a line, then by a simple line fit we can determine the values of the constants
b and c. The exponent c corresponds to the slope of the line in this log-log scale,

and the. coeffièient b corresponds to this line's y-axis intercept. (See Figure 1.21.)
Alternatively, if (x',y') pairs grow in a significant way, then we can safely deduce
that «) is super-polynomial, and if the (x',y') pair converge to a constant, then

it is likely that t(n) is sublinear. In any case, because of the finiteness of testable
input sizes, as with the ratio test, it is difficult to estimate c better than the range
[c 0.5, c + 0.5] with the power test.

Even so, the ratio test and the power test are generally considered good ap-
proaches to estimatiñg the empirical running time of an algorithm. They are con-
siderably better, fôr example, than trying to directly fit a polynomial tQ the test
data through regression techniques. Such curve-fitting techniques tend to be overly
sensitive to iloise; hence, they: may not give good estimates to the exponents in
polynomial running times.

2 22 2 2 2 26 2 28 2 210211 22 3214215 216

Figure 1.21: An example plot of a power test. In this case we would estimate that..
y' = (4/3)x' + 2; hence, we would estimate «fl) .2n413.
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1.7 Exercises

Rei nforcement
R-l.l Graph the functions 12n, 6nlogn, n2, n3, and 2n using a logarithmic scale for

the x- and y-axes; that is, if the function value f(n) is y, plot this as a point with
x-coordinate at logn and y-coordinate at logy.

R-1.2 Algorithm A uses IOn logn operations, while algorithm Buses n2 operations.
Determine the value no such that A is better than B for n 2: no.

R-l.3 Repeat the previous problem assuming Buses ny'n operations.

R-IA Showthatlog3niso(nl/3).

R-l.S Show that the following two statements are equivalent:
(a) The running time of algorithm A is O(f( n)).
(b) In the worst case, the running time of algorithm A is O(f(n)).

R-1.6 Order the following list of functions by the big-Oh notation. Group together (for
example, by underlining) those functions that are big-Theta of one another.

6nlogn 2100 loglogn log2 n 210gn

22" Iy'nl nO.OI lin 4n3/2

3nO.5 Sn l2nloinJ 2n nlog4n
4n n3 n210gn 410gn y10gn

Hint: When in doubt about two functions f(n) and g(n), consider logf(n) and
logg(n) or 2f(n) and 2g(n).

R-l.7 For each functionf(n) and time t in the following table, determine the largest size
n of a problem that can be solved in time t assuming that the algorithm to solve
the problem takes f( n) microseconds. Recall that logn denotes the logarithm in
base 2 of n. Some entries have already been completed to get you started.

1 Second 1 Hour 1 Month 1 Century

logn ::::0 10300000

y'n
n

nlogn

n2

n3

2n

n! 12

+ +
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R-l.8 Bill has an algorithm, find2D, to find an element x in an n x n array A. The
algorithm find2D iterates over the rows of A and calls the algorithm arrayFind,
of Algorithm 1.12, on each one, until x is found or it has searched all rows of A.
What is the worst-case running time offind2D in terms of n? Is this a linear-time
algorithm? Why or why not?

R-l.9 Consider the following recurrence equation, defining T(n), as

{
4 if n = 1

T(n) = T(n - 1) + 4 otherwise.

Show, by induction, that T(n) = 4n.

R-l.IO Give a big-Oh characterization, in terms of n, of the running time of the Loopl
method shown in Algorithm 1.22.

R-l.ll Perform a similar analysis for method Loop2 shown in Algorithm l.22.

R-1.l2 Perform a similar analysis for method Loop3 shown in Algorithm l.22.

R-1.l3 Perform a similar analysis for method Loop4 shown in Algorithm l.22.

R-1.l4 Perform a similar analysis for method Loop5 shown in Algorithm l.22.

Algorithm Loopl(n):
s<----O
for i <---- 1 to n do

s <----s+i

Algorithm Loop2(n):
p<----l
for i <---- 1 to 2n do

p<---- p=i

Algorithm Loop3(n):
p<----l
for i <---- 1 to n2 do

p<----p·i

Algorithm Loop4( n):
s<----O
for i <---- 1 to 2n do

for j <---- 1 to i do
s <----s+i

Algorithm Loop5(n):
s<----O
for i <---- 1 to n2 do

for j <---- 1 to i do
s <----s+i

Algorithm 1.22: A collection of loop methods.

+ +
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R-1.l5 Show that if f(n) is O(g(n)) and d(n) is O(h(n)), then the summationf(n) +d(n)
is O(g(n) +h(n)).

R-1.l6 Show that O(max{f(n),g(n)}) = O(f(n) + g(n)).

R-1.l7 Show that f(n) is O(g(n)) if and only if g(n) is Q(f(n)).

R-l.lS Show that if p(n) is a polynomial in n, then logp(n) is O(logn).

R-1.l9 Show that (n + l)S is O(nS).

R-1.20 Show that 2n+1 is O(2n).

R-1.21 Show that n is o(nlogn).

R-1.22 Show that n2 is 0)(n).

R-1.23 Show that n310gn is Q(n3).

R-1.24 Show that if(n)l is O(f(n)) if f(n) is a positive nondecreasing function that is
always greater than 1.

R-1.25 Justify the fact that if d(n) is O(f(n)) and e(n) is O(g(n)), then the product
d(n)e(n) is O(f(n)g(n)).

R-l.26 What is the amortized running time of an operation in a series ofn add operations
on an initially empty extendable table implemented with an array such that the
capacitylncrement parameter is always maintained to be l1og(m+ L)], where m
is the number of elements of the stack? That is, each time the table is expanded
by l1og(m+ 1)l cells, its capacitylncrement is reset to l1og(m' + l)l cells, where
m is the old size of the table and m' is the new size (in terms of actual elements
present).

R-1.27 Describe a recursive algorithm for finding both the minimum and the maximum
elements in an array A of n elements. Your method should return a pair (a,b),
where a is the minimum element and b is the maximum. What is the running
time of your method?

R-1.2S Rewrite the proof of Theorem 1.31 under the assumption that the the cost of
growing the array from size k to size 2k is 3k cyber-dollars. How much should
each add operation be charged to make the amortization work?

R-1.29 Plot on a semi-log scale, using the ratio test, the comparison ofthe set of points

S = {(1, 1), (2,7), (4,30), (S, 125), (16, 510), (32,2045), (64, S190)}

against each of the following functions:

a. f(n)=n
b. f(n) = n2

c. f(n) = n3.

R-1.30 Plot on a log-log scale the set of points

S = {(1, 1), (2, 7), (4,30), (S, 125), (16,510), (32,2045), (64, S190)}.

Using the power rule, estimate a polynomial function f(n) = bn" that best fits
this data.

+
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Creativity

C-l.l What is the amortized running time of the operations in a sequence of n opera-
tions P = PIP2 ... P» if the running time of Pi is 8(i) if i is a multiple of3, and is
constant otherwise?

C-l.2 Let P = PI P2 ... P» be a sequence of n operations, each either a red or blue oper-
ation, with PI being a red operation and P2 being a blue operation. The running
time of the blue operations is always constant. The running time of the first red
operation is constant, but each red operation Pi after that runs in time that is twice
as long as the previous red operation, Pj (with j < i). What is the amortized time
ofthe red and blue operations under the following conditions?

a. There are always 8(1) blue operations between consecutive red operations.
b. There are always 8( yin) blue operations between consecutive red opera-

tions.
c. The number of blue operations between a red operation Pi and the previous

red operation P j is always twice the number between P j and its previous
red operation.

C-l.3 What is the total running time of counting from 1 to n in binary ifthe time needed
to add 1 to the current number i is proportional to the number of bits in the binary
expansion of i that must change in going from i to i + 1?

C-IA Consider the following recurrence equation, defining a function T (n):

{
I if n = 1

T(n) = T(n-l)+n otherwise,

Show, by induction, that T(n) = n(n+ 1)/2.

C-l.5 Consider the following recurrence equation, defining a function T(n):

T(n)={ ~(n-l)+2n
ifn = 1
otherwise,

Show, by induction, that T(n) = 2n+1 -l.

C-l.6 Consider the following recurrence equation, defining a function T(n):

T(n) = { ~T(n - 1)
ifn = 1
otherwise,

Show, by induction, that T(n) = 2n.

C-l. 7 Al and Bill are arguing about the performance of their sorting algorithms. Al
claims that his O(nlogn)-time algorithm is always faster than Bill's O(n2)-time
algorithm. To settle the issue, they implement and run the two algorithms on
many randomly generated data sets. To AI's dismay, they find that if n < 100,
the O(n2)-time algorithm actually runs faster, and only when n 2: 100 is the
O(n logn )-time algorithm better. Explain why this scenario is possible. You
may give numerical examples.

+ +
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C-l.S Communication security is extremely important in computer networks, and one
way many network protocols achieve security is to encrypt messages. Typical
cryptographic schemes for the secure transmission of messages over such net-
works are based on the fact that no efficient algorithms are known for factoring
large integers. Hence, if we can represent a secret message by a large prime
number p, we can transmit over the network the number r = p- q, where q > p
is another large prime number that acts as the encryption key. An eavesdropper
who obtains the transmitted number r on the network would have to factor r in
order to figure out the secret message p.

Using factoring to figure out a message is very difficult without knowing the
encryption key q. To understand why, consider the following naive factoring
algorithm:

For every integer p such that 1 < p < r, check if p divides r. If so,
print "The secret message is p!" and stop; if not, continue.

a. Suppose that the eavesdropper uses the above algorithm and has a computer
that can carry out in 1 microsecond (l millionth of a second) a division
between two integers of up to 100 bits each. Give an estimate of the time
that it will take in the worst case to decipher the secret message if r has 100
bits.

b. What is the worst-case time complexity of the above algorithm? Since the
input to the algorithm is just one large number r, assume that the input size
n is the number of bytes needed to store r, that is, n = (log, r)/S, and that
each division takes time O(n).

C-l.9 Give an example of a positive function f(n) such that f(n) is neither O(n) nor
Q(n).

C-l.lO Show that I7=1 i2 is O(n3).

C-l.ll Show that I7=1 i/2; < 2.
Hint: Try to bound this sum term by term with a geometric progression.

C-l.12 Show that log, f( n) is 8 (logf( n)) if b > 1 is a constant.

C-l.13 Describe a method for finding both the minimum and maximum of n numbers
using fewer than 3n/2 comparisons.
Hint: First construct a group of candidate minimums and a group of candidate
maximums.

C-l.14 Suppose you are given a set of small boxes, numbered 1 to n, identical in every
respect except that each of the first i contain a pearl whereas the remaining n - i
are empty. You also have two magic wands that can each test if a box is empty
or not in a single touch, except that a wand disappears if you test it on an empty
box. Show that, without knowing the value of i, you can use the two wands
to determine all the boxes containing pearls using at most o(n) wand touches.
Express, as a function of n, the asymptotic number of wand touches needed.

C-1.1S Repeat the previous problem assuming that you now have k magic wands, with
k » 2 and k < logn. Express, as a function of nand k, the asymptotic number of
wand touches needed to identify all the magic boxes containing pearls.

+ +
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C-l.16 An n-degree polynomial p(x) is an equation of the form
n

p(x) = Laixi,
i=O

where x is a real number and each a, is a constant.

a. Describe a simple 0(n2) time method for computing p(x) for a particular
value ofx.

b. Consider now a rewriting of p(x) as

p(x) =ao+x(al +x(a2+x(a3+···+x(an-l +xan)···))),

which is known as Horner's method. Using the big-Oh notation, character-
ize the number of multiplications and additions this method of evaluation
uses.

C-l.17 Consider the following induction "proof" that all sheep in a flock are the same
color:
Base case: One sheep. It is clearly the same color as itself.
Induction step: A flock of n sheep. Take a sheep, a, out of the flock. The
remaining n - 1 are all the same color by induction. Now put sheep a back
in the flock, and take out a different sheep, b. By induction, the n - 1 sheep (now
with a in their group) are all the same color. Therefore, a is the same color as all
the other sheep; hence, all the sheep in the flock are the same color.
What is wrong with this "proof"?

C-l.lS Consider the following "proof" that the Fibonacci function, F(n), defined as
F(1) = 1,F(2) = 2, F(n) = F(n - 1) +F(n - 2), is O(n):
Base case (n :s; 2): F(1) = 1, which is 0(1), and F(2) = 2, which is 0(2).
Induction step (n > 2): Assume the claim is true for n' < n. Consider n. F(n) =
F(n - 1)+F(n - 2). By induction, F(n -1) is O(n- 1) andF(n - 2) is O(n - 2).
Then, F (n) is O( (n - 1) + (n - 2)), by the identity presented in Exercise R-1.l5.
Therefore, F(n) is O(n), since O( (n - 1) + (n - 2)) is O(n).
What is wrong with this "proof"?

C-1.19 Consider the Fibonacci function, F(n), from the previous exercise. Show by
induction thatF(n) is Q((3/2Y).

C-l.20 Draw a visual justification of Theorem 1.13 analogous to that of Figure 1.11b for
the case when n is odd.

C-1.21 An array A contains n - 1 unique integers in the range [0,n - 1], that is, there is
one number from this range that is not in A. Design an O(n )-time algorithm for
finding that number. You are allowed to use only 0(1) additional space besides
the array A itself.

C-1.22 Show that the summation I7=lllog2 il is O(nlogn).

C-1.23 Show that the summation I7=lllog2 il is Q(nlogn).

C-1.24 Show that the summation I7=ll1og2(nli)l is O(n). You may assume that n is a
powerof2.
Hint: Use induction to reduce the problem to that for n12.

+ +
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C-l.25 An evil king has a cellar containing n bottles of expensive wine, and his guards
have just caught a spy trying to poison the king's wine. Fortunately, the guards
caught the spy after he succeeded in poisoning only one bottle. Unfortunately,
they don't know which one. To make matters worse, the poison the spy used was
very deadly; just one drop diluted even a billion to one will still kill someone.
Even so, the poison works slowly; it takes a full month for the person to die.
Design a scheme that allows the evil king to determine exactly which one of
his wine bottles was poisoned in just one month's time while expending at most
O(1ogn) of his taste testers.

C-l.26 Let S be a set of n lines such that no two are parallel and no three meet in the
same point. Show by induction that the lines in S determine 8(n2) intersection
points.

C-l.27 Suppose that each row of an n x n array A consists of 1's and D's such that, in
any row of A, all the 1's come before any D's in that row. Assuming A is already
in memory, describe a method running in O(n) time (not O(n2) time) for finding
the row of A that contains the most 1'so

C-l.28 Suppose that each row of an n x n array A consists of 1's and D's such that, in any
row i of A, all the 1's come before any D's in that row. Suppose further that the
number of 1's in row i is at least the number in row i+ 1, for i= 0, 1, ... .n - 2.
Assuming A is already in memory, describe a method running in O(n) time (not
O(n2) time) for counting the number of 1's in the array A.

C-1.29 Describe, using pseudo-code, a method for multiplying an n x m matrix A and
an m x p matrix B. Recall that the product C = AB is defined so that C[i][j] =
Lk=l A[i][k]· B[k][j]. What is the running time of your method?

C-l.30 Give a recursive algorithm to compute the product of two positive integers m and
n using only addition.

C-1.31 Give complete pseudo-code for a new class, ShrinkingTable, that performs the
add method of the extendable table, as well as methods, rernover), which re-
moves the last (actual) element of the table, and shrink Tof-itt), which replaces
the underlying array with an array whose capacity is exactly equal to the number
of elements currently in the table.

C-1.32 Consider an extendable table that supports both add and remove methods, as de-
fined in the previous exercise. Moreover, suppose we grow the underlying array
implementing the table by doubling its capacity any time we need to increase the
size of this array, and we shrink the underlying array by half any time the number
of (actual) elements in the table dips below N /4, where N is the current capacity
of the array. Show that a sequence of n add and remove methods, starting from
an array with capacity N = 1, takes O(n) time.

C-1.33 Consider an implementation of the extendable table, but instead of copying the
elements ofthe table into an array of double the size (that is, fromN to 2N) when
its capacity is reached, we copy the elements into an array with Iv'Nl additional
cells, going from capacity N to N + Iv'Nl. Show that performing a sequence
of n add operations (that is, insertions at the end) runs in 8(n3/2) time in this
case.

+ +
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Projects
P-l.l Program the two algorithms, prefixAveragesl and prefixAverages2 from Sec-

tion 1.4, and perform a careful experimental analysis of their running times. Plot
their running times as a function of their input sizes as scatter plots on both a
linear-linear scale and a log-log scale. Choose representative values of the size
n, and run at least five tests for each size value n in your tests.

P-l.2 Perform a careful experimental analysis that compares the relative running times
of the methods shown in Algorithm l.22. Use both the ratio test and the power
test to estimate the running times of the various methods.

P-l.3 Implement an extendable table using arrays that can increase in size as elements
are added. Perform an experimental analysis of each of the running times for
performing a sequence of n add methods, assuming the array size is increased
from N to the following possible values:

a.2N
b. N+ ivNl
c. N + ilogNl
d. N+IOO.

Chapter Notes
The topics discussed in this chapter come from diverse sources. Amortization has been
used to analyze a number of different data structures and algorithms, but it was not a topic
of study in its own right until the mid 1980's. For more information about amortization,
please see the paper by Tarjan [201] or the book by Tarjan [200].

Our use of the big-Oh notation is consistent with most authors' usage, but we have
taken a slightly more conservative approach than some. The big-Oh notation has prompted
several discussions in the algorithms and computation theory community over its proper
use [37,92, 120]. Knuth [118, 120], for example, defines it using the notation f(n) =
O(g(n)), but he refers to this "equality" as being only "one way," even though he mentions
that the big-Oh is actually defining a set of functions. We have chosen to take a more stan-
dard view of equality and view the big-Oh notation truly as a set, following the suggestions
of Brassard [37]. The reader interested in studying average-case analysis is referred to the
book chapter by Vitter and Flajolet [207].

We include a number of useful mathematical facts in Appendix A. The reader in-
terested in further study into the analysis of algorithms is referred to the books by Gra-
ham, Knuth, and Patashnik [90], and Sedgewick and Flajolet [184]. The reader interested
in learning more about the history of mathematics is referred to the book by Boyer and
Merzbach [35]. Our version of the famous story about Archimedes is taken from [155].
Finally, for more information about using experimentation to estimate the running time
of algorithms, we refer the interested reader to several papers by McGeoch and coau-
thors [142, 143, 144].

+ +
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Basic data structures, such as stacks and queues, are used fl a host of different
applications. Using good data structures often makes the difference betweeñ an
efficient algorithm and an inefficient one. Thus, we feel it important to review and
discuss several basic data structures.

We begiñ our discussion in this chapter by studying stacks and queues, in-.
cluding how they can be used to implement recursion and multiprogramming. We
follow this discussion by presenting the vector, list, and sequence ADTs, each of
which represents a collection of linearly arranged elements and provides methods
for accessing, inserting; and removing arbitrary elements. An important propérty
of a sequence is that, just as with stacks and queues, the order of. the elements in
a sequenóe is determined by the operations in the abstract data type specificatioñ,
and not by the values of the elements.

In addition to these linear data structures we also discuss nonlinear structures,
which use orgamzational relationships ncher than the simple "before" and "after"
relationships. Specifically, we discuss the tree abstract data type, which defines
relationships that are hierarchical, with some objects being "above" and some
"below" others. The main terminology for tree data structures comes froth fam-
ily trees, by the way, with the terms "parent;' "child;' "ancestor;' änd "descendent"
being the most common words used to describe hierarchical relationships. r

In this chapter, we also study data structures that store "prioritized elements;'
that is, elements that have priorities assigned tO them. Such a priority is typically
a numerical value, but we can view priorities as arbitrary objects, so long as there
is a consistent way of comparing pairs of such objects: A priority queue allows
us to select and remove, the element of first priority, which we define, without loss
of generality, to be an element with the smallest key. This general viewpoint al-
lows us to, define a generic abstract data type, called thepriority queue, for stqring -

and retrieving pnontized elements This ADT is fundamentally different from the
position-based data structures we discuss in this chapter, such as stacks; queues,.
sequences, and even trees. These other data structures store elements at specific
positions, which are often positions in a linear arrangement of the elements deter-
mined by the insertion and deletion operations performed The prionty queue ADT
stores elements according to their pnonties, and has no notion of "position"

The final structure 'we discuss is the didtionary, which stores elements so that
they can be located' quickly using keys. The motivation for such searches is that
each element in a dictionary typically stores additional useful information besides
its search key, but the only wayTto get at that information is to use the search key.
Like a priority queue, a dictionary is a container of key-element pairs. Nevèrthe-
less, a total order relation on the' keys is always required for a priority queue; it is
optional for a dictionary. Indeed, the simplest form of a dictionary, which uses a
hash table, assumes only that we can assign an integer to each key and determine
whether two keys are 'equal r ' ' N
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2.1 Stacks and Queues

2.1.1 Stacks

A stack is a container of bjects that are inserted and removed according to the last-
in first-out (LIFO) principle. Objects can be inserted into a stack at any time, but
only the most-recently inserted (that is, "last") objeet can be removed at any time.
The name "stack" is derived from the metaphor of a stack of plates in a spring-
loaded afeteria plate dispenser. In this case, the fundamental operations involve
the "pushing" and "popping" of plates on the stack.

Example 2.1: Internet Web browsers store the addresses of recently visited sites
on a stack Each time a user visits a new site, that site 's address is "pushed" onto the
stack of'addresses. The browser then allows the user to "pop" back to piev!iously
visited sites using the "back" button.

The Stack Abstract Data Type

A stack S is an abstract data type (ADT) supporting the following two methods:

push(o» Insertobject o at the tOp of the stack.

pope: Remove from the stack and return the top object on the
stack, that is, the most recently inserted element still in
the stack; an error occurs if the stack is çmpty.

Additionally, let us also define the following supporting methods

sizeo: Return .the number of objects in the stack.

isEmpty: Return, a Boolean indicating if the stack is empty.

tope Return the top object on the stack, without removing it,
an error occurs if the stack is empty

A Simple Array-Based Implementation

A stack is easily implemented with añ N-element array S, with elements stored
fròm S[0] to St}, :where t is an integer that gives the indei of the top element in S.
Note that one of the important details of such an implementation is that we must
specify some maximum size Nfor our stack, sày, N 1,000; (See Figuré 2.1.)

O 1.2 .. . 't' " N-1

Figure 2.1: Implementing a stackwith an array 5 The top, element is in cell StJ.
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Recalling that the convention in this book is that arrays start at index O, we

initialize t to 1 , and we Use this value for t to identify when the stack is empty.

Likewise; we can use this variable to determine the number of elements in a stack

(t + 1). We also must signal an error condition that arises if we try to insert a new

element and the array S is full. Given this new exception, we can then implèment

the main methods of the stack ADT as described in Algorithm 2.2.

Algorithm push(o):.
if size() = N then

indicate that a stack-full error has occurred

t+t+1

Algorithm pope:
ifisEmpty() then

indicate that a stack-empty error has occurred

etS[t].
S{t}+nùll
t*t-1
return e

Algorithm 2.2: Implementation of a stack by means of an array.

Pseudo-code descriptions for performing the supporting methods of the Stack

ADT in constant time are fairly straightforward. ThUs, each of the stack methods in

the array realization èxecutes a constant number of statements involving arithmetic
operations, comparisons, and assignments. That is, in this implementation of the
stack ADT, each method runs in 0(1) time

The array implementation of a stack is both simple and efficient, and is widely

used in a variety of computing applicalions. Nevertheless, this implemeñtation
has one negative aspect; it must assume a fixed Upper bound N on the ultimate

size of the stack. An application may actually need much less space than this,
in which case we would be wasting memory. Alternatively, an applicatioñ may

need more space than this, in which case our stack implementation may "crash" the

application with an error as soon as it tries to push its (N + 1)st object on the stack.

Thus, even with its simplicity and efficiency, the array-based stack implementation

is not necessarily ideal. Fortunately, there are other implementations, discussed
later in this chapter, that do not have a size limitation and use space proportional

to the actual number of elements, stored in the stack. Alternatively, we could also

use an exténdable table, as discussed in Section 1.5.2. In cases where we have

a good:estimate on the number of items needing to go in the stack, however, the
array-based implementation is hard to beat Stacks serve a vital role in a number of
computing applications, so it is helpful to have a fast stack ADT implernentatiÓn,

such. as the simple atray-basèd implementation.
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Using Stacks for Procedure Calls and Recursion

Stacks are an important application to the run-time environments of modem proce-
dural languages, such as C, C++, and Java. Each thread in a running program writ-

ten in one of these languages has a private stack, called the method stack, which is

used to keep track of local variables and other important information on methods,

as thèy are invoked during execution. (See Figure 2.3.)

More specifically, during the execution of a program thread, the runtime en-
vironment maintains a stack whose elements are descriptors of the currently ac-

tive (that is, nonterminated) invocations of methods. These descriptors are called
frames. A frame for some invocation of method "cool" stores the current values

of the local variables and parameters of method cool, as well as informatien on the

method that called cool and on what needs to be returned to this method.

fool:
PC = 320
rn = 7

cool:
PC = 216

k=7

main:
PC =14
¡=5

Stack

mamo {
mt 1=5;

s
s

14 cool(i);
s
s
s

}

cool(int j) I

mt k=7;
s
s
s

216 fool(k);
s
s
s

I

320 fool(int m) {
s
s
s

Program

Figure 2.3: An example of a method stack:. Method fool has just been called by

method cool, which itself was previously called by method main: Note the values

of the piogram counter, parameters, and local vanables stored in the stack frames

When the invocation of methodfool termiñates, the:.invocation of method cool will

resume its execution at instruction 217, which is obtained by incrementing the value

of the program counter stored in the stack frame . .

39

http://www.cvisiontech.com


60 Chapter 2. Basic Data Struéture

The runtime environment keeps the address of the statement the thread is cur-
rently executing in the program in a spècial register, called the program counter
When. a method "cool" invokes another method "fool", the current value of the
program counter is recorded in theframe of the current invocation of cool (so. the
computer will "know" where to return to when method fool is done). -.

At the top of the method stack is the frame of the running method, that is,,
the method that currently has control of the execution. The remaining elements of
the stack are frames of the suspended methods, that is, methods that have invoked
another method and are currently waiting for it to return control to them upon its
termination. The order of the elements in the stack corresponds to the chain of
invocations of the currently active methods. When a new method is invoked; a-
frame for this method is pushed onto the stack. When it terminates, its frame is
popped from the stack ànd the computer resumes the processing of the previously
suspended method.

The method stack also performs parameter passing to methods. Speáifically,
many languages, such as C and Java, use the call-by-value parameter passing pro-
tocol using the method stack. This means that the current value of a variable (or
expression) is what is passed as an argument to a called method. In the case of
a variable x of a primitive type, such as an mt or float, the current value df x is
simply the number that is associated with x. Wheú such a value is passed to the'
called m&thod, it is assigned to a local variable in the called method's frame (This
simple assignment is also illustrated ifi Figure 2.3.) Note that if the called method
changes the yalue of this local variable, it will nòt change the value of the variable
in the calling method.

Recursion

One of the benefits of using a stack to implement method invocation is that it allows
programs .to use recursion (Section 1.1.4). That is, it allows a method to call itself
as a subroutine.

Recall that in using this technique correctly, we must always design a recursive
method so that it is guaranteed to terminate at some point (for example, by always
making recursive calls for 'smaller" instances of the problem and handling the
"smallest" instances nonrecursively as special cases). We note that if we design
an "infinitely recursive" method, it will not actually run forever. It will instead, at
some point, use up all the memory available for the method stack and generate an
out-of-memory error, If we use recursion with care, however, the method stack will
implement ecursive methods without any. trouble. Each call of the same method
will be associated with a different frame, complete with its own values for local
variables Recursion can be very powerful, as it often allows us to design simple
and efficient programs for fairly difficult problems
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Another basic data structure is the queue. It is a. close "cousin" of the stack, as
a queue is a containèr of objects that are inserted and removed according to the
first-in firÑt-out (FIFO) prìnciple. That is, elements can be inserted at any time,
but only the element that has been in the queue the longest can. be removed at any
time. We usually say that elements enter the queue at the rear and are removed
from the front.

The Queue Abstract Data Type

The queue ADT keeps objects in a sequence, whère element access and deletion are
restricted to the first element in the sequence, which is called the front of the queue,
and element insertion is restricted to the end of the sequence, which is called the
rear of the queue Thus, we enforce the rule that items are inserted and removed
according to the PIFO prinöiple. The queue ADT supports the following two fun-
damental methods:

enqueue(o): Insert object o at the rear of the queue.

dequeueO: Remove and return from the queue the object at the frbnt;
an error occurs if the queue is empty.

Additionally, the queue ADT includes the following supporting methods:

sizeO: Return the number of objects in the queue.

isEmptyO: Return a Boolean value indicating whether queue is empty.

fronto Return, but do not remove, the front object in the queue,
an error occurs if the queue is empty.

A Simple Array-Based Implementation

We present a simple realization of a queue by means of an array, Q, with capacity
N, for storing its elements. Since the main rule with the queue ADT is that we
insert and delete objects according to the F'11O principlè, we must decide how we
are going to keep traòk of the front and rear of the queue.

To avoid moving objects once they are plabed in Q, wedefine two variables f
and r, whiëh have the following meanings: H

S f is an index to the cell of Q storing the first element of the. queue (which is
the next candidate to be removed by a dequeue operation), unless the queue
is empty (in which case f = r)

s r is an index to the next available anay cell in Q.

2.1. Stacks and Queues 61.
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Initially, we assign f = r = O, and we indicate that the queue is empty by the

condition f r. Now, when we remove an element from the front of the quéuç, we

can simply increment f to index the next celL Likewise, when we add an element,

we can simply increment r to index the next available cell in Q. We have to be a

lithe careful not to overflow the end of the array, however. Consider, for example,

what happens if we repeatedly enqueue and dequeue a single element N different

times. We would have f = r = N. If we were then to try to insert the element

just one more time, we would get an array-out-of-boUnds error (since the N valid

locations in Q are from Q[O] to Q[N - 1]), even though there is plenty of room in

the queue in this case. To avoid this problem and be able to utilize all of the array

Q, we let thef and r indices "wrap around" the end of Q. That is, we now view Q

as a "circular array" that goes from QEOl to Q[N - 1] and then immediatelyback to

Q{O] again. (See Figure 2.4.)

Figure 2.4: Using array Q in a circular fashion: (a) the "normal" configuratiòn with

f < r; (b) the "wrapped around" configuration with r <f. The cells storing queue

elements are highlighted.

Implementing this circular view of Q is pretty easy. Each time we increment.

f or r, we simply compute this increment as "(f+ 1) mod N" or "(r+ 1) mod N'

respectively, where the perator "mod" is the modulo operator, which is èomputed

by taking the remainder after an integrai division, so that, if y is nonzero, then

xmodyx/YJY.
Consider now the situation that occurs if we enqueue N objects without dequeu-

ing them. We would have f = r, which is the same condition as when the queue is

empty. Hence, we would not be able to tell the difference between a full1queue and'

an empty one in this caEe. Fortunately, this is not a big problem, and .a number of

ways for dealing with it exist For example, we can simply insist that Q can never

hold more than N - i objects. The above simple rule for handling a full queue

takes care of the final problem with our implementation, and leads to the pseudo-

coded descriptions of the mahl queue methods given in Algorithm 2 5 Note that we

may compute .the size of the queue by means of the expression (N - f + r) mod N,

which gives the correct result both in the "normal" configuration (when f $ r) and

in the "wrapped around" configuration (when r < f).
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The time slices given to each. different thread occur with such'rapid: succession that
the different threads appeär to be running simultaneously, in parallèl.
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Algorithm dequeueQ:
if isEmpty() then

throw a QueueEmptyExceptlon
temp - Q[f]
Q[f] - mill
f((f+1)modN
return temp

Algorithm enqueue(o):
if size() =N i then

throw a QueuéFullException
Q[r]4o
r4(r+1)modN

Algorithm 2.5: Implementation of a queue by means of an array, which is viewed
circularly.

As with our array-based stack implementation, each of the queue methods in
the array realization éxecutes a constant number of statements involving arithmetc
operations, comparisons, and assignrneñts. Thus, each method in this implementa-
tion runs in 0(1) time.

Also, as with the array-based stack implementation, the only real disadvantage
of the array-based queue implementation is that we artificially set the capacity of
the queue to be some number N. In a real application, we may actually need more
or less queue capacity than this, but if we have a good estimate of the number of
elements that will be in the queue at the same time, then the array-based implemen-
tation is quite efficient.

Using Queues for Multiprogramming

Multiprogramming is a way of achieving a limited form of parallelism,, even on
a computer that has only one CPU. This mechanism allows us to have multiple
tasks or computational threads running at the saine time, with each thread being
respoñsìble for some specific computation. Multiprogramming is useful in graph-
ical applications. For e ample, one thread can be responsible fOr catching mouse
clicks while several others e responsible for moving parts of an animation around
in a screen canvas; Even if the computer 'has only one CPU, these different compu-
tational threads can all seem tobe .ruñning at the, same time because:

1. The CPU is so fast relative to our perception of time
2 The operating system is providing each thread with a different "slice" of the

CPU's time.
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For example, Java has a built-in mechanism for achieving multiprogramming-
Java threads. Java threads are computational objects that can cooperate and com-
municate with one another to share other objects in memory, the computer's screeti,

or other kinds of resources and devices. Switching between different threads in a

Java program occurs rapidly because each thread has its own Java stack stored in

the memory of the Java Virtual Machine. The method stack for each thread con-
tains the local variables and the frames for the methods that that thread is currently
running. Thus, to switch from a thread T to another thread U, all the CPU needs to

do is to "remember" where it left off in the thread T before it switches tò the thread

U. We have already discussed a way for this to be done, namely, by storing the
current value of T's program counter, which is a reference to the next instructicn T
is to perform, at the top of T's Javastack. By saving the program counter foreaçh
active thread in the top of its Java stack, the CPU can pick .up where it left off in

some other thread U, by restoring the value of the program counter to the value that

was stored at the top of V's Java stack (and using U's stack as the "current" Java

stack).

When designing a program that uses multiple threads, we must be careful not to

allow añ individual thread to monopolize the CPU. Such CPU monopolization çan
lead to. an application or applet hanging, where it is technically running, but not
actually dding anything. In some operating systems, CPU monopolizing by threads

is not an issue, however These operating systems utilize a queue to allocate: CPU

time to the runnable threads in the round-robin protocol. .
r

The main idea of the round-robin protocol is to store all runnable threads in a

queue Q. When the CPU is ready to provide a time sliceto a thread, it performs a
dequeue operation on the queue Q to get the next available runnable thread; let's

call it T. Before the CPU actually begins executing instructions for T, however,

it starts a timer running in hardware set to expire a fixed amount of time later.
The CPU now waits until either (a) thread T blocks itself (by one of the blocking
methods mentioned above), or (b) the timer expires. In the latter case, the CPU
stops the execution of T añd and performs an enqueüe operation to place T .t the

end f the lint .of currently runnable threads. In either case, the CPU saves the
cnrreñt value of T's program counter at.the top of T's method stack and processes
the next available runnable thread by extracting it from Q with a dequeue operation.

In this way, the CPU ensures. that each runnable thread is given its fair share of
time Thus, by using a simple queué. data structure and a hardware stopwatch, the
operating system can avoid CPU monopolization.

While this queue-based solution solves the multiprogramming problem, we
should mention that this solution is actually an oversimplification of the protocol
used by most operating systems that do round-robin time slicing, as most systems
give threadspriorities. Thus,. thèy use a priority queue.to implement time slicing.
We discuss priority.queues in Section 2.4. . ..
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22 Vectors Lists, änd Sequences
Stacks and queues store elements according to a linear sequence determined by
update operations that act on the "ends" of the sequence The data structures we
discuss in this section maintain linear orders while allowing for accesses and up-
dates in the "middle."

2.2.1 Vectors

Suppose we are given a linear sequence S that contains n elements. We can uniquely
refer to each element e of S using an integer in the range [O, n - 1] that is equal to
the number of elements of S that precede e in, S. We define the rank of an element
e in S to be the number of elements that,are before e in S. Hence, the first element
in a sequence has rank O ard the last element has rank n - 1.

Note that rank is similar to an array index, but we do not insist that an array.
should be used to implement a sequence in such a way that the element at rank
O is stored at index O in the array. The rank definition offers us a way to refer to
the "index" of an element in a sequence without having to worry about the exact
implementation of that list. Note that the rank of an element may change wheñever
the, sequence is updated For example, if we insert a new, element at the beginning
of the sequence, the rank of each of the other elements increases by one.

A linear sequence that supports access to its elements by their ranks is called
a vector. Rank is. a simple yet powerful notion, since it can be used to specify
where to insert a new element into a vector or where tQ remove añ ¿Md element. For
example, we can give the rank that a new element will have after it is inserted (for
example, insert at rank 2) We could also use rank to specify an element to be
removed (for example, remove the element at rank 2).

The Vector Abstract Data Type

A vector Sstoring n elements suppotts the following fundamentàl. methods:

eiemAtRank(r): Return the element of S with rank r; ari error condition
occurs if r < O or r > n 1.

replaceAtRank(r,e): Replace withe the element at rank r and return it; an
error condition occursif r < O or r> n - i

insertAtRank(r,e) Insért a new element e into S to have rank r; an error
condition occurs if r < O or r> n.

removeAtRank(r) Remove from S the element at rank r, an error condition
occurs if r < O or r> n - i

In addition, a vector supports the usual methods size() and isEmptyO.
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A Simple Array-Based Implementation

An obvious choice for implementing the vector ADT is to use an array A, here

A[i] stores (a reference to) the element with rank i. We choosé the size N Qf array
A sufficiently large, and we maintain in an instance variable the number n <N
of elements in the vector. The details of the implementation of the methods of the
vector ADT are reasonably simple. To implement the elemAtRank(r) operation, for
example, we just return A [r]. Implementations of methods i nsertAt Ra n k(r, e) and
removeAtRank(r) are given in Algorithm 2 6 An important (and time-consuming)

part of this implementation involves the shifting of elements up or down :to keep
the occupied cells in the array contiguous. These shifting operations are required
to maintain our rule of always storing an element of rank i at index i in À. (See
Figure 2.7 and also Exercise C-2.5.)

Algorithm ¡nsertAtRank(r,e):
fori=n-1,n-2,...,rdo

A[i + 1] - A[i] {make room for the new element
A[r]4e
n4n+1 /

Algorithm removeAtRank(r):
e -' AftJ {e is a temporary vañable}
for i= r, r± 1, ... ,n-2 do

A[i] 4A[i+ 1] {fill in for the removed element}
ntn-1
return e

Algorithm 2.6: Methods in an array implementation of the vector ADT.

s

nflr\r\nn
(a)

Figure 2.7: Array-based implementation of a vector S storing n elements: (a) shift-
ing up for an insertion at rank r; (b) shifting down for a removal at rank r.

0 1 2 n-1 N-1

(b)

1 2 r n-1 N-1

http://www.cvisiontech.com


Table 2.8: Worst-case performance of a vector with n elements réalized by an array.
The space usage is 0(N), where N is the size pf the array.

Looking more closely at insertAtRank(r, e) and removeAtRank(r), we note that
they each run in time 0(n - r+ 1), for only those elements at rank r and higher haye
tobe shifted up or dowñ. Thus, jnserting or removing an item at the end of a vector,
using the methods insertAtRank(n,e) and removeAtRank(n - 1), respectively take
0(1) time Sich. That is, inserting or removing an element at the end of a, vector
takes constant time, as would inserting or removing an element within a constant
number of cells from the end. Still, with the above implementation, inserting or
removing an element at the beginning, of a vector requires shifting every other ele-
ment by one; hence, it takes 0(n) time Thus; there is an asymmetry to this vector
implementationupdates at the end are fast, whereas updates at the beginning are
slow..

Actually, with a little effort, we can produce an array-based implementation of

the vector ADT that achieves 0(1) time for insertions and removals at rank O, as
well as insertions and removals at the end of the vector Achieving this requires
that we give up on our rule that an element at rank z is stored in the array at index

i, however, as we would have to use a circular array approach like we used in
Section 2 1 2 to implement a queue We leave the details of this implementation
for an exercise (C-2.5). In addition, we note that a vector can also be implemented
efficiently using an extendable table (Section 1 5 2), which in fact is the default
implementation of the vectOr ADT in Java.

Method Time
size() 0(1)

isEmpty() 0(1)
elemAtRank(r) . 0(1)

replaceAtRank(r,e) 0(1)
insertAtRank(r,e) 0(n)
removeAtRank(r) 0(n)
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Table 2.8 shows the running times of the methOds of a vector realizéd by means
of an array. The methods ¡sEmpty, size, and elemAtRank clearly run in 0(1) time,
but the insertion and removal methods cän take much longer than this. In particular,
insertAtRank(r,.e) runs in time 0(n) inthe worst case. Indeed, the worst case for
this operation occurs when r = O, since all the existing n elements have to be shifted
forward A similar argument applies to the method removeAtRank(r), which runs
in 0(n) time, because we have to shift backward n - i elements in the worst case
(r = O) In fact, assuming that each possible rank is equally likely to be passed as
an argument to these operations, thèir average running time is 0(n), for we will
have to shift n/2 elements on average.
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2.2.2 Lists

Using a rank is not the only means of refernng to the place where an element
appears in a list We could alternatively implement the list S so that each elemebt
is stored in a special node object with references to the nodes before and after it in
the list In this case, it could be more natural and efficient to use a node instead of a
rank to identify where to access and update a list In this section, we explore a way

of abstraòting the node concept of "place" in a list. L

Positions and Node-Based Operations

We would like to define méthods for a list S that take nodes of the list as parameters
and provide them as return types. For instance, we could define a hypothetical
method removeAtNode(v) that removes the element of S stored at node vof the
list. Using a node as a parameter allows us to remove an element in 0(1) time by
simply going directly to the place where that node is stored and then "1inMn out"
this node through an update of the refernng links of its neighbors /

Defining methods of a list ADT by adding such node-based operations: raises

the issue of how much information wé shòuld be exposing about the implernenta-
lion of our list. Certainly, it is desirable for us to be able to use such an implémen-
tation without revealing this detail to a user. Likewise, we do not wish to allow a
user to modify the internal structure of a list without our knowledge. To abstract
and uñify the different ways of storing elements in the various implementations of

a list, we introduce the concept of posttwn in a list, which formalizes the intuitive
notion of "place" Qf an element relative to others-in the list.

In order to safely expand the set of operations for lists, we abstract a notion of
"position" that allows us to enjoy the efficiency of node-based list implementations
without violating objectoriented design principles. In this framework, we view a
list as a container of elements that stores each element at a position and that keeps
these positions arranged in a linear order. A position is itself an abstract däta type
that supports the following simple method:

elemento: Return the elemeñt stored at this position.

A posItion is always defined relatively, that is, in terms of its neighbors. In a
list, a position p will always be "after" some position q and "before" some position
s (unless p is the first or last position) A position p, which is associated with some
element e in à list S, does not change, even if the rank of e changes in S, unless we
explicitly remove e (and, hence, destrOy position p). Moreover, the position p does
not change even if we replace or swap the element e stored at p with ánother ele-
ment These facts about positions allow us to define a nch set of position-based list
methods that take position objects as parameters and also provide position objects
as return values. /

http://www.cvisiontech.com


- ¡nsertAfter(p,e): Insert a new- elément e into S after position - p in S; an
error occurs if p is the last position

remove(p): Remove from S the elemdrit a position p.
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The List Abstract Data Type

Using the concept of position to encapsulate the idea of "node" in a list, we can de-
fis another type of sequence ADT, called simply the list ADT. This ADT supports
the following methods for a.list S:

firstQ: Return the position of the first element of S; än error oc-
curs if S-is empty. -

IastQ: Return the position of the last element of S; an error oc-
curs ifS is empty.

isFirst(p): Return a Boolean value indicating whether the given Po-
sition is the- first one in the list.

isLast(p): Return a Boolean value indicating 'hether the given poi-
sition is the last one in the list.

before (p): Return the position of the element of S preceding the oñe
at position p; an error occurs if p is the -first position.

after(p): Return the position of the element of S following the one -
at position p; an error -occurs if p is the last position.

-The above methods allow us to refer to relative positions in a list, starting at
the beginning or end, and to be able to move incrementally up or down the list.
Thèse positions can intuitively be thought of as nodes in the list, but note that there
are no specific references to node objects nor links to previous or next nodes in
these methods. In addition to the- above methods and the generic methods size and
-isEmpty, we also include the following update methods for the list ADT.

replaceElement(p,e): Replace-the element at position p with e, returning the
element formerly at position p. - - - -

swa pElements (p, q): Swap the elements stored at positions p and q, so that the
element that is at position p moves to position q and the
element that is at position q moves to position p.

insertFirst(e): Insert a new element e into S as the first element.

insertLast(e): Insert-a new element e hito S as the last element.

insertBefore(p, e): Insert a new element e into S before position p in S; an
error occurs if p is the first position.
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The list ADT allows us to view an ordered collection of objeòts in terms of their
places, without worrying about the exact way those places are represented. Also,
nöte that there is some redundancy in the above repertoire of operations for the list
ADT. Namely, we can perform operation isFirst(p) by checking whether p is.equal
to the position returned by firstO. We can also perform operatioñ ¡nsertFirst(e) by
performing the operation insert Before (first Q, e). The redundañt methods should
be viewed as shortcuts.

An error condition occurs if a position passed as argument to one M the list
operations is invalid. Reasons for a position pto be invalid include fis bei4g null, a
position of a different list, or previously deleted from the list.

The list ADT, with its built-in notion of position, is useful in a numbe of set-
tings. For example, a simple text editor embeds the notion of positional iiséthon
and removal, sincé such editors typically perform all updates relative to a èursor,
which represents the current position in the list of characters of text being edited.

Linked List Implementation

The linked list data structure allòws for a great variety of operations, inclúding
insertion and removal at various places, to run in 0(1) time A node in a singly
linked list stores in a next link a reference to the next node in the list. Thus, a
singly linked list cari only be traversed in one directionfrom the head to the tail:
A node in a doubly linkEd list, on the Qther hand, stores two referencesa, next
link, which points to the next node in the list, and a prey link, which points to the
previous node in the list. Therefore, a doubly linked list can be traversed in either
direction. Being able to determine the previous and next node from any giyen node
in a list greatly simplifies list implementatioñ; so let us assume we are using a
doubly linked list to implement the list ADT.

To simplify updates and searching, it is convenient to add special nodes at both
ends of the list: a header node just before the head of the list, and a trailer node
just after the tail of the list. These "dummy" or sentinel nodes do not storç any
elemeñt. The header has a valid next reference but a null prey reference, while the
trailer has a valid prey reference but a null next reference. A doubly linked lisZt with
thesé sentinels is shown in Figure 2.9. Note that a linked list object would Simply
need to store these two sentinels and a size counter that keeps track of the number
of elements (not counting sentinels) in the list.

header trailer

New York San Francisco(Providence)

Figure 2.9: A doubly linked list with sentinels, header and tra ¡ 1er, marking the ends
of the list. An empty list would bave these sendnels pointing to each other.
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We can simply make the nodes of the linked list implement the position AbT,
defining a method elementO, which returns the element stored at the node. Thus,
the nodes themselves act as positions.

Consider how we might implement the ¡nsertAfter(p, e) method, for inserting
an element e after position p. We create a new node y to hold the element e; link
y into its place in the list, and then update the next and pre references of v's two
new neighbors. This method is given in pseudo-code in Algorithm 2.10, and is
illustrated in Figure 2.11.

Algorithm ¡nsertAfter(p, e):
Create a new node y
v.element - e.

y.prey p {link y to its predècessor}
v.next f- p.next {link y to its successor}
(p.next).prev - y {link p's old successor to v}
p.next- y {link p to its new successor, v}
return y {the position for the element e}

Algorithm 2.10: Inserting an element, e after a position p in a linkèd list.

header trafter

header ttailer

(c)

Figure 2.11:. Adding a new node after the position for "Baltimore": (a) beföre the
insertion; (b).creating node y and linking it in; (c) after the insertion.

header (a) trauer
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The algonthms for methods insertBefore, nsertFirst, and insertLast are similar

to that for method insertAfter; we leave their details as an exercise (R-2. J). Next,
consider the remove(p) method, which removes the element e stored at position p.
To perform this òperation we link the two neighbors of p to refer to one another

as new neighborslinking out p. Note that after p is linked out, no nodes will

be pointing to p; hence, a garbage collector can reclaim the space for p. This
algorithm is given in Algorithm 2.12 and is illustrated in Figure 2.13. Recalling
our use of sentinels, note that this algorithm works even if p is the first, last, or only

real position in the list.

Algorithm remove(p):
t - p.element {a temporary variable to hold the return value}

(p.prev).next - p.next {Iinking out p}
(p.next).prev p.prev
p.prev - null {invalidating the position p}
p.next#null.
return t

Algorithm 2.12: Removing an element ë stored at a position p in a linked list.

header trailer

s.:n:e:n:e:n:e;fl
Baltimore New York Providence

Baltimore New York Providence

header hailer

(b)
header trailer

Figure 2.13: Removing the object stored at the position for "Paris": (a) before the
removal; (b) linking out the old node; (c) after the removal (and garbage collection).
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2.2.3 Sequences

In this section, we define a generalized sequence ADT that includes all the methods
of the vector and list ADTs This ADT therefore provides access to its elements
using both ranks and pQsitions, and is a versatile data structure for a wide variety
of applications.

The Sequence Abstract Data Type

A sequence is an ADT that supports all the methods of both the vector ADT (dis-
cussed in Section 2.2.1) and the list ADT (discussed in Section 2.2.2), plus the
following two "bridging" methods that provide connections between ranks and po-
sitions:

atRank(r): Return the positionof the element with rank.r.

rankOf(p): Return the rank of the element at positipn p.

A general sequénce can be implemented with either a doubly linked list or
an array, with natural tradeoffs between these two implementations. Table 2.14
compares the running times of the implementations of the general sequence ADT,
by means of an array (used in a circular fashion) and by means of, a doubly linked
list.

Table 2.14: Comparison of the running times of the methods of a sequence imple-
mented with either an array (used in a circular fashion) or a doubly linked list. We
denote with n the number of elemeñts in the sequence at the time the operation is
performed. The space usage is 0(n) for the doubly linked list implementation, and
0(N) for the array implementation, where N is the size of the array.

Summarizing this table, we see that the array-based implémentation is supe-
nor to the linked-list implementation on the rank-based access operations (atRank,
rankOf, and elemAtRank), and it is equal in performance to the linked-list im-
plementation on all the other access operations. Regarding update operations, the

Operations. Array. List
size, isEmpty. 0(1) 0(1)

atRank, rankOf, elemAtRank 0(1) 0(n)
first, last, before, after 0(1) 0(1)

replaceElement,swap.Elements 0(1) 0(1)
replaceAtRank 0(1), 0(n).

insertAtRank, rernoveAtRank 0(n) Q(n)
insertFirst, insertLast 0(1) 0(1)

insertAfter, insertBefore, . 0(n) 0(1)
remove 0(n) 0(1)
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linked-list implementatioñ beats the array-based implementation in the position-

based update operations (insertAfter, insertBefore, and remove). Even so, the

array-basej and linked-list implementations have the same worst-case performance

on the rank-based update methods (i nsertAtRa n k and removeAtRa n k), but for dif-

ferent reasons In update operations insertFirst and insertLast, the two implemen-

tations have comparable performance.
Considering space usage, note that an array requires 0(N) space, where N is

the size of the array (unless we utilize an extendable array), while a doubly linked

list uses 0(n) space, where n is the number of elements in the sequence. Since n is

less than or equal to N, this implies that the asymptotic space usage.,of a linked-list

implementatidn is superior to that of a fixed-size array, although there is a small

constant factor overhead that is larger for linked lists, since arrays do not need lrnks

to maintain the ordering of their cells.

The array and linked-list implementations each have their advantages and dis-

advantages. The, correct one for a particular application depends on the kinds of

operations that are to be performed and the memory space available. Designing the

sequence ADT in a way that does not depend on the way it is implemented allows

üs to easily switch.between implementations, enabling the use of the implementa-

tion that best suits our applications, with few changes to our pfogram:

Iterators

A typical computation on à vector, list, or sequence is to march through its elements

in order, one at a time, for example, to look for a specific element.

An ilerator is a software design pattern that abstracts the process of scanning

through a collection of elements one element at a time. An iterator consists of a

sequence S, a current position in S, and a way of stepping to the next position in

S and making it the current position. Thus, an iterator extends the concept of the

position ADT we introduced in Section 2.2.2; In fact, a position can be thought of

as an iterator that doesn't go anywhere. An iterator encapsulätes the concepts of

"place" and "next" in a collection oj' objects.

We define the iterator ADT as supporting the following two methods:

hasNext: Test whether there are elements left in the iterator.

nextObject: Return and remyve the next element in the iterator.

Note that this ADT has the noiion of the "current" element in a traversrl through a

sequence. The first element in an iterator is returned by the first call to the method

nextObject, assuming of course that the iterator contains at least one element.

Aniterator provides a unified scheme toàc'cess all the elèmçnts of a container
(a collection of objects) in a way that is independent from the specific organization

of the collection. An iteràtor for a sequence should return the elemeñts according

to their linear ordering.
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2.3 Trees

A tree is an abstract data type that stores elements hierarchically. With the excep
tion of the top element, each element in a tree has a parent element and zero or
more children elements. A tree is usually visualized by placing elements iñsidè
ovals or rectangles, and by drawing the conneötións betweèn parents and children
with straight lines. (See Figure. 2.15.) We typically call the top element the root
of the tree, hut it is drawn as the highest element, with the other elements being:
connected below (just the opposite of a botanical tiee).

grades
homeworks//Ij

/user/rt/courses/

programs/ projectsl
grades

hwi hw2 hw3 pri pr2 pr3
papers/ demos/

buylow selihigh ma ket

Figure 2.15: A tree representing a portion of a file sytem

A free T is a set of nodes storingelements in aparent-child'relationship with
the following properties:

T has a special node r, called the root of T.
Each node y of T different from r bas a parent node u.

Note that according to the above definition, a tree cannot be empty, since itmust
have at least one node, the root. One could also allow the definition to include
empty trees, but we adopt the coñvention that a tree ahays has a root so as to keep
our presentation simple and to avoid havtng to always deal with the special case of
an empty tree in our algorithms. .

If node u is the parent of node y, then we say that y is a child of u Two nodes
that are children of the same paitnt are siblings. A ñode is external if it has no
children and it is internal if it. has one or more children. External nodes are also
known as leaves. The subtree of T rooted at a node vEis the, tree consisting of all
the descendents of y in T (including y itself) An ancestor of a nod,e is either the
node itself or an ancestor of the parent of the node. Conversely, we say that a node
y is a descendent of a node ulf u is an ancestorof y.

2.3. Trees 75
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Example 2.2: In most operating systems, files are organized hierarchically into

nested directories (also called folders), which are presented to the user in thç form

of a tree. (See Figure 2.15.) More specifically, the internal nodes of the tree are

associated with directories and the external nodes are associated with regulai filei

In the UNIX/Linux operating system, the root óf the tree is appropriately called

the "root directory," and is represented by the symbol "I." It is the ancestor of all

directories and files iii a UNIX/Linux file systçm.

A free is ordered if there is a linear ordering defined fpr the chi1dren of each

node; that is, we can identify children of a node as being the first, second, (third,

and so on. Ordered trees typically indicate the linear order relationship existing

between siblings by listing them in a sequence or iterator in the conect order.

Exàmple 2.3: A structured document, such as a book, is hierarchically organized

as a tree whose internal nodes are chapters, sections, and subsections, and whose

external nodes are paragraphs, tableE, figures, thö bibliography, and so on. (See

Figure 2.16.) We could in fact consider expanding the tree further to show para-

graphs consisting of sentences, semences consisting of words, and words consisting

of characters. In any case, such a tree is an example of an ordered tree, because

there is a well-defined ordering among the children of each node.

Figure 2.16: A tree associated with a book.

A binary tree is an ordered tree in which every node has at most two children. A

biñary tree is proper if each internal node has two children. For each internal node

in a binary tree, we label each child as Leither being a left child or a right child.

These children are ordered so that a left child comes before a right child. The

subtree rooted at a left or nght child of an internal node y is called a left sub free

or right sub free, respectively, of y We make the convention in this book that,

unless otherwise stated, every binary tree is a prQper binary tree. Of çourse, even

an improper binary tree is sull a general tree, with the property that each internal

node has at most two children Binary trees have a number of useful applications,

including the following.
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Figure 2.17: A binary tree representing an arithmetic expression. This tree repre-

seifls the expression ((((3 + 1) $< 3)/((9 5) +2)) ((3 x (7-4)) + 6)). The value.

associated with the internal node labeled "/" is 2.

2.3.1 The Tree Abstract Data Type

The tree ADT stores elements at positions, which, as with positions in a list, are

defined relative to neighboring positions. The positions in a tree are its nodes.,

and neighboring positions satisfy the parent-child relationships. that define a valid

treè. Therefore we use the terms "position" and "node" interchangeably for trees.

As with a list position, a position object for a tree supports the elemento method,

which returns the object at this position. The real power of node positions in a tree,

however, comesfrorn the following accessor methods of the tree ADT:

rootO: Return the root of the tree.

parent(v): Return the parent of node y; ari error occurs if y is root.

child ren(v) Return an iterator of the children of node y

If a tree T is ordered, then the iterator children (y) provides access to the children

of y in order. If y is. an external node, then child ren(y) is an empty iterator.

2.3. ftees
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Example 2.4: An arithmetic expression can be represented by a tree whose exter-

nal nodes are associated with variables or constants, and whose internal nodes are

associated with one of the operators x, and /. (See Figure 2.17.) Each node

in such a tree has a value associated with it.

Ifa node is external, then its value is that of its variable or constant.

Ifa node is internal, then its value is defined by applying its operation to the

values of its children.

Such an arithmetic expression tree is a proper binary tree, since each of the oper-

atorÑ +, , x, and / take exactly two operands. Of course, if we were to allow

for unary operators, like negation (), äs in "x," then we could have an improper

binary tree.
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In addition, we also include the following query methods:

islnternal(v): Test whether node vis internal.

isExternal(v): Test whether node vis external.

¡sRoot(v): Test whethér node y i the root.

There are also a number of methods a tree should support that are not necessarily
related to its tree structure. Such generic methods include the following:

sizeQ: Return the number of nodes in the tree.

elementsQ: Return an iterator of all the elements stored at nodes of
the tree.

positions(): Return an iterator of all the nodes of the tree.

swapElements(v,w): Swap the elements stored at the nodes y and w.

replaceElement(v,e): Replace with e and return the element stored at node y.

We do not define any specialized update methods for a tree here. Instead, let
us reserve the potential to define different tree update methods in conjunction with
specific tree applications.

2 3 2 Tree Traversal

In this section, we present. algorithms for performing cämputations on a tree by
accessing it through the tree ADT methods.

Assumptions

In order to analyze the running lime of tree-based algorithms, we make the follow-
ing assumptions on the running times of the methods of the tree ADT.

The accessor methods root() and parenf(v) take 0(1) time.

The query methods islnternal(v), isExtérnal(v), and ¡sRoot(i') take 0(1)
time, as welL

The accessor method children (y) takes O(c) time, where c, is the ùumber
of children of y.

The generic methods swapElements(v,w) and replaceElement(v,e) take 0(1)
time

The generic methods elements() and positionsO, which return iterators, take
0(n) time, where n is the number of nodes in the tree.

Forthe iterators returned by methods elementsO, positionsQ, and chiklren(v),
the methods hasNextO, nextObject() or nextPositionO take 0(1)

http://www.cvisiontech.com


.3. Trees 79

In Section 2.3.4, we will present data structures for trees that satisfy the above
assumptions. Befofe we describe how to implement the tree ADT using a cOncrete
data structure, however, let us describe how we can use the methods of the tree
ADT to solve some interesting probléms for trees.

Depth and Height

Let y be a node of a tree T. The depth of y is the number of ancestors of y, excluding
y itself. Note that this definition implies that the depth of the root of T is O. Thè
depth of a node y can also be recursively defined as follows:

If y is the root, then the depth of y is O.

Otherwise, the depth of y is one plus the depth of the parent of y.

Based on the above definition, the recursive algorithm depth, shown in Algo-
rithm 2 18, computes the depth of a node y of T by calling itself r cursively on
the parent of y, and adding i to the value returned.

Algorithm depth (T, y):
if T.isRoot(v) then

return O
else

return i + depth(T, T. parent(v))

Algorithm 2.18: Algorithm depth for computing the depth of a node y in a tree T.

The running time of algorithm .depth(T,v) is 0(1 +d), where d denotes the
depth of the node y in the tree T, because the algorithm performs a constant-time
recursive step for each ancestor of y. Thus, in the worst cse, the depth algorithm
runs in 0(n) time where n is the total number of nodes in the tree T, since some
nodes may have nearly this depth in T. Although such a rünning time is a function
of the input size, it is more accurate to characterize the running time in terms of the
parameter d, since this will often be much. smaller than n.

The height of a tree T is equal to the maximum depth ofan external node of T
While this definition is correct, it does not lead to an efficient algorithm. Indeed,
if we were to apply the above depth-finding algorithm to each node in the tree T,
we would derive an 0(n2)-time algorithm to compute the height of T. We can do
much better, however, using the following recursive definition df the height of a
nodevinatreeT: .

If y is an extèrnal node, then the height ofvis O.
Otherwise, the height of y is one plus the maximum height of a ehild of y.

The height of a tree T is the height of the root of T.
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Algorithm height, shown in Algorithm 2.19 computes the height of tree T in
an efficient manner by using the above recursive definition of height. The algo-
rithm is ,expressed by a recursivemethod height(T, y) that computes the height of
the subtree of T rooted at a node y. The height of tree T is obtained by calling
height(T, T. rootO).

Algorithm height(T,v):
if T.isExternal(v) then

return O
else

h=O
for each w E T.childrerì(v)do

h=max(h,height(T,w))
return 1+h

Algorithm 2.19: Algorithm height for computing the heïght of the subtree of tree T
rooted at a node i'.

The height algorithm is recursive, and if it is initially called on the root 'of T,
it will eventually be called once on each node of T. Thus, we can determine the
running time of this method by an amortization argument where we first determine
the amount of time spent at each node (on the nonrécursive part), and then sum this
time bound over all the nodes. The còmputation of an iterator children(v) takes
O(c) time, where c, denotes the number of children of node y. Also, the while
loop has ci,. iterations, and each iteration of the loop takes 0(1) time plus the time
for the recursive call on a child of y. Thus, algorithm height spends 0(1 + c) time
at each ñode y, and its. running time is 0(Eer(l + cr)). In order to complete the
analysis, we make use of the following property.

Theorem 2.5: Let T be a tree with n nodes, and let c, denote the number of
children, of.a node y ofT. Then

:cv=ni.
vET

Proof: Each node of T, with the exception of the root, is a child of another node,

and thus contributes one unit to the summation LET

By Theorem2.5, the running time of Algorithm height when called on the root

of T is 0(n), where n is the number of nodes of T.

A traversal of a tree T is a systematic way of accessing, or "visiting," all the
nodes of T. We next present basic traversal schemes for trees, called preorder and
postorder traversals.
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Preorder Traversal

In a preorder traversal of à tree T, the root of T is visited first and then the sub-
trees rooted at its children are traversed recursively. If the tree is ordered; then the
subtrees are traversed according to the order of the children. The specific action
associated with the "visit" of a node y depends on the application of this travérsal,
and could involve anythiñg from incrementing a counter to performing some com-
plex computation for y. The pseudo-code for the preorder traversal of the subtree
rooted at a node y is shown in Algorithm 2 20 We initially call this routine as
preorder(T,T.root).

Algorithm preòrder(T, y):

perform the "visit" action for node y
for eaáh child w of y do

recursively traverse the subtree rooted. at w by calling preorder (T, w)

Algorithm 2.20: Algorithm preorder.

The preorder traversal algorithm is useful for producing a linear ordenng of
the nodes of a tree where parents must always come before their children in the
ordering. Such orderings have several different applications; we explore a simple
instance of such an application in the next example.

Figure 2.21: Preörder traversal of an ordered tree.

Example 2.6: The preorder traversal of the tree associated with a document, as in

Example 2.3, examines an entire document sequentially, from beginning to end. If
theextemal nodes'are removed before the traversal, then the traversal examines the

table of contents of the document. (See Figure 2.21.)

The analysis of preorder traversal is actually similar to .that of algorithm height

given above. At each node y, the nonrecursive part of the preorder tray rsal algo-

.rithm requires time 0(1 +c), where c, is the number
f children of y. Thus, by

Theorem 2.5, the overall running time of the preorder traversal ofT is 0(n).
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Postord er Traversal

Another important tree traversal algorithm is the postorder traversal. This algo-
rithm can be viewed as the opposite of the preorder traversal, because' it recursively
traverses the subtrees rOoted- at the children of the root first, and then visits the
root. It is similar to the preorder traversal, however, in that we use it to solve a
particular problem by specializing an action associated .with the "visit" of a node y.
Still, as with the preorder traversal, if the tree is ordered, we make reòursive calls
for the children of a node y according to their specified order. Pseudocode for the
postörder traversal is given in Algorithm 2 22.

Algorithm postorder(T, y):

for each child wofv do
recursively traverse the subtree rooted at w by calling postorder(T, w)

perform the "visit" action for ode. .v

Algorithm 2.22: Method postorder.

The nathe of the postorder traversal comes from the fact that this traversal
method will visit a node y after it 'has visited all the other nodes in the subtrec
rooted at y. (See Figure 2.23.) R

Abstract

Paper

RefereÙces

Figure 2.23: Postorder traversal of the ordered tree of Figure 2.21.

The analysis of the running time of a postorder traversal is. analogous to that
of a preorder traversal. The total time spent in the nonrecursive portions of the
algorithm is proportional to the time spent visiting the children of each node in the
tree. Thus, a postorder traversal of a tree T with n nodes takes 0(n) time, assuming
that visiting each node takes 0(1) time That is, the postorder traversal runs in
linear time.

The p ostorder traversal method is useful for solving problems where we wish
to compute some property for each node y in a tree, but computing that property for
y requires that we have already computed, that same property for v's.children, Such
an application is illustrated in the following example.
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Example 2.7: Consider a file system tree T, where external nodes represent files
and internal nodes represent dfrectories (Example 2.2). Suppose we want to com-
pute the disk space used by a directory, which is recursively given by the sum ofi

The size of the directory itself

The sizes of the files in the directory

The space used by the children directories.

(See Figure 2.24.) This computati on can be done with a pos torder traversal of
tree T. After the subtrees of an internal node y have been traversed, we compute
the space used by y by adding the sizes of the directory y itself and of the files
contained in y, to the space used by each internal child of y, which was computed
by the recursive postorder traversals of the children of y.

5124k
iuser/Wcoursesì'

1K

Figure 2.24: The tree of Figure 2.15 representing a file system, showing the name
and size of the associated file/directory inside each node, and the disk spacé used
by the associated directory above each internal node.

AlthQugh the preorder and postorder traversals are common ways of visiting
the nodes of a tree, we can also imagine other traversals. For example, we could
traverse a tree so that we visit all the nodes at depth d before we visit the nodes at
depth d + 1. Such a traversal could be implemented, for example,. using a queue,
whereas the prçorder and postordèr traversals use a stack (this stack is implicit
in our use of recursion to describe these methods, but we could make this use
explicit, as well, to avoid recursion). In addition, binary trees, which we diséuss
next, support an additional traversal method, known as the morder traversal
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"2.3.3 Binary Trees

One kind of tree that is of partiàular interest is the binary tree. As we mentioned in

Section 2.3.1, a proper binary tree is an ordered tree in which each internal node

has exactly two children. We make the convention that, unless otherwise stated,

binary trees are assumed to be proper. Note that our convention for binary trees

is made without loss of generality, for we can easìly convert any improper binary

tree into a proper one, as we explore in Exercise C-2.14. Even without such a

conversion, we can consider an improper binary tree as proper, simplyiby viewing

missing external nodes as "null nodes" or place holders that still count as.nodes.

The Binary Tree Abstract Data Type

As an abstract data type, a binarytree is a specialization of a tree that supports three

additional accessor methods:

IeftChi Id (y): Return the left child of y; an error condition occurs if vis

an external node.

rightChild(v): Return the right child of V; an error condition occurs if y

is an external node.

sibling(v): Return the sibling of node y; an error condition occursif

vistheroot.

Note that these methods must have additional error conditions if we are dealing with

improper binary trees. For example, in an improper binary tree, an internal node

may not have the left child or right child. We do not include here ány methods for

updating a binary tree, for such methods can be created as required in the context

of specific needs.

of Binary Trees

We denote thè set of all nodes of a tree T at the same depth d as the level d of T

In a binary tree, level O has one node (the rOot), level i has at most two nodes (the

children of the root), level 2 has at most four nodes, and so on (See Figure 225 ) In

general, level d has at most2d nodes, which implies the following theorem (whose

proof is left to Exercise R-2.4)..

Theorem 2.8: Let T be a (proper) binary tree with n nodes, and let h denote the

height ofT. Then T has the following properties:

The number of external nodes in T is at least h + i and at most 2'.
The number of internal nodes in T is atleasth and at most 2h i
The total number of nodes in T is at least 2h +. and at most2'' - 1.
The height ofT is at least log(n+ 1) 1 and at most (n 1)/2, that is

log(n+1)ih(fl-1)/2.
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i

2

3

4

Figure 2.25: Maximum number of nodes in the levels of a binary tree.

In addition, we also hâve the following.

Theorem 2.9: In a proper) binary tree T, th number of external nodes is i more
than the number of internal nodes.

Proof: The proof is by induction, if T itself has only one node y, then y is exter-
nal, and the proposition clearly holds. Otherwise, we remove from T an (arbitrary)
external node w and its parent y, which is an internal node. If y has a parent u,
then we reconnect u with the former sibling z of w, as shown in Figure 2.26. This
operation, which wecall remöveAboveExternal(w), removes one internal node and
one external node, and it leaves the tree being a proper binary tree. Thus, by the
inductive hypothesis, the number of external nodes in this tree is onernore than the
number of internal nodes. Since we removed one internal and one external node to
reduce T to this smaller tree,this same property rnùstholdfor T.

Figure 2.26: Operation removeAboveExterna 1(w), which removes an external node
and its parent node, used in the jUstification of Theorem 2.9.

Note that the above relationship does not hold, in general, for nonbinary trees.
In subsequent chapters we explore sorne important applications of the above

facts. Before we can discuss such applications, however, we should.first understand

more about how binarytrees are traversed and represented......

Level Nodes
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Traversals of a Binary Tree

As with general trees, computatjqns performed on binary trees often involve tree
traversals. In this section, we present binary tree traversal algorithms expressed
using the binary treè ADT methods: As for running times, in addition to the às.-
sumptions on the running time of the tree ADT methods made in Section 2.3.2,
we assume that, for a binary tree, method children(v) takes 0(1) time, because
each ñode has eithet zero or two children. Likewise, we assume that methods
ieftChiId(v), rightChild(v), and sibling(v) each take 0(1) time.

Preorder Traversal of a Binary Tree

Since any binary tree can also be viewed as a general tree, the preòrcler traversal
for general trees (Code Fragment 2.20) can be applied to any binary trçe. We can
simplify the pseudo-code in the case of a binary tree traversal, however, as we show
in Algorithm 2 27

Algorithm binaryPreorder(T,v):
perform the "visit" action for node y
if y is an internal node then

binaryPreorder(T, T.IeftChiId(v))
binaryPreorder(T, T.rightChild(v))

Algorithm 2 27: Algorithm .binaryPreorder that performs the preorder traversal of
the subtree of a binary, tree T rooted at node y.

Postorder Traversal of a Binary Tree

Analogously,, the postorder traversal for general trees (Algorithm 2.22) cän be spe-
cialized for binary trees, as shown in Algorithm 2 28

Algorithm binaryPostorder(T,v):
if y is an internal node then

binaryPostorder(T, T.leftChild(v))
.hinaryPostorder(T, T. riglìtChild(v))

perform the "visit" action for the node y

{recursively traverse left subtree}
{recursively traverse right subtree}

{ recursively traverse left subtree }
{recursively traverse right subtree}

Algorithm 2.28: Algorithm binaryPostorder fÒi performing the postorder traversal
of the subtree f a binary tree T rooted at node y.

Interestingly, the specialization of the general preorder and postorder traversal
methods to binary trees suggests a third traversal in a binary tree that is different
frnm hnth the nrenrder rnd nn'ztnrder trnvervsiIc
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morder Traversal of a Binary Tree

An additional traversal method for a binary tree is the morder traversai. In this
traversal, we visit a node between the recUrsive traversals of its left and right sub-
trees, as shown in in Algorithm 2 29

Algorithm i norder(T, y):

if y is an internal node then
inorder(T, T.leftChild(v)) {recursively traverse left subtree}

perform the. "visit" action for node.v
11v is an internal.node then

inorder(T, T.rightChiid(v)) {recursively traverse right subtrèe}

Algorithm 2.29: Algorithm morder for performing the morder traversal of the sub-
tree of a binary tree T rooted at a node y.

The morder traversal of a binary tree T can be informally viewed as visiting
the nodes of T "from left to right?' Indeed, for every node', the morder traversal
visits y after all the nodes in the left subtree of y and before all the nodes in the right
subtree of y. (See Figure 2.30.)

Figure 2.30: border traversal of a binary free.

A Unified Tree Traversal Framework .....

The tree-traversal algorithms we havé discussed so fär are all forms of iterators.
Each traversal visits the nodes of a tree in a certain oder; and is guaranteed to visit
each node exactly once. We can unify the. tree-traversal algorithms given above

into a single design pattern, however, by relaxing the requirement that each node
be visited exactly once. The resulting traversal method is called the Euler tour
traversal, which We study next. The advantage of this traversal is that it allows for

mûre eneral kinds of algorithms to bé exoressed easily. .
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The Euler Tour Traversal of a Binary Tree

The. Euler tour traversal of a binary tree T can be informally defined as a "walk"
around T, where, we start by going from the root toward its left child, viewing the
edges of T as being "walls" that we always keep to our left. (See Figure 2.31.)
Each node y of T is encountered three times by the Euler tour:

"On the left" (before the Euler tour of v's left subtree)

"From below" (between the Euler tours of v's two subtrees)

"On the right" (after the Euler tour of v's right subtree).

If y is external, then these three "visits" actually all happen at the same time

o
o oon nn

UN 9fl SU
Figure 2.31: Euler tour traversal of a binary tree;

We give pseudo-code for the Euler tour of the subtree rooted at a node y in
Algorithm 2.32.

Algorithm eulerTour(T,v):

perform the action for visiting node y on the left
if y is an internal node then

recursively tour the left subtree of y by calling eulerTour(T, T.leftChiid(v))
perform the action for visiting node t' from below
if y is an internal node then

recursively tour the right subtree of.v by calling euleriour(T, T.ri'ghtChild(v))
perform the action. for visiting node y n the right

Algorithm'2.32: Algorithm eulerTour for computing the Euler tour traversal of the
subtree Of a binary tree. T rooted. at a node v.

The, preorder traversal, of a binary tree is equivalent to an Euler tour traversal
such that each node has an associated "visit" action occur only when it is encoun-
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tered on the left Likewise, the morder and postorder traversals of a binary tree
are équivalent to an Euler tour such that each node has an associated "visit" action
océur only when it is encountered from below or on the right, respectively.

The Euler tour traversal extends the preorder, morder; and postorder traversals,
but it can also perform other kinds of traversals. For example, suppose we wish
to compute the number of descendents of each node y in an n node binary tree T.
We start an Euler tour by initializing a counter to O, and thèn increment the counter
each time we visit a node on the left. To determiñe the number of descendents of
a node y, we compute the difference between the values of the counter when y is
visited on the left and when itis visited on the right, and add i This simple tule
gives us the number of.. descendents of y, because each node in the subtree rooted
at y is counted between v's yisit on the left and v's visit on the right. Therefore, we
have an 0(n)-time method for computing the number of descendents of eàch. node
mT.

The running time of the Euler tour traversal is easy to analyze, assuming visit-
Ing a node takes 0(1) time Namely, in each traversal, we spend a constant amount
of time at each node of the tree dûring the traversal, so the overall running time
is 0(n) foran n node tree.

Another apphcation of the Euler tour traversal is to pnnt a fully parenthe-
sized arithmetic expression from its expression tree (Example 2.4). The methodS
printExpresson, shown in Algorithm 2 33, accomplishes this task by performing
the following actions in an Euler tour:

"On the left" action: if the node is internal, print "("
"From below" action: print the value or operator stored at the node

"On the right" action: if the node is internal, print ")?'

Algorithm pri ntExpression (T, y): -

if T.isExternal(v) then
print the value stored at y

else H

print"("
printExpression(T,T.IeftChiId(v))
print the operator stored at y
printExpression (T, T.rightCh iId(v))
print")"

Algorithm 2.33: An algórithm for printing the arithmetic expression associated with
the subtreè of àn arithmetic expression tree Trooted at y. -

Having presented these pseudo-code examples, we now describe a number of
efficient ways of realizing the tree abstract data type by concrete data structUres,
such as sequences and linked structures.

. . .. ... .
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2.3.4 Data Structures for Representing Trees

In this sebtion, we describe concrete data structures for representing trees.

A Vector-Based Structure for Binary Trees

A simple structure for representing a binary tree T is based on a way of numbering

the nodes of T. For every node y of T, let p(v) be the integer definéd as follows.

IfvistherootofT,theflP(V) = 1.

. If y is the left child of node u, then .p(v) = 2p(u).

If y is the right child of node u, then p(v) = 2p(u) + i

The nümbering function p is known as a level numbering of the nodes in a binary

tree T, because it numbers the nodes oneach level of T in increasing order from

left to right, although it may skip some numbers. (See Figure 2.34f)

17 20 2! 26 27

UD DU
Figure 2.34: An example binary tree level numbering.

The level numbering function p suggests a representation of a binary tree T by

means of a vector S such that node y of T is associated with the element of S at

rank p(v). (See Figure 2.35.) Typically, we realize the vector S by means of an

extendable array. (See Section 1.5.2.) Such an implementation is simple and fast,

for we can use it to easily perform the methods root, parent, IeftChild, rightChild,

sibling, isinternal, isExternal, and isRoot by using simple arithmtic operations on

thenumbers p(v) associated with each node y involved in the operation. That is,

each position object y is simply a "wrapper" for the index p(v) into the vector S.

We leave the details of such implementations as a simple exercise (R-2.7).

Let n be the number of nodes f/T, and let PM be the maximum value of p(v)

over all the nodes of T. Vector S' has size N = PM + 1 since the element of S at

rank O is not associated with any node of T. Also, vector S will have, in general,

a number of empty elements that do not refer to existing nodes f T. These empty

slots could, for example, correspond to empty external nodes or even slots where

descendents of such nodes would go. In fact, in the worst case, N 2(z+/2,
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Figure 2.35: Representation of a binary tree T by means of a vector S.

the justification of which is left as an exercise (R-2.6). In Section 2.4.3, we will.
see a class of binary trees, called "heaps" for which N = n + 1. Moreover, if' all
external nodes are empty, as, will be the case in our heap implementation, then we
can save additional space by not even extending the size of the vector S to include
external nodes whose index is past that of the last internal node in the tree Thus,
in spite of the worst-case space usage, there are applications for which the vector
representation of a binary tree is space efficient Still, for general binary trees, the
exponential worst-case space requirement of this representation is prohibitive.

Table 2.36 summarizes the running times of the methods of a binary tree im-
plemented with a vector. In .this table, we do not include any methods for updating
ábinarytree. .

Table 2.36: Running timesof the méthods of a binary tree T implemented with a
vector S, where S is realized by means of an array. We denote with n the number
of nodes of T, and N denotes the size of S Methods hasNextQ, nextObjectQ, and
nextPosition() of the iterators elementsO, positions, and children(v) take 0(1)
time The space usage is 0(N), which is Q(2(fl+1)/2) in the worst case

The vector implementation of a binary tree is fast and simple, but it can be very

space inefficient if the height of the tree is large The next data structure we discuss
for representing binary trees does not have this drawback

Operation Time
positions, elements 0(n)

swapElements, replaceElement 0(1)
root, parènt, children O(i)

IeftChild; rightChild, sibling 0(1)
islnternal,,isExternal, isRoot 0(1)..

2.3. Trees 91
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A Linked Structure for Binary Trees

A natural way to realizè a binary tree T is to use a linked structure. In thIs approach

we represent each node y of T by an object with references to the element stored at

y and the positions associated with the children and parent of y. We showa linked

structure representation of a binary tree in Figure 2.37.

parent

left k right
element

Figure 2.37: An example linked data structure for representing. a binary tree: (a)
object associated with a node, (b) complete data structure for a binary tree with five

nodes.

If y is the root of T, then the reference to the parent node is null, and if y is an

- external node, then the references to the children of y are null

If we wish to save space for cases when external nodes are empty, then, we can

have references to enipty external nodes be null. That is, we can allow a reference
from an internal node to an external node child to be null.

In addition, it is fairly straightfòrward to implementeach of the methods sizeO,
lsEmptyQ, swapElements(v,w), and replaceElement(v,e) in 0(1) time Moreover,
the method positions() can be implemented by perfonmng an morder traversal,
and implementing the method elementsQ is similar. Thus, methods positions()

and element«) take 0(n) time each.

Cousidering the space required by this data structure, note that there i a constant-
sizer object for every node of tree T. Thus, the overall space requirement is 0(n).

(a) (b)\
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A Linked Structure for General Trees

We can extend the linked structure for binary trees to represent general trees. Since
there is no limit on the number of children that a node y in a general tree can have,
we use a container (for example, a lIst or vector) to store the children of y, instead of
using instance variables. This structure is schematically illustrated in Figure 2.38,
assuming we implement the container for a node as a sequence.

element

child ren Contain e r

(a) (b)

Figure 2.38: The linked structure for a tree: (a) the objéct associated with a node;
(b) the portion of the data structure associated with a node and its children.

We note that the performance of a linked implementation of the tree ADT,
shown in Table 2.39, is similär to that of the linked implementation of. a binary
tree. The main difference is that in S implementation of the tree ADT we use
an efficient container, sikh . as a list or. vçctor, to stôre the children of each, node y,
instead of direct links to exactly two children.

Table 2.39: Running times of the methods of an n-node tree implemented with a
linked structure We let c, denote the number of children of a node y

Operation Time
size, isEmpty 0(1)

positions, elements 0(n)
swápElements, replaceElement 0(1)

root, parent .0(1)
ihildren(v) O(c)

isinternal, isExternal, isRoot 0(1)
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2.4 Priority Queues and Heaps

In this section, we provide a framework for studying priority queues, based on the

concepts 6f key and comparator.

2.4.1 The Priority Queue Abstract Data. Type. . . i

Applications commonly require comparing and ranking objects according to pa
rameters or properties, called "keys," that are assigned for each object.in a collec-
don. Formally, we define a key to be an object that is- assigned to an élernent as a
specific attribute for that element, which can be used to identify, rank, or weight
that element. Note that the key is assigned to an element, typically by a. user or

application. . .

The concept of a key as an arbitrary object type is therefore quite general. But,
in order to deal consistently with such a general definition for keys» and still be
able to discuss then one key has priority over another we need a wa of robustly
defining a rule for comparing keys. That is, a priority queue needs a comparison
rule that will never contradict itself.. In order for a comparison rule, denoted by ;
to be robust in this way, it must define a total order relation, which'is to say that the
comparison nie is defined for every pair of keys and it must satisfy the following

properties:

Reflexive property: k k.

Antisymmetnc property if k1 $ k2 and k2 k1, then k1 = k2

Transitive property: ilk1 <k2 and k2 k3, then k1 <k3.

Any comparison rule, , that satisfies these three properties will never ,lead to a
comparison contradiction. In fact,. such a rule defines a linear ordering relationship,
among a set of keys. Thus, if a (finite) collection of elements has a total order.
defined for it, then the notion of a smallest key, kmjn, is well defined. Namely, it is.

a key in which <k, for any other key k in our collection
A priority queue is a container of elements, each having an associated key

that is provided at the time the element is insertea The name "prionty queue"
comes from the fact that keys determine the "priority" used to pick elements to be
removed. The two fundamental methods of a priority queue P àrc as follows:

¡nsertltem(k, e): Insert an element e with key k into P.

removeMinO: Return and remove from P an element withthe smallest
key, that is, an element whose key is less than or equal tó
that of every othèr element in p

By the way, some people refer to the removeMin method as the "extractMin"
method, s as tó steÑs that this method simultaneously removes and returns a
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smallest element in P. We can additionally augment these two fundamental meth-
ods, with supporting methods, such as sizeQ, and ¡sEmpty. Also,: we can add
aëcessor methods, such as the following:

minElementO: Return (but do not remove) an element of P with the
smallest key.

minKeyO: Return (but do not remove) the smallest key in P.

Both of these methods return error. conditions if the priority queue is empty.
One of the interesting aspects of the pnority queue ADT, which should now be

obvious, is that the priority queue ADT is much simpler than the sequence ADT.
This simplicity is dde to the fact that elements in a priority queue are inserted and
removed based entirely on their keys, whereas elements are inserted and removed
in a sequence based on their positions and ranks

Comparators

The priority queue ADT implicitly makes use of a software engineering design
pattern, the comparator. This pattern specifies the way in which we compare keys,
and is designed to support the most general and reusable form of a pnonty queue
For such a design, we should not rely on the keys to provide their comparison rules,
for such nies might not be what a user desires (particularly for multi-dimensional
data) Instead, we use special comparator objects that are external to the keys to
supply the comparison rules A comparator is an object that compares two keys
We assume that a pnonty queue P is given a comparator when P is constructed, and
we might also imagine the ability of a pnonty queue to be given a new comparator
if its old one ever becomes "out of date?' When P needs to compare two keys, it
uses the comparator it was given to perform the comparison Thus, a programmer

can write a general priority queue implementation that can work correctly in a wide
variety of contexts. Formally, a comparator objectprovides. the following methods,
each of which takes two keys and compârés them (or reports an error if the keys are
incomparäble). The methods of the comp rator ADT. include:

isLess(a, b» True if and only if a is less than b.

isLessOrEquaìTo(a,b) True if and only ifa is less than or equal to b

isEquaiTo(a,b) True if and only ifa and b are equal

¡sGreater(à,b): True if and only ¡fais greater than b.

isGreaterOrEqualTo(a,b): True if and only if a is greater than or equal to b.

isComparable(a) True if and only ifa can be compared
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2.4.2 PQ-Sort, Selection-Sort, and Insertion-Sort

In this section, we discuss how to use a priority queue to sort a set O: eÍements.

PQ-Sort: Using a Priority Queue to Sort

In the sorting problem, we are given a collection C of n elements thät can be com-
pared according to a total order rel4tion, and we want to rearrange them in increas-
ing order (or at least in nondecreasing order if there are ties) The algorithm for
sorting C with a priority queue Q is quite simple and consists of the following two
phases:

i. In the first phase, we put the elements of C into an initially empty priority
queue P by means of a series of n insertitem operations, ont for each ele
ment.

2. In the second phase, we extract the elements from P in nondecrèasing order
by means of a senes of n removeM in operations, putting them back into, C in
order. -

We give pseudo-code for this algorithm in Algorithm 240, assuming that C is a
sequence (such as a list or vector). The algorithm works correctly for any priority.
queue P, no matter how P is implemented. However, the running time of the algo-
rithm is determined by the running times of operations insertitem and removeMin,
which do depend on how P is implemented. Indeed, PriorityQueueSort should be
considered more a sorting "scheme" than a sorting. "algorithm' because it des not
specify how the priority queue P is implemented. The PriorityQueueSort scheme
is the paradigm of several popular sorting algorithms, including selection sort,
insertion-sort, and heap-sort, which we discuss in the remainder of this section.

AlgorithniPQ-Sort(C,P):
Input: An n-element sequence C and a priority queue P that compares keys,

which are elements of C, using a total order relation
Output: The sequence C sorted by the total ordér relation

while C is not empty do
e - C.removeFirst() {r&move an element e from C}
P.insertltem (e, e) {the key is the element itself}

while P is not empty do
e - P. removeM i n Q {remove a smallest element from P}
C.insertLast(e) {add the element at the end of C}

Algorithm 2.40: Algorithm PQ-Sort. Note that the. elements of the input sequence
C -serve both as keys and elements of.the priority queue P.
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Using a Priority Queue Implemented with an Unordered Sequence

As our first implementation of a priority queue P, let us consider storing the ele-
ments of P and theft keys in a sequence S. Let us say that S is a general sequence
implemented with either an array or a doubly linked list (the choice of specific im-
plementation will not affect performance, as we will see). Thus, the eléments of S
are pairs (k, e), where e is an element of P and k is its key. A simple way of im-
plementing method insertitem (k, e) of P is to add the new pair object p = (k,e) at
the end of sequence S, by executing method insertLast(p) on S This implementa-
tionof method insertitem takes 0(1) time, independent of whether the sequence is
implemented using an array ora linked list (see Section 2.2.3). This choice means
that S will be unsorted, for always inserting items at the end of S does not take into
account the ordering of the keys. As a consequence, to perform operation min Ele-
ment, minkey, or removeMin on P, we must inspect all the elements of sequence
S to find an element p = (k, e) of S with minimum k. Thus, no matter how the
sequence S is implemented, these search methods on P all take 0(n) time, where n
is the. number of elements in P at the time the method is executed. Moreover, these
methods run in 12(n) time even in the best case, since they each require search-
ing the entire sequence to find a minimum element. That is, these methods run in
0(n) time Thus, by using an unsorted sequence to implement a pnonty queue, we
achieve constant-time insertion, but the removeM ¡ n operation takes linear time.

Selection-Sort.

If we implement the priority queue P with an unsorted sequence, then the first phase
of PQ-Sort takes 0(n) time, for we can insert each element in constant time. In
the second phase, assuming we can compare two keys in constaht time, the rUnning
time of each remove Min operation is proportional to the number of elements cur-
rently in P. ThUs, the bottleneôk computation in this implementation is-the repeated
"selection" of the minimum element from an unsorted sequence in phase 2.. For this
reason, this algorithm is better known as Ñelection-sort. . .., .

Let us analyze the selection-sort algorithm. As noted above, the bottleneck is
the second phase, where we repeatedly remove an elemeñt with smallest key from
the priority queue P. The size of P starts at n and incrementally decreases with
each removeMin until it becomes O. Thus, the first removeMin operation takes time
0(n), the second one takes time O(n - 1), and so on, until the: last (nth) operation
takes time 0(1). Therefore, the total time needed for this secóndphase is

0(n+(n-1)+

By Theorem 1 13, we have i ) Thus, the second phase takes time
0(n2) a does the entire selection-sort algorithm
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Using a Priority Queue Implemented with a Sorted Sequence

An alternative implementation of a priority queue P also uses a sequence S, ex-

cept that this time let us store items ordered by key values. We can implement

methods minElement and minkey in this case simply by accessing the first ele-

ment of the sequence with the first method of S. Likewise, we can implement the:

removeMin method of P as Sremove(S.firStQ}. Assuming that S is implemented

with a linked list or an array that supports constant-time, front-element removal (see

Section 2.2.3), finding and removing the minimum in P takes 0(1) time Thus, us-

ing a sorted sequence allows for simple and fast implementations of priority queue

açcess and removal methods.
This benéfit comes at a cost, however, for now the method insertitem of P

requires that we scan through the sequence S to find the appropriate position to

insert the new element and key. Thus, implementing the insertitern method of.

P now requires 0(n) time, where n is the number of elements in P at the time

the method is executed In summary, when using a sorted sequence to implement

a priority queue, insertion ruñs in linear time whereas finding and removiiíg the:

minimum can be dqne in constant time.

InsertionSort . /

If we implement the priority queue P using a sorted sequence, then we improve

the running time of the second phase of the PQ-Sort method to 0(n), for each

operation removeM i n on P now takes 0(1) time. Unfortunately, the first phase now

becomes the bottleneck for the running time Indeed, in the worst case, the running

time of each insertitem operation is proportional to the number of elements that are

currently in the priority queue,- which starts out havmg size zero and increases in

size until it has size n The first insertitem operation takes time 0(1), the second

one takes time 0(2), añd so on, until the last (nit) operation takes time 0(n), in the

worst case. Thus, if we use a sorted sequence to implement P, then the first phasé.

becomés the bottleneck phase This sorting algorithm is therefore better known

as insertion-sort, for the bottleneck in this sorting algorithm involves the repeated

"insertion" of a new element at the appropnate position in a sorted sequence

Analyzing thé running time of iñsertion-sort, we note that the, first phase takes:

O(ZL1 z) time in the worst case Again, by recalling Theorem 113, the first

phase runs in 0(n2) time, and hence so does the entire algorithm Therefore, both

selection-sort and insertion-sort both have a running time that is 0(n2)

Still, although selection-sort and insertion-sort are similar, they actually havà

some interesting differences For instance, note that selectionsort always takes

û(n2) time, for selecting the minimum in each step of the second phase requires

scanning the entire priority-queue sequence The running time of insertion-sort, od

'the other hand, varies depending on .the input sequence. For example,' if the input
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2.4.3 The Heap Data Structúre

A realization of a priority queue that is efficient fôr both insertiOns and removalsuses a data structure called a heap This data structure allows us to perform both in-
sertions and removals in loganthImc lime The fundamental way the heap achieves
this improvement is to abandon the idea of stonng elements and keys in a sequence
and store elements and keys in a binary tree instead:

o o
e o o e

oewe wo
UUu.uuu ...

Figure 2.41: Example of a heap storing 13 integer keys. The last node is the one
storing key 8, and external nodes are empty.

A heap (see Figure 2;41) is a binary tree T that stores a collection of keys at
its internal nodes and that satisfies two additional properties: a relational property
defined in terms of the way keys are stored in T and a structUral property defined
in terms of T itself We assume that a total ordér relation on the keys is given, for
example, by a comparator. Also, in our definition of a heap the externâl nodes of
T do not store keys or elements and serve only as "place-holders." The relational
property for T is the following:

Heap-Order Property: In a heap T, for every node y other than the rOot, the key
stored at y is greater than or equal to the key stored at v's parent.

As a ConseqUence of this, property, the keys encounteted on a path from the root to
an external node of T are in nondecreasing order. Also, a minimum key is always
stored at the root of T. For the sake of efficiency, we want the hçap T to have
as small a height as possible. We enforce this desire by insisting that the heap T
satisfy an additional structural property:

g

Complete Binary Tree: A binary tree T with height h is complete if the levels
0, 1,2,.... , h - i have the mäximum number of nodes possible (that. is, level i
has 2' nodes, forO < z <h - 1) and in level h - i all the internal nodes are to
the left of the external nodes.

By saying that all the internal nodes on level h - 1 are "to the left" of the external
nodes, we mean that all the internal nodes on this level will be visited before any
external nodes on this level in an morder traversal (See Figure 241)

By insisting that a heap T be compléte, we identify änother important node in
a heap T, other than the root, namely, the last node f T, which we define to be the
rhïht-mngt dsenect ntArnol nnrla r.f"r ic c....,.. n 41.\

2.4. prioñty Queues and Heaps
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Implementing a Priority Queue with a Heap

Our heap-based priority queue consists of the following (see Figure12.42):

heap: A complete binary tree T whose elements. are stored at internal nodes

and have keys satisfying the heap-order property. We assume the binary tree

T is implemented using a vector, as described in Section 2.3.4. For each
internal node y of T, we denote the key of the element stored at y as k(v).

last: A reference to the last node of T. Given the vector implementation of

T, we assume that the instance variable, last, is an integer index to the cell in

the vector storing, the last node of T.
comp: A a comparator that defines the total order relation among the keys

Without loss of generality, we assume that comp maintains the minimum
element at the root. If instead we wish the maximum elemept to be at the

root, then we can rédefine our comparison rule accordingly.

Figure 2.42: A heap-based priority queue storing integer keys and text elements.

The efficiency of this implementation is based on the following fact

Theòrern 2.10: A heap T storing.n keys has height h = [log(n±Ì)].

Proof: . Since T is complete, the number of internal nodes ofT is at least

This löwer bound is achieved when there is only one internal, node. on level h - 1.

Alternately, we Observe that the number of internal nodes of T is at most

i+2+4+...+2h_1
/ .. .' . ..

This upper bound is achieved when all the 2' nodes on level h - i are internal.
Since the number of internal nodes is equal to the number n of keys, 2'' <n and

n <2's - i Thus, by taking logarithms of both sides of these two inequalities, we

see that h logn+ i and log(n+ 1) <h, which implies that h = log(n+ 1)1 U

Thus, if we can perform update operations onaheapin time proportional to its

http://www.cvisiontech.com


(a)

0 1 2 3 .4 5 6 7 8 9 1011
U HH UUUUU

w z -

(b).
0 1 2 3

'

5:6 7 8 9 1011

Wz

(c) . (d)
Figure 2.43: Last node wand first external node z in a heap: (a) regular case where z
is right of.w; (b) cse where' z is left-most on bottom level. The vector representation
of (a) js shown in (c); similarly, the representation of (b) is shown in.'(d).

The simplifications that, come from representing the heap T with a vector aid
in our methods for implemeñting the priority queue ADT. For example, the update
methods expand Externa 1(z) and removeAboveExterna 1(z) can also be performed
in 0(1) time (assuming no vector expansion is necessary), for they simply involve
allocating or deallocating a single cell in the vector. With this data structure, meth-
ods size and isEmpty take 0(1) time, as.usual: In addition, methods minElement
and mi.nKey can also be easily performed in 0(1) tinie by accessing the element
or key stored at the root of the heap (which is at rank i in the vector). More-
over, because T is a complçte binary tree, the vector associated with heap, T in a
vectorbased implementation of a binary tree has, 2n + i elemènts, n ± i of which
are place-holder external nodes by our convention Indeed, since all the external
nodes have indices higher than any internal node, we don't even have to explicitly
store all the external nodes (See Figure 2;43.)

2.4.
Priority Queues and Heaps 101

The Vector Représentation of a Heap

Note that when the heap T isithplemeiíted with a vector, the index of the last node
w is always equalS ton, and the first empty external node z has index equal to n ± i.
(See Figure 2.43.) Note that this index for z is valid even for the.following cases:

If the current last node w is the right-most node on its level, then z is the
left-most node of the bottom-most level (see Figure 2.43b).

If T has no internal nodes (that is, the priority queue is empty and the last
node in T is not defined), then z is the root of T.

Uil' U...
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Insertion

Let us consider how to perform method insertitem of the priority queue ADT using
the heap T. In order to store a new key-element pair (k, e) into T, we need to add a
new internal node to T. In order to keep T as a complete binary tree, we must add
this new node so that it becomes the new last node of T. That is, we must identify
the correct external node z where we can perform an expand Externa I(z) operation,
which replaces z with an internal node (with empty external-node öhildren), and
then insert the new element at z. (See Figure 2.44a-b.) Node z is called the insertion
position.

Usually, node z is the external node immediately to the nght of the last node w
(See Figure 2.43a,) In any case, by our vector implementation of T, the insertio
position z is stored at index n + 1, where n is the current size of the heap. Thus, we
can identify the node z in constant time in the vector implementing:T. After then
performing expand External(z), node z becomes the last node, and we store the new
key-elenint pair (k, e) in it, so that k(z) = k.

Up-Heap BubbUng after an Insertion

After this action, the tree T is complete, but it may violate the heap-order property.
Hence, unless node z is the root of T (that is, the priority queue was empty before
the insertion), we compare key k(z) with the key k(u) stored at the parent u of z. If
k(u) > k(z), then we need to restore the heap-order property, which can be locally
achieved by swapping the key-element pairs stored, at z and u. (See Figure 2.44c-
d.) This swap causes the new key-element pair (k, e) to move up one level. Again,
the heap-order property may be violated, and we continue swapping going up in T
until no violation of heap-order property occurs (See Figure 2.44e-h.)

The upward movement by means of swaps is conventionally called up-heap
bubbling. A swap either resolves the violation of the heap-order property or propa-
gates itone level up in the heap. Inthe worst case, up-heap bubbling causes the new
key-element pair to move all the way up to the root of heap T. (See Figure 2.44.)
Thus, iii the worst case, the running time of method insertitem is proportional to
the height of T, that is, it is O (log n) because T is complete.

If T is implemented with a vector, then we can find the new läst node z imme-
diately in 0(1) time. For example, we could extend a vector-básed implementation
of a binary tree, so as to add a method that returns the node with index n +1 that
is, with level number n + 1, as defined in Section 2.3.4. Alternately, we could even
define an add method, which adds a new element at the first external node z, at rank
n + lin the vector. In Algorithm 2.60, shown later in this chapter,:we show how
toue this method to effiòiently implement the metho4 insertitem. If, on the other
hand, the heäp T is implemented with a linked structure, then finding the insertion
position z isa little more involved. (See Exercise C-2.27.)
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Removal

Let us now turn to method removeMin of the priority queue ADT. The algorithm

for perforfning method removeMin using heap T is illustrated in Figure 2.45.

We know that an element with the smallest key is stored at thé root r of the
heap T (even if there is more than one smallest key). However, unless r is the

only internal mide of T, we cannot simply delete node r, because this action would

disSpt the binary tree structure. Instead, we access the last node w of T, copy
its key-element pair to the root r, and then delete the last node by performing the

update operation removeAboveExternal(u), where u = T.rightChild(w)). This op-

eration removes the parent, w, of u, together with the node u itself, ánd replaces w

with its left child. (See Figure 2.45ab.)
After this constant-time actioñ we need to update our reference to the last node,

which can be done simply by referencing the node at rank n (after the removal) in

the vector implementing the tree T.

Down-Heap Bubbling after a Removal

We are not done, however, for, even though T is now complete, T may now violate

the heap-order property. To determine whether we need to restore/the heap-order
property, we examine the root r of T. If both children of r are external nodes,

then the heap-order property is trivially satisfied and we are done., Otherwise, we

distinguish two cases:

If the left child of r is internal and the right child is external, let s be the left:

child Ql r.

Otherwise (both children of r are internal), let s be a child of r with the
smallest key.

If the key k(r) stored at r is greater than the key k(s) stored at s, then we need

to restore the heap-order property, which can be locally achieved by swapping the

key-element pairs stored at r anda. (See Figure 2.45cd.) Note that we shoùldn't
swap r with s's sibling The swap we perform restores the heap-order property for

node r arid its children, but'it may violate this property at s; hence, we may have

to continue swapping down T until no violation of the heap-order property occurs

(See Figure 2.45eh.)
This downward swapping process is called down-heap bubbling. A swap eithei

resolves the violation of the heap-order property or propagates it one level down in

the heap1 I the worst case, a key-element pair moves all the way down to the level
immediately above the bottom level (See Figure 245) Thus, the runmng time of

method removeM in is, in the worst case, proportional to the height of heap T, 'that

is, it is O(logn).
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Performance

Table 2.46 shows the running time of the priority queue ADT methòds for the heap
implementation of a priórity queue, assuming that the heap T is realized by a data
structure for binary trees that supports the binary tree ADT methods (except for
etementsQ) in 0(1) time. The linked structure and vector-based structure from
Section 2.3.4 easily satisfy this requirement.

Table 2.46: Performance of a priority queue realized by rneansLqfá heap, which is.
in turn implemented with a vector-based structure for binàry frees.. We denote with
n the .number of elements in the priority queue at the time a method is executed.
The space requiremeñtis 0(n) if the heap is realized with a linked structure, and js
.0(N) if the heap is realized with a vector-based structure, where-N n is the sie
of the array used to implement the vector.

In short, each of the priority queue ADT methods can be perfórmed in 0(1) or
in 0(log n) time, where n is the number of elements at the time the method is xe
cuted. The analysis of the running time of the methods is based on the following:

The height of heap T is O(logn), since T is complete.

In the worst case, up-heap and down-heap bubbling take time proportional to:.
the height of T.

Finding the insertion position in the execution of insertitern and updating the
last node position in the execution of removeM in takes constant timQ.

The heap T has n internal nodes, each storing a reference to a key and à
reference to an element, and n + 1 external nodes.

We conclude 'that the heap data structure is a very efficient realization of the,:
pnonty queue ADT, independent of whether the heap is implemented with a linked
structure or a sequence The heap implementation achieves fast running times for
both insertion and removal, unlike the sequence-based pnonty queue implementa-
tions Indeed, an important consequence of the efficiency of the heap-based imple-
mentation is that it can speed up prionty-queue sorting to be much faster than the
sequence-based insertion-sort and selection-sort algorithms.

Opération Time
size, isEmpty 0(1)

minEtement, minKey 0(1)
insertitem 0(logn)

removeMin 0(logn)
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2.4.4 Heap-Sort

Let us consider again the PQ-Sort sorting scheme from Section 2.4.2, which uses
a priority queue P to sort a sequence S. If we implement the priority queue P with
a heap, then, during the first phase, each of the n insertitem operations takes time
O(log k), where k is the number. of elements in the heap at the time Likewise,
during the second phase, each of the n removeMin operations also runs in time
O (log k), where k is the number of elements in the heap at the time Since we always
have k < n, each such operation runs in O(Iogn) time in the worst case. Thus, each
phase takes O(nlogn) time, so the entire priority-queue sorting algorithm runs in
O(nlogn) time when we use a heap to implement the priority queue This sorting
algorithm is better known as heap'sort, and its performance is summarized in the
following theorem.

Theorem 2.11: The heap-sort algorithm sorts a sequence S of n comparable ele
merits in 0(nlogn) time.

Recalling Table 1.7, we stress that the O(nlogn) running time of.heap-sort is
much better than the 0(n2) running lime for selection-sort and insertion-sort. In
addition, there are several modifications we can make to the heap-sort algorithm to
improve its performance in practice.

Implementing Heap-Sort In-Place

11f the sequence S to be sorted is implemented by means of aú array, we can speed
up heap-sort and reduce its space requirement by a constant factor using a portion.
of the sequence S itself to stow the heap, thus avoiding the use of an external heap
data structure. This is accomplished by modifying the algorithm as follows:

1.. We use a reverse comparator, which corresponds to a heäp where the largest
element is at the tOp. At any time during the execution of the algorithm, we
use the left portion of S, up to a certain rank i - 1, to store the elements in
the heap, and the right portion of S, from rank i to n - i to store the elements
in the sequence. Thus, the first i elements of S (at ranks O, . ... , i 1) provide
thè vector representation of the heap (with modified level numbers starting
at O instead of 1), that is, the. element at rank k is greater than or equal to its
"children" at ranks 2k + i and 2k + 2.

2. In the first phase of the algorithm, we start with an empty heap and move the
boundary between the heap and the sequence from left to right, one step at
a timp In step i (i = 1,... ,n), we expand the heap by adding the element at'
rankiL

3 In the second phase of the algonthm, we start with an empty sequence and
move the boundary between theheap and the sequènde from right to left, one
step at a time At step i (i = 1, , n), we remove a maximum element from
the heap and store it at rank n - i.
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The above variation of heap-sort is said to be in-place, sincè we use only a

constant amount of space in addition to the sequence itself. Instead of transferring

elements out of the seqùence and then back in, we simply rearrange them. We illus-.

trate in-place heap-sort in Figure 2.47. In general, we say that a sorting algorithm.

is in-place if it uses only a constant amount of memory in addition to the memory

needed for the objects being sorted themselves. The advantage of an in-place sort-

ing algorithm in practice is that such an algorithm can make the most efficient use

of the main memory of the computer it is running on.

r

(c)

(d)

1±J7121h131

I

L

Figure 2.47: First three steps of Phase i of in-place heap-sort. The heap portion of

the vector is highlighted with thick.lines. Next to the vector4 we draw a binary tree

view of the heap, eyen thOugh.fiij5 tree is not actually constructed by the in-place

algorithm. .
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Bottom-Up Heap Construction

The analysis of the heap-sort algorithm shows that we can construct a heap storing
ñ key-element pairs in 0(nlogn) lime, by means of n successive insertftem oper-
ations, and then use that heap to extract the elements in order. However, if all the
keys to be stored in the heap are given in advance, there is an alternative bottom-up
construction method that runs in 0(n) time.

We describe this method in this section, observing that it could be included as
one of the constructors in a Heap class, instead of filling a heap using a series of
n insertitem operations. For simplicity of exposition, we describe this bottom-up
heap construction assuming the number n of keys is an integer of the type

n 2h - 1.

That is, the heap is a complete binary tree with every level being full, so the heap
has height

h log(n+ 1).

We describe bottom-up heap construction as a recursive algorithm, as shown in.
Algorithm 2.48, which we call by passing a sequence storing the keys for which we
wish to build a heap. We describe the construction algorithm as acting on keys, with
the understanding that their elements accompany them: That is, the items stored in
the tree T are key-element pairs.

Algorithm BottomUpHeap(S): .

Input: A sequence S storing n 2" - i keys
Output: A heap T storing the keys in S.

if S is empty then
return an empty heap (consisting of a single external node).

Remove the first key, k, from S.
Split S into two sequencés, Si and S2, each of size (n - i)/2. -.

T1BottomUpHeap(Si) .

T2 t- BottomUpHeap(S2)
Create binary tree T with root r storing k, left subtree Ti, and right subtree T2.
Perform a down-heap bubbling from the root r of T, if necessary.
return T

Algorithm 2.48: Recursive bottom-up heap construction.

This construction algorithm is called "bottom-up" heap construction because
of the way ach recursive call returns a subtree that is a heap for the elements it
stores. That is, the "heapificaiion" of T begins at its external nodes an4. proceeds
up the tree as each reòursive call returns. For this reason, some authors réfer to the

bottom-up heap construction as the "heapify" operation.
We Illustrate bottom-up heap construction in Figure 2.49 for h =4.

http://www.cvisiontech.com


110 Chapter 2. Basic Datp Structures

--s
s t-' i

(c)

--s
s t

(e)

s---'
I t' /_,_-

--s
s I' /-5 s

t

o
e 0eoe.fl.u...

e o o e
Qewe
nnUUU UUIUUU

t-'--
s i' /

t s

t_s -
s i-'s -

t_s
- fi_ i

s It-- s
st st s

o
oe
u...

G

ee
U...

(b)

--s
r tt F-

o
e oeoe

......U.

o
o e

a,o e
unU.n

o
e .0 o.enoe eon

...u..0 e.uI.UuU

(g) -

Figure 2.49: Bottom-up construction of a heap. with 15 keys: (a) we begin by con-

structing 1-key heaps on the bottom level; (b)(c) we combine these heaps into

3-key heaps and then (d)(e) 7-key heaps, until (f)(g) we create the final heap.-.

The paths of the down-heap bubblings are highlighted with thick lines.
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Figure 2.50: Visual justification of the linear running time of bottomup heap con-
struction, where the páths associated with the internal nodes have been highlighted
alternating grey and black. Pot example, the path associated with the root consists
öf the internal nodes storing, keys 4, 6, 7, and 11, plus an external node:

Bottom-up heap construction is asymptotically faster .than incrementally insert-
ing n keys into an initially empty heap, as the following theorem shows.

Theorem 2.12: The bottom-up construction of a heap with n items takes 0(n)
time.

Proof: We analyze bottom-up heap construption using a "visual" approach;
which is illustrated in Figure 2 50

Let T be the final heap, let y be an internal node of T, and let T(v) denote the
subtree of T rooted at y. In the worst case, the time for forming T (y) from the
two recursively formed subtrees rooted at v's children is proportional to the height
of T(v) The worst case occurs when down-heap bubbhng from y traverses a path
from y all the way to a bottom-most external node of T (y). Consider now the path
p(v) of T from node y to its morder successor external node, that is, the path that
starts at y, goes to the right child of y, and then goes down leftward until it reaches
an external node. We say that path p(v) is associated with node y. Note that p(v)
is not necessarily the path followed by down-heap bubbling when Ì'orming T(v).
Clearly, the length (number of edges) of p(v) is equal to the height of T (y). Hence,
forming T(v) takes time proportional to the length of pÇv), in the worst case. Thus,
thè total running time of bottom-up heap constructiOn is proportiónal to the sum of
the lengths of the paths associated with the internal nodes of T.

Note that for any two internal nodes u 'and y of T, paths p(u) and p(v) do not
share edges, although they may share nodes. (See Figure 2.50.) Therefore, the sum
of the lengths of the paths associated with the internal, nodes of T is no more than
the number of edges of heap T, that .is, no more than 2n. We conclude that the:

bottomup construction of heap T takes 0(n) time. U

To summarize, Theorem .2.12 says that the first phase of heap-sort can be im-
plemented to mn in 0(n) time. Unfortunately, the running time of the second*phase
of heap-sort is (nlogn) in the worst case.. We.will. not justify.this lower bound
until Chapter 4, however. . .
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The Locatör Design Pattern

We conchide this section by discussing a design pattern that allows us to extend

the priority queue ADT to have additional functionality, which will be useful, for

example, in some of the graph algorithms discussed later in this book.

As we saw with lists and binary trees, abstracting positional infonmition in a

container is a very powerful tool. The position ADT, described in Sectipn 2.2.2,

allows us to identify a specific "place" in a container that can, store an element. A

position can have its element changed, for example, as a consequence of a swa pEle-

ments operation, but the position stays the same..

There are also applications where we need to keep track of elements as they

are being moved around inside a container, however. A design pattern that fulfills

this need is the locator. A locator is a mechanism for maintaining the association

between an element and its current position in a container. A locator "sticks" with

a specific element, even if the element changes its position in the cntainer.

A locator is like a coat check; we can give our coat to a coat-tooth attendant, and

we receive back a coat check, which is a "locator" for our coat. The position of our

coat relative to the other coats can change, as other coats are added and removed,

but our coat check can always be used to retrieve our coat. The important thing to

remember about a locator is that it follows its item, even if it changes position.

Like a coat check, we can now imagine getting something back when we insert

an element in a containerwe can get back a locator for that element: This locator

in turn can be used later to refer to the element within the container, .for example,

to specify that this element should be removed from the container. As an abstract

data type, a locator L supports the following methods:

elementO: Return the element of the item associated with L.

keyO: Retùm the key of the item associated with L.

For the sake of concreteness, we next discuss how we can use loçators to extend

the repertoire of operations of the priority queue ADT to include methods that

return locators and take locators as arguments.

Locator-Based Priority Queue Methods

We can use locators in a very natural way in the context of a priority queue. A

locator in such a scenario stays attached to an item inserted in the priority queue,

and allows us to access the item in a generic manner, independent of the specific

implementation of the priority queue. This ability is important for a priority queue

implementation for there are no positions, per se, in a priority queue, since we do

not refer to items by any notions of "rank," "index' or "node?'

http://www.cvisiontech.com


2.4. Priority Queues and Heaps

Extending the Priority Queue ADT

By using locators, we can extend the priority queue ADT with the following meth-
ods that access and modify a priority queue P: -

113

minO: Return the locator to an item of P with smallest key.

inert(k,e) Insert a new item with element e and key k into P and
return a locator to the item.

removeçe): Remove from P the item with locator L.

replaceElementçe, e): Replace with e and return the element of the item of P
with locator t

replaceKey(L, k): Replace with k and return the key of the item of P with
locator L.

Locator-based access runs in 0(1) time, while a key-based .access, which must
look for the element via a search in an entire sequence or heap, runs in 0(n) time
in the worst case. In addition, sOme applications call for us to restrict the operation
replacekey so that it only increases or decreases the key. This restriction can be
done by defining new methods increaseKey or decreasekey, for example, which
would take a locator as an argument. Further applications of such priority queue
methods are given in Chapter 7.

Comparison of Different Priority Queue Implementations

In Table 2.51, we compare running times of the priority queue ADT meth.ods de-
fined in this section for the unsorted-sequence, sorted-sequence, and heap imple-
mentations.

Table 2.51: Comparison of the running times of the priority queue ADT methods
for the unsorted-sequence, sorted-sequence, and heap implementations. We &note
with n the number of elements in the priority quèue at the time.a niethod is executed.

Method
Unsorted
Sequencé

Sorted
Sequence Heap

size, isEmpty, key, replaceElement 0(1) 0(1) 0(1)
minElement, mm, minkey ' 0(n) 0(1) 0(1)

insertitem, insert 0(1) 0(n) O(logn)
removeMin 0(n) 0(1) 0(logn)

remove 0(1) 0(1) 0(logn)
replaceKey 0(1) 0(ñ) 0(logn)
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2.5 Dictionaries and Hash Tables

A computer dictionary is similar to a paper dictionary of words in the sense that

both are used to look things up. The main idea is that users can assign keys to

elements and then use those keys later to look up or remove elements. (See Fig

urn 2.52.) Thus, the dictionary abstract data type has methods:for the insertion,

removal, and searching of elements with keys.

key

Ï.element

The Dictionary

FigureS 2.52:. A conceptual illustration of the dictionary ADT. Keys (labels) are

assigned to elements (djskettes) by a user. The resulting items (labeled diskettes)

are inserted into the dictionary (file cabinet). The keys can beiised later to retrieve

or remove the items. .

2.5.1. The Unordered Dictionary ADT

A dictionary stores key-element pairs (k, e), which we call items, where k is the key

and e is the element For example, in a dictionary stonng student records (such as

the student's name, address, and course grades), the key might be the student's ID

numbet In some applications, the key may be the element itself.

We distinguish two types Ql dictionaries, the unordered dictionary and thp or-

dered dictionary. We study ordered dictionaries in Chapter 3; we discuss unordered

dictionaries here In either case, we use a key as an identifier that is assigned by an

application or user to an associated element.

For the sake of generality, our definition allows a dictionary to store multiple

items with the same key. Nevertheless, there are applications in which we want

to disallow items with the same key (for example, in a dictionary storing student

records, we would probably want to disallow two students having the same ID)

In such cases whèii keys are unique, .then the key associated with. an object can be

viewed as an "address" for that object in memory. Indeed,, such dictionaries are

sometimes referred to as "associátive stores," because the key associated with an

object determines its "location" in thé dictionary.
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As an ADT, a dictionary D supports the following fundamental methods:

find Element(k): If D contains an item 'with key equal to k, then return
the elenient of such an item, else return a special element
NO..SUCHKEY.

insertltem(k,è): Insert an item with element e and key k into D.

removeElement(k): Remove from D an item with key equal to k, and return
its element. If D has no such item, then return the special
element NO$(JCH.KEY.

Note that if we wish to store an item e in a dictionary so that the item is itself its own.
key, then we would insert e with the method call insertltem(e, e). When operations
flndElement(k) and removeElement(k) are unsuccessful (that is, the dictionary D
has no item with key equal to k), we use the, convention of returning a special
element NOSUCH....KEY. Such a special element is known as a sentinel.

In addition, à 'dictionary can implement other supporting methods, such as the
usual size() and. isEmpty() methods for containers. Moreover, we can include a
method, elementsQ, which returns the 'elements stored in D, and keys, which
returns' the keys stored in D. Also, allowing for nonunique keys could motivate
our including' methods such as findAllElements(k), which returns an iterator of all
elements with keys equal to k, and removeAllElements(k), which removes from D
all the items with key equal to k, returning an iteratorof their elements.

Log Files

A simple way of realizing a dictionary D uses an unsorted sequence S, which in
turn is implemented using 'a vector or list to store the key-element pairs. Such an
implementation is often called a logfile or audit trail. The prìmaiy applications of
a log file are situations where we wish to store small amounts of data or data that is
unlikely to change much bver time We ilso refer to the log file implementation of
D as an unordered sequence implementation.

The space required for a log file is 8(n), since both the vectOr and linked list
data structures can maintain their memory usage to be propqrtional to their size. In
addition, with a log file implementation of'the diötionary ADT, we can realize op-
eration insertltern(k,e) easily and efflcientl', just by a single eaU to the insertLast

method on S, which runs in 0(1) time.
Unfortunately, a findElement(k) operation must be performed by scanning the

entire sequence S, examimng each of its items The worst case for the runrnng time
of this method clearly occurs when the search is unsuccessful, and we reach the end

of the sequence having examined all of its n items Thus, the find Element method

runs in 0(n) time Similarly, a linear amount of time is needed in the worst case to
perform a rèmoveElement(k) operation on D, for in order to. remove an item with

a given key, wenìust first find it by scanning'through the entire sequence S.
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2.5.2 Hash Tables

The keys associated with elements in a dictionary are often meant as "addresses"

for those elements. Examples of such applications include a compiler's symbol

table and a registry of environment variables. Both of these structures consist of a

collection of symbolic names where each name seres as the "address" for proper-

ties about a variable's type and value. One of the most.efflcient ways to implemçnt

a dictionary in such circumstances is to use a hash table. Although, as we will see,

the worst-case running time of the dictionary ADT operations is 0(n) when using

a hash table, where n is the number of items in the dictionary. A hash table can per.

form these opérations in O(i) expected time. It consists of two major components,

the first of whichis a bucket array.

Bucket Arrays

A bucket array for a hash table is an array A of size N, where eachiceil of A is

thought of as a "bucket" (that is, a container of key-element pairs) and the integer

N defines the capacity of the array. If the keys are integers well disçributed in the

rangefl O, N - 1, this bucket array is all that is needed. An element e with key k

is simply inserted into the bucket A [kI. Any bucket cells associated with keys not

present in the dictionary are assumed to hold the special NCLSLJCHKEY object.

(See Figure 2.53.)

0 1 2
io

AAAAAAAAAAA
The bucket for items with/

key = 6

Figure 2.53: An illustration of a bucket array.

Of course, if keys are not unique, then two different elements may be mapped

to the same bucket in A. In this case, we say that a collision has occurred. Clearly,

if each bucket of A can store only a single element, then we cannot associate more

than one element with a single bucket, which is a problem in the ease of collisions

To be sure, there are ways of dealing with collisions, which we will discuss later,

but the best strategy is to try to avoid them in the first place. H.

97654
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Analysis of the Bucket Array Structure

If keys are unique, then collisiofls are hot a concern, and searches, insertions, and

removals iñ the hash table take worst-case time 0(1). This sounds like a great

achievement, but it has two mäjor drawbacks. The first is that it uses space 0(N),

which is not necessarily relàted to the number of items, n, actually present in the

dictionary. Indeed, if N is large relative to n, then this implementation is wasteful of

space. Thè secoñd drawback is that the bucket array requires keys be unique inte-

gers in the rañge [QN - 1], which is often not the case. Since these two drawbacks

are so common, we define the hash table data structure to consist of a bucket array

together with a "good" mapping from our kçys to integers in the, range [O,N - 11.

2.5.3 Hash Functions

The second part of a hash table structure is a function, h, called a hash function,

that maps each key k in our dictionary to an integer in the range [O,N - 1], where

N is the capacity of the bucket array for this table Equipped with such a hash

function, h, we cän apply the bùcket array method tó arbitrary keys. The main idea

of this approach iSto use the hash functiôn value, h(k), as an index into our bucket

array, A, instead of the key k(whichis most likely inappropriate for use as a bucket

array index). That is, we store the item (k, e) in the bucket A[h(k)].

We say that a hash function is "good" if it maps the keys in our dictionary

so as to minimize collisions as much as possible. For practical reasons, we also

would like the evaluâtion of ,a given hash function to be fast and easy to compute.

Following a common convention, we view the evaluation of a hash function, h(k)

as consisting of two actionsmapping the key k to an integer, called the hash

code, and mapping thehash code to an integer within the range of indices of a

bucket array, called the compression map (See Figure 2 54)

Arbitrary Objects

4 0
...24012

oi2 N-1

Figure 254. The two parts of a hash function a hash code and a compression map
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Hash Codes

The first action that a hash function performs is to také an arbitrary key k and assign

it an integer value The integer assigned to a key k is called the hash code or hash
value for k. This integer value need not be in the range [O,N - 11, and may even be
negative, but we desire that the set of hash codes assigned to our keys should avoid

collisions as much as possible. Inaddition, to be consistent with all of our keys, the

hash code we use for akey k should be the same as the hash code for any key that

is equal to k.

Summing Components .

For base types whose bit representation is double that of a hash code, the above
scheme is not immediately applicable. Still, one possible hash code, and indeed

one that is used by many Java implementations, is to simply cast à (long) integer

representation of the type down to an integer the size of a hash code. This hash
code, of course, ignores half of the information present in the oniial value, and if
many of the keys in our dictionary only differ in these bits, then they will çollide
usiñg this simplé hash code. An alternative hash code, then, which takes all the
original bits into consideration, is to sum an integer representation of the high-order

bits with an integer représentation of the low-order bits. Indeed; the approach of
summing components can be extended to any object x whose binary representation
can be viewéd as a k-tuple (xo ,xi,. .. , xk_ i) of integers, for we<cáh then form a hash

code for x as x.

Polynomial Hash Codes

The summation hash code, described above, is not a good chóice for character
strings or other multiple-length objects that can be viewed as tuples of the form

(xo,xI, . . ,xk_ where the order of the x1's is significant. For example, consider a
hash code for a character string s that sums thç ASCII (or Unicode) values of the
characters in s. This hash code unfortunately produces lots of unwanted collisioñs
for common groups of strings. In particular, "tempO 1" and "tempi O" collide using

this function, as do "stop", "tops", "pots", and "spot". A better hash code
should somehow take into consideration the positions of the x's. An alternative
hash code, which does exacfly this, is to choose a nonzero constant, ¿z $ 1, and use

asahash code the value

+ . . +xk-2a+xk_1,

which, by Homer's rule (see Exercise C-1.16), can be rewritten as

xk_l+a(xk_2+a(xk_3+".'+9(x2+a(x1 tao))...))
which, mathematically speaking, is simply a polynomial in. a that takes the compo-
nents (xO,xi, . of an object x as its coefficients. This hash codç i therefore

called a polynomial hash code.
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2.5.4 Compression Maps

The hash code for a key k will typically not be suitable for immediate.use with a
bucket array, because the range of possible hash codes for our keys will typically
exceed the range of legal indices of our bucket array A. Thät is, incorrectly using a
hash code as an index into our bucket array may result in an array out-of-bounds ex-
ception being thrown, either because the index is negative or it exceeds the capacity
of A. Thus, once we have determined an integer hash code for a key object k, there
is still the issue of mapping that integer into therange 0,N- 1]. This compression
step is the second action that a hash function performs.

The Division Method

One simple, compression map to use is

h(k) = RI mod N,

which is called the division method.

2.5. Dictionalies and.Hash Tables 119

An Experimental Hash Code Analysis

Intuitively, a polynomial hash code usesm itiplication by the constant a as a way
of "making room" for each component in a tuple of values while also preserving
a characterization of the prévious compOnents. Of course, on a typical compüter,
evaluating a polynomial will be done using the finite bit representation for a hash
code; hence, thè value will periodically overflow the bits used for an integer. Since
we are more interested in a gOod spread of the object x with respect to other keys,
we simply ignore such overflows. Still, we should be mindful that such overflows
are occurring and choose the constant a so that it has sorne nonzero, low-order bits,
which will serve to preserye some of the information content even as we are in an
overflow situation.

We have done some experimental studies that suggest that: 33, 37, 39, and 41
are particularly good choices for a when working with character strings that are
English words. In fact, in a list of over 50,000 English words formed as the union
of the word lists provided in two variants of Unix, we found that taking a to be 33,
37, 39, or 41 produced less than i collisions in each casé! It should come as no
surprise, then, to learn that many actual character string implementations choose
the polynomial hash function, using oñe of these constants for a, as a default hash
code for strings. For the sake of speed, however, sorne implementatioùs only apply
the polynomial bash function to a fraction of the characters in long strings, sa),,
every eight characters.
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If we täke. N to be a prime number, then the division compression map helps

"spread out" the distnbution of hashed values Indeed, if N is not pnme, there is

a higher likelihood that patterns in the distnbution of keys will be repeated in the

distnbution of hash codes, thereby causing collisions For example, if we hash

the keys f200, 205,210,215,220,... ,600} to a bucket array of size 100, then each

hash code will collide with three others But if this same set of keys is hashed to

a bucket array of size 101, then there will be no collisions., If a hash function is

chosen well, it should guarantee that the probability of two different keys getting

hashed to the same bucket is at most 1/N. Choosing N toTbe 'aprime number is not

always enough, however, for if there is a repeated pattern of key valuès of the form

iN + j for several different i's, then there will still be collisions.

The MAD Method

A more sophisticated compression function, which helps eliminate repeated pat-

terns in a set of integer keys is the multiply add and divide (or "MAD") method. In

usingthiS method we define the compression function, as

h(k) = lak+bl mod N,

where N is a prime number, and a and b are nonnegative integers randomly chosen

at the time the compression function is determined so that a mod N $ O This

compression function is chosen in order to eliminate repeated patterns in the set

of hash codes and get us closer to haviñg a "good" hash function, that is, one

such that the probability any two different keys will collide is at most 1/N. This

good behavior would be the same as we would have if these keys were "thrown"

uniformly into A at random.
With a compression function such as this, that spreads n integers fairly evenly

in the range [0, N - 1], and a mapping of the keys in our dictionary to integers, we

have an effective hash function Together, such a hash function and a bucket array

define the key ingredients of a hash table implementation of the dictionary ADT

But before we can give the details of how to perform such operations as find-

Element, insertltem, ánd removeElement, we must first resolve the issue of how:

we will be handling collisions.

2.5.5 Collision-Handling Schemes

Recall that the main idea of a hàsh table is to take a bucket array, A, and a hash

function, h, and use them to implement a dictionary by storing each item (k, e) in

the "bucket" A[h(k)}. This simple idea is challenged, however, when we have two

distinct keys, ki and k2, such that h(ki) = h(k2). The existence of such collisions

prevents us from. simply inserting a new item (k, e) directly in the bucket A[h(k)].

They also complicate our procedure.for performing the findElement(k) operation.

Thus, w need consistent strategies for resolving, collisions.
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Separate Chaining

A simple and efficient way for dealing with collisions is to have each bucket A [i]
store a reference to a list, vector, or sequence, S,, that stores all the items that
our hash function has mapped to the bucket A [i] The sequence S can be viewed
as a miniature dictionary, implemented using the unordered sequence or log file
method, but restricted to only hold items (k, e) sùch that h(k) = i. This collision
resolution nie is known as separate chainilig. Assuming that we implement each
nonempty bucket in a miniature dictionary as a log file in this way, we can perform
the fundamental dictionary operations as follows:

findElement(k):

if Bis empty then
return NO$UCHYEY

else
{search for the key k in the sequence for this bucket}

return B.findElement(k)

insertltem(k,e):
if A[h(k)] is empty then

Create a new initially empty, sequence-based dictionary B

else
Bt-A[h(k)j

B.insertltem(k,e)

removeEiement(k):

B-A[h(k)]
if B is empty then

return ÑO.SUCH....KEY -

else
return B removeElement(k)

Thus, for each of the fundamental dictionary operations involving a key k, we del

gate the handling of this operation to the miniature sequence-based dictionary

stored at A [h(k)]. So, an insertion will put the new item at the end of this sequence,

a find will search through this sequence until it reaches the end or finds an item with

the desired key, and a remove will additionally remove an item after it is found. We

can "get away" with using the simple log-file dictionary implementation in these

cases, because the spreading properties of the hash function help keep each mima-

ture dictionary small Indeed, a good hash function will try to nummize collisions

as much as possible,which will imply that most of our buckets arc either empty or

store just a single item.
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Figure 255: Example of a hash table of size 13, storing 10 integer keys, with col-

lisions resolved by the chaining method. The compression mâp in this case is

h(k)=kmodl3.

In Figure 2.55, we give an illustration of a simple hash table that uses the divi-

sion compression function and separate chaining to resolve collisions.

Load Factors and Rehashing

Assuming that we are using a good hash function for holding thè n items of our

dictionary in a bucket array of capacity N, we expect each bucket to be of size

n/N. This parameter, which is called the load factor of the hash table, should
therefore be kept below a small constant,preferably below 1. For, given a good
hash function, the expected rünning time of operations findElenient, insertitem,
and .removeElement' in a dictionary implemented with a hash table that uses this

function is 0( In/Ni). Thus, we can implement the standard dictionary operätions

to run in 0(1) expected time, provided we know that n is 0(N).
Keeping a hash table's load factor a constant (0.75 is common) requires addi-

tional, work whenever we add elemeñts so as to exceed this bound. In such cases,

in order to keep the load factor below the specified constant, we need to increase

the size of our bucket array and change our compression map to match this new
size. Moreover, we must then insert all the existiñg hash4able elements into the
new. bucket array using the new compression map. Such a size increase and hash

table rebuild is called rehashing Following the approach of the extendable array
(Section 1 5 2), a good choice is to rehash mto an array roughly double the size of

the original array, choosing the size of the new array to bea prime number.

D
41 28
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New element with
key = 15 tobé inserted

must probe 4 times
before finding empty slot

r m

Figure 2.56: An insertion into a hash table using linear probing to resolve collisions.
Here we use the compressIon map h(k) = k mod 11.

The operation rernoveElement(k) is more complicated than this, however. In-
deed, to fully implemènt this method, we should restoie the contents of the bucket
array to look as though the item with key k was never insertQd in. its bucket A [i]

in the first placé. Although performing suck a restoration is certainly possible, it
requires that we shift items down in buckets above A [i], while not shifting &hers in
this group (namely, the items that are already in their correct. location). A typical
way we éan get around this difficulty, is to replace. thefl,deleted .item with a special
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Open Addressing

The separate chaining rule has many nice properties, such as allowing for sim-
pie implementations of dictionary operations, but it nevertheless has one shght
disadvantage: it requires the use of an auxiliary data structurea list, vector, or
sequenceto hold items with colliding keys as a log file. We can handle collisions
in other ways besides using the separate chaining rule, however. In particular, if
space is of a premium, then we can use the alternative approach of always storing
each item directly in a bucket, at most one item per bucket. This approach saves
space because no auxiliary structures are employed, but it requires a bit more com-
plexity to deal with collisions. There are several methods for implementiiig this'
approach, which is referred to as open addressing.

Linear Probing

A simple open addressing collision-handling strategy is linear probing. In this
strategy, if we try tO insert an item (k, e) into a bucket A [i] that is aheady occupied,
where i = h(k), then we try next atA[(i+ 1) mod N]. IfA[(i+ 1) mod N] is oc-
cupied, then we try A[(i + 2) mod NJ, and so on, until we find an empty bucket in
A that can accept the new item. Once this bucket is located, we simply insert the
item (k, e) here. Of course, using this collision resolution strategy requires that we
change the implementation of the find Element(k) operation. in particular, to per-
form such a search we must examine consecutive buckets, starting from A[h(k)],
until we either find an item with key equal to k-.or we find añ empty bucket (in
which case the search is unsuccessful). (See Figure 2.56.)

c* C* C*
Hl 2 31 4 5 6 78 'i6

13 26 37 16 21
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"deactivated item" object. This object must be marked in some way so that we can

immediately detect when it is occupying a given bucket With this special marker

possibly occupyiñg buckéts in our hash table, we modify our search algorithm for

removeElement(k) or findElement(k), so that the search for a key k should skip

over dèactivated items and continue probing until reaching the desired item or an

empty bucket. But our algorithm for the insertltem(k, e) should 'Instead stop at a

deactivated item and replace it with the new item to be inserte4.

Linéar probing saves space, but it complicates removals. Even with the use of

the deactivated item object, the linear-probing col1ision-handliI1 strategy suffers

from an additional disadvantage It tends to cluster the items of the dictionary into

contiguous runs, which causes searches to slow down cobsiderably.

Quadratic Probing

Another open addressing strategy, known as quadratic probing, involves iteratively

trying the buckets A[(i+f(J)) modN], fori = 0,1,2,..., wheef(j) = j2, until

finding an empty bucket. As with linear probing, the quadratic probing strategy

complicates the removal
6

peration,. but it does avoid the kinds o clustering patthrns

that occur with linear probing. Nevertheless, it creates its owñ. kind of clustering,

called secondary clustéring, where the set of filled array cells,bounces" around

the array in a fixed pattern If N is not chosen as a pnme, then the quadratic probing

strategy may not find an empty bucket in A even if one exists. In fact, even if N is

prime, this strategymay not find an empty slot, if the bucket array is at least half

full.

Double Hashing

Another open addressing strategy that does not cause clustering of the kind pro-

duced by linear probing or the kind produced by quadratic pròbing is the double

hashing-strategy. In this approach, we choose a secondary hash function, h', and

if h maps some key k tò a bucket A[i], with i = h(k), that is already occupied, then

we iteratively try.the buckets A[(i+f(j)) mod N] next, for 3= 1,2,3,..., where

f(j) =j h'(k) In this scheme, the secondary hash function is not allowed to eval-

uate to zero; a common choice is h'(k) = q - (k mod q), for some prime number

q <N Also, N should be a prime Moreover, we should choose a secondary hash

function that will attempt to mimmize clustering as much as possible

These open addressing schemes save some space over the separate chaining

method, but they are not necessarily faster In experimental and theoretical anal

yses, the chaining method is either competitive or laster than the other methods,

depending on. the load factor of the bucket array. So, if memory space is not a

major issue, the collision-handling method of choice seems to be separate chain

ing. Still, if memory space is in short supply, then one of these open addressing

methods might be worth implementing, provided our probing strategy minimizes

the clustering that can occur from open addressing.
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2.5.6 Universal Hashing

In this section, we show how a hash fi nction can be guaranteed to be good. In order
to do this carefully, we need to make our discussion a bit more mathematical.

As we mentioned earlier, we can assume without loss of generality that our set
of keys are integers in some range. Let [O,M - 1] be this range. Thus, we can view
a hash function h as a mapping from integers in the range [O,M - l]to integers in
the range [O,N - 1], and we can view the set of candidate hash functions we are
considering as a family H of hash functions. Such a family is universal if for any
two iñtegers j and k in the range [O, M - 1j and for a hash function chosen uniformly
at random from H;

Pr(h(j) =h.(k))

Such a family is also known as a 2-universal family of hash functions. The goal of
choosing a good hash function can therefore be viewed as the problem of selecting
a small universal family H of hash functions that are easy to compute. The>eason
universal families of hash functions are useful is that they result in a 16w expected
number of c011isions.

Theoreim 2.13: Let] be an integer in the range [O,M - 1], letS be a set of n inte-
gers in this sanie range, and let h be a hash function chosen uniformly, at random,
fröm a universal family of hash functions from integers in the range [O, M - l]to
integers in the range [O, N - 1]. Then the expected number of collisions between]

and the integers in S is at most n/N.

Proof: Let cÂ(j,S) denote the number of collisions between j and integers in S

(thatis, Ch(J,S) = I{k E S h(j) = h(k)}I) The quantity we are interested in is the
etpectçd value E (ch(j, S)). We can write ch (j, S) as

Ch(J,S) = ZXJ,k,
kES

where Xf,k is a random variable that is i if h(j) = h(k) and is O otherwise (that
is, XJ,k is an indicator randdrn variable for a collision between j and k). By the
linearity of xpectation, 1.

E(ch(j,S)) = E(XJ,k).

sES

Also, by the definition of a universal family, E(XJ,k) 1/N. Thus,

E(ch(J,S))
sES

N

Put another way, this theorem statös that the expected number of colliÑions

between a hàsh code j and the keys already in hash table (using a hash function
chosen at random from a universal family H) is at most the current load factor of

23.
pictionaHes and Hash Tables 125
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the hash table Since the time to perform a search, insertion, or deletion for a key

j ii a hash table that uses the chaining collision-resolution rule is proportional to..
the number of collisions between j and the other keys in the table, this implies that
the expectéd running time of y such operation is proportional to the .hash table's
load factor. This is exactly what we want.

Let us turn our attention, then, to the problem of constructing a small universal
family of hash functions that are easy to compute. The set of hash functions we
construct is actually similar to the final family we considered at the end of the
previous section. Let p be a prime number greater than or equal to the number of
hash codes M but less than ZM (and there must always be such a prime number,,
according to a mathematical fact known as Bertrand's Postulate).

Define H as the set of hash functions of the form

ha,b(k) = (ak+b mod p) mod N.

The following theorem establishes that this family of hash functions isjuniversal.

Theorem :2.14: The familyH ={ha,b:O <a <p and O < b c p} is universal.

Proof: Let i denote the set of integers in the range [O, p 1]. Let us separate
each hash function ha,b into the functions

fa,b(k) = ak'+b mod p

g(k)=k.modN,

so that ha,j, (k) = g(fa,b (k)). The set of functions faj defines a family of hash
functions F that map integers in Z to integers in Z We claim that each function
in F causes no collisions at all To justify this claim, consider fa,b (J) and fai, (k)
for some pair of different integers j and k in Z If fa,b(3) = fa,b(k), then we would

have a collision But, recalling the defimtion of the modulo operation, this would

imply that

ai+b_»[jPtzak+b [ak±bjp.

Without loss of generality, we can assujne that k < j, which implies that

a(J_k)=(['"'j [ak-Ebj)

Since a O and k < j, this in turn implies that a(j - k) is a multiple of p. But
a <p and .j - k < p, so there is no way that a(j - k) can be a positive multiple of
p, because p is prime (remember that every positive integer can be factored into a
product of pnmes) So it is impossible for fa,b(J) = fa,b(k) if j L k To put this
another way, each fai, maps the integers in Z to the integers in Z in a way that
defines a one-to-one correspondence. Since the functions in F çause no collisions,
the oñly way that a function hai, can cause a collision is for the function g to cause
a collision.
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That is, the family H is universal.

In addition to being universal, the functions in H have à number of other nice
properties. Each unction in.H is easy to select, since doing so simply requires that
we select a pair Of random integers a and bsuch that 0.< a.<p and O Ç b <p.
In addition, each function in H is easy to compute in 0(1) time, requiring just one
multiplication, one addition, and two applications of the modulus function Thus,
any hash function chosen umfonnly at random in H will result in an implemen-
tation of the dictionary ADT so that the fundamental operations all have expected
ruriliing times that are O( In/Ni ) since we are using the chaining rule for collision
resolution.

35. Dictionaries and Hash Tables. 127

Let j and k be two different integers in Z. Also, let ê(j, k) denote the nùmijér
of functions in H that map j and k to the same integer (that is,. that cause j and. k
to collide). We can derive an tipper bound for c(j, k) by using a simple countiñg
argument. If we consider any integer x in Z, there are p different functions fa,b such
that ja,b(j) = x (since we can chobse a b for each choice of a to make this so). Let
us now fix x and note that each such function faj, maps k to a unique integer

Yfa,b(k)
in Z with x y. Moreover, of the p different integers of the form 5.' = fa,b (k), there
are at most

[p/N]-1

such that g(y) = g(x) and x y (by the definition of g). Thus, for any x in Z, there
are at most Ip/Nl - i functions h,j, in H such that

X = fj,(j) and ha,b(j) = ha,b(k).

Since there are p choices for the integer x in Z, the above . counting arguments
imply that

c(j,k) (11 i)
< p(pl)

There are p(p - 1) functions in H, since each function ha,i, is determinetby a pair
.(a,b) such that O < a <p and O b < p. Thus, picking a function uniformly at
random from H involves picking one of p(p - 1) functions. Thérefore, for any two
different integers j and k in Z,

Pr(ha,b(j) = ha,b(k)) :

p(p-1)/N
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26 Java E ample: Heap

In order to better illustrate how the methods of the free ADT and the priority queue

ADT could interact in a concrete implementation of the heap datac structure, we

discuss a case study implementation of the heap data structure in Java in this sect-

tioñ. Specifically, a Java implementation of a heap-based priority queue is shown

in Algorithms 2.57-2.60. To aid in modularity, we delegate the maintenance of

the structure of the heap itself to a data structure, calledheap-tree,that extends a

binary tree and provides the following additional specialized update methods:

add(o): Performs the following sequence of operations:
expandExternal(z);
replaceElement(z,o);
return z;

such that z becomes the last node of the tree at the end of

the operation.

removeO: Performs the following sequence of operations:
t t- z.elementO;
removeAboveExternal (rightChild(z));
return t;

where z is the last node at the beginning of the operation

That is, the add operation adds a new element at the first external node, and the

remove operation removes the element at. the last nodç. Using a vector-based im-

plementation of a tree (see Section 2.3.4), operations add. and remove take 0(1)
time The heap-tree ADT is represented by the Java interface HeapTree shown in

Algorithm 2 57 We assume that-a Java dass VectorHeapTree (not shown) imple-

ments the HeapTree interface with a vector and supports methods add and remove

in 0(1) time.

public interface HeapTree extends InspectableBinaryTrée, PositionalContainer {
public Position add(Object eiern);
public Object removeO;.

}

Code Fragment 2.57: Interface HeapTree for a heap-tree. It extends the interface

InspectableBinaryTree with methods replaceElement and swapElements, inherited

from the PositionalContainer interface, and adds the specialized update methods

add and remove.

Class HeapPriorityQueue implements the PriorityQueue interface using a heap

It is shown in Algonthms 2 58 and 2 60 Note that we store key-element items of

class Item, whIch is simply a class for key-element pairs, into the heap-tree.
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Code Fragment 2.58: Instance variables, constructor, and methods size,. isEmpty,

minElement, and minKey of class HeapPriorityQueue, which implements apnority

queue by means of a heap. Other methods of this class are shown in Algoñ 2.60.

The auxiliary methods key and element extract the key and elementof an item of

the priority queue stored at at given position of the heap-tree.

2.6. Java Example: Heap 129

public class HeapPriorityQueue implements PriorityQueue {
HeapTree T;
Comparator comp;

public HeàpPriorityQueue(Comparator c) {
if ((comp = c) == null)

throw new lllegalArgùrnentExcePtiofl("Null comparator passed");

T = new VectorHeapTreeO;

}

public mt sizeQ {
return (T.size() - 1) /

}

public boolean isEmptyQ {
return T.size() == 1; }

public Object minElernentQ throws PriorityQueueEmptyExcePtiotl {
if (isEmptyQ)

throw new PriorityQueùeEmptyExCeptiofl( "Empty Priority Queue"

return etement(T.rootO); r

}

public Object minKey() throws PriorityQueueEmptyExceptiûfl {
if (isEmptyQ)

throw new PriorityQueueEmptyExceptiofl("Empty Priority Queue");

return key(T.rootQ);

}
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public void insertltem(Object k, Object e) throws lnvalidKeyException {
if (!comp.isComparable(k))

throw new lnvalidKeyException(" Invalid Key");
Position z = T.add(new ltem(k, e));
Position u;
while (!T.isRoot(z)) { 1/ u-heap bubbling

u = T.parent(z);
¡f (comp.isLesslhanOrEqualTo(key(u)1 key(z)))

break;
T.swapElements(u, z);
z=u;

}
}

public Object removeMinQ throws PriorityQueueEmpt9Exceptioît {
if (isEmptyO)

throw new PriorityQueueEmptyException("EmptY priority queue! ");
Object min = element(T.rootQ);
if (size() == 1)

T.removeQ;
!else{

T.replaceElement(T.rootQ, T.remove());
Position r = T.rootO;
while (T.islnternal(T.leftChild(r))) { 7/ down-heap bubbling

Position s;
if (T.isExternal(T.rightChild(r)) 1.1

comp.isLessThanOrEqualTo(key(T.IeftChildfr)), key(T.rightChild(r))))
s = T.leftChitd(r);

else
s = T.rightChild(r);

if (comp.isLessThan(key(s), key(r))) {
T.swapElements(r, s);
r = s;

}
else

break;

}
}
return mm;

}

Code Fragment 2.60: Methods insertltem and removeMin of class HeapPriori
tyQueue. Other methods of this class are shown in Algorithm 2.58.
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���������
	�������������
R-2.1 Describe,usingpseudo-code,implementationsof themethods��������� �
!#"�$&%(' )+* p, - e. / ,01�2�3�4�5 6�7(8�9 :<;>=

e. ? , a0 nd @�ACB<D�E F�GIH(J<FLK e. M oN f thelist ADT, assumingthelist isimplemented
usO ing a doubly linked list.

R-
P

2.2 Dra
Q

w an expression tree that hasfour external nodes, storing the numbers1,
5,
R

6, and7 (with eachnumberstoredoneper externalnodebut not necessarily
in
S

this order),andhasthreeinternalnodes, eachstoring an operationfrom the
seT t U�V�WLXZY\[^]�_�` ofN binary arithmetic operators, so that the value of the root is
21.
a

Theoperators areassumedto return rationalnumbers(not integers), andan
operatN or maybeusedmorethanonce(but weonly storeoneoperator per internal
node).

R-2.3 Let T be
b

anorderedtreewith morethanonenode.Is it possible thatthepreorder
tra
c

versalof T
d

vie sits the nodesin thesameorderas thepostordertraversal of T
d

?
If
f

so, give an example; otherwise, arguewhy this cannotoccur. Likewise, is it
posg sible that the preordertraversal of T

d
vie sits the nodesin the reverse order of

th
c

e postorder traversalof T
d

? If so, give anexample; otherwise, arguewhy this
cannoth occur.

R-2.4 Answer the followingquestionsso asto justify Theorem2.8.

a.i Draw abinary treewith height7 andmaximumnumberof externalnodes.
b.
b

W
j

hat is the minimum numberof external nodesfor a binary tree with
hei
k

ghth
l
? Justify youranswer.

c.h W
j

hat is the maximum numberof external nodesfor a binary tree with
hei
k

ghth
l
? Justify youranswer.

d.
m

Let T b
b
eabinary treewith height h

l
andi nn nodes. Show that

lo
o

gp nn q 1 rCs 1 t h
l uwv

nn x 1 y{z 2
a |

e.} For whichvaluesof nn andi h
l

canh theabovelowerandupperboundsonh
l

be
b

attaini edwith equality?

R-
P

2.5 Let
~

T
d

be
b

a binary treesuchthatall the externalnodeshave thesamedepth. Let
D
�

e� be
b

the sum of the depthsof all the externalnodesof T
d

, a0 nd let D
�

i be
b

the sum
ofN thedepthsof all the internalnodesof T

d
. Find constantsa� andi b

�
sT uch that

D
�

e� � 1 � aD�
i � bn

� �
where� nn is thenumberof nodesof T .

R-2.6 Let T b
b
eab inary treewith nn nodes, andlet p, be

b
thelevel numberingof thenodes

ofN T ,0 asgivenin Section 2.3.4.

a.i S
�

how that, for everynodev� ofN T ,0 p, � v� �#� 2� n� � 1��� 2 � 1.
b.
b

S
�

how an example of a binary treewith at least five nodesthat attains the
aboi veupperboundon themaximumvalueof p, � v� � for somenodev� .
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R-
P

2.7 Let
~

T
d

b
b
eabinarytreewith nn nodes� thatisrealizedwith avector, S

�
, a0 nd let p, be

b
the

l
o
evel numbering of the nodesin T

d
,0 as givenin Section 2.3.4. Give pseudo-code

des
m

criptionsof eachof themethods� ����� ,0 ���I  ¡�¢C£ ,0 ¤�¥§¦&¨{©�ªC«�¬� ,0 ® ¯�°�±�²{³�´Cµ ¶�· ,0 ¸�¹Iº »�¼{½§¾ »�¿(À ,0Á�ÂIÃ�ÄÆÅ{Ç�È ÉCÊ(Ë
, a0 nd Ì�ÍIÎÐÏ�Ñ�Ò .

R-
P

2.8 Il
f

lustrate the performanceof the selection-sort algorithm on thefollowing input
sT equence:Ó 22

a Ô
15Õ 36

Ö ×
44
Ø Ù

10Ú 3Ö Û
9
Ü Ý

13Þ 29
a ß

25
a à

.

R-
P

2.9 Il
f

lustrate the performanceof the insertion-sort algorithm on the inputsequence
ofN thepreviousproblem.

R
P

-2.10 Gi
á

veanexampleof aworst-casesequencewith nn elements} for insertion-sort, and
shT ow that insertion-sort runs in Ω

â ã
nn 2
ä å

t
c
imeon sucha sequence.

R
P

-2.11 W
j

heremayanitem with largest key bestoredin aheap?

R-2.12 Il lustrate the performanceof the heap-sort algorithm on the following inputse-
quence:æ ç 2è 5R é

16ê 4ë 10ì 23í 39
Ö î

18ï 26ð 15ñ .
R-2.13 S

�
uppose a binary treeT is implementedusing a vectorS

�
,0 as describedin Sec-

tion
c

2.3.4. If nn items arestoredin S
�

in sortedorder, starting with index 1, is the
tree
c

T ai heap?

R-2.14 Is thereaheapT sT toringsevendistinct elementssuch thatapreordertraversal of
T yiò eldstheelementsof T in sortedorder?How aboutaninordertraversal? How
abouti a postordertraversal?

R-2.15 Sh
�

ow that the sum ∑
ó n�

iô 1 logi
õ
,0 which appearsin the analysis of heap-sort, is

Ω ö nn lognn ÷ .
R-2.16 S

�
how thestepsfor removing key 16 from theheapof Figure2.41.

R-2.17 S
�

how thestepsfor replacing5 with 18 in theheapof Figure2.41.

R-2.18 Draw an example of a heapwhose keys are all the odd numbersfrom 1 to 59
(with
ø

no repeats),such that the insertion of an item with key 32 would cause
up-heapO bubblingto proceedall theway up to a child of theroot (replacingthat
chh ild’skey with 32).

R-2.19 Draw the 11-item hashtable resulting from hashing the keys 12, 44, 13, 88, 23,
94,
Ü

11, 39, 20, 16, and5, using the hash function h
l ù

i
õ úüûþý

2i
õ ÿ

5
R �

mod11 and
assui ming collisionsarehandledby chaining.

R-2.20 Wh
j

at is the result of the previous exercise,assuming collisions arehandledby
linearprobing?

R-2.21 Sh
�

ow theresult of ExerciseR-2.19, assuming collisionsarehandledby quadratic
probing,g up to thepointwherethemethodfails becausenoemptyslot is found.

R-2.22 W
j

hat is theresult of ExerciseR-2.19assuming collisionsarehandledby double
hashing usingasecondaryhash function h

l ���
k
� ���

7
� 	�


k
�

mod7 � ?
R-2.23 Gi

á
veapseudo-codedescriptionof an insertion intoahash tablethatusesquadratic

pg robing to resolve collisions, assuming wealsouse thetrick of replacing deleted
itemswith aspecial“deactivateditem” object.

R-2.24 S
�

how the result of rehashing the hash table shown in Figure2.55 into a table of
sT ize19using thenew hash function h

l 
k
� ���

2k
�

mod19.
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��������������� �"!
C-
#

2.1 Describe,in pseudo-code,a link-hoppingmethodfor finding the middle nodeof
ai doubly linked list with headerandtrailer sentinels, andan oddnumberof real
nodes� betweenthem. (Note: This methodmust only use link hopping; it cannot
usO ea counter.) What is the runningtime of thismethod?

C-
#

2.2 Describehow to implementthe queueADT using two stacks, so that the amor-
t
c
izedrunning time for $&%('&)*%+)*% andi ,(-&.*/*,+/*, is O

0 1
1 2 ,0 assuming that the stacks

sT upportconstant time 3*4&576 ,0 8:9<; , a0 nd =?> @+A methods. Whatis therunning time of
th
c

e B(C&D*E&B(E&B(F7G andi H&I(J&K*I+K*I+L?M methodsin thiscase?

C-
#

2.3 Describehow to implementthestackADT using two queues. Whatistherunning
tim
c

eof the N&O*P7Q&R?S andi T:U&V&W?X methodsin thiscase?

C-
#

2.4 Des
Q

cribea recursive algorithm for enumerating all permutationsof the numbersY
1Z 2a [?\7\?\^]

nn _ . Whatis therunningtime of yourmethod?

C-
#

2.5 Describethestructureandpseudo-codefor an array-based implementation of the
ve ectorADT thatachievesO

0 `
1 a time

c
for insertionsandremovalsat rank0, aswell

asi insertionsandremovalsat theendof thevector. Your implementation should
ali so providefor a constant-time b+cdb+egf�h+ikjml&n method.

C-
#

2.6 In
f

the children’s game“hot potato,” a groupof nn chh ildrensit in a circle passing
ani object, called the “potato,” aroundthe circle (say in a clockwise direction).
The children continue passing the potato until a leaderrings a bell, at which
poig nt the child holding the potato must leave the game,andthe other children
clh ose up the circle. This process is thencontinueduntil thereis only onechild
remaining, who is declaredthe winner. Using the sequenceADT, describe an
ef} ficient method for implementing this game. Suppose the leaderalways rings
the
c

bell immediatelyafter the potatohas beenpassed k
�

tim
c

es. (Determining
th
c

e lastchild remaining in this variation of hot potatois known asthe J
o

osephus
prp oblem.) What istherunningtimeof yourmethodin termsof nn andi k

�
,0 assuming

t
c
he sequenceis implementedwith a doubly linked list? What if the sequenceis
im
S

plementedwith anarray?

C-
#

2.7 Using
q

the rts+u*v&s(w&x(s ADT, describe an efficient way of putting a sequence rep-
resenting a deckof nn cardsh into randomorder. Use the function y{zm|&}*~<��� |&� (ø nn ),

�
whi� ch returnsa randomnumberbetween0 and nn � 1, inclusive. Your method
sT hould guaranteethat every possible ordering is equally likely. What is the run-
ning time of your method, if the sequenceis implementedwith anarray?What
if it is implementedwith a linkedlist?

C-
#

2.8 Desig
Q

n an algorithm for drawing a binary tree,using quantities computed in a
tree
c

traversal.

C-
#

2.9 Des
Q

ign algorithmsfor thefollowingoperationsfor a nodev� in
S

a binary treeT
d

:

� �����+�m���&�+�������:��� v� � : returnthenodevisited afterv� in
S

apreordertraversal of T
d

� �d�&�m���&�+�������: �¡ v� ¢ : return thenodevisited afterv� i
S
n aninordertraversal of T

d
£ ¤:¥<¦7§�¨m©�ª&«(¬®�¯�°:±�² v� ³ : return the nodevisited after v� in

S
a postorder traversal

ofN T
d

.

W
j

hataretheworst-case runningtimesof youralgorithms?
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C
#

-2.10 Gi
á

ve an O
0 ´

nn µ -time algorithm for computing thedepth of all the nodesof a tree
T
d

, w0 herenn i
S
s thenumberof nodesof T

d
.

C
#

-2.11 The
¶

bal
·

ance factor ofN aninternalnodev� ofN abinarytreeisthedifferencebetween
t
c
he heights of theright andleft subtreesof v� . Show how to specializethe Euler
t
c
our traversal to print thebalancefactorsof all thenodesof abinarytree.

C
#

-2.12 T
¶
wo orderedtreesT

d ¸
andi T

d ¹ ¹
arei said to be i

º
somorphic i

S
f oneof the following

hol
k

ds:

» Bo
¼

th T
d ½

andi T
d ¾ ¾

consh ist of asinglenode¿ Both T À andi T Á Á havethesamenumberk
�

ofN subtrees, and the i
õ
t
c
h subtreeof

T Â is isomorphic to the i
õ
t
c
h subtreeof T Ã Ã , f0 or i

õ Ä
1Å?Æ7Æ?Æ?Ç k� .

Des
Q

ign an algorithmthat tests whethertwo given orderedtreesareisomorphic.
W
j

hat is the runningtimeof youralgorithm?

C
#

-2.13 Let
~

avisit action in theEuler tour traversal bedenotedby apair È v� É a� Ê , w0 herev� is
S

t
c
hevisited nodeanda� i

S
soneof left

Ë
,0 bel
·

ow, o0 r rigÌ ht. Design an algorithm for per-
formingoperationÍ�Î<Ï*Ð�ÑÓÒ�Ô:Õ�Ö v� × a� Ø ,0 which returnsthevisit action Ù wÚ Û b� Ü

followingÝ
v� Þ a� ß . Whatis theworst-case runningtimeof youralgorithm?

C
#

-2.14 S
�

how how to represent animproperbinary treeby meansof aproperone.

C
#

-2.15 Let
~

T
d

b
b
e a binary treewith nn nodes� . Define a R

à
oman node t

c
o bea nodev� in

S
T
d

,0
sT uch that the numberof descendents in v� ’s left subtreediffer from the number
ofN descendents in v� ’s right subtreeby at most 5. Describe a linear-time method
for finding eachnodev� ofN T ,0 such that v� is not a Romannode,but all of v� ’s
des
m

cendentsareRomannodes.

C
#

-2.16 In pseudo-code,describe a nonrecursive method for performing an Euler tour
t
c
raversal of a binarytreethat runsin lineartime anddoesnotusea stack.

Hi
á

nt: Y
â

ou cantell which visit action to performatanodeby takingnoteof where
youò arecoming from.

C
#

-2.17 In
f

pseudo-code,describeanonrecursivemethodfor performingan inordertraver-
salT of abinary treein lineartime.

C
#

-2.18 Let
~

T
d

b
b
eabinarytreewith nn nodes� (T

d
mayã or maynotberealizedwith avector).

Gi
á

ve a linear-time method that usesthe methodsof the äæådç*è(é�êìë�í�î+î in
S

terfaceto
t
c
raverse the nodesof T

d
by
b

increasing valuesof the level numbering function p,
giï ven in Section 2.3.4.This traversal is known asthe le

Ë
vel order traversal.

C
#

-2.19 The
¶

patp h length ofN atreeT
d

i
S
sthesumof thedepthsof all thenodesin T

d
. Describe

ai linear-time method for computing the path length of a tree T
d

(whi
ø

ch is not
neces� sarily binary).

C
#

-2.20 Define
Q

the i
º
nternal path length,0 I

ð ñ
T
d ò

, o0 f a tree T
d

to
c

be the sum of the depths of
ali l theinternalnodesin T

d
. Likewise,define theextó ernal path length,0 E

ô õ
T
d ö

, o0 fa
tree
c

T
d

t
c
o bethe sum of the depthsof all the externalnodesin T

d
. Show that if T

d
is
S

a binarytreewith nn i
S
nternal nodes, thenE

ô ÷
T
d ø�ù

I
ð ú

T
d ûýü

2
a

nn .
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C
#

-2.21 Let
~

T
d

b
b
eat reewith nn nodes� . Definethelo

Ë
west common ancestor (LC

ø
A) between

t
c
wo nodesv� andi wÚ asi the lowest nodein T

d
t
c
hat hasboth v� andi wÚ asi descendents

(where
ø

we allow a nodeto be a descendentof itself). Given two nodesv� andi
wÚ ,0 describe an efficient algorithm for finding the LCA of v� andi wÚ . What is the
runningtimeof yourmethod?
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he maximumdistancebetweentwo nodesin T
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upposewe are given a collection S
�

ofN nn intervalsof theform � a� i � b� i � . Design an
ef} ficient algorithm for computing theunion of all the intervals in S

�
. What is the

runni� ngtimeof yourmethod?
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-2.24 Assuming the input to the sorting problemis given in an array A,0 describehow
t
c
o implementtheselection-sort algorithm using only thearrayA ai ndatm osts ix
addii tional(base-type)variables.

C
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-2.25 Assuming the input to the sorting problemis given in an array A,0 describehow
t
c
o implementtheinsertion-sort algorithm using only thearrayA andi at most six
addii tional(base-type)variables.
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suming the input to the sorting problemis given in an array A



,0 describehow
t
c
o implementthe heap-sort algorithm using only the array A



andi at most six

addii tional(base-type)variables.
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usO edto implementa heapcanbeaccessed using only
t
c
hemethodsof thebinarytreeADT. Thatis, wecannotassumeT
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S

implemented
asi a vector. Given a referenceto the current last node,v� ,0 describe an efficient
ali gorithm for findingthe insertion point (thatis, thenew last node)using just the
methodsã of thebinarytreeinterface.Besureandhandleall possiblecases. What
is the runningtime of thismethod?
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e canrepresenta path from the root to a nodeof a binary treeby meansof a
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narystring, where0 means“go to the left child” and 1 means“go to the right
chih ld.” Design a logarithmic-time algorithm for finding the last nodeof a heap
holdingnn elements} based on thethis representation.
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For example, given the heapof Figure2.41 and querykey
x� � 7,

�
thealgorithm should report4, 5, 6, 7. Note thatthekeysdonotneedto be

report� ed in sorted order. Ideally, your algorithm should run in O
0 �

k
� �

time,
c

where
k
�

i
S
s thenumberof keys reported.
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C
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-2.33 The
¶

hash table dictionaryimplementation requiresthatwe find a primenumber
bet
b

weena numberM
�

andi a number2M
�

. Implementa method for finding such
ai prime by using the siev� e algorithm. In this algorithm, we allocatea 2M

�
cellh

B
¼

ooleanarrayA



,0 suchthatcell i
õ
is
S

associatedwith theintegeri
õ
. Wethen initialize

th
c

e array cells to all be “ true” and we “mark off ” all the cells that aremultiples
ofN 2, 3, 5, 7, andso on. This process canstop after it reachesa numberlarger
th
c

an � 2M.
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vethepseudo-codedescription for performingaremoval from ahash tablethat
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to
c
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P-
]

2.1 W
j

rite a programthat takes as input a fully parenthesizedarithmetic expression
andi converts it to a binaryexpression tree.Your programshould display the tree
i
S
n someway and also print thevalue associatedwith the root. For anadditional
chh allenge, allow for the leavesto storevariablesof the form x� 1,0 x� 2,0 x� 3,0 andso on,
which� are initially 0 and which canbe updatedinteractively by your program,
wi� th the corresponding update in the printedvalue of the root of the expression
tree.
c

P-
]

2.2 W
j

riteanappletor stand-alonegraphicalprogramthatanimatesaheap.Yourpro-
gramï should supportall the priority queueoperationsandit should visualize the
operatN ionsof theup-heapanddown-heapbubbling procedures. (Extra: Visualize
b
b
ottom-up heapconstruction aswell.)

P-2.3 Perform a comparative analysis that studiesthe collision ratesfor various hash
codesh for character strings, suchas variouspolynomial hash codesfor different
ve alues of the parametera� . Use a hashtable to determine collisions, but only
counth collisions wheredif ferentstrings mapto thesame hash code(not if they
mã ap to the same location in this hashtable). Test thesehashcodes on text files
found
�

on the Internet.

P-2.4 Perform a comparative analysis asin the previousexercise but for 10-digit tele-
phoneg numbersinsteadof characterstrings.
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Chapter Notes
The basic data structures of stacks, queues, and linked lists discussed in this chapter belong
to the folklore of computer scieiice. They were first chronicled by Knuth in his seminal
book on Fundamehtal Algorithms [1 17]. In this chapter, we have taken the approach of
defining the basic data structures of stacks, queues, and deques, first in terms of their ADTs

and then in terms of concrete implementations. This approach to data structure specification
and implementation is an outgrowth of software engineering advances brought on by the
object-oriented design approach, and is now considered a standard approach for teaching
data structures. We were introduced to thisapproach to data structure design by the classic
books by Alio, Hoperoft, and Ullman on data structures and algorithms [7, 8] . For further
study of abstract data types, please see the book by Liskov and Guttag [135], the survey
paper by Cardelli and Wegner [44], or the book chapter by Demurjian [57]. The naming
conventions we use for the methods of the stack, queue, and deque ADTs are taken from
JDSL [86]. JDSJJ is a data structures library in Java that builds on approaches taken for
C++ in the libraries Sit [158] and LEDA [1511. We shall use this convention throughout
this text. In this chapter, we motivated the study of stacks and queues from implementation
issues in Java. The reader interested in learning more about the Java run-time environ-
ment known äs the Java Virtual Machine (JVM) is referred to the book by Lindholm and

Yellin [134] that defines the JVM.
Sequences and iterators are pervasive concepts in the C++ Standard Template Library

(STL) [158], and théy play fundamental roles in JDSL, the data structures library in Java.
The sequence ADT is a generalization and extension of the Java java.util.Vector API (for
example, see the book by Arnold and Gosling [13]) and the list ADTs proposed by sev-
eral authors, including Aho, Hoperoft, and Ullman [8], who introduce the "position" ab-
straction, and Wood [21 111, who defines a list ADT similar to ours. Implementations of
sequences via arrays and linked lists are discussed in Knuth's seminal book, Fundamental
Algorithms [118]. Knuth's companion volume, Sorting and Searching [119], describes the
bubble-sort method and the history of this nd other sorting algorithms.

The concept of viewing data structures as containers (and other principles of object-
orientéd design) can be found in òbject-oriented design books by Booch [32] and Budd [42].

The concept also exists under the name "collection class" in books by Golberg and Rob-

son [79] and Liskov and Guttag [135]. Our use of the "position" abstraction derives from

the "position" and "node" abstractions introduced by Aho, Hoperoft, and Ullman [8]. Dis-

cussions of the classic preorder, morder, and postorder tree traversal methods can be found

in Knuth's FundamentalAlgorithms book [118]. The Eúler tour travefsal technique comes
from the parallel algorithms community, as it is introduced by Tarjan and Vishkin [197] and
is discussed by JáJá [107] and by Karp and Ramachandran [114]. The algorithm for thaw-
ing a treeis generally considered to be a part of the "folklore" of graph drawing algorithms
The reader interested in graph drawing is referred to works by Tamassia [194] and Di Bat-

tista et aL [58, 59]. The puzzler in Exercise R-2.2 was communicated by Micha Sharir.
Knuth's book on sorting and searching [119] describes themotivation and history for

thé selection-sòrt, insertion-sort, and heap-sort algorithms. The heap-sort algorithm is due

to Williams [210], and the linear-time heap construction algorithm is due to Floyd [70].
Additional algorithms and analyses for heaps and heap-sort variatiéns can be found in pa-

pers by Bentley [29], Carlsson [451, Gonnet and Munro [82], McDiarmid and Reed [141],

and Schaffér and Sedgewick[178]. The locator pattern (also described in [86]), appears to

be new.
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Chapter 3. Search freeà and Skip Lists

People like choices. We ilke to have different ways of solving the same prob-
lem, so that we can explore different trade-offs and efficiencies. This chapter is de-

voted to the exploration of different ways of implementing an ordered dictionary.

We begin this chapter by discussing binary search trees, Sd how they support a
simple tree-based implementation of an ordered dictionary, bt do not guarantee
efficient worst-case performance. Nevertheless, they form the basis of many tree-
based dictionary implementations, and we discuss several in this chaptet One of
the classic implementations is the AYL tree, presented in Section 3.2, which is a

binary search treè that achieves logarithmic-time search and update operations.

In Section 3.3, we introduce the concept of bounded-depth trees, which keep
all external nôdes at the same depth or "pseudo-depth." One such tree is the multi-

way search tree, which is an ordered tree where each internal nodeéan store several

items and have sevéral children. A multi-way search tree is a generälization of the
binary search tree, and like the binary search tree, it can be specialized into an ef-
ficient data structure for ordered dictioñaries. A specific kind of multi-way search
tree discussed in Section 3.3 is the (2,4) tree, which is a bounded-depth search
tree in which each internal node stores 1, 2, or 3 keys and has 2, 3, or 4 children.
respeciively. The advantage of these trees is that they haveS algorithms for insert

ing and removing keys that are simple and intuitive. Update' operations rearrange

a (2,4) tree by means of natural operations that split and merge "nearby" nodes or
transfer keys between them. A (2,4) tree storing nitems uses 0(n) space and sup-
ports searches, insertions, and removals in 0(logn) worst-case time. Another kind
of bounded-depth search tree studied in this section is the red-black tree. These
are binary search trees whose nodes are colored "red" and "black" in such a way
that the coloring scheme guarantees each external node is at the same (logarithmic)
"black depth." The pseudo-depth notion of black depth results from an illuminat-
ing correspondence between red-black and (2,4) trees. Using this correspondence,

we motivate and providé intuitiOn for the somewhat more' complex algorithms for

insertion and removal in red-black trees, which are based on rotations and recol-
orings. An advantage that a red-black tree achieves over other binary search trees.

(such as AVL trees) is that it can be restructured after an insertion or removal with,

only 0(1) rotations.

In Section 3.4, we discuss splay trees, which are attractive due to the simplicity
of their search and update methods. Splay trees are binary search trees that, after
each search, insertion, or deletion, move the node accessed Upto the root by means
of a carefully choreographed sequence of rotations. This simple "move-to-the-
top" heuristic helps this data structure adapt itself to the kinds of operations being
performed. One of the results of this heuristic is that splay trees guarantee that the

amortized running time of each dictionary operation is logarithmic.

Finally, in Section 3.5, we discuss skip lists, which are nota tree data structure,
but nevertheless have a notion of depth that keeps all elements at logarithmic depth.
These structures are randomized, however, so their depth bounds are probabilistic.
In particular, we show that with very high probability the height of a skip list storing
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n elements is O(logn) This is admittedly not as strong as a true Worst-case bound,
but the update operations for skip lists are quite simple and they compare favorably

to search trees in practice.
We focus on the practice of implementing binary search trees in Section 3.6,

giving Java implementations for both AYL and red-black trees. We highlight how
both of these data structures can build upon the tree ADT discussed in Section 2.3.

There are admittedly quite a few kinds of search structures discussed in this
chapter, and we recognize that a reader or instructor with limited time might be
interested in studying only selected topics. For this reason, we have designed this

chapter so that each section can be studied independent of any other section except

for the first section, which we present next.

141

3.1 Ordered Dictionaries and Binary Search Trees

In an ordered dictionary, we wish to perform the usual dictionary operations, dis-
cussed in Section 2.5.1, such as the operations findElemertt(k), insertltem(k,e),
and removeElement(k), but also maintain an order relation for the keys in our dic-

tionary. We can use a comparator to provide the order relation among keys, and, as

we will see, such an ordering helps us to efficiently implement the dictionary ADT.

In addition, an ordered dictionary also supports the following methods:

closestKeyBefore (k): Return the key of the item with largest key less than or
equal to k.

closestElemBefore(k): Return the element for the item with largest key less than
or equal to k.

cIosestKeyAfter(k):. Return the key of the item with'smallest key greater than

or equal to k.

closestElemAfter(k): Return the element for the item with smallest key greater
than or equal to k.

Each of these methods returns the special NO_SUCH_KEYobject if no item in the

dictionary satisfies the query..
The ordered nature of the above operations makes the use of a log, file or a

hash table inappropriate for implementing the dictionary, for neither of these data

structures maintains any ordering infOrmation for the keys in the dictionary. Indeed,

hash tables achieve their best search speeds when their keys are distributed almost

'at random. Thus, we should consider new dictionary implemeñtations when dealing

with ordered dictionaries.
Having defined the dictionary abstract data type, let us now look at some simple

ways of implementing this ADT. ' .
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3.1.1 Sorted Tables

If a dictionary D is ordered, we can store its items in a vector S by nondecreasingi
ordef of the keys. We specify that S is a vector, rather than a general sequence, foi:
the ordering of the keys in the vector S allows for faster seArching than would b:
possible had S been, say, a hnked list We refer to this ordered vector implementa-
tion of a dictionary D as a lookup table. We contrast this implementation with the

log file, which uses an unordered sequence to implement the dictionary.
The space requirement of the lookup table is e(n), which is similar to the log

file; assuming we grow and shrink the array supporting thevçctor S to keep the size

of this array proportional to the number of items in S Unlike a log file, however,
perfonrnng updates in a lookup table takes a considerable amount of time In par
ticular, performing the ¡nsertltem(k, e) operation in a iookup table requires 0(n)
time in the worst case, since we need to shift up all the items in the vector with key

greater than k to make room for the new item (k, e). The lookup table implemen
tation is therefore inferior to the log file in terms of the worst-case running time
of the dictionary update operations. Nevettheless, we can perform the operatiot
find Element much faster in a sorted lookup table.

Binary Search

A significant advantage of using an array-based vector S o implement an orderec
dictionary D with n items is that accessing an element of S by its rank takes 0(1
time. We recall from Section 2.2.1 that the rank of an element in a 'vector is th
number of elements preceding it. Thüs, the first element in S has rank O, and th

last element has rank n - 1.
Thé elements in S are the items of dictionary D, and since S is ordered, the iten

at rank i has a key no smaller than keys of the items at ranks O,... ,i - 1, andrn
larger than keys of the items at ranks i 4- 1,. . - , n - 1. This o$ervation allows us U
quickly "home in" on a search key k using a variant of the children's game "high
low." We call an item I of D a candidate if, at the current stage of the search, w

cannot rule out that I has key equal to k. The algorithm maintains two parameters
low and high,. such that all the candidate items have rank at least low and at mos

high in S. Initially, low= O and high = n - 1, and we let key(i) denote the ke:
at. rank i, which has elem(i) as its element. We then compare k to the key of th
median candidate, that is, the item with rank

mid = [(low + high)/2j.
We cons idèr three cases:

If k = key(mid), then we have found the item we were looking for, and th
search terminates successfully returning elem(mid).
If k < key(mid), then we recur on the first half of the vector, that is, on di
range of ranks from low to mid - 1.. . -.

If k> key(nìid), we recur on the range of ranks from mid + i tò high.
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Figure 3.2:. Example of a binary search to perform operation findEiement(22), in a

dictionary with integer keys, implemented with an array-based ordered vector. For

Ñimplicity, we show the keys stored iñ the dictionary but not the elements.
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This search method is called binary search, and is given in pseudo-code in
Algorithm 3.1. Opetation findElernent(k) on an n-item dictionary implemented
with a vector S consists of calling BinarySearch(S,k,O,n 1).

Algorithm BinarySearch(S,k, low, high):
Input: An ordered vector S storing n items, whose keys are accessed with

method key(i) and whose elements are accessed with method eiern (i); a
search key k; and integers low and high

Output: An element of S with key k and rank between low and high, if such an
element exists, and Otherwise the special element NOSUCH _K EY

if low> high then
return NO$UCHKEY

else
mid - [(iow±high)/2j ¿

if k=key(mid)then
return elem(rnid)

elseif k<key(mid) then
return BinarySearch(S,k,low, midi)

else
return BinarySearch (S, k, mid + 1, high)

Algorithm 3.1: Binary search in an ordered vector.

We illustrate the binary search algorithm in Figure 3.2.

7 8 12 14
F

25 27 28 33 37

+ 4. .4
low mid high

2 8 9 12
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Considering the running time of binary search, we observe that a constant num-
ber of operations aré executed at each recursive call. Hence, the running time is
proportional to the number of recursive calls performed. A crucial fact is that with
each'recursive éall the number of candidate items still tó be searched in the se-
quence S is given by the value high low + 1. Moreover, the number of remaining
candidates is reduced by at least one half with each recursive call. Specifically,
from the definition of mid the number of remaining candidates is either

IIow+highl .highlow+1(mid-1)low+l=
[ 2 j

bw<
2

or
high(mid+1)+1= high

[bow+hihj <ighbow+1

Initially, the number of candidate is n; after the first call to BinarySearch, it is at
most n/2; after the second call, it is at most n/4; and so on. That is, if we let a
function, T(n), represent the running time of this method, then we can characterize
the runhing time of the recursive binary search algorithm as follows:

J b ifn<2
T(n)

1\ T(n/2)+b else,

where b is a constant. In general, this recurrence equation shows that the number
of candidate items remaining aft6r each recursive call is at most n/21. (We discuss
recurrence equations like this one in more detail in Section 5.2.1.) In the worst case
(unsuccessful search), the recursive calls stop when there are no more candidate
items Hence, the maximum number of recursive calls performed is the smallest
integer m such that n/2m < i . In other words (recalling that we.omit a logarithm's
base when it is 2), in > log n. Thus, we have m = [lognj + 1, which implies that
BinarySearch(S,k,O,n 1) runs in 0(logn) time ¡

Table 3.3 compares the running times of the methods of a dictionary realized
by either a log file or a lookup table. A log file allows for fast insertions but slow
searches and removals, whereas a lookup table allows for fast searches but slow
insertions and removals.

Table 3.3: Comparison of the running times of the primary methods of an ordered
dictionary realized, by means of.a log file ora lookup table. We denote the number
of items in the dictionary at the time a method is executed with n. The performance
of the methods closestElemBefore, closestKeyAfter, cbosestElemAfter is similar to
that of closestkeyBefore.

Method Log File Lookup Table
findEbement 0(n) 0(logn)
insertitem . 0(1) 0(n)

removeElement 0(n) 0(n)
cbosestKeyBefore 0(n) 0(lógn)
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Figure 3.4: A binary search tree storing integers. The thick solid path drawñ with
thick lines is traversed when searching (successfully) for 36. The thick dashed path

is traversed when searching (unsuccessfully)cfor 70.
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3.1.2 Binary Search Trees

The data structure we discuss in this section, the binary search tree, applies the
motivation of the binary search procedure to a tree-based data structure. We define
a binary search tree to be a biñary tree in which each internal node y stores an
element e such that the elements stored in the left subtree of y are less than or equal
to e, and the elements stored in the right subtree of y are greater than or equal to e
Furthermore, let us assume that external nodes store no elements; hence, they could
in fact be null or refèrences to a NULL_NODE object.

An morder traversal of a binary search tree visits the elements stored in such
a tree in nondecreasing order. A binary search tree supports searching, where the
question asked at each internal node is whether the element at that nodeis less than,
equal to, or larger than the element being searched fot

We can use a binary search tree T to locate an element with a certain value x
by traversing down the tree T. At each internai node we compare the value of the
current node to our search element x. If the answer to the question is "smaller,"
then the search continues in the left subtree. If the answer is "equal," then the
search terminates successfully. If the answer is "greater," then the search continues
in the right subtree. Finally, if we reach an external node (which is empty), then the
search terminates únsuccessfully. (See Figure 3.4.)
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3.1.3 Searching in a Binary Search Tree

Fonnally, a binary search tree is a binary tree T in which each internal node i' of T

stores an item (k, e) of a dictionary D, and keys stored at nodes in the left subtree
of y are less thân or equal to k, while keys stored at nodes in the right subtree of y

are greater than or equal to k.

In Algorithm 3.5, we give a recursive method TreeSearch, basedon the above
strategy for searching in a binary search tree T. Given a search key k and a node
y of T, method TreeSearch returns a node (position) wof the subtree T(v) of T
rooted at y, such that one of the following two cases occurs:

w is an internal node of T(v) that storés key k.

w is an external node of T(v). Ml the internal nodes of T(v) that precede w
in the morder traversal have keys smaller than k, and all the h ternal nodes of
T(v) that follow w iñ the morder traversal have keys greater than k,

Thus, method findElement(k) can be performed on dictionary D by calling the
method TreeSearch(k, T.rootO) on T. Let w be the node of T returned by this call
of the TreeSearch method. if node w is internal, we return the element stored at w;

otherwise, if w is external, then we return NO..SUCHJKEY...

Algorithm TreeSearcb(k, y):
Input: A search key k, and a node y of a binary search tree T
Output: A node w of the subtree T(v) of T rooted at y, such that either w is an

internal node storing key k or w is the external node where an item with key
k would belong if it existed

if y i an external node then
return y

if k = key(v) then
return y

else if k < key(v) then
return TreeSearch (k, T.teftChild (y))

else
{we know k> key(v)}
return TreeSearch (k, T.rightChild (y))

Algorithm 3.5; Recursive search in a binary search tree.

Note that the running time of seärching in a binary search tree T is proportional
to the height of T. Since the height of a tree with w nodes can be as small as
O(logn) or as large as Q(n), binary search trees are most efficient when they have

small height.
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time per level

0(1)

s
s

total time: 0(h)

Figure 3.6: Illustrating the running time of searching in a biñary search tree. The
figure uses standard visualization shortcuts of viewing a binary search treç as a big
triangle and a path from the root as a zig-zag line.

We can also show that a variation of the above algorithm performs operation
findAliElements(k), which finds all the items in the dictionary with key k, in time

0(h + s), where s is the number of elements returned. However, this method is
slightly more complicated, and the details are left as an exercise (C-3.3).

Admittedly, the height h of T can be as large as n, but we expect that it is usually

much sméller. Indeed, we will show in subsequent sections in this chapter how to
maintain an upper bound of 0(logñ) on the height of a search tree T. Before we
describe such a scheme, however, let us describe implementations for dictionary
update methods in a possibly unbalanèed binary search tree.

3.1.
Ordered Dictionaries and Binary Search Trees 147

Analysis of Binary Tree Searching

The formal analysis df the worst-case running time of searching in a binary search
tree T is simple. The binaq tree search algorithm executes a constant number of
primitive operations for each node it traverses in the tree. Each new step in the
traversal is made on a child of the previous node. That is, the binary tree seazch
algorithm is performed on the nodes of a path of T that starts from the root and
gòes down one level at a time Thus, the number of such nodes is bounded by
h + 1, where h is the height of T. In othér words, since we spend 0(1) time per
node encountered in the search, method findElement (or any other standard search
operation) runs in 0(h) time, where h is the height of the binary search tree T used
to implement the dictionary D. (See Figure 3.6.)

C
0(1)
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3.1.4 Insertion in a Binary Search Tree

Binary search trees allow implementations of the insertitem and removeElemeti
operations using algorithms, that are fairly straightforward, but not trivial.

To perform the operation insertltem(k, e) on a dictionary D implemented with
binary search tree T, we start by calling the method TreeSearch (k, T. root O) on
Let w be the node returned by TreeSearch.

If w is an external node (no item with key k is sti5red in T), we replace 4

with a new internal node storing the item (k, e) andíwo external children, b
means of operation expand Externa 1(w) on T (see Section 23.3). Note th;
w is the appropriate place to insert an item with key k.

If w is an internal node (another item with key k is stored at w), we c
TreeSearch (k, rightChi Id (w)) (or, equivalently, TreeSearch (k, IeftCh ud (w)))
and recursively apply the algorithm to the node returned by TreeSearch.

The above insertion algorithm eventually traces a path from the root of T dow
to an external node, which gets replaced with a new internal node accommodating
the new item. Hence, an insertion adds the new item at the "bottom" of the search
tree T. An example of insertion into a binary search tree is shown in Figure 3.7.

The analysis of the insettion algorithm is analogous to that for searching. Thé.
number of nodes visited is proportional to the height h of T in the worst case. Als4
assuming a linked structure implementation for T (see Section 2 3 4), we spend

0(1) time at each node visitéd. Thus, method insertltem runs in 0(h) time

(a) (b)

3.7:-Tnsertibn of an item with key 78 into a binary search tree. Finding the,
position to insert is shown in (a), and the resulting tree is shown in (b).
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3 1 5 Removal in a Binary Search Tree

Performing the removeEiement(k) operation on a dictionary D implemented witha binary search tree T is a bit more complex, since we do not wish to create any
"holes" in the tree T Such a hole, where an internal node would not store an ele-
ment, would make it difficult if not impossible foE us to correctly perform searches
in the binary search tree. Indeed, if we have. many.removals that do ñot restruc-
ture .the tree T, then there could be a large section of internal nodes that store no
elements, which would confuse any. future searches.

The removal operation starts out simple enough, since we begin by executing
algorithm TreeSearch (k, T. root Q) on T to find a node storing key k. If TreeSearch
returns an external node, then there is no element with key k in dictionary D, and
we return the special element N.O...SUCH...KEY and we are done. If TreeSearch
returns an internal node w instead, then w stores an item we wish to remove.

We distinguish two cases (of increasing difficulty) of how to proceed based on
whether w is a node that is easily removed or not:

If one of the children of node w is an external node, say node z, we sim-
ply remove w and z from T by means of operation removeAboveExternal(z)
on T This operation (also see Figure 2.26 and Section 2.3.4) restructures T
by replacing w with the sibling of z, removing both w and z from T.

This case is illustrated in Figure 3.8.

Figure 3.8: Removal from the binary search tree of Figure3.7b, where the key to
remqve (32) is stored at a node (w) with .an external child: (ä) shows ,th.e tree be-
fore the removal, together with the nodes affected by the rerhóveAboveExternal(z)
operation on T; (b) shows the tree T after the removal:

o
o o... e..sa i:0
...o
u.

3j Ordered Dictionaries and Binary Search Trees
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11f both children of node w are internal nodes, we cannot sImply remove the

node w from T, since this would create a "hol&' in T. InsteS, we proceed as

follows (see Figure 3.9):

We find the first internal node y that follows w in an morder traversal

of T. Node y is the left-most internal node in the right subtree of w.;

and is found by going first to the right child of w and then down T fron

there, following left children. Also, the left child x of y is the external

node that immediately follows node w in the morder traversal 6f T.

We save the element stored at w in a temporary variable t, and move

the item of y into w. This action has the effect of removing the former

item stored at w.
We remove x and y from T using operation removeAboveExternaIx)

on T This action replaces y with x's sibling, and removes both x and y

from T.
We return the element previously stored at w, which we had saved in

the temporary variable t.

(b)

Figure 3.9: Removal from the bInary search tree of Figure 3.7b, where the, key to

remove (65) is stored at a node whose children are both internal: (a) before th

removal; (b) after the removal.

The analysis of the removal algorithm is analogous to that of the insertion and

search algorithms. We spend 0(1) time at each node visited, and, in the wors

casé, the number of 'nodes visited is proportional to. the height h of T. Thus, in a

dictionary D implemented with a binary search tree T, the removeEtement method

runs in 0(h) time, where h is the, height of T.

We can also show that a variation of the above algorithm performs operatlo

removeAllElements(k) in time O(h+s), where sis the number of elements in the

iterator returned. The details are left as an exercise (C-3.4).
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3.1.6 Performance of Binary Search .Trees

The performance of a dictionary implemented with a binary search is sunmiarized
in the following theorem and in Table 3.10.

Theorem 3.1: A binary search tree T with height h for n key-element items uses
0(n) space and executes the dictionary ADT operations with the following running
times. Operations size and isEmpty each take 0(1) time Opérations findElernent,
insertitem, andremoveElement each take time 0(h) time. Operations findAllEle-
ments and renioveA!IElements each take 0(h+s) time, where sis the size of the
iterators returned.

Table 3iO; Running times of the main methods of a dictionary realized by â binary
search tree. We denote with h the current height. of the, tree and with s the size of
the iterators returned by findAllElements and removeAliElements. The space usage
is 0(n), where n is the number of items stored in the dictionary.

Note that the running time of search and update operations in a binar)' search
tree varies dramatically depending on the tree's height. We: can nevertheless tak5
comfort that, on average, a binary search tree with n.keys gçnerated from a random
series of insertions and removals of keys has expected height O (log n). Such a
statement requires careful mathematical language to precisely define what we mean
by a random series of insertions and removals, and sophisticated probability theory
to justify; hence, its justification is beyond the scope of this book. Thus, wè can
be content knowing that random update sequences give rise to binary search trees
that have logarithmic height on average, but, keeping in mind their poor worst-
case performance, we should also take care in using standard binary search trees in
applications where updates are not random. T

The relative simplicity of the binary search tree and its good average-casé per
formance make binary search treèsa rather attractive dictionary data structure in
applications where the keys inserted and removed follow a random pattern and
occasionally slow response time is acceptable There are, however, applications
where it is essential to have a dictionary with fast worst-case search and update
time The data structures presented in the next séctiolis addrçsSthis need.

Method Time
size, isEmpty 0(1)

findElement, insertitem, removeElement 0(h)
findAllEtements, removeAllElements O(h + s)

3.1; Ordered Dictionaries and Binary Search Trees
151
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3.2 AVL Trees

In the previous sectioñ, we discussed what should be ançfficient dictionary

structure, but the worst-case performance it achieves for the various operatto

linear time, which is no bettér than the performance Öf sçquence-based diçfio

implementations (such as log files and lookup tables). In this section, we dese

a simple way of correcting this problem so as to achieve logarithmic time fo

S fundamental dictionary operations.

Definition

The simple correction is to add a rule to the binary search tree definition tha

maintain a logarithmic height for the tree. The rule weconsider in this section;

following height-balance property, which characterizes the structure of a V

search tree T in terms of the heights of its internal nodes (recall from Section

that the height of a node y in a tree is the length of a longest path from y

external node):

Height-Balance Property: For every internal node y of T, the heights of th

drenofvcandifferbyatmost 1.

Any binary search tree T that satisfies this property is said to be anAVL tree, *

is a concept named after the initials of its inventors Adel'son-Vel'skii and L

An example of an AVL tree is shown in Figure 3.11..

Figure 3.11: An example of an AVL tree. The keys are shown inside the node

the heights are shown next to the nodes..

An immediate consequence of the height-balance property is that a subtrec

AYL tree is itself an AVL tree The height-balance property has also the impo

consequence of keeping the height small, as shown in the following propositi
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Theorem 3.2: The height of an AVL tree T storing n. items is O(logn).

Proof: Instead of trying to find an upper bound on the height of an AVL treedirectly, it is easier to work on the "inverse problem" of fiñding a lower bound onthe minimum number of internal nodes n(h) of an AVJL tree with height h. We willshow that n(h) grows at least exponentially, that is, n(h)is 12(chul) for some constantc> 1. From this, it will be an easy step to derive that the height of an AVL treestoring n keys is O(logn).
Notice that n(1) = i and n(2) = 2, because an AVL tree of height I must have atleast one internal node and an AVL tree of height 2 mùst have at least two internal

nodes. Now, for h 3, an AVL tree with height h and the minimum number ofnodes is such that both its subtrees aré AVL trees with thefl minimum number Ofnodes: one with height h - i and the other with height h 2. Taking the root into
account, we obtain the following formula that relates n(h) to n(h - 1) and n(h 2),forh3:

n(h)= 1+n(h i)+n(h-2). (3.1)
Formula 3 1 implies that n(h) is a sthctly increasing function of h (corresponding
to the Fibonacci progression). Thus, we know that n(h - 1) > n(h 2). Replacing
n(h - 1) with n(h 2) in Formula 3.1 and dropping the 1, we get, for h 3,

i n(h) > 2n(h-2). (3.2)
Formula 3.2 indicates that n(h) at least doubles each time h increase&by 2, which
intuitively means that n(h) grows exponentially. To show this fact in a formal way,
we apply Formula 3 2 repeatedly, by a simple inductive argument, to show that

n(h)>2.n(h-2i), (33)
for any integer z, such that h - 2z 1 Since we already know the values of n( i) and

we pick iso that h-2i is equal to either 1 or2. That is, we pick i= [h/21 1.
By substituting the above value of i in Formula 3.3, we obtain, for h 3,

I 1h]n(h) > 2121 n h-2 - ±2
2[]'n(I)
2H. . (3.4)

By taking logarithms of both sides of Formula 3.4, we obtain logn(h) > - 1,
from which we get

h < 2logn(h)+2, (3.5)
which implies that an AVL tree stonng n keys has height at most 2logn + 2

By Theorem 3.2 and the analysis of binary search trees given in Section 3.1.2,.
the operation findElement in a dictionary implemented with an AYL tree, runs in
O(logn) time, where n is the number of items in the dirtinnn,
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Insertion

An insertion in an AVL tree T begins as in an insertltem operation descrii

Section 3 1 4 for a (simple) binary search tree Recall that this operation

inserts the new item at a node w in T that was previouslY an external nod

it makes w become an internal node with 0perationexpandExt3I. Thàt

adds two external node children to w This action may violate the height-b

property however, for some nodes increase their heights by one In particulA»I

w, and possibly some of its ancestors, increase their heights by one Theref9Ï

us descnbe how to restructure T to restore its height balance /

Given the binary search tree 7, ,we, sax thay,nodçv of T is balanced ii h'

solute value of the difference between the heights of the children of y is at 'u

and we say that it is unbalanced otherwise Thus, the height-balance prope

actenzing AVL trees is equivalent to saying that every internal node is baiam/

Suppose that T satisfies the height-balance property, and hence is an A 1,

prior to our inserting the new item As we have mentioned, after perfo

operation expandExterflal(w) on T, the heights of some nodes of T, inclw

increase All such nodes are on the path of T from w to the root of T, and'

are the only nodes of T that may have just become unbalanced (See Figure:

Of course, if this happens, then T is no longer an AVL tree, hence, we

mechanism to fix the "unbalance" that we have just caused

3.2.1 Update Operations

The important issue remaining is to show how to maintin the height-ba1anC

erty of an AVL tree after an insertion or removal. The iiïsertion and removal

tions for AVL trees are similar to those for binary search trees, but with AVL

we must perform additional computations.

s

z 4
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0'
O o

a
1 1_20Y

z_Ój

a a /'O\ /0' (!ì
I ) T2..1

T1T0

(b)
(a)

Figure 3.12: An example insertion of an element with key 54 in the AVE

Figure 3 11 (a) after adding a new node for key 54, the nodes storing

and 44 become unbàlanced (b) a trinode restructuring restores the heigh;

property. We show the heights of nodes next to them, and we identify S
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Algorithm restructure(x): .

Input: A node x of a binary search tree T that has both a parent y and a grand-
parentz . -

Output: Tree T after a trinode restructuring (which corresponds . to à single or
double rotation) involving nodes x, y, and z

. i : Let (a, b, c) be a left-to-right (morder) listing of the nodes x, y, and z, . and let
(To, T1, T2, T3) be a left-to-right (iIiorder) listing of the four subtites of x, y, and
z not rooted at x, y, or z:
Replace the subtree rooted at z with a new subtree rooted at b.
Let a be the left child of b and let To and T1 be the left and right subtrées of a,
respectively.
Let c be the right child of b and let T2 and ¡'3 be the left and tight subtrees of c,
respectively.

Algorithm 3.13: The trinode restructure operation in a binary search tree.

We restore ihe balance of the nodes in the binary search tree T by a simple
"search-and-repair" strategy. In particular, let z be the first node we encounter in
going up from w toward the root of T such that z is unbalanced. (See Figure 3. 12a.)
Also, let y denote the child of z with higher height (and note that y must be an
ancestor of w). Finally, let x be the child of y with higher height (and if there is a
tie, choose x to be an ancestor of w). Note that node x could be equal to w and x is
a grandchild of z. Since z became unbalanced because Of an insertioñ in the subfree
rooted at its child y, .the height ofy is 2 greater than its sibling. We now rebalance
the subtree rooted at z by calling the trinode restructuring method, restructure(x),
described in Algorithm 3.13 and illustrated in Figures 3.12 and 3.14. A trinode
restructure temporarily renames the nodes x, y, and z as a, b, and c, so that a
precedes b and b precedes: c in an morder traversal of T. There are four possible
ways. of mapping x, y, and z to a, b, and c, as shown in Figure 3.14, which are
unified into one case by our relabeling. The trinode restructure then replaces z
with the node called b, makes the children of this ñode be a and c, and makes the
children of a and c be the four previous children of x, y, and z (other than x and y)
while maintaining the ijiorder relationships of all thé nodes in T.

The modification of a tree T caUsed by a trinodè restructure operation is of-
ten called a rotation, because of the geometric way we can visualize the way it
changes T. 1fb = y (see Algorithm 3.13), the trinode'restructure method is called
a single rotation, for it can he visualized as "rotating" y over z. (See Figure 3. 14a
and b.) Otherwise, if b = x, the trinode restructure operation is called a double
rotation, for it can be visualized as first "rotating" x over y and then over z. (See
Figure 3. 14c and d, and Figure 3.12.) Some researchers treat these two kinds as
separate methods, each with two symmetric types, we have chosen, however, to
unify these four types of rotations No matter how we view it, note that the tnnode
restructure method modifies parent-child relationships: of 0(1) ñodes in T, while
preserving the morder traversal ordering of all the nodes in T.
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single rotation

(a)

single rotation

(b)

double rotation

(c)

double rotation

(d)

T3

Figure 3.14: Schematic illustration of a trinode restructure operation (Algo-

rithm 3 13) Parts (a) and (b) show a single rotation, and parts (c) and (d) sho

a double rotation
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Figure 3.15: Removal of theelement with key 32 from the AYL tree of Figure 3.11:

(a) after removing the node storing key 32, the. root becomes unbalanced; (b) a

- (single) rotation restores the height-balance property.

3.2. AYL Trees
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In addition to its order-preserving property; a trinode restrúcturing operation

changes the heights of nodes in T, so as to restore balance. Recall that we execute

the method restructu re(x) because z, the grandparent of x, is unbalanced. More-

over, this unbalance is due to one of the children of x now having too large a height

relative to the hight of z's other child. As a result of a rotation, we move up the

"tall" child of x while pushing down the "short" child of z Thus, after performing

restruéture(x), all the nodes in the subtree now rooted atthe node we called bare

balanced. (See Figure 3.14.) Thus, we restore the height-balance property locally

at the nodes x, y, and z.

lii addition, since äfterperforming thé new item insertion the subtree rooted at b

replaces the One formerly rooted at z, which was taller by one unit, all the ancestors

of z thät were formerly unbalanced become balanced. (See Figure 3.12..) (The

justification of this fact is left as Exercise C-3.13.) Therefore, this one restructuring

also restores the height-balance property globally. That is, one rotation (single or

double) is sufficient tö restore the height-balance in an AVL tree after an insertion.

Removal

As was the case for the insertitem dictionary operation, we begin the implemen-

tation of the removeElement dictionary operation on an AVL tree T by using the

algorithm for perfOrming this operation on a regular binary search tree. The added

difficulty in using this approach with an AVL tree is that it may violate the heighi-

balance property.
In particular, after removing an internal node with operation removeAboveEx-

'cernai and elevating one of its children into its place, there may be an unbalanced

node in T on the path from the parent w of the previously removed node to the root

of T. (See Figure 3. 15á.) In fact, there can be one such unbalanced node at most.

(The justification of thisfact is left as Exercise C-3. 12.)
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As with insertion, w use trinode restructuring to restoxe balance in the
In particular, let z be the first unbalanced node encbunteredgoing.up from 1v,
the mot of T Also, let y be the child of z with larger height (note that node y
child of z that is not an ancestor of w), and let x be a child of y with larger
The choice of x may not be unique, since the subtrees of y may have tif
height. In any case, we then perform a restructure(x) operation, which rests
height-balance property locally, at the subtree that was formerly rooted at z
now rooted at the node we temporarily called b. (See Figure 3.1 5b.)

Unfortunately, this trinode restructuring may reduce the height of the s
rooted at b by 1, which may cause an ancestor of b to become unbalanced:
a single trinode restructuring may not restore the heightLbalance property gb
after a removal. So, after rebalancing z, we continue Walking up T looking fo
balanced nodes. If we find another, we perform a restructure operation to re
its balance, and continue marching up T looking for more, all the way to th
Still, since the height of T is O(logn), where n is the number of items, bys
rem 3.2, O(logn) trinode restructurings are sufficient to restore the height-b
ptoperty.

3.2.2 Performance

We summarize the analysis of the AVL tree as follows. Operatiöns findEle!

insertitem, and removeElement visit the nodes along a root-to-leaf path òf T,
possibly their siblings, and spend 0(1) time per node. Thus, since the height
is O(log n) by Theorem 3.2, each of the above operations takes 0(log n) time.
illustrate this performance in Figure 3.16.

worst-case time: O(log n)

Figure 3.16: Illustrating the running time of searches and updates in an AVL Ir
The time performance is 0(1) per level, broken into a down phase, which j'
cally involves searching, and an up phase, which typically involves updating heifl
values and performing local trinode restmcturings (rotations).

height time per level
0(1)

N
AYL tree T

/ 0(1)/
O(Iog n) " SS

down phase" "___) ,
s' KUy ùhase

0(1)
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BOU»dedDePth Search Trees

3.3 BoundedDePth Search Trees

Some search trees base their efficiency on mies that explicitly bound their depth.

In fact, such trees typically define a depth function, or a "pseudo-depth" function

closely related to depth, so that every external node is at the same depth Or pseudo-

depth. In so doing, they maintain every external node to be at depth O(logn) in a

tree storing n elements. Since tree searches and updates usually run in times that

are proportional to depth, suôh a depth-bounded tree can be used to implement an

ordered dictionary with O(log n) search and update times

3.3.1 Multi-Way Search Trees

Some bounded-depth search trees are multi-way trees, that is, trees with internal

nodes thät have two or more children. In this section, we describe how multi-way

trees can be used as search trees, including how multi-way trees store items and

how we can perform search operations in multi-way search trees. Recall that the

items that we store in a search tree are pairs of the form (k,x), where k is the key

and x is th6 element associated with the key.

Let y be a node of an ordered tree. We say that y is a d-node if y has d children.

We define a multi-way search tree to be an ordered tree T that has the following

properties (which are illustrated in Figure 3.17a):

Each internal ñode of T has at least two children. That is, each internal node

is a d-node, whére d 2.

Each internal ñode of T stores a collection of items of the form (k,x), where

k is a key and xis an element. /

Each d-node y of T, with children ,d, stores d-1 items (ki,xi),...

(kd_l,xd_Ï),wherekl..kd_1.
Let us define k0 = oc and ¡ç-j = +oo. For each item (k,x) stored at a node

in the subtree of yobted atv, i = 1,...,d, wehaveki k <ki.

That is, if we think of the set of keys stored at y as includiúg the special fictitious

keys k0 = oc and lcd = +oo, then a key k stored in the subtree of T rooted at a

child node v must be "in between" two4cieys stored at y.. This simple viewpoint

gives rise to the rule that a node with d children stores d - i regular keys, and it

also forms the basis of the algorithm for searching iñ a multi-way search tree.

By the above definition, the external nodes of a multi-way search do not store

any items and serve only as "placeholders." Thus, we view a binary search tree

(Section 3 1 2) as a special case of a multi-way search tree At the other extreme, a

multi-way search tree may have only a single internal node storing all the items In

addition, while the external nodes could be nuI, we make the simplifying assump-

tion here that they are actual nodes that don't store anything. -
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u s u . . . ..
(a:)

(c)

Figure 3.17: (a) A multi-way search tree T; (b) search path in T for key 12 (unsuc-
cessful search); (e) search path in T for key 24 (successful search).
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Data Structures for 'Multi-Way Search Trees

In Section 2,3.4, we discussed different ways of representing general trees. Each of
these represèntations can also be used for multi-way search trees. In fact, in 'using

a general multi-way tree to implement a multi-way search treè, the only additional
information that we need to store at each node' is the set of items (including keys)
ssociated with that node.' That is, we need to store with y a reference to some

container or collection object that stores the items for y.
Recall that when we use a binary tree to represent an ordered dictionary D, we

simply store a reference to a single item at each internal nodeL In using a multi-way
searèh tree T to represent D, we must store a reference 'to' the ordered Set of items
assoòiated with y at each internal node y of T. This reasoning may at first seem
like a circular argument, since we need a representation of an ordered dictionary
to represént an ordered dictionary. We can avoid any circular arguments, however,
by using the bootstrapping technique, where we use a previous (less advanced)

solution to a problem 'to create a new (more advanced) solution. In' this case, boot-

strapping consists of representing the ordered set associated 'with' each internal node

using a dictionary data structure that we have previously constructed (for example,

a lookup table based, on an ordered vector, as shown in Section 3.1.1). In particu-

lar, assuming we already have a way of implementing ordered dictionaries, we can
realize a multi-way searbh tree by taking a tree T and storing such a dictionary at

eachd-nodevofT. ' ' '

.The dictidnary we store at each node y is known 'as a secondary data structure,

for we are using it to support the bigger, pnmary data structure We denote the

dictionary stored at a node y of T as D(v) The items we store in D(v) will allow us

to find which child node to move to next duringa search operation.; Specifically, for

33.
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Whether internal nodes of a multi-way tree have two children or many, however,
there is an interesting relationship between the number of items and the number of
external nodes.

Theorem 3.3: A multi-way search tree storing n items has n + i external nodes.

We leave the justification of this theorem as an exercise (C-3.16).

Searching in a Multi-Way Tree

Given a multi-way search tree T, searching, for an element with key k is simple. We
perform such a search by tracing a path in T starting at the root. (See Figure 3. 17b

arid c.) When we are at a 4-node vduring this search, we compare the key k with

the keys k1,.... ,!c_i stored at y. If k = !c for some i, the search.is successfully
completed. Otherwise, we continue the search in the child y1 of y such that k1 <
k < ki.. (Recall that we consider k0 = oo and /cd = +oo.) If we reach an external
node, then we know that there is no item with key k in T, and the search terminates

unsuccessfully.
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each node y ofT, with children v1,,vd and items (ki,xi) ..., (kd_1,xd_1),
storeinthedictionaryD(v)theitems(ki,xi,vi),jk2,x2,v2), ..., (kd_1,xd_1,vd_l,)
(+, null, vd). That is, an item (k1,x, v) of dictionary D(v) has key Ic and eleme
(xi, vi). Note that the last item stores the special key +oo.

With the above realization of a multi-way search tree T processing a d-node
while searching for an element of T with key k can be doné by performing a seare
operation to find the item (k ,x, v) in D (y) with smallest key greater than or equ
to k, such as in the closestElemAfter(k) operation (see Section 3.1). We distinguis
two cases:

Jfk < k, then we continue the searchby processing thild v. (Note that if th.
special key kd = +oo is returned, then k is greater than all the keys stored at
node y, and we continue the search processing child vd.)

Otherwise (k = ki), then the search terminates sucöessfully.

Performance Issues for Multi-Way Search Trees

Consider the space requiremeñt for the above realizationlof a multi-way search
tree T storing n items. By Theorem 3.3, using any of the cOmmon realizations of
ordered dictionaries (Section 2.5) for the secondary structüres of the nodes of T,
the overall space requirement for T is 0(n).

Consider next the time spent answering a search in T. The time speht at a d-
node y of T during a search depends on how we realize the secondary data structure
D (y). If D (y) is realized with a vector-based sorted sequénce (that is, a lookup
table), then we can process y in 0(iog d) time If instead D(v) is realized using
an ubsorted sequence (that. is, a log file), then processing y takes 0(d) time Lev
dmax denote the maximum number of children of any node, of T, and let h denote
the height of T. The search time in a multi-way search. tree is either 0(hdm) or
0(hlogdm3, depending on the specific implementation of the secondary structureS
at'the nodes of T (the dictionaries D(v)). 11f is a constant, .the running time for,
performing a search is 0(h), irrespective of the implementation . of the secondary
structures. . . ,

Thus, the prime efficiency goal for a multi-way search tree is to keep the height
as small as possible, that is, we want h to be a logarithmic function of n, the number
of total items stored in the, dictionary. A search tree with logarithmic height, such
as this, is called a balanced search free. Bounded-depth search trees satisfy this
goal by keeping each external node at exactly the same depth levelin the tree.

Next, we discuss a bounded-depth search tree that is a multiway search tree
that caps dm at 4: In Section 14. L2, wediscuss a more general kind of multi-way
search tree that has applications where our search tree is tOo large to completely fit
into the' internal memory of our computer.' , ,
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3.3.2 (2,4) Trees

In using a multi-way search tree in practice, we desire that it be balanced, that is,

have logaiithmic height. The multi-way search tree we study next is fairly easy

to keep balanced. It is the (2,4) tree, which is sometimes also called the 2-4 tree

or 2-3-4 tree. In fact, we can maintain balance in a (2,4) tree by maintaining two

simple properties (see Figure 3.18):

Size Property: Every node has at most four children.

Depth Property All the external nodes have the same depth.

Enforcing the size property for (2,4) trees keeps the size of the nodes in the

multi-way search free constant, for it allows us to represent the dictionary D(v)

stored at each internal node y using a constant-sized array. The depth property, on

the other hand, maintains the balance in a (2,4) tree, by forcing it to be a bounded-

depth structure.

Theorem 3.4: The height of a (2,4) tree storing n items is ®(logn).

Proof: Let h be the height of a (2,4) tree T storing n items. Note that, by the

size property, we can have at most 4 nodes at depth 1, at most .42 nodes at depth 2,

and so on. Thus, the number of external nodes in T is at most 4h2 Likewise; by the

depth property and the definition of a (2,4) tree, we must have at least 2 nodes at

depth 1, at least 22 nodes at depth 2, and so on. Thus, the number of external nodes

in T is at least 2'. In addition, by Theorem 3.3, the number of external nodes in T

is n + i Therefore, we obtain

2n±1 and n+i4h.
Taking the logarithm in base 2 of each of the above terms, we get that

hlog(n+l) and log(n+1)2h,

which justifies our theorem. . .

U

Figure 3.18: A (2,4) tree.
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Insertion in a (2,4) Tree

Theorem 3 4 states that the size and depth properties are sufficient for keth
multi-way tree balanced Maintaining these properties equires some effo
performing insertions and removals in a (2,4) tree, however In particular, toi 'i,
a new item (k,x), with key k, into a (2,4) tree T, we first perform a search
Assuming that T has no element with key k, this search terminates unsucces5
at an external node z. Let y be the parent of z. We insert the new item into dk
and add a new child w (an external node) to y on the left of z That is, we
(k,x,w) to the dictionary D(v)

Our insertion method preserves the depth property since we add a new exte
node at the same level as existing external nodes Nevertheless, it may violat
size property Indeed, if a node y was previously a 4-node, then it may beco
5-node after the insertion, which causes the tree T to no longer be a (2,4) tree
type of violation of the size property is called an overflow at node y, and i'
be resolved in order to restore the properties of a (2,4) tree Let vi, , y5 b
children of y, and let k1, , k be the keys stored at y To remedy the overfio
node y, we perform a split operation on y as follows (see Figure 3 19) /

Replace y with two nodes y' ànd y", where

o v'is a 3-node with children Vi, i'2, v stonng keys k1 and k2
o y" is a 2-node with children y4, y5 stonng key k4

If y was the root of T, create a new root node u, else, let u be the parent of
s Insert key k3 into u and make y' and y" children of u, so that if y was chili

of u, then y' and y" become children i and ¡ + i of u, respectively

We show a sequence of insertions in a (2,4) tree in Figure 3.20.

164 Chapter 3. Search Trees andSkj

(a)

Figure 3.19: A node split: (a) overflow at a 5-nôde V; (b) the third key oily inserted
into the parnt u of y; (c) node y replaced with a 3node y' and a 2-node y".

A split operation affects a constant number of nodes of the tree and 0(1) item
stored at such nodes. Thus, itcanbe implemented to run in 0(1) time.
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(a) (b)

.165

Figuré 3.20: A seqüence of insertions into a (2,4) tree: (a) initial tree with one

item; (b) insertion of 6; (e) insertion of 12; (d) insertion of 15, which causes an

overflow; (e) split,whiòh causes the er atioil of a new root node; (f) after the split;

(g) insertion of 3, (h) insertion of 5, which causes an overflow, (i) split, (j) after the

split; (k) insertion of 10; (1) insertion of 8. .

. t.:

(e) (f)

(g) (h)

(i) (i)

(k). (1)
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Performance of (2,4) Tree Insertion

As a consequence of a split operation on node y, a ne'(v overflow may occur at)
parent u of y. If such an overflow occurs, it triggers, in tUrn, a split at node u. (
Figure 3.21.) A split operation either eliminates the overflow or propagates it
the parent of the current node. Indeed, this propagation can continue all the way
to the root of the search tree. But if it does propagate all the way to the root, it
finally be resolved at that point. We show such a sequence of splitting propagati
in Figure 3.21.

Thus, the number of split operations is bounded by the height of the tree, w
is O(logn) by Theorem 3.4. Therefore, the total timeto perform an insertion i
(2,4) tree is O(logn) t

(b)

. .. . . u i u ii

5 10 12 5 10 12 15

Figure 3.21: An insertion in a (2,4) tree that causes a cascading split (à) before th
insertion; (b) insertion of 17, causing an overflow; (c) a split; (d) after the spht
new overflow occúrs; (e) another split, creating a new root\node; (t) final free.

(c) (d)

(e) (t)
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Removal ¡n a (2,4) Tree

Let us now consider the removal of an item with key k from a (2,4) tree T. We begin
such an operation by performing a search in T for an item with key k. Removing
such an item from a (2,4) treé can always be reduced to the case where the item to
be removed is stored at a node y whose children are external nodes. Suppose, for
instance, that the item with key k that we wish to remove is stored in the ith item
(k1,x,) at a node z that has only internal-node children In this case, we swap the
item (k,x) with an appropriate item that is stored at a node y with external-node
children as follows. (Figure 3.22d): .

We find the right-most internal node y iii the subtree rooted at the ith child of

z, noting that the children of node y are all external nodes.

We swap the item (k,x) at z with the last itém of y.

Once we ensUre that the item to remove is stored at a node y with only external-
node child en (because either it was already at y or we swapped it into y), we
simply remove the item from y (that is, from the dictionary D(v)) and remove the
ith extèrnal node of y..

Removing an item (and a child) from a node y as described above preserves the

depth property, for we always remove an external node child from a node y with
only external-node children. However, in removing such an external node we may
violate the size property at y. Indeed, if y was previously a 2-node, then it becomes

-a 1.-node with no items after the removal (Figure 3.22d and e),, which is not allowed

in a (2,4) tree. This type of violation of the size property is called an underfiow

at node y. To remédy an underfiow, we check whether an Immediate sibling of y

is a 3-node or a 4-node If we find such a sibling w, then we perform a transfer
operation, in which we move a child of w to y, a key of w to the parent u of y and

w, and a key of u to y. (See Figure 3.22b and c.) ifithas only one sibling, or if both

immediate 'siblings of y are 2-nodes, then we, perform afission operation, in which

we merge y with a sibling, creating a new node y', and move a key from the parent

uof vto y'. (SeeFigure3.23eandf.) -

A fusion operation at node y may cause a new underfiow to occur at the parent

u of y, which in turn triggers a transfer or fusion at u (See Figure 3 23) Hence, the
number of fusion operations is bounded by the height of the tree, winch is O(log n)

by Theorem 3 4 'If an underfiow propagates all the way up to the root, then the root

is simply deleted (See Figure 3 23c and d) We show a sequence of removals from

a (2,4) tree in Figures 3 22 and 3 23
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(c)

Figure 3.22: A sequence of removals from a (2,4) free: (a) rémoval of 4, ca

an underfiow, (b) a transfer operation, (e) after the transfer operation, (d) re

of 12, causing an underfiow; (e) a fusion operation; (t) after the fusion ope

(g) removal of 13; (h) after remçwing 13.
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(e) (d)
Figure 3.23: A propagating sequence of fusions in a (2,4) tree: (a) removal of 14,
which causes an underfiow; (b) fusion, which causes another underfiow; (e) second
fusion operation,. which causes the roót to be removed; (d) final tree.

Performance oía (2,4) Trée

Table 3.24 summarizes the running times of the main opeÈatioñs of a dictidnary
realized with a (2,4) tree. The time complexityanalysis is based on the foliowiñg:

The height of a (2,4) tree storing n items is.O(logn), byTheorem 3.4.

A split, transfer, or fusion operation takes 0(1) time

. A search, insertion, or removâl of an item visits O(logn) nodes.

ThbIe 3.24: Performance of an n-element dictionary' realized by a (2;4) tree,
where s denotes the size of the aerators returned by firtdAllElements and
removeAllElements The space usage is 0(n) N

Thus, (2,4) trees provide foit fast dictionary searòh and update operatiOns. (2,4'
trees also have an interesting rélatioñship to the data structure we discuss next.

Operation Time
size, isEmpty 0(1)

findElement, insertitem, removeElement O(logn)
findAll Elements, removeAll Elements O(Iog n + s)

ji Bounded-Depth Search Trees 169
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3.3.3 Red-Black Trees

The data structure we discuss in this section, the red-black tree, is a binary seare

tree that uses a kind of "pseudo-depth" to achieve balance using the approach o

a depth-bounded search tree In particular, a red-black free is a binary search tre

with nodes colored red and black in a way that satisfies the following properties

Root Property: The root is black.

External Property: Every external node is black

Internal Property. The children of a red node are black

Depth Property: All the external nodes have the same black depth, which is de

fined as the number of black ancestors minus one.

An example of a red-black tree is shown in Figure 3 25 Throughout this sectior

we use the convention of drawing black nodes and their parent edges with thic

lines.

Figure 3.25: Red-black tree associated with the (2,4) tree of Figure 3.18. EaÇ

external node of this red-black tree has three black ancestors, hence, it has blac

depth 3 Recall that we use thick lines to denote black nodes

As has been the convention in this chapter, we assume that items are stored

the internal nodes of a red-black tree, with the external nodes being empty plac

holders Also, we describe our algorithms assuming external nodes are real, but

note in passing that at the expense of slightly more complicated search and updd

methods, external nodes could be null or references to a NULL_NODE object
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The red-black tree definition becomes more intuitive by notiñg an iñterestingcorrespondence between red-black and (2,4) trees, as illustrated in Figure 3.26.Namely, given a red-black tree, we cän construct a corresponding (2,4) tree bymerging eyèry red node y into its parent and storing the item from. y at its parent.Conversely, we can transform any (2,4) tree into a corresponding red-black tree bycoloring each node black and performing a simple transformation for each internalnode y.

If y is a 2-node, then keep the (black) children of y as is.
If y is a 3-node, then create a new red node w, give v's first two (black)
children to w, and make w and v's third child be the two children of y.
If y is a 4-node, then create two new red nodes w and z, give v's first two
(black) children to w, give v's last two (bläck) children to z, and make w andz be the two children of y.

(a)

(b)

(e)

Figure 3.26: Correspoúdence between a (2,4) tree änd a red-black tree: (a) 2-ñode;
(b) 3-node; (c) .4-node. . . .
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This correspondence between (2,4) trees and red-black trees provides impor1

tant intuition that we will use in our discussions In fact, the update algonthms fJ

red-black trees are mystenously complex without thiS intuition We also have thi

following property for red-black trees

Theorem 3.5: The height of a red-black tree storing n items is .0(log n).

Proof Let T be a red-black tree stonng n items, and let h be the height of T W

justify this theorem by establishing the following fact

iog(n+1)h2log(n+1)

Let d be the common black depth of all the external nodes of T Let T' be the (2,4

tree associated with T, and let h' be the heíght of T' We know that h' = d Henc

by Theorem 34, d = h' 1og(n+ 1) By the internal node property, h < 2d Th

we obtain h Ç 2 log (n + 1) The other inequality, log (n + 1) <h, follows froi

Theorem 2 8 and the fact that T has n internal nodes

We assume that a red-black tree is realized with a linked structure for binai

trees çSection 2 3 4), in which we store a dictionary item and a color indicator

each node Thus the space requirement for stonng n keys is 0(n) The algonth

for searching iñ a red-black tree T is the same as that for a standard binary sean

tree (Section 3.1.2). Thus, searching in a red-black tree takes O (log n) time.

Performing the update operations in a red-black tree is similar to that oía bina

search tree, except that we must additionally restore the color properties.

Insertion, in a Red-Black Tree

Consider the insertion of an elemeñt xwith key k into a red-black tree T, keepi

in mind the correspondence between T and its associated (2,4) tree T' and i

insertion algorithm for T'. The insertion, algorithm initially proceeds as in a birn

search tree (Section 3.1.4). Namely, we search for k in T until we reach an exter

node of T, and we replace this node with an internal node z, storing (k,x)

having two external-node children. If z is the ioot of T, we color z black, e

we color z red We also color the children of z black This action corresponds

iñserting (k, x) intó a node of the (2,4) tree T' with external children. In. additi

this action preserves the root, external and depth properties.of T, but it may viol

the internal property. Indeed, if z is not the root of T and the parent y of z is i

then we have a parent and a child (namely, y and z) that are both red. Note i

by the root property, y cannot be the root of T, and by the internal property (wi

was previously satisfied), the parent is of y must be black. Since z and its parent

red, but is grandparent u is black, we call this violation of the internal proper

double red at node z.
To remedy a doublered, we consider two cases.
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Case 1: The Sibling w of y is Black. (See Figure 3.27.) In this case, the double
red denotes the fact that we have created a malformed replacement for a
corresponding 4-node of the (2,4) tree T' in our red-black tree, which has as

its children the four black children of u, y, and z. Our malformed replacement

has one red node (y) that is the parent of another red node (z), while we want

it to have the two red nodes as siblings instead. To fix this problem, we

perform a trinode restructuring of T. The trinode restructuring is done by

the operation restructure(z), which consists of thefollowing steps (see again

Figure 3.27; this operation is also discussed in Section 3.2):

Take node z, its parent y, and grandparent u, and temporarily relabel

them as a, b, and c, in left-to-right order, so that a, b, and c will be

visited in this order by.an morder tree traversal.

Replace the grandparent u with the node labeled b, and make nodes a

and c the children of b, keeping morder relationships unchanged.

After performing the restructure(z) operation, we color b black and we color

a and c red. Thus, the restructuring eliminates the double-red problem.

Figure 327. Restructunng a red-black tree to remedy a double red (a) the four

configuratiòns fOrü, y, and.beforerestructuriflg (b) after restructuring.
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Case 2: The Sibling w of y is Red. (See Figure 3.28.) Jn this case, the doubi
denotes an overflow in the corresponding (2,4) tree T. To fix the prot
we perform the equivalent of a split: operation. Namely, we do a recolo
we color y and w black Sd their parent u red (unlèss u icthe root, in
case, it is colored black). It is possible that, after such a recoloring
double-red problem reappears, albeit higher up in the tree T, since u
have a red parent If the double-red problem reappears at u, then we re
the consideration of the two cases at u Thus, a recolonng either ehimn
the double-red problem at node z, or propagates it to the grandparent u o
We contmue going up T performing recolonngs until we finally resolve
double-red problem (with either a final recoloring or a tnnode restructunu
Thus, the number of recolonngs caused by an insertion is no more tham
the height of tree T, that is, no more than log(n + 1) by Theorem 3.5.

(b)

Figure 3.28: Recoloring to remedy the double-red problem: (a) before recolorii
and the corresponding 5-node in the associated. (2,4) tree before the split; (b) aft
the recoloring (and corresponding nodes in the associated (2,4) tree after the splii

Figures 3.29 and 3.30 show a sequence of insertions in a red-black tree.
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.0 0o oo.0. ...Q

o

0o o o
u .i:. i0

(d)

Figure3.29: A sequence of insertions in a red-black tree: (a) initial tree; (b) inser-

lion of 7, (c) insertion of 12, which causes a double red, (d) after restructunng, (e)

insertioñ of 15, which causes .a double red; (f) after recoloring (the root remains

black); (g) insertion of 3; (h) insertion of 5; (i) insertion of 14, which causes a

dòuble red; (j) after restructuring; (k) insertion of 18, which causes a double red;

(i) after recoloring. (Continued in Figure 3.30.)
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o
o o0000

(m) (n)

(o)

Q

O 0
0 000

0 0 u u u

(p)

LI

Figure 3.30: A sequence of insertions in a red-black tree (contiñued from F
ure 3.29): (m) insertion of 16, which causes a double red;. (n) after restrueturii
(o) insertion of 17, which causes a double red, (p) after recolonng there is agaii
double red, to be handled by a restructuring;.. (q) after restructuring.
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The cases for insertion imply an interesting property for red-black trees. Namely,
sincé the Case i action eliminates the double-red problem with a single trinode re-

structuring and the Case 2 action performs no restructuring operations, at most one
restructuring is .needed in a red-black tree insertion. By the above analysis and the

fact that a restructuring or recoloring takes 0(1) time, we have the following:

Theorem 3.6: The insertion of a key-elementitem in a red-black tree storing n
items can be done in O(log n) time and requires at most .O(log n) reòolorings and

one trinode restructuring (a restructure operation).

Removal in a Red-Black Tree

Suppose now that we are asked to remove an item with key k from a red-black
tree T. Removing such an item initially proceeds as fot a binary search tree (Sec-

tion 3.1.5). First, we search for a node'u storing such an item. If node u does
not have an external child, we find the internal node y following u in the morder.
traversal of T, move the item at y to u, and perform the removal at y. Thus, we may
consider only the removal of an item with key k stored at a node y with an external

child w. Also, as we did for insertions, we keep in mind the correspondence be-
tween red-blaék tree T and its associated (2,4) tree T' (and the removal algorithm

for T').
To remove the item with key k from a node y of T with an external child w we

proceed as follows. Let r be the sibling of w and x be the parent of y. We remove
nodes y and w, and make r a child of x. If y was red (hence r is black) or r is red

(hence y was black), we color r black and we are done. If, instead, r is black and y

was black, then, to preserve the depth property, we give r a fictitious double-Mack

color. We now have, a color violation, called thefl double-black problem. A double

black in T denotes an underfiow in the corresponding (2,4) tree T'. Recall that x
Is the parent of the double-black node r. To remedy the double-black problem at r,

we consider three cases.

Case 1: The Sibling y of r is Black and has a Red Child z. (See Figure 3.31.)

Resolving this case corresponds to a transfer operation in the (2,4) tree T'.

We perform a Irinode restriictuñng by means of operation restructure(z).

Recall that the operation restructure(z) takes the node z, its parent y, and

grandparent x, labels them temporarily left to right as a, b, and c, and replaces

x with the node labeled b, making it the parent of the other two (See also

the description of restructure in Section 3.2.) We colora and c black, give b

the former color of x, and color r black. This trinóde restructuring eliminates

the double-black problm. Henèe, at most one restructuring is performed in

a removal òperation in this case.
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(a)

(c)

Figure 331: Restructuring of a red-black tree to remedy the double-black problenr
(a) and (b) configurations before the restructuring, where r is a right child i

the associated nodes in the corresponding (2,4) tree before the transfer (two oth i
symmetric configurations where r rs a left child are possible), (c) configuration v.
the restructuring and the associated nodes in the corresponding (2,4) tree after th
transfer Node x in parts (a) and (b) and node' b in part (c) may be either red s
black.

(b)
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Figure 3.32: Recoloring of a red-black tree that fixes the double-black problem: (a)
before the recoloring and corresponding nodes in the associated (2,4) tree before
the fusion (other similar configqrations are possible); (b) after the recoloring and
corresponding nodes in the associated (2,4) tree after the fusion.

sounded-IPth1 Search Trees 179

Case 2: The Sibling y of r is Black and Both Children of y are Black. (Seé.
Figures 3.32 and 3.33.) Resolving this case corresponds to a fusion operation
in the corresponding (2,4) tree T'. We do a recoloring; we color r black,
we color y red, and, if x is red, we color it black (Figure 3.32); otherwise, we
color x double black (Figure 3.33). Hence, after this recoloring, the double-
black problem may reappear at the parent x of r. (See Figure 3.33.) That is,
this recoloring either eliminates the double-black problem or propagates it
into the parent of the current node. We then repeat a consideration of these
three cases at the parent. Thus, since Case i performs a trinode restructuring
operation and stops (and, as we will soon see, Case 3 is similar), the number
of recolorings caused by a removal is no more than log (n + 1).
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(a)

(b)

Figure 3.33:. Recoloring of a red-black tree that propagates the double black p
lem: (a) configuration before the recoloring and corresponding nodes in the
ciated (2,4) tree before the fusion (other similar configurations are possible)
conftguration after the recoloring and corresponding nodes in the associated(
tree after the fusion.
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(b),

Figure 3.34: Adjustment of a red-black tree in the presence ola double black prob-

lem: (a) configuration before the adjustment and correspoúding. nodes inthç asso-

ciated (2,4) tree (a symmetric configuration is possible), (b) configuration after the

adjustment with the same corresponding nodes in the associated (2,4) tree

Øded.DePth1 Search Trees 181

Case 3: The Sibling y oIr is Red. (See Figure 3.34) In this case, we.perform an
adjustment operation, as follows. If y is the right child of x,let z be the right
child of y; otherwise, let z be the left child of y. Execute. the thnode restruc-

turé operation restructure(z), which makes y the parent of x. Color y black
and xred. An adjustment corresponds to choosing a different representàtion
of a 3node in the (2,4) tree T', After the adjustment operation, the sibling

of r is black, and either Case i or Case 2 applies, with . a different meaning

of x and y. Note that 1f Case 2 applies, the double-black problem cannot
reappear. Thus, to complete Case 3 we make one more application of either
Case i or Case.2 above and we are done. Therefore, at most one adjustment
is performed in a removal operation.
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From the aböve algorithm description, we see that the tree updating n
after a removalinvolves an upward march in thç tree T, while performiñg at
a constant amount of work (in a restructurwg, recolonng, or adjustment) per it
The changes we make at any node in T dunng this upward march takes 0(1)
because it affects a constant. number of nodes Moreover, since the restruc
cases terminate upward propagation in the tree, we have the following.

- Theorem. 3.7: The algorithm for removing an item from a red-black tree
n items takes O(logn) Urne and performs O(logn) recolorings and at most
adjustment plus one adthtional tnnode restructuring Thus, it performs at mos
réstructure. operations.

In Figures 3.35 and 3.36, we show a sequence of removal operations on a
black. ttee. We illustrate Case i restructurings in Figure. 3.35c and d. We
trate OEse 2 recolorings at several, places in Figures 3.35 and 3.36. Finali
Figure 3.36i and j, we show an example of a Case 3 adjustment.

(d)

Figure 3.35: Sequence of removals from a red-black free: (a) initial tree; (b) reS
of 3, (c) removal of 12, causing a double black (handled by restructuring), (d)
restruct.iring.
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(g)

(i)

Figure 3.36: Sequence of removals in a red-black. tree (continued): (e) removil
of 17; (f) removal of .18, causing a double black (handled by recoloring); (g) after
recoloring; (h) removal df 15; (i) removal of, 16, causing a double blaçk (handled
by an adjustment);. (j) afterthe adjustment,. the. double black needs to bè handled by
a recoloring; (k). after the recoloring.. ..
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Performance of a Red-Black Tree

Table 3.37 summarizes the ruñning timbs of the maui operations of a dictioh
realized by means of a red-black tree. We illustrate the justification for these bou
inFigure3.38. i

Table 3.37: Performance of an n-element dictionary realized by a red-bi
tree, where s denotes the size o the iterators returned by findAIIEIements

worst-case time: 0(log n)

Figure 3.38: illustrating the running time of searches and updates in a red-hl
tree. The time performance is 0(1) per level, broken into a down phase, w
typically involves searching, and an up phase, which typically involves recohY
and performing local trinode restructurings (rotations).

Thus, aredblack tree achieves logarithmic woíst-case running limes for ho
searching and updating in a dictionary The red-black tree data structure is slig
more complicated than its corresponding (2,4) tree. Even so, a red-black treç ii
conceptual advantage that only a constant number of trinode restructurings are
needed to restore the balance in a red-black tree.after an update.

Operation Time
size, isEmpty 0(1)

findElement, insertitem, removeElemdnt 0(logn)
findAllElements, removeAllElements O(logn+s)

removeA!IElements. Thespace usage is 0(n).

height

N

I

'N.

time per leve
0(1)

/ 0(1)

0(1).

1

0(log

red-black tree T

n) \
down phue

s
s
s
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3.4.1 Splaying .

Given an internal node x of a binary search tree T, we splay x by moving x to
the root of T through a sequence of restructurings. The particular restructurings.
we perform are important, for it is not sufficient to move x to the root of T by
just any sequence of restructurings. The specific operation we perform to move
x up depends upon the relative positions of x, its parent y, and (if it exists) x's
grandparent z. There are three cases th.t we consider.

zig-zig: The node x and its parent y are both left or right . children. (See Fig
ure 3.39.) We replace z.by x, making y a child of. and z a child of y, while
maintaining the morder relationships of the nodes in T.

(a)

Figure 3.39: Zig-zig: (a) before, (b). aftet There is another symmetric configuration
where x and y are left children.

$play Thees 185

::34 Splay Trees

The final balanced search treé data structure we discuss in this chapter is the splay
tree. This structure is cônceptuaily quite different from the previously discussed
balanced search trees (AVL, red-blâck, and. (2,4) trees), for a splay tree does not
use any explicit nies to enforce its balance. Instead, it applies a certain move-to-
root operation, called splaying after every access, in order to keep the search tree
balanced in an amortized sense. The splaying operation is performed àí the bottom-
most node x reached during an insertion, deletion, or even a search. The surprising
thing abput splaying is that it allows us to guarantee amortized running times for
insertions, deletions, änd searches that are logarithmic. The structure of a splay tree
is simply a binary search tree T. In fabt, there are no additional height, balance, or
color labels that we associate with the nodes of this tree.
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zig-zag: One of x and y is a left child and the other is a right child, (Se&

ure 3.40.) In this case, we replace z by x and make x have as its childre

nodes y and z, while maintainiñg the morder relationships of the nodes'

A
(a (b)

Figure 3 40 Zig-zag (a) before, (b) after There is another symmetnc configura
where x is a right child andy is a left child.

zig: x does not havè a gràndparent (r we are nót considering x's grandpareiÇ

some reason). (See Figure 3.41.) In this case, we rotate .x over, y, makin

children be the node y and one of x's former children w, so as to. maintain

relative morder relationships of the nodes in T.

(a) ' (b)

Figure 3.41: Zig: (a) before; (b) after. There is another symmetric configur
where x and w are left children.

We perform a zig-zig or a zig-zag when x has a grandparent, and we perfo

zig when x hás a parent but not .a grandparent. A spkiying step consists of repeâ

thest restructurings àt x until x becomes the root of T. Note that this is no
same as a sequence of simple rotations that brings x to the root. An example 6

splaying of a node is shown in Figures 3.42 and 3.43.
After 'a zig-zig or zig-zag, 'the depth of. x decreases by two, and after;a

'the depth of x dçcreases by one. Thus, if x has depth d, splaying x consisfs

sequence of [d/2j zig-zigs and/or zig-zags, plus one final zig if d is odd Sin

single zig-zig, zig-zag, or zig affects a constant number of nodes, it can beM

'in 0(1) time. Thus, splaying a node x in a binary search tree T takes time O

where d is the depth of x in T. Iii òther words, the 'time for performing a spla

step for 'a node x is asymptotically the same âs the time needed just to reach

node in a top-down search from the root of T.
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(e)

Figure 3.42: Example of splaying a node (a) splaying the node storing 14 starts
with a zig-zag; (b) after the zig-zag; (e) the next step is a zig-zig.
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..u. u. u u

U) -

Figure 3.43: Example of splaying a node (continued from Figure 3.42): (d)
the zig-zig; (e) the next step is again a zig-zig; (f) after the zigzig.
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When to Splay

The nies that dictate when splaying is performed are as follows:

When searching for key k, if k is found ata node x, we splay x, else we splay
the parent of the external node at which the search terminates unsuccessfully.
For example, the splaying in Figures 3.42 and 3.43 would be performed after
searching successfully for key 14 or unsuccessfully for key 14.5.
When inserting key k, we splay the newly created internal node where k
gets inserted. For example, the splaying in Figures 3.42 and 3.43 would
be performed if 14 were the newly inserted key. We show a sequence of
insertions in a splay tree in Figure 3.44.

189

(g)

Figure 3.44: A sequente of insertions in a splay tree: (a) initial tree; (b) after insert-
ing 2; (c) after splaying; (d) after inserting 3; (e) after splaying; (f) after inserting

4; (g) after splaying.

(a) (b) (c)

(d) (e) (f)
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(c)

(e)

Chapter 3. Search lices and Skj,

Figüre 3.45: Deletion from a splay tree: (a) the deletion of 8 from node r is pe
formed by movingto rthe key of the right-most internal node y, in the left sub
of r, deleting y, and splaying the parent u of y; (b) splaying u starts with a zig-ñ
(e) after the zig-zig; (d) the next step is a zig; (e) after the zig.

When deleting a key k, we splay the pareñt of thö node w that gets remov
that i, w i either the node storing k or one of its descendents. (Recall
deletion algorithm for binary search trees given in Section 3.1.2.) An ex
ple of splaying following a deletion is shown in Figure 3.45.

In the worst oese, the overall running time of.a search, insertion, or deletion
a splay tree of height h is 0(h), since the node we splay might be the deepest no
in the tree. Moreover, it is possible for h to be 12(n), as shòwn in Figure 3.44. Th
from a worst-case point of view, a splay tree is riot an attractive data structure

(a) (b).
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3.4.2 Amortized Analysis of S playing

In spite ofits poor worst-case performance, a splay tree performs well in an amor-
tized sense. That is, in a sequence of intermixed searches, insertions, and deletions,
each operation takes on average loganthmic time We note that the time for per-
forming a searbh, insertion, br deletion is proportional to thç time for the associate4
splaying; hence, in our analysis, we consider only the splàying time.

Let T be a splay tree with n keys, and let y be a node of T. We define the
size n(v) of y as the number of nodes in the subtree rooted at y. Note that the size
of an internal node is one more than the sum of the sizes of its two children We
define the rank r(v) of a node y as the. logarithm in base 2 of the size of y, that

is, r(v) logn(v).. Clearly, the root ofT has the maximum size 2n + i and the
maximum rank, log(2n + 1), while each external node has size 1. and rank O

We use cyber-dollars to pay for the wOrk we perform in splaying a node x in
T, and we assume that one cyber-dollar pays for a zig, while two ëyber-dollars pay
for a zig-zig or a zig-zag Hence, the cost of splaying a node at depth d is d cyber-
dollars. We keepS a virtual account, storing cyber dollars, at each internal node of
T. Note. that this account exists only for the purpose of our amortized analysis,
and. does not need to be included in a data strûcture implementing the splay tree T.
When we perform a splaying, we pay a certain number of cyber-doilars (the exact

value will be determined later). We distinguish three cases:

. If the payment is equal to the splaying work, then we use it all to pay for the

splaying.
If the payment is greater than the splaying work, we deposit the excess in the
accounts of several nodes.
If the payment is less than the splaying work, we make withdrawals from the
accounts of several nodes to cover the deficiency.

We show that a payment of O (log n) cyber-.dollars per operation is sufficient to keep

the system working, that is, to eñsure that each node., keeps a nonnegative account
balance. We use a scheme in which transfers are .made 'between the accounts of

the nodes to ensure that. there will always be enough cyber-dollars to withdraw for
paying. for splaying wòrk when neáded. We also maintain the.following invariant:

Before and after a sp laying, each node y ofT has r(v) cyber-dollars.

Ñote that the invariâlit does not require us to endow an empty tree .with any cyber-

dollars.. Lt r(T) be the' sum of the ranks of ali the nodes of T. To presérve the
invariant after a splaying, we must make a payment equal to the splaying work plus
the total change in r(T). We refet .to a single zig, zig-zig, or zig-zag operation in a
splaying as asplaying substep. Also, we denote the rank of a node y of T before

and after a splaying substep with r(v) and r'(v), respectively. The following lemma

gives an upper bound on 'the change of r(T) caused by a single splaying substep.
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Lemma 3.8: LetS be the variation of r(T) caused by a single splaying substep
zig, zig-zig, or zig-zag) for anode x in a splay tree T. We have the following:

a 3(r'(x) - r(x)) 2 if the substep isa zig-zig or zig-zag
8 3(r'(x) - r(x)) if the substep is a zig.

Proof: We shall make use of the following mathematical fact (sçe Appendix A;.
Ifa > O, b> 0, andc > a+b, thén

loga+logb2logc-2. (3.)
Let us consider the change in r(T) caused by each type of splayrng substep

zig-zig: (Recall Figure 3 39) Since the size of each node is one more than the
size of its two children, note that only the ranks of x, y, and z change in a
zig-zig operation, where y is the parent of x and z is the parent of y. Also,
r'(x) = r(z), r'(y) r'(x), and r(y) r(x) - Thus

8 = r'(x)+r'(y)+r'(z) r(x)r(y)r(z)
< r'y)+r'(z)rx)r(y

r'(x)+r'(z)-2r(x). (37)

- Observe that n(x)+n'(z) <n'(x). Thus, by 3.6, r(x)+r'(z) S 2r'(x) 2.
That is,

r'(z)<2r'(x)r(x)-2.

This inequality and 3.7 imply

a < r'(x)+(2r'(x)r(x)-2)-2r(x)

< 3(r'(x)r(x))-2. J

zig-zag: (Recall Figure 3.40.) Again, by the definition of size and rank; only the
ranks of x, y, and z change, where y denotes the parent of x and z denotes the
parent of y. Also, r'(x) = r(z) and r(x) S ry)L Thus

a = r'(x)+r'(y)H-r'(z)r(x)r(y)r(z)
< r'(y)+r'(z)r(x)ry)
< 'r'(y)+r'(z)-2r(x). (3,85

Observe that n'(y) +n'(z) S n'(x); Thus, by 3.6, r'(y) + r'(z) 5 2r(x)_2.
This inequality and 3.8 imply

a . 2r'(x)-2-2r(x)

5 3(r'(x)r(x).)-2.

zig: (Recall Figure 3.41.) In this case, only the ranks of x and y change, where y
denotes the parent of x. Also, r' (y) 5 r(y) and r' (x) r(x). Thus

8 = r'(y)+r'(x)r(y)r(x)

<
3(r'(x)r(x)).
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Theorem 3.9: LetT:be a splay tree with root t, and JetA be the total variation of
r(T) caused by splaying a node x at depth d. We have

.A<.3(r(t)r(x))d+2.

Proof: Splaying ñode x consists of p = Id/21 splaying substeps, each of which

is a zig-zig or a zig-zag, except possibly the last one, which is a zig if d is odd. Let

ro(x) = r(x) be the iñitial rank of., and for i = 1,... ,p, let r(x) be the, rank of x

after the ith substep and 8'be the variation of r(T) caused by the ith substep. By

Lemma 3.8, the total variation A of r(T). caused by splaying node x is given by

p

i=1
p

< X(3(rj(x)rj_i(x)) 2)+2
i=1.

= 3(r(x)ro(x))-2P+2
< 3(r(t)r(x))d+2.

By Theorem 3.9, if we make a payment ¿f 3(r(t) - rx)) + 2 cyber-dollars

towards the splayiñg of node x, we have enough cyber-dollars to maintain the in-

vanant, keeping r(v) cyber-dollars at each node y in T, and pay for the entire splay-

ing work, which costs d dollars Since the size of the root t is 2n + 1, its rank

r(t) log(2n + 1). In addition, we have r(x) <r(t). Thus, the payment to be
made for splaying js. O(logn) cyber-dollars. To complete our analysis, we have to

comput9 the cost for maintaining the invanantwEen a node is inserted or deleted

Whin inserting a new node y iflto a splay tre& with n keys, the ranks of all the

ancestors of y ate increased. Namely, let v, v, . .. , VJ be thTancestors of y, where

= y, y, is the parent of v,i, and i'd is the root For i = 1, ,d, let n'(v,) and

n(v) be the size of v beforé and after the insertion, respèctively, and let r'(vt) and

r(v) be the rank of v before and after the insertion, respectively. We .have

n'(v) =.n(v) + t.

Alsó, sincé n(v)'+ iÇ n(vj+i), for i = 0,1,... d-1, we have the following for

each i in this range:

r'(v) =log(n'(vi)) =log(n(v)±1) 1og(n(vii)) = r(vi)..
Thus, the total variation of r(T) caused by the insertion is

d .. .

di.
(r'(v,) - r(v,)) Ç r'(vd) + (r(v,+i) - r(v,))

r'(vd) - r(vo)

Ç log(2n+1)

Thus, a payment of O(logn) cyber-dollars is sufficient, to maintain the invariant

when a new node is inserted: ". , .. .
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When deleting a node y from a splay free with n keys, the ranks of all
ancestors of y are decreased Thus, the total variation of r(T) caused by the deleti
is negative, and we do not need to make any payment to marntain the invari
Therefore, we may summanze our amortized analysis in the following theorem

Theorem 3 10 Consider a sequence of in operations on a splay tree, eac
search, insertion, or deletion, starting from an empty splay tree with zero ¡cd
Also, let n1 be the number of keys in the tree after operation z, and n be the
tal number of insertions The total running time for performing the sequence
operations is

(m+±ioni)

which is.O(mlogn).

In other words, the amortized running time of performing a search, irsertio
or deletion in a splay tree is O(logn), where n is the size of the splay tree at
time Thus, a splay tree can achieve logarithmic time amortized performance
implementing an ordered dictionary ADT This amortized performance match
the worst-case performance of AVL Ltrees, (2,4) trees, and red-black trees, bu
does so using a simple binary tree that does not need any extra balance informati
stored at each of its nodes In addition, splay trees have a number of other intere
ing properties that are not shared by these other balanced search trees We expl
one such additional property in the following theorem (which is sometimes call
the "Static Optimality" theorem for splay trees).

Theorem 3.11: Consider a sequence Of in operations on a splay tree, eadli
search, insertion, or deletion, starting from a tree T with no keys Also, let
denote the number of times the item z is accessed in the splay tree, that is, its f
quency, and let n be total number of items Assuming that each item is accessed
least once, then the total running time for performing the sequence of operation

O (m + f(z) 1o(m/f(z)))

We leave the proof of this theorem as an exercise The remarkable thing abo
this theorem is that it states that the amortized running time of accessing an ite
is O(log(m/f(i))) For example, if a sequence of operations accesses some ite
as many as m/4 times, then the amortized running time of each of these acces
is O(i) when the dictionary is implemented with a splay tree Contrast this to
Q(logn) time needed to access this item if the dictionary is implemented with
AVL tree, (2,4) tree, or red-black tree Thus, an additional nice property of sj
trees is that they can "adapt" to the ways in which items are being accessed
dictionary, so as to achieve f2ter ninnino timee feu' thp frçniinnt1tr nnnoc'aA tar
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3.5 Skip. Lists

An interesting data structure for efficiently realizing the ordered dictiOnary ADT is
the skip list. This data structure makes random choices in arranging the items in
such a way that search and update times are logarithmic on average.

Randomizing Data Structures and Algorithms

Interestingly, the notion of average time complexity used here does not depend
on the probability distribution of the keys in the input. Instead, it depends on the
use of a random-number generator in the implementation of the insertions, to help
decide where to place the new item. That is, the structure of the data structure and
sorne algorithms that operate on it depend on the outcomes of random évents. In
this context, running time is averaged over all possible outcomes of the random
numbers used when inserting items

Because they are used extensively in computer games, cryptography, and com-
puter simulations, methods that generate numbers that can. be viewed as random
numb&s are built into most modem computers. Some methods, called pseudo-
random number generators, generate random-like numbers deterministically, start-
ing with an initial number called .a seed. . Other methods use hardware devices to
extract "true" random numbers froth nature. In any case, we will assume that our
computer has access to numbers that aresufficiently random for our analysis

The main advantagç of using randomization
. in data structure and algorithm

design is that the structures and methods that result are usually simple and efficient.
We can devise a simple randomized data structure, called the skip list, that hasa
loganthmic lime bound for searching, similar to what is achieved by the binary
searching algorithm. Nevertheless, the logarithmic boun&is expected. for the skip
list, while it is worst-case for binary searchng in a lookup table On the other hand,
skip lists are much faster than lookup ¿ables for dictionary updates -

Skip List Definition

A skip list'S for dictionary D consists ofa series of lists {So,Si,. . . ,Sj, }. Each list
S stores a subset of the items of D sorted by a nondec?easing key plus items with
two special keys, denoted oc and +oc, where oc is smaller than every possible
key that can beinserted in D and +oo is larger than every possible key that can be
inserted in D In addition, the lists in S satisfy the following

List So contains every item òf dictionary D (plus the special items with keys
ocand -l-oc)... . . . . . -

Fori = 1, , h - 1, listS, contains (in addition to oc and +oc) a-randomly
generated subsetof the items in list si1 ..... , ..
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Figure 3.46: Example of a skip list.

Intuitively, the lists are set up so that 5,+1 contarns more or less every othe

in S, As we shall see in the details of the insertion method, the items in Sta

chosen at random from the items in S, by picking each item from S, to als

S,+i with probability 1/2 That is, in essence, we "flip a coin" for each iteí
and place that item in if the coin comes up "heads" Thus, we expectS Wih

about n/2 items, 52 to have about n/4 items, and, in general, S, to have abqüu
items In other words, we expect the height h of S to be about logn The hal, i

the number of items from one list to the next is not enforced as an explicit prt
of skip lists, however Instead, randomization is used

Using the position abstraction used for lists and trees, we view a skip hs

two-dimensional collection of positions arranged honzontally into levels an

tically into towers Each level is a list S, and each tower contains positions s

the same item across consecutive lists The positions in a skip list can be tra

using the following operations

196 Chapter 3. Search Trees and

An example of a skip list is shown in Figure 3 46 It is customary to visj
skip list S with list S0 at the bottom and lists Si, , Sh above it Also, we

ag the height of skip list S.

si

after(p): Return the position following p on the sanie 1eveL

before(p) Return the position preceding p on the same level

below(p) Return the position below p in the same tower

above(p): Return the position above p in the samt tower.

We conventionally assume that the above operations return, a null, position
position requested does not exist Without going into the details, we note ti4

can easily implement a skip list by means of a linked structure such that the4

traversal methods each take 0(1) time, given a skip-list position p Such
structure is essentially a collection of h doubly linked lists aligned at towers,

are also doubly linked lists.

http://www.cvisiontech.com


5kJpL 1.7

3.5.1 Searching

Skip lists allow for simple dictionary search algorithms In.fact, all of the skip-list
search methods are based on an elegant SkipSearch procedure, shown in Algo-
rithm 3.47, that takes a key k and finds the item in a skip list S with the largest key
(which is possibly --oc) that is less than or equal to k.

Algorithm SkipSearch(k):
Input:Asearchkeyk
Output: Position in S whose item has the largest key less than or equal to k

Let p be the top-most, left position of S (which should have at least 2 levels).
whilé below(p) $ nuJl, do

pt-bélow(p) {dropdown}
while key(after(p)) . k do

Let p t- after(p) {scan forward}
returnp.

Algorithm 3.47: Algorithm for searching in a skip list S.

Let us éxamitie this algorithm more closely. We begin the SkipSearch method
by setting a position variable pto the top-most, left position in the skip list S That
is, p is set to the position of the special item with key oc in 5h We then perform
the following steps (see Figure 3 48)

i. If S.betow(p) is null, then the search terminates_we are at the bottom and
have located the largest item iii S with key less than or equal to the search
key k. Otherwise, we drop dowñ to the next lôwer level in the present tower
by setting p *- S.below(p).

2. Starting at position p, we move p forward uiitil it is at the right-most position
on the present level such that key(p) k. We call this the scan forward step.
Note that such a position always exists, since each levèl contains the special
keys +oo and oc. In fact, after we perform the scan forward for this level,

p may remàTn where it started. In any case, we then repeat thè previous step.

s2

s

Figure 3.48: Example of a search in a skip list. The positions visited and the links
traversed when seaçching (unsuccessfully) for key 52 are drawn with thick lines.
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3.5.2 Update Operations

Given the SkipSearch method, it is easy to implement find.Element(k)we siìnp
perform p - Ski pSearch(k) and test whether or not key(p) = k. As it turns out, tj
expected running time of the SkipSearch algorithm is O(logn). We postpone tU
analysis, however, until after we disèuss theupdate methods for skip lists.

Insertion

The insertion algorithm for skip lists uses randomization to decide how many refE
ences to the new item (k, e) should be added to the skip list We begin the insertio
of a new item (k, e) into a skip list by performing a SkipSearch(k) operation Thi
gives us the position p of the bottom-level item with the largest key less than o

equal to k (note that p may be the position of the special item with key oc) \
then insert (k, e) in this bottom-level list immediately after position p After inse
ing the new item at this level, we "flip" a coin That is, we call a method random
that returns a number between O and 1, and if that number is less than 1/2, th
we consider the flip to have come up "heads", otherwise, we consider the flip ù
have come up "tails" If the flip comes up tails, then we stop here If the flip corn
up heads, on the other hand, then we backtrack to the previous (next higher) leve
and insert (k, e) in this level at the appropriate position We again flip a coin,
it comes up heads, we go to the next higher level and repeat Thus, we continu
to insert the new item (k, e) in lists until we finally get a flip that comes up tails
We link together all the references to the new item (k, e) created in this process ti
create the tower for (k, e) We give the pseudo-code for this insertion algon
for a skip list S in Algonthm 3 49 and we illustrate this algonthm in Figure 3 5C
Our insertion algonthm uses an operation insertAfterAbove(p, q, (k,e)) that rnse
a position stonng the item (k, e) after position p (on the same level as p) and abo
position q, returning the position r of the new item (and setting internal reference
so that after, before, above, and below methods will work correctly for p, q, and,:

Algonthm Skipinsert(k, e)
Input Item (k, e)
Output None
p - SkipSearch(k)
q - insertAfterAbove(p, null, (k, e)) {we are at the bott6m level}
while random() < 1/2 do

while above(p) = null do
p - before(p) {scan backward}

p - above(p) {jurnp up to highei level}
q <- insertAfterAbove(p,q,(k,e)) {insert new item} L

Algorithm 3 49 Insertion in a skip list, assuming random() returns a random nu
ber between O and 1, and we never insert past the top level
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Figure 3.50: Insertion of an element with key 42 into the skip list of Figure 3.46.
The positions visited and the links traversed are drawn with thick lines. The posi-
tioñs inserted to hold the new item are drawn with dashed lines.

Removal

Like the search and insertion algorithms, the removal algorithm for a skip list S is
quite simple. In fact, it is even easier than the insertion algorithm. Namely, to per-
form a removeElement(k) operation, we begin by perförming a search for the given
key k. Ifa position p with key k is not found, then we return the NO_SUCH_KEY
element. Otherwise, if a position p with key k is found (on the bottom level), then
we remove all the positions above p, which are easily accessed by using above op-
erations to climb up the tower of this item in S starting at position p. The removal
algorithm is illustrated in Figure 3.51 and a detailed description of it is left as an
exercise (R-3.19). As we show in the next subsection, the running time for rémoval
in a skip list is expectéd to be O(logn).

Before we give this analysis, however, there are some minor improvements to
the skip list data structure we would like to discuss. First, we don't need to store
references to items at the levels above O, because all that is needed at these levels
are references to keys; Second, we don't actually need the abovemethod. In fact,
we don't need the before method either. We can perform item insertion and rèmoval
in strictlya top-down, scan-forward fashion, thus saving spaS for "up" and "prey"
references. We explore the details of this optimization in an exercise (C-3.26).

il

a sa n
a n n

39

-4

S5I-°l -
-

n
42 n O
42

199

Figure 3.51: Removal of the item with key 25 from the skip list of Figure 3.50. The
positions visitçd and the links traversed after the initial search are drawn with thick
lines. The positions removed are drawn with dashed lines.

54
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Maintaining the Top-most Level

A skip list S must maintain a reference to the top-most, left position in
instance variable, and must have a policy for any insertion that wishes to
inserting a new item past the top level of S. There are two possible courses oE

we can take, both of which have their ments
One possibility is to restrict the top level, h, to be kept at some fixed vaf

is a function of n, the number of elements currently in the dictionary (fro
analysis we will see that h = max{ 10,2 [log n] } is a reasonable choice, and
h = 3 [log n] is even safer) Implementing this choice means that we must(
the insertion algorithm to stop inserting a new item once we reach the 4
level (unless [log nl < [log (n + 1)1, in which case we can now go at least oné
level, since the bound on the height is increasing)

The other possibility is to let an insertion continue inserting a new eleiij
long it keeps returning heads from the random number generator As we ¿h
the analysis of skip lists, the probability that an insertion will go to a leveß
more than O(logn) is very low, so this design choice should also work *

However, either choice will still result in our being able to perform eh
search, insertion, and removal in expected O(logn) time, which we will s'lu
thé next section.

3.5.3 A Probabilistic Analysis of Skip Lists

As we have shown above, skip lists provide a simple implementation o!
dered dictionary In terms of worst-case performance, however, skip lists ae
supenor data structure In fact, if we don't officially prevent an insertion froi
tinuing significantly past the current highest level, then the insertion algorit i

go intô what is almost an infinite loop (it is not actually an infinite loop, hd
since the probability of having a fair coin repeatedly come up heads foreve
Moreover, we cannot infinitely add elements to a list without eventually runnr
of memory. In any case, if we terminate item insertion at the highest level
the worst-case running time for performing the findElement, insertitem, ai

moveElement operations in a skip list S with n items and height h is O(n + h)
worst-case performance occurs when the tower of every item reaches level;
where h is the height of S However, this event has very low probability Jù
from this worst case, we might conclude that the skip list structure is stnctly i_
to the other dictionary implementations discussed earlier in this chapter B;
would not be a faff analysis, for this worst-case behavior is a gross overesti

Because the insertion step involves randomization, a more honest anal
skip lists involves a bit of probability At first, this might seem like a may
dertaking, for a complete and thorough probabilistic analysis could require
mathematics Fortunately, such an analysis is not necessary to understand
pected asymptotic behavior of skip lists The informal and intuitive probab,
analysis we give below uses only basif concepts of probability theory

http://www.cvisiontech.com


jjp Lists 201

Bounding Height in a Skip List

Let us begin by determining the expected value of the height h of S (assuming that
we do not terminate insertions early). The probability that a given item is stored in
a position at level i is equal to the probability f getting i consecutive heads when
flipping a coin, that is, this probability is 1/2'. Hence, the probability P that level i
has at least one item is at most

for the probability that any one of n different events occurs is, at most, the sum of
thö probabilities that each occurs:

The probability that the height h oiS is4arger than i is equal to the probability
that level i has at least one item, that is, it is noiìòte-than P1 This means that h is
larger than, say, 3 log n with probability at most

n n i
31ogn 31ògn - =

More generally, given a constant c> i, h is larger than clogn with probability at
most 1 /n'_1. That is, the probability that h is smaller than or equal to clog n is at
least 1 - 1/nc_i. Thus, with high probability, the heigiíi h of S is O(log n).

Analyzing Search Time in a Skip List

Consider the running time of a search in skip list S, and recall that such a search
involves two nested while loops. The inner loop performs a scan forward on a level
of S as long as the next key is no greater than the search key k, and the outer loop
drops down to the next level and repeats the scan forward iteration. Since the height
h of Sis O(logn) with high probability, the number of drop-down steps is O(logn)
with high probability.

So we have yet to bound the number of scan forward steps we make. Let n1 be
the number of keys examined while scanning forward at level i. Observe that, after
the key at the starting position, each additional key examined in a scan-forward at
level i cannot also belong to level i + 1. If any of these items were on the previous
level, we would have encountered them in the previous scan-forward step. Thus,
the probability that any key is counted in n is 1/2. Therefore, the expected value of
n is exactly equal to the expected number of times we must flip a fair coin before
it comes up heads. Let us denote this quantity with e. We have

1 1

Thus, e = 2 and the expected amount of time speiitscanning forward at arty level i
is 0(1). Since S has 0(log n) levels with high probability, a search in S takes ex-
pected time 0(logn). By a similar analysis, we can show that the expected running
time of an insertion or a removal is O(log n).
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Hence, the expected space requirement of S is 0(n).
Table 3.52 summarizes the performance of a dictionary realized by a skit

Table 3.52: Performance of a dictionary implemented with a skip list.
note the number of items in the dictionary at the time the operation is perfd
with n, and the size of the iterator returned by operations findAllElement
removeAllElements with s. The expected space requirement is O(n)

3.6 Java Example: AVL and Red-Black Trees

In this section, we describe a general binary search tree class, BinarySearcli
and how it can be extended to produce either an AVL tree implementatiòn
red-black tree implementation. The BinarySearchTree class stores key-ele
pairs of class Item as the elements stored at the positions (nodes) of its uil
ing binary tree. The code for BinarySearchTree is shown in Code Fragmen
through 3.56. Note that the underlying binary tree T is used only throtig
BinaryTree interface, where we assume that BinaryTree includes also meth«
pandExternal and removeAboveExternal (see Section 2.3.4). Thus, class Bi
SearchTree talces advantage of code reuse.

1

The auxiliary method find Position, based on the TreeSearch algoHthm
yoked by the findElement, insertitem, and removeElement methods. The ins
variable actión Pos stores the position where the most recent search, inserti
removal ended. This instance variable is not necessary to the implementatió
binary search tree, but s useful to classes that will extend BinarySearchTrt
Code Fragments 3.58-3.59 and 3.62-3.63) to identify the position where ti
vious search, insertion, or removal has taken place. Position actionPos h
intended meaning provided it is used nght after executing methods find Ele
insertitem, and removeElement.

Operation Time
keys, elements 0(n) -

findElement, insertitem, removeElement O(logn) (expected)
findAllEtements, removeAllElements 0(logn+s) (expected)

202 Chapter 3. Search TIees and Skip

Space Usage in a Skip Lis

Finally, let us turn to the space requirement of a skip list S. As we observecla
the expected number of items at level i is n/2', which means that the expectÑ
number of items in S is hnhl
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public class item {
private Object key, eiern;
protected Item (Object k, Object e) {

key = k;
eiern = e;

}
public Object key() { return key; }
public Object elementO { return eiern; }
public void setKey(Object k) { key = k; }

}
public void setElement(Object e) { eiern = é; }

Code Fragment 3.53: Class for the key-èlement pairs stored in a dictionary.

/** Realizatidn of a dictionary by means of a binary search tree /
public class BinarySearchTree implements Dictionary {

Comparator C; // comparator
BinaryTree T; // binary tree
protected Position actionPos; // insertion position or parent of removed position

public BinarySearchTree(Comparator c) {
C=c;
T = (Binarylree) new NodeBinaryTree();

}

// auxiliary methods:
/" Extract the key of the item at a given node of the tree. /
protected Object key(Position position) {

return ((Item) position .elementO) . keyQ;

}
/fl Extract the element of the item at agiven node of the tree. /
protected Object eI.ement(Positiôn position) {

return ((item) position .eiementQ).eiernentQ;
}
/** Check whether a given key is valid. */
protectedvoid checkKey(Object key) throws invalidKeyException {

if(!C.isComparable(key))
throw new lnvaliciKeyException(ItKey "+key±" is not comparable");

} H

Code Fragment 3.54: Class BinarySearchTree. (Coñtinued in Code Fragment 3.55.)
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/** Auxiliary method used by removeElement. */
protected void swap(Position swapPos, Position remPos){

T.replaceElement(swapPos, remPos.elemèntQ);

}
/ Auxiliary method used by findElement, insertltém and removeElement *
protected Position findPosition(Object key, Position pos) {

-

if (T.isExternal(pos))
return pos; /7 key not found and external node reached rethrned

else{
Object curKey = key(pos);
if(C.isLessThan(key, curKey))

return findPosition(key, T.leftChild(pos));
else if(C.isGreaterThan(key, curKey)) /7 search in left subtree

return findPosition(key, T.rightChild(pos)); /7 search in right subtree
else

return pos; /7 return internal node where key is found
}

}

// methods of the dictionary ADT
public mt size() {

return (Tsize() - 1) / 2;
}

public boolean isEmpty() {
return T.sizeÇ) == 1;

}

public Object find Element(Object key) throws I nva lidKeyException {
checkKey(key); /7 may throw an lnvalidKeyException
Position curPos = findPosition(key, T.rootÇfl;
actionPos = curPos; 7/ nods where the search ended
if (T.islnternal(curPos))

return element(curPos);
else

return NO....SUCH...KEY;

}

Code Fragment 3.55: Class BinarySearchTree, continued from Code
ment 3.54. (Continues in Code Fragment 3.56.) -

http://www.cvisiontech.com


q

}
Code Fragment 3 56. Class BinarySearchTree (Continued from Code Prag-

ment 3.55.)

Java Example: AVL and Red-Black Trees 205

public void insertltem(Object key, Object element)
throws InvalidKeyException {
checkKey(key); // may throw an lnvalidKeyException
Position insPos = T.rootO;
do {

insPos = findPosition(key, insPos);
if (T.isExternal(insPos))

break;
else // the key already exists

insPos = T.rightChild(insPos);
} while (true);
T.expandExternal(insPos);
Item newltem = new ltem(key, element);
T.replaceElement(insPos, newltem);
actionPos = insPos; /7 node where the new item was inserted

} . H

public Object removeElement(Objèct key) throws lnvalidKeyException {
Object toReturn;
checkKey(key);, // may throw an InvajidKeyException
Position remPos = find Position(key, T. rootQ);
if(T.isExternal(remPos)) {

actionPos = remPos; /7 node where the search ended unsuccessfully
return NO....SUCH_KEY;

}
else{

toReturn =.element(remPos); // element to be returned
if (T.isExternal(T.leftChild(remPos)))

remPos = T.leftChild(remPos);
else if (T.isExternal(T. rightChild (rem Pos)))

rem Pos = T.rightChild(rem Pos);
else { /7 key is at a node with internal children

Position swapPos = remPos; //find node for swapping items
remPos = T.rightChild(swapPos);
do

remPos = T.leftChild(remPos);
while (T.islnternal(remPos));
swap(swapPos, T.parent(rernPos));

}
actionPos = T.sibling(remPos); 7f sibling of the leaf to be removed
T. removeAboveExternal(rem Pos);
return toReturn;
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3.6.1 Java Implementation of AVL Trees

Let us now turn to the implementation details and analyis of using an AVLh1,.
with n internal nodes to implement an ordered dictionary of n items The ins ,

and removal algorithms for T require that we are able to perform trrnode res1,
tunngs and determine the difference between the heights of two sibling nod
garding restructurings, we should extend the collection of operations of the Sì
tree ADT by adding the method restructure It is easy to see that a restructu
eration can be performed in 0(1) time if T is implemented with a lrnked s
(Section 2 3 4), which would not be the case with a vector (Section 2 34)
we prefer a linked structure for representing an AVL tree

Regarding height information, we can explicitly store the height of each ink
node, y, in the node itself Alternatively, we can store the balance factor of 5
which is defined as the height of the left child of y minus the height of the ngh
of y Thus, the balance factor of y is always equal to 1, 0, or 1, except d rq

insertion or removal, when it may become temporarily equal to 2 or +2
the execution of an insertioñ or removal, the heights and balance.factors of
nodes are affected and can be maintained in 0(log.n) time.

In Code Fragments 3.57-3.59, we showa Java implementation of a dicùI
realized with an AVL tree Class AVLItem, shown in Algorithm 3 57, exte i

Item class used to represent a key-element item of a binary search tree. It deft
additional instance variable height, representing the height of the node Clasi/A
Tree, shown in full in Code Fragments 3 58 and 3 59, extends BinarySearc
(Code Fragments 3.54-3.56). The constructor of AVLTree executes the suerçI
constructor first, and then assigns a RestructurableNodeBinarylree to T, n

is a class that implements the binary tree ADT, and in addition supports m
restructure for performing trmnode restructunngs Class AVLTree inherits meI
size, isEmpty, findElement, findAllElements, and removeAllElements fromu
perclass BinarySearchTree, but ovemdes methods insertitem and removeEIei

Method insertitem (Code Fragment 3.59) begins by calling the superf.h
insertltem method, which inserts the new item and assigns the insertion p'
(node storing key 54 in Figure 3 12) to instance variable action Pos The a
method reba lance is then used to traverse the path from the. insertion Pos
the root. This traversal updates the heights of all the nodes visited, and pet
trinode restructuring if necessary. Similarly, method removeElement (Code
ment 3.59) begins by calling the superclass's removeElement method, whiç
forms the removal of the item and assigns the. position replacing the delàt
to instance variable actiònPos. The auxiliary method rebalance is then u
traverse the path from the removed position to the roOt.
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public class AVLltem extends Item {
mt height;
AVLItem(Object k, Object e, mt h) {

super(k, e);
height = h;

}
public mt height() { return height; }
public mt setHeight(int h) {

mt oldHeight = height;
height = h;

r return oldHeight;

}

bode Fragment 3.57: Class implementing a node of an AVL tree. The height ofthe
node in the tree is stored as an instance variable.

/** Realization of a dictionary by means of an AVL tree. */
public class AVLTree extends BinarySearchTree implements Dictionary

public AVLTree(Comparator c) {
super(c);
T = new RestructurableNodeBinaryTreeQ;

}
private mt height(Position p) {

if(T.isExternal(p))
return O;

else
return ((AVLltem) p.elementQ). heightQ;

}
private void setHeight(Position p) { 7/ called only if p is internal

((AVLlteni) p.elementQ).setHeight(1+Math. max(height(T.leftChikl(p)),
height(TrightChild(p))));

}
private boolean isBalanced(Position p) {

7/ test whether node p has balance factor between -i and i
mt bf = height(T.leftChild(p)) - height(T.rightChild(p));
return ((-1 <= bf) && (bf <= 1));

}
private Posjtion tallerChild(Position p) {

7/ return a child of p with height no smaller than that of the other child
¡f(height(T.leftChild(p)) >= height(T. rightChild(p)))

return T.leftChild(p);
else

return T.rightChild(p);

Code Fragment 3.58: Constructor and auxiliary methods of class AVLTree.

{

2O7
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/ * Auxiliary method called by insertltem and removeElement.
* Traverses the path of T from the given node to the -root. For

* each node zPos encountered, recomputes the height of zPos and

* performs a trinode restructuring if zPos is unbalanced.
*7

private void rebalance(Position zPos) {
while (!T.isRoot(zPos)) {

zPos = T.parent(zPos);
setHeight(zPos);
if (tisBalanced(zPos)) {

/7 perform a trinode restructuring
Position xPos = tallerChild(tallerChild(ZPos))
zPos = ((RestructurableNodeBinaryTree) T).restructure(xPos

setHeight(T.leftChild(zPos));
setHeight(T.rightChild(zPos));
setHeight(zPos);

}
}

}

/7 methods of the dictionary ADT

/** Overrides the corresponding method of the parent class. /
public void insertltem(Object key, Object element).

throws lnvalidKeyException {
super.insertltem(key, element); 7/ may throw an lnvalidKeyException

Position zPos = actionPos; /7 start at the insertion position
T.replaceElement(zPos, new AVLltem(key, element, 1));

rebalance(zPos);

}

/** Overrides the corresponding method of the paient class. *7

public Object removeElement(Object key)

throws lnvalidKeyException {
Object toReturn = super.removçElement(key);

/7 may throw an lnvalidKeyException

if(toReturn NO_SUCH_KEY) {
Position zPos = action Pos; /7 start at the removal position

rebalance(zPos);

}
return toReturn;

}

Code Fragment 3.59: Auxiliary method reba lance and methods i nsertlteni ,

moveElement of class AVLTree.
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3.6.2 Java Implementation of Red-Black Trees

In Code Fragments 3.60-3.63, we show portions of a Java implementation of a
dictionary realized by meâns of a red-black tree. Class RBTÌtern, shown in Code
Fragment 3.60, extends the Item class used to represent a key-element item of a
binary search tree. It defines an additional instance variable isRed, representing the
color of the node, and methods to set, and return it.

public class RBTltern extends Item '{
private boolean isRed;
public RBTltem(Object k, Object eiern, boolean color) {

super(k, eiern);
isRed ' = color;

}

public boolean ¡sRed() {return isRed;}
public void rnakeRed() {isRed = true;}
public void makeBlack() {isRed = false;}
public void setColor(boolean color) {isRed = coior;}

}
Code Fragment 3.60: Class implémenting a node of a red-black tree.

/ Realization of a dictionary by means of a red-black tree, /
public class RBTree extends BinarySearchTree implements Dictionary {

static boolean Red = true;
statk boolean Black = false;

public RBTree(Cornparator C) {
super(C).;
T = new RestructurableNodeBinarylreeQ;

}

Code Fragment 3.61: Instance variables and constructor' of class RBTree.

Class RBTree, partially shown in Çode Fragments 3.61-3.63, extends Binary-
SearchTree (Code Fragments 3.54-3.56). As in class AVLTree, the constructor of
RBTree executes first the superclass's constructor, and then àsigns to T a Restruc-
turableNodeBinaryTree, which is a class that implements the binary tree ADT, and,
in addition, supports the method restruèture for performing tnnode restructurings
(rotations). Class RBTree inherits methods sue, isEmpty, findElemént, findAl-
I Elements, and removeAl I Elements from BinarySearchTree. but overrides methods
insertltem and removeElement. Several auxiliary methods of class RBTree are not
shown. '

Methods insertltem (Code Fragment 3.62) and ÊemoveElement (Code Frag-
ment 3.63) call the corresponding methods of the superclass first and then rebal-
ance the tree by calling auxiliary methods to perform rotations along the path, from
the update position (given by the instance variablé action pos inherited from the
superclass) to the root.
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public void ¡nsertltem(Object key, Object element)

throws lnvalidKeyException {
super.insertltem(key, element); [1 may throw an lnvaidKeyException
Position posZ = actionPos; // start at the insertion position
T.replaceElement(pos7, new RBTltem(key, element, Red));
if (T.isRoot(posZ))

setBlack(posZ);
else

remedyDoubleRed(posZ);

}

protected void remedyDoubleRed(Position posZ) {
Position posV = T.parent(posZ);
if (T.isRoot(posV))

return;
if (!isPosRed(posV))

return;
/7 we have a double red: posZ and posV
if (!isPósRed(T.sibling(posV))) { 1/ Case .1: trinode restructuring

posV = ((RestructurableNodeBinaryTree) T) .restructure(posZ);

setBlack(posV);
setRed(T.leftChild(posV));
setRed(T. rightChild(posV));

}
else { /7 Case 2: recoloring

setBlack(posV);
setBlack(T.sibling(posV));
Position posU T.parent(posV);
if (T..isRoot(posU))

return;
setRed(posU);
remedyDoubleRed(posU);

}
}

Code Fragment 3.62: Dictionary method insertltem and auxiliary mel
remedyDoubleRed of class RBTree.
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}

public Object removeElement(Object key) thröws lnvalidKeyException
Object toReturn = super.rernoveElement(key);
Position posR = actionPos;
¡f (toReturn != NO_SUCH_KEY) {

if (wasParentRed(posR) II T.isRoot(posR) II isPosRed(posR))
setBlack(posR);

else
remedyDoubleBlack(posR);

}
return toReturn;

}
protected void remedyDoubleBlack(Posjtion posR) {

Position posX, posY, posz;
boolean oklCo(or;
posX =.T.parent(posR);
posY = T.sibling(posR);
¡f (îisPosRed(posY)) {

posZ = redChild(posY);
¡f (hasRedChiid(posY)) { // Case 1: trinode restructuring

oldColor = isPosRed(posX);
posZ = ((RestructurabieNodeßinaryTree) T). restructure(posZ);
setColor(posZ, old Color);
setBlack(posR);
setßlack(T.leftChild(posZ));
setBlack(T.rightChild(posZ));
return;

}
setBlack(posR);
setRed(posY);
if (!isPosRed(posX)) { // Case 2: recoloring

if (!T.isRoot(posX))
rernedyDoubleBlack(posX);

return;
}
setBlack(posX);
return;

} // Case 3: adjustment
if (posY == T.rightChitd(posX))

posZ = T.rightChild(posY);
else

posZ = T.IeftChild(pòsY);
((RestructurableNodeBinaryTree)T). restructure(ØosZ);
setBlack(posY);
setRed(posX);
remédyDcwbleBlack(posR);

t

Code Fragment 3.63: Method removeElement and its auxiliary method.
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3.7 Exercises

Reinforcement

R-3.1 Insert items with the following keys (in the given order) into an initially empty
binary search tree: 30, 40, 24, 58, 48, 26, 11, 13. Draw the tree after each
insertion.

R-3.2 A certain Professor Amongus claims that the order in which a fixed set of ele-
ments is inserted into a binary search tree does not matter—the same tree results
every time. Give a small example that proves Professor Amongus wrong.

R-3.3 Professor Amongus claims he has a “patch” to his claim from the previous ex-
ercise, namely, that the order in which a fixed set of elements is inserted into an
AVL tree does not matter—the same AVL tree results every time. Give a small
example that proves that Professor Amongus is still wrong.

R-3.4 Is the rotation done in Figure 3.12 a single or a double rotation? What about the
rotation in Figure 3.15?

R-3.5 Draw the AVL tree resulting from the insertion of an item with key 52 into the
AVL tree of Figure 3.15b.

R-3.6 Draw the AVL tree resulting from the removal of the item with key 62 from the
AVL tree of Figure 3.15b.

R-3.7 Explain why performing a rotation in an n-node binary tree represented using a
sequence takes Ω(n) time.

R-3.8 Is the multi-way search tree of Figure 3.17a a (2,4) tree? Justify your answer.

R-3.9 An alternative way of performing a split at a node v in a (2,4) tree is to partition
v into v ′ and v ′′, with v ′ being a 2-node and v ′′ being a 3-node. Which of the
keys k1, k2, k3, or k4 do we store at v’s parent in this case? Why?

R-3.10 Professor Amongus claims that a (2,4) tree storing a set of items will always
have the same structure, regardless of the order in which the items are inserted.
Show that Professor Amongus is wrong.

R-3.11 Consider the following sequence of keys:

(5,16,22,45,2,10,18,30,50,12,1).

Consider the insertion of items with this set of keys, in the order given, into:

a. An initially empty (2,4) tree T ′.
b. An initially empty red-black tree T ′′.

Draw T ′ and T ′′ after each insertion.

R-3.12 Draw four different red-black trees that correspond to the same (2,4) tree using
the correspondence rules described in the chapter.

R-3.13 Draw an example red-black tree that is not an AVL tree. Your tree should have at
least 6 nodes, but no more than 16.
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R-3.14 For each of the following statements about red-black trees, determine whether it
is true or false. If you think it is true, provide a justification. If you think it is
false, give a counterexample.

a. A subtree of a red-black tree is itself a red-black tree.
b. The sibling of an external node is either external or it is red.
c. Given a red-black tree T , there is an unique (2,4) tree T ′ associated with

T .
d. Given a (2,4) tree T , there is a unique red-black tree T ′ associated with T .

R-3.15 Perform the following sequence of operations in an initially empty splay tree and
draw the tree after each operation.

a. Insert keys 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, in this order.
b. Search for keys 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, in this order.
c. Delete keys 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, in this order.

R-3.16 What does a splay tree look like if its items are accessed in increasing order by
their keys?

R-3.17 How many trinode restructuring operations are needed to perform the zig-zig,
zig-zag, and zig updates in splay trees? Use figures to explain your counting.

R-3.18 Draw an example skip list resulting from performing the following sequence of
operations on the skip list in Figure 3.51: removeElement(38), insertItem(48,x),
insertItem(24,y), removeElement(55). Assume the coin flips for the first inser-
tion yield two heads followed by tails, and those for the second insertion yield
three heads followed by tails.

R-3.19 Give a pseudo-code description of the removeElement dictionary operation, as-
suming the dictionary is implemented by a skip-list structure.

Creativity
C-3.1 Suppose we are given two ordered dictionaries S and T , each with n items, and

that S and T are implemented by means of array-based ordered sequences. De-
scribe an O(logn)-time algorithm for finding the kth smallest key in the union of
the keys from S and T (assuming no duplicates).

C-3.2 Design an algorithm for performing findAllElements(k) in an ordered dictionary
implemented with an ordered array, and show that it runs in time O(logn + s),
where n is the number of elements in the dictionary and s is the number of items
returned.

C-3.3 Design an algorithm for performing the operation findAllElements(k) in an or-
dered dictionary implemented with a binary search tree T , and show that it runs in
time O(h+s), where h is the height of T and s is the number of items returned.

C-3.4 Describe how to perform the operation removeAllElements(k) in an ordered dic-
tionary implemented with a binary search tree T , and show that this method runs
in time O(h + s), where h is the height of T and s is the size of the iterator re-
turned.
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C-3.5 Draw an example of an AVL tree such that a single removeElement operation
could require Θ(logn) trinode restructurings (or rotations) from a leaf to the root
in order to restore the height-balance property. (Use triangles to represent sub-
trees that are not affected by this operation.)

C-3.6 Show how to perform operation removeAllElements(k) in a dictionary imple-
mented with an AVL tree in time O(s logn), where n is the number of elements
in the dictionary at the time the operation is performed and s is the size of the
iterator returned by the operation.

C-3.7 If we maintain a reference to the position of the left-most internal node of an
AVL tree, then operation first can be performed in O(1) time. Describe how the
implementation of the other dictionary methods needs to be modified to maintain
a reference to the left-most position.

C-3.8 Show that any n-node binary tree can be converted to any other n-node binary
tree using O(n) rotations.

Hint: Show that O(n) rotations suffice to convert any binary tree into a left chain,
where each internal node has an external right child.

C-3.9 Show that the nodes that become unbalanced in an AVL tree after operation ex-
pandExternal is performed, within the execution of an insertItem operation, may
be nonconsecutive on the path from the newly inserted node to the root.

C-3.10 Let D be an ordered dictionary with n items implemented by means of an AVL
tree. Show how to implement the following operation on D in time O(logn+ s),
where s is the size of the iterator returned:

findAllInRange(k1,k2): Return an iterator of all the elements in D with key
k such that k1 ≤ k ≤ k2.

C-3.11 Let D be an ordered dictionary with n items implemented with an AVL tree.
Show how to implement the following method for D in time O(logn):

countAllInRange(k1,k2): Compute and return the number of items in D with
key k such that k1 ≤ k ≤ k2.

Note that this method returns a single integer.

Hint: You will need to extend the AVL tree data structure, adding a new field to
each internal node and ways of maintaining this field during updates.

C-3.12 Show that at most one node in an AVL tree becomes unbalanced after operation
removeAboveExternal is performed within the execution of a removeElement
dictionary operation.

C-3.13 Show that at most one trinode restructure operation (which corresponds to one
single or double rotation) is needed to restore balance after any insertion in an
AVL tree.

C-3.14 Let T and U be (2,4) trees storing n and m items, respectively, such that all
the items in T have keys less than the keys of all the items in U . Describe an
O(logn + logm) time method for joining T and U into a single tree that stores
all the items in T and U (destroying the old versions of T and U).
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C-3.15 Repeat the previous problem for red-black trees T and U .

C-3.16 Justify Theorem 3.3.

C-3.17 The Boolean used to mark nodes in a red-black tree as being “red” or “black” is
not strictly needed. Describe a scheme for implementing a red-black tree without
adding any extra space to the binary search tree nodes. How does your scheme
affect the running times for searching and updating a red-black tree?

C-3.18 Let T be a red-black tree storing n items, and let k be the key of an item in T .
Show how to construct from T , in O(logn) time, two red-black trees T ′ and T ′′,
such that T ′ contains all the keys of T less than k, and T ′′ contains all the keys
of T greater than k. This operation destroys T .

C-3.19 A mergeable heap supports the operations insert(k,x), remove(k), unionWith(h),
and minElement(), where the unionWith(h) operation performs a union of the
mergeable heap h with the present one, destroying the old versions of both.
Describe a concrete implementation of the mergeable heap ADT that achieves
O(logn) performance for all its operations. For simplicity, you may assume that
all keys in existing mergeable heaps are distinct, although this is not strictly nec-
essary.

C-3.20 Consider a variation of splay trees, called half-splay trees, where splaying a node
at depth d stops as soon as the node reaches depth �d/2�. Perform an amortized
analysis of half-splay trees.

C-3.21 The standard splaying step requires two passes, one downward pass to find the
node x to splay, followed by an upward pass to splay the node x. Describe a
method for splaying and searching for x in one downward pass. Each substep
now requires that you consider the next two nodes in the path down to x, with a
possible zig substep performed at the end. Describe the details for performing
each of the zig-zig, zig-zag, and zig substeps.

C-3.22 Describe a sequence of accesses to an n-node splay tree T , where n is odd, that
results in T consisting of a single chain of internal nodes with external node
children, such that the internal-node path down T alternates between left children
and right children.

C-3.23 Justify Theorem 3.11. A way to establish this justification is to note that we can
redefine the “size” of a node as the sum of the access frequencies of its children
and show that the entire justification of Theorem 3.9 still goes through.

C-3.24 Suppose we are given a sorted sequence S of items (x0,x1, . . . ,xn−1) such that
each item xi in S is given a positive integer weight ai. Let A denote the total
weight of all elements in S. Construct an O(n logn)-time algorithm that builds a
search tree T for S such that the depth of each item ai is O(logA/ai).

Hint: Find the item x j with smallest j such that ∑ j
i=1 ai < A/2. Consider putting

this item at the root and recursing on the two subsequences that this induces.

C-3.25 Design a linear-time algorithm for the previous problem.

C-3.26 Show that the methods above(p) and before(p) are not actually needed to ef-
ficiently implement a dictionary using a skip list. That is, we can implement
item insertion and removal in a skip list using a strictly top-down, scan-forward
approach, without ever using the above or before methods.
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C-3.27 Describe how to implement the locator-based method before(�) as well as the
locator-based method closestBefore(k) in a dictionary realized using an ordered
sequence. Do the same using an unordered sequence implementation. What are
the running times of these methods?

C-3.28 Repeat the previous exercise using a skip list. What are the expected running
times of the two locator-based methods in your implementation?

C-3.29 Suppose that each row of an n× n array A consists of 1’s and 0’s such that, in
any row of A, all the 1’s come before any 0’s in that row. Assuming A is already
in memory, describe a method running in O(n logn) time (not O(n2) time!) for
counting the number of 1’s in A.

C-3.30 Describe an efficient ordered dictionary structure for storing n elements that have
an associated set of k < n keys that come from a total order. That is, the set of
keys is smaller than the number of elements. Your structure should perform all
the ordered dictionary operations in O(logk + s) expected time, where s is the
number of elements returned.

Projects

P-3.1 Implement the methods of the ordered dictionary ADT using an AVL tree, skip
list, or red-black tree.

P-3.2 Providing a graphical animation of the skip-list operations. Visualize how items
move up the skip list during insertions and are linked out of the skip list during
removals.

Chapter Notes

Some of the data structures discussed above are extensively covered by Knuth in [119], and
by Mehlhorn in [148]. AVL trees are due to Adel’son-Vel’skii and Landis [2]. Average-
height analyses for binary search trees can be found in the books by Aho, Hopcroft, and
Ullman [8] and Cormen, Leiserson, and Rivest [55]. The handbook by Gonnet and Baeza-
Yates [81] contains a number of theoretical and experimental comparisons among dictio-
nary implementations. Aho, Hopcroft, and Ullman [7] discuss (2,3) trees, which are sim-
ilar to (2,4) trees. Red-black trees were defined by Bayer [23], and are discussed further
by Guibas and Sedgewick [91]. Splay trees were invented by Sleator and Tarjan [189]
(see also [200]). Additional reading can be found in the books by Mehlhorn [148] and
Tarjan [200], and the chapter by Mehlhorn and Tsakalidis [152]. Knuth [119] is excellent
additional reading that includes early approaches to balancing trees. Exercise C-3.25 is
inspired by a paper by Mehlhorn [147]. Skip lists were introduced by Pugh [170]. Our
analysis of skip lists is a simplification of a presentation given in the book by Motwani
and Raghavan [157]. The reader interested in other probabilistic constructions for sup-
porting the dictionary ADT is referred to the text by Motwani and Raghavan [157]. For a
more in-depth analysis of skip lists, the reader is referred to papers on skip lists that have
appeared [115, 163, 167].
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The Second Law of Thermodynamics suggests'that Nature tends toward
der. Humans, on the other hand, prefer order. Indeedthere are several advaj
to keeping data in ordet For example, the binary searäh algorithm works co

oñly for a:n ordered array or vector. Since computers -are intended to be too
humans, we devote this chapter to the study of sorting algorithms and their ap

tions. We recall that the sorting problem is defined as follows. Let S be a seqü
of n elements that cari be compared to each other according to a total order reI

that is, it is always possible to compare two elemçnts of S to see which isq
or smaller, or if the two of them are equal; We want to rearrange S in sueh
that the elements appear in increasing order (or in nondecreasing order if thd

equal elements in S).

We have already presented several sorting algonthms in the previous chap
In particular, in Section 2 4 2, we presented a simple sorting scheme, whi
called PQ-Sort, that consists of inserting elements into a prionty queue and
extracting them in nondecreásing order, by means of a senes of removeMin
eratlons. If the priority queue is implemented by means of a sequence, then:

algorithm runs in 0(n2) time and corresponds to either insertion-sort or sek
- son, depending on whether the sequence is kept ordered or not. If the priority 4
is implemented by means of a heap (Section 24 3) instead, then this algorithm

in 0(nlog n) time and corresponds to the sorting method known as heap-sort

In this chapter, we present several other sorting algorithms, together wi
algonthmic design patterns they are based on Two such algonthms, kno
merge-sort and quick-sort, are based on the divide-and-conquer pattern, wlu
widely applicable to other problems as well Two other algorithms, bucket-soil
radix-sért, are based instead on the bucket array approach utilized in hashiù%
also introduce the set abstract data type and show how the merge technique Ui
the mergé-sort algorithm can be used in the implementation of its methods. iii
abstract data type has an important subtype known as thepartition, which suif
the primary mdthods union and find and has a surprisingly fast implement
Indeed, we show that a sequence of n union and find operations can be implem

in O(nlog* n) time, where log* n is the number of times the logarithm functio
be applied, starting at n, before reaching i This analysis provides a non
example of amortized analysis.

In this chapter, we also discuss a lowe bound proof for the sorting probi
showing that any comparison-based approach must perform at least
erations to sort n numbers. In some cases, however, we are not interested in soil

an entire set, but would just like to select the kth smallest element in the: sii
stead. We show that this selection problem can, in fact, be solved much fastér

the sorting problem. A Java implementation example concluding the chapter
in-place quick-sort.

Throughout this chapter, we assume that a total order relation is definedj

the elements to be sorted. If this relation is induced by a comparator (Section 214

we assume that a comparison test takes 0(1) time
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4.1 Merge-Sort

In this section, we present a sorting technique, called merge-sort, which can be
described in a simple and compact way using recursion.

4.1.1 Divide-and-Conquer

Merge-sort is based on an algorithmic design pattern called divide-and-conquer.
The divide-and-conquer paradigm can be described in general terms as consisting'
of the following three steps:

1.. Divide: If the input size is smaller than a certain threshold (say, one or two
elements), solve the problem directly using a straightforward method and
return the solution so obtained Otherwise, diyide the input data into two or,
more disjoint subsets.

Recur: Recursively solve the subproblems associated with the subsets.

Conquer: Take the solutions to the subproblems and "merge" them into a
sôlution to the original problem.

Merge-sort applies the divide-and-conquer technique to the sorting problem.

Using Divide-and-Conquer for Sorting

Recall that in the sorting problem we are given a collection of n objects, typically
stored in a list, vector, array, or sequence, together with some comparator defining
a total order on these objects, and we are asked to producò an ordered represen-
tatiön of these objects. For the sake of geñerality, we focus on the version of the
sorting problem that takes a sequence S of objects as input, añd returns S in sorted
order. Spçcializations to other linear structures, such as lists, vectors, or arrays, are
straightforward and left as. exercises (R-4.3 and R-4.13). For the problem of sorting
a sequence S with n elements, the three divid&and-conquer steps are as follòws:

1.. Divide: If S has zerb or one element, retS, S immediately; it is already
sorted Otherwise (S has at least two elements), remove all the elements
from S and put them into two sequences, Si and 52, each containing about
half of the elements of S; that is, Si contains., the' first [n/2} elemènts of S,
and 52 contains the remaining [n/2j elements. . '

2. Recur: 'Recursively sort sequences S and S2
, .

3 Con quer Put the elements back into S by merging the sorted sequences Si
and 52 into a sorted sequence

http://www.cvisiontech.com
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1. Divide in half

C85 24 63 45 17 31 96 50

(a)

Figure 4.1: A visual schematic of the merge-sort algorithm.

We show a schematic for the merge-sort algorithm in Figure 4 1 We can

visualize an execution of the merge-sort algorithm by means of a binary tree

called the merge-sofl free (See Figure 4 2) Each node of T represents a recur

invocation (or call) of the merge-sort algorithm. We associate with each nod'
T the sequence S that is processed by the invocation associated with y The chi!

of node y are associated with the recursive calls that process the subsequences

and S2 of S. The external nodes of T are associated with individual elements4

corresponding to instances of the algonthm that make nô recursive calls

Figure 4 2 summarizes an execution of the merge-sort algonthm by shcS

the input and output sequences processed at each node of the merge-sort tree
algorithm visualization in terms of the merge-sort tree helps us analyze the ruñ

time of the merge-sort algonthm In particular, since the size of the input seque

roughly halves at each recursive call of merge-sort, the height of the merge-sort

is about log n (recall that the base of lög is 2 if omitted).

17 24 31 45 50 63 85 96

Figure 4.2: Merge-sort tree T for an execution of the merge-sOrt a!gorithn
sequence with eight elements (a) input sequences processed ai each node o

(b) output sequences generated at each node of T.
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In reference to the divide step, we recall that the notation [xi indicates the
ceiling of x, that is, the smallest integer m, such that x Ç rn. Similarly, the notation

xj indicates the floor of x, that is, the largest integer k, such that k x. Thus, the

divide step divides the list S as equally as possible, which gives us the following

Theorem 4 1 The merge-sort tree associated with an execution of merge-sort on

a sequence of size n has height [log ni

We leave the justification of Theorem 4 1 as a simple exercise (R-4 1)

Having given an overview of merge-sort and an illustratio of how it works,

let us consider each of the steps of this divide-and-conquer algorithm in more de-

tail. The divide and recur steps of the merge-sort algorithm are simple; dividing a

sequence of size n involves separating it at the element with rank [n/21, and the

recursive calls simply involve passing these smaller sequences as parameters. The

difficult step is the conquer step, which merges two sorted sequences into a single

sorted sequence.

Merging Two Sorted Sequences

Algonthifi merge, in Algonthm 4 3, merges two sorted sequences, S and 52, by

iteratively removing a smallest element from one of these two and adding it to the

end of the output sequence, 5 until one of these two sequences is empty, at which

point we copy the remainder of the other sequence to the output sequence.

Algorithm merge(Si , S2, S):
Input: Sequences Si and 52 sorted in nondecreasing order, and an empty se-

quence S
Output: Sequence S containing the elements from S and S2 sorted in nonde-

creasing order, with sequences S and S2 becoming empty

while (not (S1.isEmptyor S2.isEmpty) do

if Si.firsto.element() <S2.firstftelement() then
{ move the first element of Si at the end of S }
S.insertLast(Si .remove(Si .firstO))

else

move the first element of S2 at tììe end of S }

S.insertLast(52.rempVe(52.firStO))
{ move the remaining elements of Si to S }
while (not S1.isEmpty) do

S.insertLast(Si .remove(Si .firstO))
{ move the remainiñg elements of S2 to S }

while (not S2isEmptyO) do
S.insertLast(S2. remòve(S .f i rst()))

Algorithm 4.3: Algorithm merge for merging two sorted, sequences.
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We analyze the running time of the merge algorithm by making some s
observations. Let nl and n2 be the number of elements of 51 and S2, respec

ALso, let us assume that the sequences Si, 52, and S are implemented so tha

cess to, insertion into, and deletion from their first and last positions each take
time This is the case for implementations based on circular arrays or doubly li
lists (Section 2.2.3). Algorithm merge has three while loops. Because of o
sumptions, the operations performed inside each loop taicEèß(1) time each. Th
observation is that dunng each iteration of one of the loops, one element is rem
from either Si or S2. Since no insertions are performed into Si or 52, this obsd
tion implies that the overall number of iterations of the three loops is ni + n2.

the running time of algorithm merge is O(nj + n2), as we summarize

Theorem 4.2: Merging two sorted sequences Si and S2 takes O(ni + n2
where ni is the size of Si and n2 is the size of 52.

s

We show an example execution of algorithm merge in Figure 4.4.

(a)

(d)

(g)

SI®

52®

OQOOOO

Figure 4.4: Example of execution of algorithm merge shown in Algorithm 4
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The Running Time of Merge-Sort

Having given the details of the merge-sort. algorithm, let us analyze the running
time of the entire merge-sort algorithm, assuming it is given an input sequence .of
n elements. For simplicity; let us also assume n is a power of 2. We leave it to an
exercise (R-4,4) to show that the result of our analysis also holds when n is not a
power of 2.

We analyze the merge-soft algorithm by refening to the merge-sort tree T. We
call the time spent at a node y of T the running lime of the recursive call associated
with y, excluding the time taken waiting for the recursive calls associatèd with the
children of y to terminate. In other words, the time spent at node y includes the
running times of the divide and conquer steps, but excludes the running time of
the recur step. We have already observéd that the details of the divide step are
straightforward; this step runs in. time proportional to the size of the sequence for y.
Also, as shówn in Theorem 4.2, the conquer step, which consists of merging two
sorted subsequences, also takes linear time. That is, letting i denote the depth, of
node y, the time spent at node y is O(n/2), since the size o the sequence handled
by the recursive call associated with y is equal 'to n/2'.

height . '
time per level

Total time: 0(n log n)

Figure 4.5: A visual analysis of the running time of merge-sort. Each node of the
mërge-sorttree is labeled with the size of its sbpröblern.

Looking at the tree T more glObally,. as shown in Figure 4.5, we see that, gi'('en
our definition of "lime spent at a npde," the running lime of merge-sort is 'equal to
the sum of the times spent at the nodes of T Observe that T has exactly 2 nodes at
depth i This simple observation has an important consequènce, for it implies that
the overall time spent at all the nodes of T at depth i is 0(2' f12'), which is 0(n).
By Theorem 4.1, the height of T is log n. Thus, sincé the lime spent at each of the
logn + i level of T is 0(n),we have the following result:

Theorem 4.3: Merge-sort runs in O(n log n) time in, the worst case.

a. rnerge-Sort 223
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4.1.2 Merge-Sort and Recurrence Equations

There is another way to justify that the running time of the merge-sort algori
O(nlogn) Let the function t(n) denote the worst-case runmng time of merge
on an input sequence of size n Since merge-soft is recursive, we can charact
function t(n) by means of the following equalities, where function t(n) is rd
sively expressed in terms of itself, as follows:(\jb ifn=1

tn1 - t(In/2])+t([n/2J)+cn otherwise

where b> O and c> O are constants A charactenzation of a function such a
one above is calle flrecurrence equation (Sections 1 1 4 and 5 2 1), since
function appears on both the left- and right-hand sides of the equal sign Althó
such a characterization is correct and accurate, what we really desire is a bi
type of characterization oft(n) that does qt involve the function «fl) itself (th4
we want closed-form characterization of «n)).

In order to provide a closed-form characterization of «fl), let us resthct
attention to the case when n is a power of 2 We leave the problem of showing,
our asymptotic characterization still holds in the general case as an exercise (Ri
In this case, we can simplify the definition oft(n) to

fb ifn=1
2t(n/2) + cn otherwise.

But, even so, we must still try to characterize this recurrence equation in a clo
form way One way to do this is to iteratively apply this equation, assuming
relatively large For example, after one more application of this equation we
write a new recurrenèe for «n) as follows:

= 2(2t(n/22)+(cn/2))+cn
= 22t(n/22)+2cn.

If we apply the equation again, we get

t(n) = 23t(n/23)+3cn.
After applying this equation i times we get

H «fl) = 2t(n/2)+icn.
The issue that remains, then, is to determine when to stop this process. To
when to stop, recall that we switch to the closed form t(n) = b when n = 1, wh
occurs when 2 = n In other words, this will occur when i = log n Making

3

substitution yields

¡'(n) + (logn)ön

= nt(1)+cnlogn
= nb+cnlbgn.

That is, we get an alternative justification of the fact that «n) is O(nlogn

4
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4.2 The Set Abstract Data Type

In this section, we introduce the set ADT. A set is a container of distinct objects.
that is, there are no duplicate elements in a set, and there is no explicit notion of
keys or even an order. Even so, we include Our discussion of sets here in a chapter
on sorting, because sorting can play an important role in efficient implementations
of the operations of the set ADT.

Sets and Some of Their Uses

First, we recall the mathematical definitions of the union, intersection, and sub-
fraction of two sets A and B

AUB = {x:x.eAorxEB},
AflB = {x:xeAandxeB},

AB = {x:xeAandxØB}.

Exämple 4.4: Most Internet search engines store, for each word x in their dictio-
nary database, a set, W(x), of Web páges that contain x, where each Web page is-'-
identified by a unique Internet address. When presented with a query for a word

x, such a search engine need only return the Web pages in the set W(x), sorted
according to some proprietary priority ranking of page 'importance." But when
presented with a two-word query ¡br words x andy, such a search engine must first
compute the intersection W (x) nW (y), and then return the Web pages in the result-
¡ng. set sorted by priority. Se yeral search enEines use the set intersection algorithm
described in this séction for this computation.

Fundamental Methods of the Set ADT i

The fundamental methods of the set ADT, acting on a set A, are as follows

union(B): Replace A with the union of A and B, that., is, execute
AAuB:

intersect(B): Replace A with the intersection ofA and B, that is, exe-
cuteA*AflB.

subtract(B): Replace A with the difference of A and B, that is, exeçute
AAB:» . . ..

We have defirí'ed the operations union, intersect, and subtract above so that
they modify the contents of the set A involved. Alternatively, we could have defined

these methods so that they do not modify A but instead return 'a ñew set.

225
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4.2.1 A Simple Set Implementation

One of the simplest ways of implementing a set is to store its elements
dered sequence This implementation is included in several software librar?
genenc data structures, for example Therefore, let us consider implementi¼
set ADT with an ordered sequence (we consider other implementations in
exercises) Any consistent total order relation among the elements of the sete
used, provided the same order is used for all the sets

We implement each of the three fundamental set operations using a genen cT7

sion of the merge algonthm that takes, as input, two sorted sequences represèn-j
the input sets, and constructs a sequence representing the output set, be it the
intersection, or subtraction pf the input sets

The genenc merge algonthm iteratively examines and compares the cunén?
ements a and b of the input sequences A and B, respectively, and finds out whe

a < b, a = b, or a > b Then, based on the outcome of this comparison, it de
mines whether it should copy one of the elements a and b to the end of the o
sequence C This determination is made based on the particular operation
performing, be it a union, intersection, or subtraction The next element of w
both sequences is then considered For example, in a union operation, we pro
as follows

if a < b, we copy a to the output sequence and advance, to the next ele
of A;.
if a = b, we copy a to the output sequence and advance to the next eleÌíj

of A and B;
if a > b, we copy b to the output sequence and advance to the next elem
of B.

Performance of Generic Merging

Let us analyze the running timç of the generic merge algorithm. At each iterati

we compare two elements of the input sequences A and B, possibly copy on
ement to the output sequence, and advance the current element of A, B, or i
Assuming that comparing and dopying elements takes 0(1) time, the total ru
time is O(nA +flB), where A is the size of A and B is the size.of B; that is, ge

merging takes time proportional to the number of elements involved Thus, we h
the following:

Théórern 4.5: The set ADT can be implemented with an ordered sequence
a generic merge scheme that supports operations union, intersect, and subtrao

0(n) time, where n denotes the sum of sizes of the sets involved.

There is also a speciAl and important version of the Set ADT that only app
when dealing with collections, of disjoint sets.

226 Chapter 4. Sorting, Sets, and Sel

http://www.cvisiontech.com


e Set Abstract Datá lype

4.2.2 Partitions with Union-Find Operations

A partition is a collection of disjoint sets. We define the methods of the partition
ADT using locators (Section 2.4.4) to access the elements stored in a set. Each
locator in this case is like a pointer, it provides immediate access to the position
(node) where an element is stored in our partition.

makeSet(e): Create a singleton set coùtaining the element e and return
a locator t for e.

union (A ,B): Compute and return setA t- A UB.

find (t): Return the set containing the element with locator L.

Sequence Implementation

A simple implementation of a partition with a total of n elements is with a collection
of sequences, one for each set, where the sequence for a set A stores locator nodes
as its elements. Each locator node has a reference to its elemente, which allows the
execution of method elemento of the locator ADT in 0(1) time, and a reference to
the sequence storing e. (See Figure 4.6.) Thus, we can perform operation find(t)
in 0(1) time. Likewise, makeSet also tales 0(1) time. Operation union(A,B)
requires that we join the two sequences into one and update the sequence refer-
ences in the locators of one of the two. We choose to.implement this operation
by removing all the locators from the sequence with smaller size, and inserting
them in the sequence with larger size Hence, the operation u n ion (A, B) takes time

0(min(IAI, IBI)), which is 0(n) because, in the worst case, lAI IBI. = n/2. Nev-
ertheless, äs shownbelow,an amortized analysis shows this implementation to be
much better than appears from this worst-case analysis.

227

Figure 4.6: Sequence-based, implementation of a partition consisting of three sets:
A= {1,4,7}, Bn {2,3,6,9}, and C= {5,8, 10, 11, 12}
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Performance of the Sequence Implementation

The above sequence implementation issimple, but it is also efficient, as the

ing theorem shows. -

Theorem 4.6: Performing a series of n makeSet, union, and find operatjòj

ing the above sequence-based implementation, starting from an initially emß

titi on takes 0(nlogn) time.

Proof: We use the accounting method and âssuwe that one cyber-dollat1

for the time to perform a find operation, a makeSet operation, or the movetfi

a locator node from one sequence to anóther in a union operation In the e

a find or makeSet operation, we. charge the operation itself i cyber-dollar

case of a union operation, however, we charge i cyber-dollar to each locajo

that we move from one set to another. Note that we charge. nothing to the
operations themselves. Clearly, the total charges to find, and makeSet ope

sum tobe 0(n).
COnsider, then, the numbèr of charges made to locators on behalf o

operations. The important observation is that each time we move a locator fro

set to another, the size of the new set at least doubles. Thus, each locator is

from one setto anther at thost- logn times; hence, each locatòflan be ch
most O(logn) times Since we assume that the partition is initially empty, thé

0(n) different elements referenced in the givenseries of operations, which

that the total time fdr all the u n ion' operations is 0(n log n).'

The amortized running time of an operation in a senes of makeSet, uni

find operations, is the total time taken for the senes divided by the numberò
erations We conclude from the above theorem that, for a partition implenil

using sequences, the amortized running time of each operation is 0(logn)
we can summarize the performance Of our simple sequence-basedpartition

mentation as follows.

Theorem 4.7: Using a sequence-based implementation óf a partition, ia4
of n makeSet, union, and find operations starting from an initially empty p
the amortized running time of each operation is 0(logn)

Note that in this sequence-based implementation of a partition, each fin

eration in fact takes worst-case 0(1) time It is the running time of th4
operations that is the computational bottleneck I

In the next section, we descnbe a tree-based implementation of a partiti
does not guarantee constant-time find operations, but has amortized timQ.
better than 0(logn) per union operation.
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4.2.3 A Tree-Based Partition Implementation

An alternativ& datá structure for a partition with n elements uses a collection of
trees to store the elements in sets, where each tree is associated with a different set

(See Figure 4.7.) In particular, we implement a tree T with a linked data structure,
where each node u of T stores n element of the set associated with T, and a parent
reference pointing to the parent node of u If u is the root, then its parent reference
points to itself. The nodes of the tree serve as the locators for the elements in the

partition. Also, we identify each set with the root of its associated tree.

Figure 4.7: Tree-based implementation of a partition consisting of three disjoint

sets: A = {1,4,7}, B = {2,3,6,9}, and C = {5,8, 10,11, 12}.

With this partition data structure, operation union is performed by making one

of the two trees a subtree of the other (Figure 4.8b), which can be done in 0(1)

time by setting the parent refereùce of the root of one tree to point to the root of

the other tree. Operation find for a locator node £ is performed by walking up to

the root of the tree containing the locator £ (Figure 4.8a), which takes 0(n) time in

the worst case.

229

(a)
L L

(b)

Figure 4.8: Tree-based implementation of a partition: (a) operation unio.n(A,B) (b)

òperation find(t), where £ denotes the locator for element 12.
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Note that this representation of a tree is a specialized data structure us
implement a partition, and is not meant to be a realization of the tree abstra
type (Section 2 3) Indeed, the representation has only "upward" lrnks, and cid
provide a way to access the children of a given node At first, this implemen
may seem to be no better than the sequence-based data structure, but we ad
following simple heunstics to make it run faster

Union-by-Size: Store with each node y the size of thé subtree rooted at y,
by n(v) In a union operation, make the tree of the smaller set a sub
thè other tree, and update the size field of the root of the resulting tree

Path Compression: In a find operation, for each node y that the find visits;
the parent pointer frôm y to point to the root. (See Figure 4.9.)

These heuristics increase the running time of an operation by a constant factò
as we show below, they significantly improve the amortized running time.

(a) (b)

Figure 4.9: Path-compression heuristic: (a) path traversed by operation f in

element 12; (b) restructured tree.

Defining a Rank Function H

Let us analyze the running time of a series of n union and find operations o
partition that initially consists of n single-element sets.

For each node y that is a root, we recall that we have defined n(v) to be the s
of the subtree rooted at y (including y), and that we identified a set with the roo
its associated tree.

We update the size field of y each time a set.is unioned into y. Thus., if y is o
root, then «V) is the largest the subtree rooted at/v can be, which occurs just be
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we unionv into sorne other node whose size is at least as large as v's. For any node
y, then, define the rank of y, which we denote as r(v), as

r(v)= [logn(v)j.

Thus, we immediately get that n(v) y(v) Also, since there are at most n nodes
in the tree of y, r(v) [log n], for each node y.

Theorem 4.8: II node w is the parent of node y, then

r(v) <r(w).

Proof: We make y point to w only if the size of w before the union is t least as
large as the size of y. Let n(w) denote the size of w before the union and let n'(w)
denote the size of w after the union. Thus, after the union we get

r(v) =. [logn(v)j

< [logn(v)+1j
= log2n(v)j

[log(n(v) +n(w))j
= [logn'(w)j.

< r(w).

Put another way, this theorem states that ranks are monotonkally increasing as
we follow parent pointers up a tree. It also implies the following;

Theorem 4.9: There are at most n/25 nodes o rank s, for O s [lognj.

Proof: By the previous theorem, r(v) <r(w), for any node i' with parent w,
and rañks axe monotonically increasing as we follow parent pointers up any tree.

Thus, if r(v) = r(w) for two nodes y and w, then the nodes counted in n(v) must be
separate and distinct from the nodes counted in n(w) By the definition of rank, if a

node y is of ranik s, then n(v) 2. Thereforé, since there are àt most n nodes total,
there can be at most n/2 that are of rank s u

Amortized Analysis

when implementedA surpnsmg property of the tree-based partition data structure,
using the union-by-size and path-compression heunstics, is that performing a senes
of n union and find operations takes O(nlog* n) time, where log* n is the "iterated
logarithm" function, which is the inverse of the tower-of-twos function t(i)

1 1 ifi=O
t(i)

=
2t(1) if i

That is,
log* n min{i: t(i) . n}.
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Intuitively, log* n is the number ot times that one can iteratively take the i
anthm (base 2) of a number before getting a number smaller than 2 Table
shows a few sample values of this function.

Table 4.10: Some sample values of log* n and the minimum value of n needed

obtain this value.

As is demonstrated in Table 4.10, for all practical purposes, log* n 5. It is
amazingly slow-growing function (but one that is growing nonetheless).

In order to justify our surpnsing claim that the time needed to perform n urna

and find operations is O(nlog* n), we divide the nodes into rank groups Node
and u are in the same rank group g if

g=log*(r(v)) =log*(r(u)).

Since the largest rank is [log n], the largest rank group is
log*(logn)=iog*n_l.

We use rank groups to derive rules for an amortized analysis via the accountiji

method. We have already observed that performing a union takes 0(1) time.
charge each union operation i cyber-dollar to pay for this Thus, we can concentra
on the find operations to justify our claim that performing all n operations talç
O(nlog* n) time

The main computational task in performing a find operation is following paren
pointers up from a node u to the root of the tree containing u We can account f
all of this work by paying one cyber-dollar for each parent reference we travers
Let y be some node along this path, and let w be v's parent We use two rules fo

charging the traversal of this parent reference:

If w is the root or if w is in a different rank group than y, then charge the fi

operation one cyber-dollar.
Otherwise (w is not a root and y and w, are in the same rank group), ch

the node y one cyber-dollar.

Since there are most log* n - i rank groups, this rule guarantees that any find oper
lion is charged at most log* n cyber-dollars Thus, this scheme accounts for the fi,

operation, but we must still account for all the cyber-dollars we charged to node

minimum n log* n
1 0
2

22=4 2

222=16 3

2222 = 65,536 4

2222 = 265,536
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2t (g-1) + i
n

t(g-1)
n

Plugging this bound into the bound given above or thè total number of node
charges C, we get

lof n-1
(t(g)t(g_1))

g=1
1Og*n_1

(\t(g). .1
g=1

.log*fll.=n--

g=1 ..

<. nlogcn.

s=O
n

42 The Set Abstract Data Type 233

Observe that after we charge a node y then V will get a nw parent, which is a
node higher up in v's tree. Moreover, since ranks. are monotonically increasing up
a tree, the rank of v's new pärent will be greater than the rank of v's old parent w.
Thus, any node y can be àharged at most the number of different ranks that are
in v's rank group. Also, since any node in rank group O has a parent in a highér
rank group, we can restrict our attention to nodes in rank groups higher than O (for
we will always charge the find operation for examining a node in rank groUp O).
If y is in rank group g > O, then y can be charged .at most t(g) - t(g Ti) times
before y has a parent in a higher rank group (and from that point on, y will never be
charged again). In other words, the. tothl number, C, of cyber-dollars that can ever
be charged to nodes can be bound as

log* n-1

C
g=1

where .n(g) denotes the number of nodes in rank group g.
Therefore, Ìf we can derive an upper bound for n(g), wè can then plug that into

the above equation to derive an upper bound for C. To derive a bound on n(g), the
number of nodes in rank group g, recall that the total number of nodes of any given
rank s is at most n/2 (by Theorem 4.9). Thus, for g > O,

t (g)

n(g) Ç

s=t (g-1) + i 2

t(g)t(g-1)1 i
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Therefore, we have shown that the total cyber-dollars charged to nodes
most nlog* n. This implies the following:

/

Theorem 4.10: Let P be a partition with n elements implemented by mead;,
collection of trees, as described above, using the unioñ -by-size and path-compr

heuristics. In a series of union and find operations performed on P, starting.

a collection of single-element sets, the amortized running time of each opem

is O(log* n).

The Ackermann. Function

We can actually prove that the amortizedrunning time of an operation in a. seri

n partition operations implemented as above is O(cz(n)), where cz(n) is a functi

called the inverse of the Ackermann function, A, that asymptotically grows e'v
slower than log* n, but proving this is beyond the scope of this book

Still, we define the Ackermann function here, so as to appreciate just h
quickly it grows, hence, how slowly its inverse grows We first define an index

Ackermann function, A1, as follows: .

Ao(n) = 2n forn>O

A(1) = A_i(2) fori? i
A(n) .=. A_1(A(n-1)) fori>.landn2.

In other words, the indexed Ackermann functions define a progression of fail
fions, with each function growing much faster than the previous one:

j

Ao (n) = 2n is the multiply-by-two function

Ai (n) = r is the power-of-two function
.2

A2 (n) = 22: (with n 2's) is the tower-of-twos function

A3 (n) is the tower-of-tower-of-twos function

and so on..

We then definà the Ackermann function as A(n) = A (n), which is an incre
bly fast growing function Likewise, its inverse, cc(n) = min{m A(nz) n}, is

incredibly slow growing function. : .

We next return to sorting problem, discussing quick-sort. Like merge-sq
this algorithm is also based on the divide-and-conquer paradigm, but it uses
technique in a somewhat opposite manner, as all the hard work is done before

recursive calls. /
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Quick-Sort
The quick-sort algorithm sorts a sequence S Using a simple divide-and-donquer
approach, whereby we divide S into subsequences, recur to sort each subsequence,
and then combine the sorted subsequences by a simple concatenation In particular,
the quick-sort algonthm consists of the following three steps (see Figure 4 11)

i. Divide: If S has at least two elements (nothing needs to be done if S has
zero or one element), select 'a specific, element x from S, which is called the
pivot. As is common practice, choòse the pivot x to be the last element in S.
Remove all the elements from S and put them into three sequences:

L, storing the elements in S less than x
E, storing the elements in S equal to x
G, stonng the elements in S greater than x

(If the elements of S are all distinct, E holds just one, elementthe pivot.)
Recur: Recursively sort sequences L and G. '

('on quer: Put the elements back into Sin order by first inserting the elements
of L, then those of E, and finally those of G.

Like mergesort, we can visualize quick-sort usiñg a binary recursion tree,
called the quick-sort tree. Figure 4.12 visualizes the quickLsort algorithm, showing
example input and output sequences for each node of the quick-sort tree.

Unlike merge-sort, however, the height of the quick-sort tree associated with an
executiòn of quick-sort is linear in the worst case. This happens, for example, if the
sequence consists of n distinct elements and is already sorted. Indeed, in this. case,
the standard choice of the pivot as the largest element yields a subsequence L of
size n .- 1, while subsequence E has size i and subsequence G has sIze O. Hence,
the height of the quick-sort tree is n - 1 in the worst case.

235.

1. Split using pivot x.

3. Concatenate.

Fimire 4 1F A vicual cehematic nf the nuick-sort alonthm
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Running Time of Quick-Sort

We cail ànalyzethe running time of quick-sort with the same technique used f

merge-sort in Section 4.1.1. Namely, we identify the time spent at.each node of th

quick-sort tree T (Figure 4.12) and we sum up the running times for all the nod

The divide step and the conquer step of quick-sort are asy to implement in line

time: Thus, the time spent at a node y of T is proportional to the input size s(v

of y, defined as the size of the sequence handled by the invocation of quick-so

associated with node y. Since subsequence E has at least one element (the pivdt.

the sum of the input sizes of the children of y is at most s(v) - 1.

Given a quick-sort tree T, let s1 denote the sum of the input sizes of the nod

at depth i in T. Clearly, o = n, since the root r of T is associated with the en'

sequence. Also, i < n - 1, since the. pivot, is not propagated to the children of

Consider next s2. . If both children of r have nonzero input size, then s2 = n

OtherwisE (one child of the root has zero size, the other has size n - 1), 2= n -

Thus, 2 n 2. Continuing this line of reasoning, we obtain that s <n - i.

85 24 63 45 17 31 96 .50

oeo 635

So So
(a)

17 24 31 45 50 63 85 96

63 85 96

6385

So So
(b)

Figure 4.12: Quick-sort tree T for an execution of the quick-sort algorithm b

sequence with eight elements: (a) input sequences processed at, each node 41

(b) output sequences generated at ech node of T. The.pivot used at each leve
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One common method for. analyzing quick-sdrt is to assume that the pivot will al-

ways divide the sequence almost equally; We feel such an assumption would pre-

suppose knowledge about the input distribution that is typically not available, how-

ever. For example, we would have to assume that we will rarely be given "almost"

sorted sequences to sort, which are actually common in many applications. For-

tunately, this assumption Is not needed in order for us to match our intuition to

quick-sort's behavior.
Since the goal of the partition step òf the quick-sort methçd is to divide the

sequence S almost equally, let us use a new rule to pick the pivotchoose a ran-

dom element of the input sequence. As we show ñext, the resulting algorithm,

called randomized quick-sort, has an expected running time of 0(nlogn) given a

sequence with n elements.

4.3.
QuiCkS0fl

237

As observed;in Section 4.3, the height of T is n - lin the worst case. Thus, the

worst-case running time of quick-sort is

which is O(!(n_i)) that is,

By Theorem 1.13, i is 0(n2). Thus, quick-sort runs in 0(n2) worst-case time

Given its name, we would expect quick-sort to run quickly. However, the

above quadratic bound indidates that quick-sort is slow in the worst case. Paradoxi-

cally, this worst-case behavior occurs for problem instances when sorting should be

easyif the sequence is already sorted Still, note that the best case for quick-sort

on a sequence of distinct elements occurs when subsequences L and G happen to

have roughly the same size. Indeed, in this case we save one pivot at each internal

node and make two equal-sized calls for its children. Thus, we save 1 pivot at the

root, 2 at level 1,22 at level 2, and so on. That is, in the best case, we have

so = n
Si =
S2 = n(i+2)n-3

s =

and so on. Thus, in the best case, T has height 0(logn) and quick-sort runs iii

0(nlòg n) time. We leave the justiticatiön of this fact as an exercise (R-4.11).

The informal intuition behind the expected behavior of quick-sort is that at

each iñvocatioñ the pivot will probably divide the input sequence about equally.

Thus, we expect the average running time quick-sort to be similar to the best-case

running time, that is, O(n log n). We will see in the next section that introducing

randomization makes quick-sort behave exactly as described abovç.
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Theorem 4.11: The expected running time of randomized quick-sort on a ñ
quence of size n is O(nlogn).

Proof: We make use of a simple fact from probability theory:

- The expected number of times that a fair coin must be flipped until it
shows "heads" k times is 2k.

Consider now a particular recursive invocation of randomized quick-sort, and let
denote the size of the input sequence for this invoèation. Say that this invOcation
"good" if the pivot chosen creates subsequences L and G that have size at least rn/
and at most 3m/4 each. Since the pivot is chosen uniformly at random and thè
are m/2 pivots for which this invocation is good, the probability that an invocatkj
is good is 1/2 (the same as the p obability a coin cornes up heads).

Ifa node y of the quick-sort tree T, as shown in Figure 4.13, is associated wi
a good"-recursive call, then the input sizes of the children of y are each at mo
3s(v)/4 (which is the same as (s(v)/(4/3)). If we take any path in T from the rot
to an external node, then the length of this path is at most the number of invocation
that have to be made (at each node on this path) until achieving log413 n good in-
vocations. Applying the probabilistic fact reviewed above, the expected number of
invocations we must make until this occurs is 2 log43 n (if a path terminates before
this level, that is all the better). Thus, the expected length of anypath from the root
to an external node in T is 0(logn). Recalling that the time spent at each level of
T is 0(n), the expected running time of randomized quick-sort is 0(nlog n). u

We note that the expectation in the running time is taken over all the possible
choices the algorithm makes, and is independent of any assumptions about the dis-
tribution of input sequences the algorithm is likely to encounter. Actually, by using
powerful facts from probability, we can show that the runni4g time of randomized
quick-sort is O(nlogn) with high probability. (See Exercise C-4.8.) T

expected height

s(a)
/ J. '-

O(Iog n) -

s(c) s(d)

/

time per level
0(n)

s(b) 0(n)/

s(e) 0(n)

s .t
0 e

total expected time: 0(n log n)

Figure 4.13: A visual timeanalysis of the quick-sort tree T.

http://www.cvisiontech.com


¿4. A Lower Bound on Comparison-Based Sorting

4.4 A Lower Bound on. Comparison-Based Sorting

Recapping our discussiolis on sorting to this point, we have déscribedseveral meth-
ods with either a worst-case or expected running time of O(nlogn) on an input se-
quence of size n. These methods include merge-sort and quick-sort, described in

this chapter, as well as hapsort, described in Section2.4.4. A naturalquestion to
ask, then, is whethér it is possible to sort any faster than in O(nlogn) time

In this section, we show that if the computational primitive used by a sorting
algorithm is the comparison of two elements, then this is the best we can do-
comparison-based sorting has an Q(nlogn), worst-case lower bound on its running

time (Recall the notation Q() from Section 1.2.2.) To focus on the main cost of
comparison-based sorting, let us only count the comparisons that a sorting algo-
rithm performs. Since we want to derive a lower bound, this will be sufficient.

Suppose we are given a sequence S = (xo, xi,. . . ,x,_ 1) that we wish to sort, and

let us assume that all the elements of S are distinct (this is not a restriction since we

are deriving a lower bound). Each time a sorting algorithm compares two elements

x and xj (that is, it asks, "is x <xi?"), there are two outcomes: "yes" or "no?

Based on the result of.this comparison, the sorting algorithm may perform some
internal calculations (which we are not counting here) and will eventually perform
anòther comparison between two other elements of S, which again will have two
Outcomes. Therefore, we can represent a comparison-based sorting algorithm with

a decision tree T. Thatis, eäch internal node y in T corresponds to a comparison

and the edges from node v'to its children correspond to the computations resulting

from either a "yes" or "no" answer (see Figure 4.14).

It is important to note that the hypothetical sorting algorithm in question prob-
ably has no explicit knowledge of the tree T We simply use T to represent all the
possible sequences of comparisons that a sorting algorithm might make, starting

from the first comparison (associated with the root) and ending with the last com-
panson (associated with the parent of an external node) just before the algorithm

terminates its execution.
Each possible initial ordering, or permutatién, of the elements in S will cause

our hypothetical sorting algorithm to execute a serie of comparisons, traversing a

path in T from the root to some external node. Let us associate with each external
node y in T, then, the set of permutations of S that cause our sorting algorithm to

end p in y. The. most important observation in our lower-bound argument is that

each external node y in T can represent the sequence of comparisons for at most

one permutation of S The justification for this claim is simple if two different

permutations P1 and P2 of S are associated with the same external node, then there

are at least two objects x and x1, such that x is befOre x in P1 but x1 is after xj

in P2 At the same time, the output associated with y must be a specific reordering

of S, with either x, or x3 appearing before the other But if Pi and P2 both cause the

sòrting algorithm to oùtput the elemeñts of S in this order, then that implies there is

239
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a way to trick the algorithm into outputting x and xj in the wrong order. Si
cannot be allowed by a correct sorting algorithm, each external node of T'
associated with exactly one permutation of S. We use this property of the d
tree associated with a sorting algorithm to provç the following result

Theorem 4.12: The running time of any cornkarison-based algorithm for so
an n-element sequence is Q(nlogn) lathe worst case.

Proof: The running time of a comparison-based sorting algorithm must be
than or equal to the height of the decision tree T associated with this algont
described above. (See Figure 4.14.) By the above argument, each external ij'
T must be associated with one permutation of S; Moreover, each permutati,
S must result in a different external node of T. The number of permutations
objects is

n!=n(n-1)(n-2)..2.i.

Thus, T must have at least n! external nodes. By Theorem 2.8, the height of!

least log(n!) This immediately justifies the theorem, because there are at leâs

terms that are greater than or equal to n/2 in the product n!; hence

n nlog(n!)1ogç) =log,
which is Q(nlogn).

minimum height (time)
x<x7

i J

log (n!)

n!

Figure 4.14: Visualizing the lower bound for comparison-based sorting.
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Bucket-Sortafld Radix-Sort

In the previous section, we showed that Q(n log n) time is necessary, in the worst
case, to sort an n-element, sequence with a comparison-based sorting algorithm. A
natural question to ask, then, is whether there are other kinds of sorting algorithms

that can be designed to run asymptotically faster than O(nlogn) time Interest-

ingly, such algorithms exist, but they requiìe special assumptions about the input
sequence to be sorted. Even so, such scenarios often arise in practice, so discussing

them is worthwhile. In this section, we consider the problem of sorting a sequence

of items, ach a key-element pair.

241

4.5.1 Bucket-Sort

Consider a sequefice S of n items 'whose keys aré integers in the range [O, N -. 1],

for some integér N 2, and suppose that S should be sorted according to the keys

of the items. Iñ this case, it is possible to sort S in 0(n +N) time. It might seem
surprising, but this implies, for example, that.if .N is. 0(n), then we can sort S in
0(n) time Of cOurse, the crucial point is that, because of the restrictive assumption
about the format of the elements, we can avoid using comparisons.

The main idea is to use an algorithm called bucket-sort which is not based on

comparisons, but on using keys as indices iñto a bucket array B that has entries
from O to N - 1. An item with key k is placed in the "bucket" B [k], which itself is

a sequence (of items with key k). After inserting each item of the input sequence

S into its bucket, we can put the items back into S in sorted order by enumerating

the contents of the buckets B [O] , B [1],... ,B [N - 1] in order. We give a pseudo-code

description of bucket-sort in Algorithm 4.15.

Algorithm bucketSort(S): t
Input: Sequence S of items with integer keys in the range [QN - 1]

Output: Sequence S sorted in nondecreasing order of the keys

let B be an array of N sequences, each of which is initially empty.

foreachitemxinSdolet.kbethekeyofx ..
remove x from S and insert it at the end of bucket (sequence) B[k]

foriiOtoNido .

for each item x in sequence B[i] do
remo Ve x from B[i] and insert it at the end of S

Algorithm 4.15: Bucket-sOrt.

It is easy to see that bucket-sort runs in 0(n+IST) time and uses 0(n+N) space,

just by examining the two for loops.
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Thus, bucket-sort is efficient when the range N of values for the keys is>

compared to the sequence size n, say N = 0(n) or N = 0(n log n). Still, its $
mance deteriorates as N grows compared to n.

In' addition, an important property. of the bucket-sOrt algorithm is that it
correctly eveh if there are many different elements with the same key. Inde
described it in a way that anticipates such occurrences.

Stable Sorting

When sorting kéy-element items, an important issue is how equal keys are han
Let S = ((ko,eo),... , (ko_1 ,e_i)) be a sequence. of items We Say that a
algorithm is stable if, for any two items (ki, e) arid. (ki, e) of S, such that kj
and (k,, e,) precedes (k3, e3) in S before sorting (that is, i <j), item (k,, e;)
precedes item (ks, e) after sorting. Stability is important for a sorting algóji
because applications may want to preserve the initial ordering of elements wi

same key.
Our informal description of bucket-sort in Algorithm 4.15 does not gu

stabthty This is not inherent in the bucket-sort method itself, however, for W
easily modify our descnption to make bucket-sort stable, while still preservin
O(n + N) running time Indeed, we can obtain a stable bucket-sort algon
always removing the first element from sequence S and from the sequencés
dunng the execution of the algonthm

a
4.5:2 Radix-Sort

One of the reasons that stable sorting is so important is that it allows the bue
sort approach to be applied to more general contexts than to sort integers. Sup
for example, that we want to sort items with keys that. are pairs (k,!), where k
i are integers in the range [O,N - 1], for some integer N 2. In a context s
as this, it is natural to define an ordering on these items using the lexkograph
(dictionary) convèntion, where (ki , ii) c (k2, 12) if

ki <k2 or
ki = k2 and l <12.

This is a pair-wise version of the lexicographic comparison function, usually
plied to equal-length character strings (and it easily generalizes to tuples of d n
bers for d> 2).

The radix-sort algorithm sorts a sequence of pairs, such as S; by applyin
stable bucket-sort on the sequence twice; first using one component of the p'
the ordering key and then using the second component. But which order is co
Should we first sort on the k's (the first componen.» and then .on the i's (the se3 F

component), or should it be the other way around? F
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Before we answer this question, we consider the following example.

Example 4.13: Consider the following sequence S:

s= ((3,3),(i,5),(2,5);(1,2),(2,3),(1,7),(3,2),(2,2))
If we stably sort S on the first component, then we get the sequence

- Sj = ((l,g),(l,2),(l7),(25),(2,3),(2,2),(3,3),(3,2))

If we then stably sort this sequence Si using the seconçi component, then we get the
sequence

51,2

which is not exactly a sorted sequence. On the other hand, if we first stably sort S
using the second component, then we get the sequence

S2=«1,2)(3,2),(2,2),(3,3),(2,3),(1,5),(2,5),(1,7)).
if we then stably sort sequence 82 using the first component, then we get the se-
quence

52,1 = ((1,2),(1,5),(1,7),(2,2),(2,3),(2,5),(3,2),(3,3)),

which is indeed sequence S lexicographically ordered.

So, frorn this example, we are led to believe that we should first sort using
the second component and then again using the first component. This intuition is
exactly right. By first stably sorting by the second component and then again by
the first component, we guarantee that if two elements are equal in the second sort
(by the first component), then their ìelative order in the starting sequence (which
is sorted by the secoùd component) is preserved. Thus, the resulting sequenée is
guaranteed to be sorted lexicographically every time We leave the determination
of how this approach can be extended .to triples andothér d-tuples of numbers to a
simple exercise (R-4.15). We can summarize this section as follows:

Theorem 4.14: Let S be a sequence ofn key-element items, each of which has a
key (k1 ,k2,... , kd), where k is an integer in the range [QN - 1] for some integer
N 2. We can sort S lexicographically in time O(d(n + N)) using radix-sort.

As important as it is, sorting is not the only interesüng problèm dealing with
a total order relation on a set of elements. Theré re some applications, for ex-
ample, that do not require an ordered listing of an entire set, but nevertheless call
for some amount of ordering information about the set. Before we study such a
problem (called "selection"), et us step back and briefly compare Eli of the sorting
algorithms wehaye studied so far.
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At this point, it might be useful for us to take a breath and consider all th&

rithms we have studied in this book to sort an n-element sequence. As with.

things in life, there is no clear 'best" sorting algorithm, but, we can offerb

guidance and observations, based on the knpwn properties of "good" algorit

If implemented well, insertion-sort runs in O(n + k) time, where k is theiì

ber of inversions (that is, the number of pairs of elements out of order)

insertion-sort is an excellent algorithm for sorting small sequences (say, le$

50 elements) Also, insertion-sort is quite effective for sorting sequences th

already "almost" sorted By "almost," we mean that the number of inversi

small. But the O(n2)-time performanc& of insertion-sort makes it a poor

outside of these special contexts j
Merge-sort, on the other hand, mns in O(nlogn) time in the worst case,

is optimal for companson-based sorting methods Still, experimental studS!
shown that, since it is difficult to make merge-sort run in-place, the oven

needed to implement merge-sort make it less attractive than the in-place imple

tations of heap-sort and quick-sort for sequences that can fit entirely in a comp

main memory area Even so, merge-sort is an excellent algonthm for situ

where the input cannot all fit into main memory, but must be stored in blocks o

external memory device, such as a disk. In these contexts, the way that merg

processes runs of data in long merge streams makes the best use of all th4

brought into main memory in a block from disk (See Section 14 1 3)

Expenmental studies have shown that if an input sequence can fit entirej

main memory, then the in-place versions of quick-sort and heap-sort run

than merge-sort In fact, quick-sort tends, on average, to beat heap-sort ml

tests So, quick-sort is an excellent choice as a general-purpose, in-memory
algonthm Indeed, it is included in the qsort sorting utility provided in C laifg

libraries Still, its 0(n2) time worst-case perfonnance makes quick-sort 4
choice in real-time applications where we must make guarantees on the time ni

to complete a sorting operation i
In real-time scenarios where we have a fixed amount of time to perform

ing operation and the input data can fit into main memory, the heap-sort alg

is probably the best choice It runs in 0(n log n) worst-case time and can east

made to execute in-place J
Finally, if our application involves sorting by integer keys or d-tuples of ni

keys, then bucket-sort or radix-sort is an excellent choice, for it runs in o(d@j
time, where [O,N - 1] is the range of integer keys (and d = i for bucket sort)4

if d(n + N) is "below" nlog n (formally, d(n + N) is o(nlog n)), then this S(

method should run faster than even quick-sort or heap-sort I
Thus, our study of all these different sorting algonthms pros ides us

versatile collection of sorting methods in our algonthm design "toolbox" I

244 Chapter 4. Sorting, Sets, and SeFe
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This may come as a small surprise, but we can indeed solve the selection problem in
0(n) time for any value of k. Moreover, the technique we use to achieve this result
involves an interesting algorithmic design pattern. This design pattern is known
as prune-and-search or decrease-and-conquer In applying this design pattern,
we solve a given problem that is defined on a collection of n objects by prumng
away a fraètion of the n objedts and recursively solving the smaller problem. When
we have finally reduced the problem to one defined on a constant-sized collection
of objects, then we solve the problem using some brute-force method. Returning
back from all the recursive calls completes the construction.. In some. cases, we
can avoid using recursion, in which case we simply iterate the prune-and-search
reduction step until we can apply a brute-force method and stop.

4.7.2 Randomized Quick-Select . ,,

In applying the prune-and-search pattern to the selection problem, we can design
a simple and practical method, called randomized quick-select, for finding the kth
smallest element in an unordered sequence of n elements on which a total order re-
lation is defined Randomized quick-select runs in 0(n) expected time, taken over
all possible random choices made by the algorithm, and this expectation does not

depend whatsoever on any randomness assumptions about the-input distribution

We note though that randomized quick-select runs in 0(n3tuíme in the worst-case

time, the justification of which is left as an exercise'CR-4 18) We also provide

an exercise (C-4 24) on modifying randomized qy4I-sèlect to get a deterministic

2i Selection 245

Selection

There are a number of applications in which we are interested in identifying a sin-
gle element in terms of its rank relative to an ordering of the entire set. Examples
include, identifying the minimum and maximum elements, but we may also be in-
terested in, say, identifying the median element, that is, the element such that half
of the other elemènts are. smaller and the remaiñing half are larger. In general,
quedes that ask for an element with a given.rank are called order statistics.

In this section, we discuss the general order-statistic problem of selecting the
kth smallest element from an unsorted ccillection of n òomparable. elements. This is
known as the selection problem. Of course, we can solve this problem by sorting
the collection and then indexing into the sorted sequence ät rank index k - 1. Using
the best comparison-based sorting algorithms, this approach would take O(nlogn)
time. Thus; a natural question to ask is whether we can achieve 'an 0(n) running
time for all values of k, inclUding the interesting case of findiúg the median; where

k=In/2].
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selection algorithm that runs in 0(n) worst-case time The existence of this
terministic algorithm is mostly of theoretical interest, however, since the con
factor hidden by the big-Oh notation is relatively large in this case.

Suppose we are given an unsorted sequénce S Of n comparable e1ement
gether with an integer k E [1, n]. At a high level, the quickselect algorithni
finding the kth smallest element in S is similar in structure to the randomized
sort algorithm described in Section 4 3 1 We pick an element x from S at rand
and use this as a "pivot" to subdivide S into three subsequences L, E, and G, sto
the elements of S less than x, equal to x, and greater than x, respectively This is
prune step Then, based on the value of k, we determine on which of these se
recur. Randomized quick-select is described iii Algorithm 4 16

Algorithm quickSelect(S,k):
Input: Sequenòe S of n comparable elements, and an integer k E [1, n]
Output: The kth smallest element of S

if n = ithen
return the (first) element of S

pick a random element x of S
remove all the elements from S and put them into three sequences:

L, storing the elements in S less than x
E, storing the elements in S equal to x
G, storing the eleménts in S greater than x

if k ILl then
quickSelect(L,k)

Sé if k ILI± EI then
return x {each element in E is equal to x}

else
quick5elect(G,k ILl - El) {note the new selection paramète

Algorithm 4.16: Randomized quick-select algorithm.

4.7.3 Analyzing Randomized Quick-Select

We mentioned above that the randomized quick-select algorithm runs in expect
0(n) time Fortunately, justifying this claim requires only the simplest of prob
nhtic arguments The main probabilistic fact that we use is the linearity of expec

talion -Recall that this fact states that if X and Y are random variables and c i
number, Ihen E(X +1') = È(X) +E(Y).and E(cX) = cE(X), where we Use E
to denote the exgected value, of theexpression Z.
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Let t (n) denote the running time of randomized quick-select on a sequence of

size n. Since the randomized quick-select algorithm depends on the outcome of
random events, its running time, t(n), is a random variable. We are interested in
bounding E(t(n)), the expected value of «n). Say that a recursive invocation of
randomized quick-select is "good" if it partitions S, so that the size of L and G is at

most 3n/4. Clearly, a recursive call is good with probability 1/2. Let g(n) denote

the number of consecutive recursive invocations (mcludmg the present one) before

getting a good invocation. Then

t(n) bn.g(n)+t(3n/4),

where b > O is a constant (to account for the pverhead of each call). We are, of
course, focusing on the cäse where n is larger than 1, for we can easily characterize

in a closed form that t (1) = b. Applying the linearity of expectation property to the

general case, then, we get

E(t(n)) E(bn g(n)+t(3n/4)) =bn E(g(n))+E(t(3n/4))

Since a recursive öall is good with probability 1/2, and whether a recursive call is
good or noUs independent of its parent call being good, the expected value of g(n)

is the same as the expected number of times we must flip a fair coin before it comes

up "heads?' This implies that E(g(n)) = 2. Thus, if we let T(n) be a shorthand
notation for E(t(n)) (the expected running time of the randomized quick-select
algorithm), then we can write the case for n> I as

T(n)'< T(3n/4)+2bn. /
As with the merge-sort recurrence equation, we would like to convert this equation

'jnto a closed form. To do this, let us again iteratively apply this equation assuming

n is large. So, for example, after two iterative applications,, we get

T(n) <T((3/4)2n) +2b(3/4)n±2bn..

At this point, we see that the general case is

[Iog413n

T(n) <2bn (3/4)i

¡=0'

In other words, the expected running time of randomized quick-select is 2bn times

the sum of a gèometric progressioñ whose base 'is a positive number less than 1.

Thus, by Theorem 1.12 on geometric summations, we obtain the result that T (n)

is 0(n). To summarize, we have: . ,

quick-select on a se-Theorem 4.15: The expected running time of randomized
quenceofsizenisO(n) . ' '

As we mentioned earlier, there is a vanation of quick-select that does not use

randomization añd'runs in 0(n) worst'case time Execise C4.24 walks the inter-

ested.reader through 'the design and ànalysis cf this algôri.thnii F
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4.8 Java Example: ln-Piàce Quick-Sort

Recall from Seçtion 2.4.4 that a sorting algorithm is in-place if it uses only a

stant amount of memory in addition to that needed for the objects being SO]

themselves The merge-sort algonthm, as we have descnbed it above, is no
place, and making it be in-place requires a more complicated merging method j
the one we discuss in Section 4 1 1 In-place sorting is not inherently diffi
however For, as with heap-sort, quick-sort can be adapted to be in-place

Performing the quick-sort algorithm in-place: requires a bit of ingenuity, h;
ever, for we must use the input sequence itself to store the subsequences foi
the recursivé calls. We show algorithm inPiaceQúickSort, which performs in-pi
quick-sort, in Algonthm 4 17 Algonthm inPiaceQuickSort assumes that the it
équence, S, has distinct elements The reason for this restriction is explore(

Exercise RL4 12 The extension to the general case is discussed in Exer,cise C-4
The algorithm accesses the elements of the input sequence, S, with rank-ba
methods. Hence, it runs efficiently provided Sis implemented.with an array.

Algorithm inPlaceQuickSort(S,a,b):
Input: Sequence S of distinct elements; integers a and b
Output: Sequence.S with elements originally from ranks from a to b, inclus

sorted in nondecreasing order from ranks a to b

if a b then return {empty subrange}
p - S.elèmAtRank(b) {pivot}
i - a {will scan righ.tward}
r - b - i {will scail leftward}
while l<rdo

{find an element larger than the pivot}
while lrandS.eIemAtRank(l)pdo

14-1+1
{find an element smaller than the pivot}
while r i and S.elemAtRank(r) pdo

r<r-1
if l<r then

S.swapElements(S.atRank(1), S.atRank(r))
{put the pivot into its final place}
S.swapElements(S.atRank(l),S.atRank(b))
{recursive calls}
inPtaceQuickSort(S,a,l 1)
inPlaceQuickSort(S,l+1,b) i

Algonthm 4.17 In-place quick-sort for a sequence implemented with an arra'
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In-piace quick-sort modifies the inpui sequence using swa pE I ements opetationsand does not explicitly create subsequences. Indeed, a subsequence of the input se-
quence is implicitly represented bya range of poÑitions specified by a left-most rank
i and a right-most rank r. the divide, step is performed by scanning the sequence
simultaneously from ¡ forward and from r backward, swapping pairs of elements
that are in reverse order, as shown in Figure 4.18. When these two indices "meet,"
subsequences L and G aie on opposite sides of the meeting point. The algorithm
completes by recursing on these two subsequences.

In-place quick-sort reduces the running time, caused by the creation of new
sequences and the movement of eléments between them, by a constant factôr. We
show a Java version of in-place quiók-sort in Code Fragment 4.20.

Unfortunately, our implementation of quick-sort is, technically speaking, not
quite inplacc, as it still requires more than a constant amount of additional space.
Of course, we are using no additional space for the subsequences, and we are using
only a constant amount of additional space for local variables (such as i and r).
So, where does dus additional space come from9 It comes from the recursion, for,
recalliñg Section 2.1.1, we note that we need space for à Stack proportional to the
depth of the recursion tree for quick-sort, which is at leàst log n and at most n - 1.
In order to make quick-sort truly in-place, we müst implement it nonrecursively
(and not use a stack). The key detail for sudi an implementation is that we need
an in-place way of determining the bounds for the left and right boundaries, of the
"current" subsequence. Such a scheme is not too difficult, however, and we lèave
the details of this implementation to an exercise (C-4.17).

(85 24 63 n n 96 50)
r

(a)

(c)

(e)

(31. 24 63 s 17 85 96 50)

(3! 24 n s oa 85 96 so)

Xb?

(31 24 63 45 17 85 96 so)

(31 24 17 45 63 85 96 so)
r f

U)

(g).. .H H

Figure 4.18: Divide step of in-place quick-sort. Index i scans the sequence from
left to right, and index r scans the sequence from right to left. A swap is performed
when I is at an element larger than the pivot and r is at an element smaller than the
pivot. A final swap with the pivot completes the divide step.

(31 17 45 50 85 96 63)
r f

(85 24 63 45 17 31 96 so)
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* Sort theelements of sequence S in nondecreasing order according

* to comparator c, using the quick-sort ¿lgorithm. Most of the work
* is ddne by the auxiliary recursive method quickSortStep.

public static void quickSort (Sequence S, Comparator c) {
if (S.size() < 2)

return; // a sequence with O or i element is already sorted
quickSortStep(S,c, O, S.sizeQi); // recursive sort method

}

* Sort in. nondecreasing order the elements of sequence S between
* ranks leftBound and rightBound, using a recursive, in-place,
* implementation of thequick-sort algorithm.

private static void quickSortStep (Sequence S, Comparator c;
mt IeftBound, ¡nt rightBound ) {

if (lèftBbund >= rightBound)
return;

Object: pivot = S.atRank(rightBound) .elernentO;
mt lêftlndex = Ieftßound; J/ will scan rightward
intrightlndex = rightBoundi; // will scan leftward

while (leftlndex <= rightlndex) {
// scan rightward to find an element larger than thç pivot
while ( (leftlndex <= rightlndex) && ....

c. isLessThanOrEqualTo(S.atRaflk(leftltldex) .elementQ, pivot) )
leftlndex+±;

// scan leftward to findan element smaller than the pivot
while ( (rightlndex >= left!ndex) && . $

c.isGreaterThanOrEqualTo(S.atRank(rightlndex)emeh1tO, pivot
rightlndex--;

if (leftlndex < rightlndex) // both elements were found
S.swapElements(S.atRank(leftlfldeX), S.atRank(rightl ndex));

} // the loop continues until the indices cross
// place the pivot by swapping it with the element at leftlndex
S.swapElements(S.atRank(leftln.deX), S.atRank(rightBound));
// the pivot is now at leftlndex, so recur on both sides pf it
quickSortStep(S, c, leftBound, leftlndex-1);
quickSortStep(S, c, leftlndex+i, rightBound);

}

Code Fragment 4.20: Java implementation of in-piace quiçk-sort. It is assumS

the input sequence is implemented with an array and that it has distinct eleme
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Reinforcement
R-4. i. Òive a complete justificatiòn of Theorem 4.1.

R-41 Give a pseudo-code description of the merge-sort algorithm.. You can call the
merge algorithm as a subroutine.

R-4.3 Give a pseudo-code description of a variation of the merge-sort algorithm that
operates on an array insteadof a general sequence.

Hint: Use an auxiliary array as a "buffer?'

R-4.4 Show that the running time of the merge-sort algorithm on an n-element sequence
j,s O(nlogn), even when n is not a power of 2.

Suppose we are given two n-element sorted sequences A and B that should not
be viewed as sets (that is, A and B may contain duplicate entries). Describe an
0(n)-time method for computing a sequence representing the set A U B (with no
duplicates). .

R-46 Showthat(XA)U(XB)=X.-.(AflB),foranythreesetsX,A, andB

R-4.7 Suppose we implement the tree-based partition (union-find) data structure us:
ing only the union-by-size heuristic. What is the amortized running time of a
sequènce of n union and find operations in this case?

R-4.8 Provide pseudo-code descriptions for performing methods insert and remove on
a set implemented with a sorted sequence.

R-4.9 Suppose we modify the deterministic version of.the quick-sort algorithm so that,
instead of selecting the last elementS in an n-element sequence as the pivot, we
choose the element at rank (index) [n/2j, that is, an element in the middle of the
sequence. What is the running time of this version of quick-sort on a sequence
that is already sorted? . .

R-4.10 Consider again the modification of the deterministic version of the quick-sort
algorithm so that, instead of selecting the last element in an n-element sequence
as the pivot, we choose the element at rank [n-/2j. Describe the kind of sequence
that would cause this version of quick-sort to run in 0(n2) time

R-4 11 Show that the best-case running time of quick-sort on a sequence of size n with
distinct elements is O(nlogn') -1

R-4.12 Suppose that algorithm inPiaceQuickSort (Algorithm 4.17) is executed ona se-
quence with duplicate elements. Show that, in this case, the algorithm correctly
sorts the input sequence, but the .result of the divide step may differ from the
high-level description given in Section 4 3 and may result in inefficiencies In
particular, what happens in the partition step when there are elements equal to
the pivot') Is the sequence E (storing the elements equal to the pivot) actually
computed') Does the algorithm recur on the subsequences L and R, or on some
other subsequences') What is the running time of the algorithm if all the elements
of the input sequence are equal?
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R-4.13 Give a pseudo-code description of the in-place version of quick-sort that is
cialized to take an array as input, rather than a general sequence, and retum iI
samearray as output.

R-4.14 Which, if any, of the algorithms bubble-sort, heap-sort, merge-sort, änd quic'
sort are stable?

R-4. 15 Describe a radix-sort method for lexicographically särting a sequence S of tripl
(k,1,,n), where k, 1, and m are integers in the range [0N - 1], for some N
2. How could this scheme be extended to sequencés of d-tuples (ki , k2,. . . , k,
where each Iq is an integer in the range [O,N - 1]?

R-4. 1.6 Is the bucket-sort algorithm in-place? Why or why not?

R-4.17 Give a pseudo-code description of an in-plâce quick-select algorithm.

R-4.18 Show that the worst-case running time of quick-select ¿n an n-element sequen.
isQ(n2). T

Creativity
C-4. Show how to implementmethod equals(B) on a setA, which tests whetherA

in O(IAI + BI) time by means of a variation of the generic merge algori
assuming A and B are implemented with sorted sequences.

C-4,2 Give a 'variation of the generic merge algorithm for computing A e B, which
the set of elements that are in A or B, but not in both.

C-4 3 Suppose that we implement the set ADT by representing each set using a b
anced search tree. Describe and analyze algorithms for each of the method&
the set ADT.

C-4 4 Let A be a collection of objects Describe an efficient method for converting
into a set, That is, remove all duplicates from A. What is the running time of tEl
method?

C-4.5 Consider sets whose elements are (or can be mapped to) integers in the rañ
[O, N - 1] A popular scheme for representing a set A of this type is by means
a Boolean vector, B, where we say that x is in A if and only if B{x] true Sin
each cell of B can be represented with a single bit, B is sometimes referred to
a bit vector Describe efficient algorithms for perfornung the Ufl ion, intersectio
and subtraction methods of the set ADT assuming this representation. What
the running times of these methods?

C-4 6 Suppose we implement the tree-based partition (union-find) data structure usin
the union-by-size heuristic and a partial path-compression heunstic The parti
path compression in this case means that, after perforimng a sequence of pointé
hops for a find operation, we update the parent pointer for each node u along tin
path to point to its grandparent Show that the ttal running time of performin
n i.inion and find operations is still 0(nlog* n).

C-4 7 Suppose we implement the tree-based partition (umon-find) data structure usiñ
the union-by-size and path-compression heuristics Show that the total runmn
timeof performiñg n union and find operations is 0(n) if all the unions coni
before all the finds.
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C-4.8 Show that randomized quick-sort runs in O(nlogn) time with probability i -
1/n2.

Hint: Use the Chern off boun4 that states that if we flip a coin k times, then the
probability that we get fewer than k/16 heads is less than

C-4.9 Suppose we are :given a sequence S of n elements, each of which is colored red
or blue. Assuming S is represented as an affay, give an in-place method for

- ordering S so that all the blue elements are listed before all the red elements. Can
you extend your approach to three colors?

C-4.10 Suppose we are given an n-element sequence S such that each element inS repre-
sents a different vote in an election, where each vote is given as an integer repre-
seining the ID of the chosen candidate. Without making any assumptions about
who is running or eveñhow many candidates there are, design an O(nlogn)-tirne -
algorithm to see who wins the election S represents, assuming the candidate with
the most votes wins.

C-4.11 Cònsider the voting problem from the previous exercise, but now suppose that
we know the number k <n of candidates running. Describe an O(nlogk)-tirn
algorithm fordetermining who wins the election.

C-4.12 Show that any comparison-based sorting algorithm can be made to be stable,
without affecting the asymptotic running time of this algorithm.

flint: Change the way elements are compared with each other.

C-4.13 Suppose we are given two sequencés A and B of n elements, possibly containing
duplicates, on which a total order relation is defined. Describe an efficient algo-
rithm for determining if A and B contain the same set of elements (possibly in
different orders). What is the running time of this method?

C-4.14 Suppose we are given a sequence S òf n elements, each of which is an integer in
the range [O »2 - 1]. Describe a simple method for sorting S in 0(n) time.

Hint: Think of alternate ways of viewing the elements.

C4. 15 Let S, S2, , S be k different sequences. whose elements have integer keys in
the range [O,N - 1], for some parameter N 2. 'Describe an algorithm running
in 0(n + N) time for sortiñg all the sequences (not äs ä union), where n denotes
the total size of all the sequences.

C-4.16 Suppose we are given a sequence S of nrçlements, on which a total order relation
is defined. Describe an efficient method for determining whether there are two
equal elements in S. What is the running time of your method?

C-4.17 Describe a noi7recursive, in-place version of the quiçk-sòrt algorithm. The algo-
rithm should still be based on the same divide-and-cÔnquer approach.

'Hint: Think about how io "mark" the left and right boundaries of the current
subsequence before making a recursive call from this one.

C-4 18 Modify Algonthm inPIaceQ.iickSort (Algonthm 4 17) to handle the general case

efficiently' when the input sequence, S, may haveduplicate keys.
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C-4. 1.9 Let S be a sequence of n elements on which a total order relation is defi
inversion in S is a pair of elements x and y such that x appears befor
but r> y. Describe an algorithm running in O(nlogn) time for dete
number of inversions in S. . .. -

Hint: Try to modify the merge-sort algorithm to solve this problem.

C-4.20 Let S be a sequence of n elements on which a total order relation is ¿
DeÑcribe a comparison-based method for sorting S in 0(n + k) time, wh
the number of inversions in S (recall the definition of inversion from the p
problem).

Hint: Think of an in-place version of the insertion-sort algorithm that,
linear-time preprocessing step, only swaps elements that are inverted

C-4.21. Give a sequence. of n integers with Q(n2) iflversions. (Recall the definf
inversion from Exercise C-4.19.)

Y

C-4.22 Let A and B be two sequences of n integers each. Given an integer x, d
an 0(nlogn)-time algorithm for determining if there is an integer a in ¡Ç'
integer b in B such thatx= a + b;

C-4.23 Given an unordered sequence S of n comparable elements, describe an effi
method for finding the R/W} items whose rank in an ordered version o
closest to that of the median. What is the rünning time of your method?

C-4.24 This problem deals with the modification of the quick-select algorithm to
it deterministic, yet still run in 0(n) time on an n-element sequence. The i
to modify the way we choose the pivot so thatit is chosen deterministicall,
randomly, as follows:

Partition the set S into In/Si groups of size 5 each (except possibly.
for oñe group). Sort each little set and identify the median element in-
this set. From this set of In/Si 'baby" medians, apply the selectiotr
algorithm recursively to find the .median of the baby medians Use:
this element as the pivot and proceed as in the quick-select algorithm;

Show that this deterministic method runs in 0(n) time, by answering th
lowing questions (please ignore floor and ceIling functions if that simplifiq
mathematics, for the asymptotics are the same either way):

How many baby medians are less than or equal to the chOsen pivot?t
many are greater than or equal to the pivot?

For each baby median less than or equal tO the pivot, how many o
elements are less 'than or equal to the pivot? Is the same true for,
greater than or equal to the pivot?

Argue why the method for finding the deterministic pivoi and usingt
partition S takes 0(n) time.

Based.on these estimates, write a recurrence equation that bounds the w
case running time t (n) for this selection algorithm. (Note: In the worst
there are two recursive callsone to find the median of the baby medi
and one to then r cur on the larger of L and G.)

e. Using this recurrence equation, show by induction that t(n) is 0(n). i
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C-4.25 Bob has a set A of n nuts and a set B of n bolts, such that each nut in A has a

unique matching bolt in B. Unfortunately, the nuts in A all look the same, añd

the bolts in B all look the same as well. The only kind of a comparison that Bob

can make is to take a nut-bolt pair (a, b), such that a E A and b E B, and test it to

see if the threads of a are larger, smaller, or a perfect match with the threads of

b. Describe an efficient algorithmlor Bob, to match up all of his nuts and bolts.

What is the running time of this algorithm, in terms of nut-bolt tests that Bob

must make?

C-4.26 Show how a deterministic 0(n)-time selection algorithm can be used to design

a quick-sort-like sorting algorithm that runs in 0(n log n) worst-case time on an

n-element sequence.

C-4.27 Given an unsorted sequence S of n comparable elements, and an integer k, give

an 0(niogk) expected-time algorithm for finding the 0(k) elements that have

rank Fn/kl, 2 kiki, 3 [n/kl, and so on.

255

Projects
P-4. I Design and implemeñt a stable version of the bucket-sort algorithm for sorting a

sequence of n elements with integer keys taken from the range [O, N - 1], for N

2. The algorithm should run in 0(n+N) time. Perform a series of benchmarking

time trials to test whether this method does indeed run in this time, for various

values of n and Ñ, and write a short report describing the code and the results of

these trials.

p-4 .2 Implement merge-sort and deterministic quick-sort and perform a series of bench-

marking tests to see which one is faster. Your tests should include sequences that

are very "random" looking, as well as ones that are "almost sorted" or "almost

reverse sorted?' Write â short report describing the code and the results of these

trials.

P-4.3 Implement det&nìinistic and randomized versions of the quick-sort algorithm

and perform a series of benchmarkiiig tests to see. which one is faster. Your tests

should inchde sequences that are very "random"looking as well as ones that are

"almost" sorted. Write a short report describing thecode and the results of these

trials.

P-4.4 Implement an in-place version of insertion-sort and an in-place version of quick-

sort. Perform benchmarking tests to determine the range of values of n where

quick-sort is, on average, faster than insertion-sort.

P-4.5 Design and implement an animation for one of the sorting algorithms described in

this chapter. Your animation should illustrate the key properties of this algorithm

in an intuitive manner, and should be annotated with text and/or sound so as

to explain this algorithm to someone unfamiliar with it.. Write a short report

describing this animation.

P-4.6 Implement the partition (union-find) ADT using the tree-based approach with the

union-by-size and path-cOmpression heuristics.
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Chapter Notes
Knuth's classic text on Sorting and Searching [119] contains an extensive history ¿
sorting problem and algorithms for solving it, starting 'with the census card sorting
chines of the late 19th century. Huang and Langston [103] describe how to merge
sorted lists in-place in linear time. Our set ADT is derived from the set ADT of<
Hoperoft, and Ullman [8]. The standard quick-sort algorithm is due to Hoare [96
tighter analysis of randomized quick-sort can be found im the book by Motwani and Ra
van [157]. Gonnet and Baeza-Yates [81] provide experimental comparisons and thee
ical analyses of a number of different sorting algorithms. The term "prune-and-se
originally comes from the computational geomSy literature (such as in the work of Cl
son [47] and Megiddo [145, 146]). The term "decrease-and-conquer" is from Levitin [

The analysis we give for the partition data structure cornes from Hoperoft and
man [99] (see also [7]). Tarjan [199] shows that a sequence of n union and find operan
implemented as described in this chapter, can be performed in 0(na(n)) time, where
is the very slow growing inverse of the Ackermann function, and this bound is fight i
worst case (see also [200]). Gabow and Tarjan [73] show that one can, in some
achieve a running time of 0(n), however.
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A popular television network broadcasts two different shows about carpentry.
In one show, the host builds furniture using specialized power tools, and in the other
the host builds furniture using general-purpose hand tools. The specialized tools,
used in the first show, are good at the jobs they are intended for, but none of them
is very versatile. The tools in the second show are fundamental, however, because
they can be used effectively for a wide variety of different tasks.

These two television shows provide an interesting metaphor for data structure
and algorithm design. There are some algorithmic tools that are quite specialized.
They are good for the problems they are intended to solve, but they are not very
versatile. There are other algorithmic tools, however, that arefundamentalin that
they can be applied to a wide variety of different data structure and algorithm design
problems. Learning to use these fundamental techniques is a craft, and this chapter
is dedicated to developing the knowledge for using these techniques effectively.

The fundamental techniques covered in this chapter are the greedy method,
divide-and-conquer, and dynamic programming. These techniques are versatile,
and examples are given both in this chapter and in other chapters of this book.

The greedy method is used in algorithms for weighted graphs discussed in
Chapter 7, as well as a data compression problem presented in Section 9.3. The
main idea of this technique, as the name implies, is to make a series of greedy
choices in order to construct an optimal solution (or close to optimal solution) for a
given problem. In this chapter, we give the general structure for the greedy method
and show how it can be applied to knapsack and scheduling problems.

Divide-and-conquer is used in the merge-sort and quick-sort algorithms of Chap-
ter 4. The general idea behind this technique is to solve a given problem by dividing
it into a small number of similar subproblems, recursively solve each of the sub-
problems until they are small enough to solve by brute force, and, after the recursive
calls return, merge all the subproblems together to derive a solution to the original
problem. In this chapter, we show how to design and analyze general divide-and-
conquer algorithms and we give additional applications of this technique to the
problems of multiplying big integers and large matrices. We also give a number of
techniques for solving divide-and-conquer recurrence equations, including a gen-
eral master theorem that can be applied to a variety of equations.

The dynamic programming technique might at first seem a bit mysterious, but
it is quite powerful. The main idea is to solve a given problem by characterizing its
subproblems using a small set of integer indices. The goal of this characterization
is to allow an optimal solution to a subproblem to be defined by the combination of
(possibly overlapping) solutions to even smaller subproblems. If we can construct
such a characterization, which is the hardest step in using the dynamic program-
ming technique, then we can build a rather straightforward algorithm that builds up
larger subproblem solutions from smaller ones. This technique underlies the Floyd-
Warshall transitive closure algorithm of Chapter 6. In this chapter, we describe the
general framework of dynamic programming and give several applications, includ-
ing to the 0-1 knapsack problem.
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5.1 The Greedy Method

The first algorithmic technique we consider in this chapter is thegreedy method.
We characterize this greedy method design pattern in terms of a generalgreedy-
choiceproperty, and we give two applications of its use.

The greedy method is applied to optimization problems, that is, problems that
involve searching through a set ofconfigurations to find one that minimizes or
maximizes anobjective functiondefined on these configurations. The general for-
mula of the greedy method could not be simpler. In order to solve a given optimiza-
tion problem, we proceed by a sequence of choices. The sequence starts from some
well-understood starting configuration, and then iteratively makes the decision that
seems best from all of those that are currently possible.

This greedy approach does not always lead to an optimal solution. But there
are several problems that it does work optimally for, and such problems are said
to possess thegreedy-choiceproperty. This is the property that a global optimal
configuration can be reached by a series of locally optimal choices (that is, choices
that are the best from among the possibilities available at the time), starting from a
well-defined configuration.

5.1.1 The Fractional Knapsack Problem

Consider thefractional knapsackproblem, where we are given a setSof n items,
such that each itemi has a positive benefitbi and a positive weightwi , and we wish
to find the maximum-benefit subset that does not exceed a given weightW. If we
are restricted to entirely accepting or rejecting each item, then we would have the
0-1 version of this problem (for which we give a dynamic programming solution
in Section 5.3.3). Let us now allow ourselves to take arbitrary fractions of some
elements, however. The motivation for this fractional knapsack problem is that we
are going on a trip and we have a single knapsack that can carry items that together
have weight at mostW. In addition, we are allowed to break items into fractions
arbitrarily. That is, we can take an amountxi of each itemi such that

0≤ xi ≤ wi for eachi ∈ S and ∑
i∈S

xi ≤W.

The total benefit of the items taken is determined by the objective function

∑
i∈S

bi(xi/wi).

Consider, for example, a student who is going to an outdoor sporting event and
must fill a knapsack full of foodstuffs to take along. Each candidate foodstuff is
something that can be easily divided into fractions, such as soda pop, potato chips,
popcorn, and pizza.
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Algorithm FractionalKnapsack(S,W):
Input: SetSof items, such that each itemi ∈ Shas a positive benefitbi and a

positive weightwi; positive maximum total weightW
Output: Amountxi of each itemi ∈ Sthat maximizes the total benefit while not

exceeding the maximum total weightW

for each itemi ∈ Sdo
xi ← 0
vi ← bi/wi {value indexof item i}

w← 0 {total weight}
while w < W do

remove fromSan itemi with highest value index {greedy choice}
a←min{wi,W−w} {more thanW−w causes a weight overflow}
xi ← a
w← w+a

Algorithm 5.1: A greedy algorithm for the fractional knapsack problem.

This is one place where greed is good, for we can solve the fractional knapsack
problem using the greedy approach shown in Algorithm 5.1.

The FractionalKnapsack algorithm can be implemented inO(nlogn) time,
wheren is the number of items inS. Specifically, we use a heap-based priority
queue (Section 2.4.3) to store the items ofS, where the key of each item is its value
index. With this data structure, each greedy choice, which removes the item with
greatest value index, takesO(logn) time.

To see that the fractional knapsack problem satisfies the greedy-choice property,
suppose that there are two itemsi and j such that

xi < wi , xj > 0, and vi < vj .

Let

y = min{wi−xi ,xj}.
We could then replace an amounty of item j with an equal amount of itemi, thus
increasing the total benefit without changing the total weight. Therefore, we can
correctly compute optimal amounts for the items by greedily choosing items with
the largest value index. This leads to the following theorem.

Theorem 5.1: Given a collectionSof n items, such that each itemi has a benefit
bi and weightwi, we can construct a maximum-benefit subset ofS, allowing for
fractional amounts, that has a total weightW in O(nlogn) time.

This theorem shows how efficiently we can solve the fractional version of the
knapsack problem. The all-or-nothing, or “0-1” version of the knapsack problem
does not satisfy the greedy choice property, however, and solving this version of
the problem is much harder, as we explore in Sections 5.3.3 and 13.3.4.
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5.1.2 Task Scheduling

Let us consider another optimization problem. Suppose we are given a setT of n
tasks, such that each taski has astart time, si , and a finish time,fi (wheresi < fi).
Taski must start at timesi and it is guaranteed to be finished by timefi . Each task
has to be performed on amachineand each machine can execute only one task at
a time. Two tasksi and j arenonconflicting if fi ≤ sj or f j ≤ si . Two tasks can be
scheduled to be executed on the same machine only if they are nonconflicting.

The task schedulingproblem we consider here is to schedule all the tasks in
T on the fewest machines possible in a nonconflicting way. Alternatively, we can
think of the tasks as meetings that we must schedule in as few conference rooms as
possible. (See Figure 5.2.)

1 98765432

Machine 1

Machine 3

Machine 2

Figure 5.2: An illustration of a solution to the task scheduling prob-
lem, for tasks whose collection of pairs of start times and finish times is
{(1,3), (1,4), (2,5), (3,7), (4,7), (6,9), (7,8)}.

In Algorithm 5.3, we describe a simple greedy algorithm for this problem.

Algorithm TaskSchedule(T):
Input: A setT of tasks, such that each task has a start timesi and a finish timefi
Output: A nonconflicting schedule of the tasks inT using a minimum number

of machines

m← 0 {optimal number of machines}
while T 6= ∅ do

remove fromT the taski with smallest start timesi

if there is a machinej with no task conflicting with taski then
schedule taski on machinej

else
m←m+1 {add a new machine}
schedule taski on machinem

Algorithm 5.3: A greedy algorithm for the task scheduling problem.
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Correctness of Greedy Task Scheduling

In the algorithmTaskSchedule, we begin with no machines and we consider the
tasks in a greedy fashion, ordered by their start times. For each taski, if we have a
machine that can handle taski, then we schedulei on that machine. Otherwise, we
allocate a new machine, schedulei on it, and repeat this greedy selection process
until we have considered all the tasks inT.

The fact that the aboveTaskSchedule algorithm works correctly is established
by the following theorem.

Theorem 5.2: Given a set ofn tasks specified by their start and finish times, Al-
gorithmTaskSchedule produces a schedule of the tasks with the minimum number
of machines inO(nlogn) time.

Proof: We can show that the above simple greedy algorithm,TaskSchedule, finds
an optimal schedule on the minimum number of machines by a simple contradiction
argument.

So, suppose the algorithm does not work. That is, suppose the algorithm finds
a nonconflicting schedule usingk machines but there is a nonconflicting schedule
that uses onlyk−1 machines. Letk be the last machine allocated by our algorithm,
and leti be the first task scheduled onk. By the structure of the algorithm, when
we scheduledi, each of the machines 1 throughk−1 contained tasks that conflict
with i. Since they conflict withi and because we consider tasks ordered by their
start times, all the tasks currently conflicting with taski must have start times less
than or equal tosi , the start time ofi, and have finish times aftersi . In other words,
these tasks not only conflict with taski, they all conflict with each other. But this
means we havek tasks in our setT that conflict with each other, which implies
it is impossible for us to schedule all the tasks inT using onlyk− 1 machines.
Therefore,k is the minimum number of machines needed to schedule all the tasks
in T.

We leave as a simple exercise (R-5.2) the job of showing how to implement the
Algorithm TaskSchedule in O(nlogn) time.

We consider several other applications of the greedy method in this book, in-
cluding two problems in string compression (Section 9.3), where the greedy ap-
proach gives rise to a construction known as Huffman coding, and graph algorithms
(Section 7.3), where the greedy approach is used to solve shortest path and mini-
mum spanning tree problems.

The next technique we discuss is the divide-and-conquer technique, which is a
general methodology for using recursion to design efficient algorithms.
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5.2 Divide-and-Conquer

Thedivide-and-conquertechnique involves solving a particular computational prob-
lem by dividing it into one or more subproblems of smaller size, recursively solving
each subproblem, and then “merging” or “marrying” the solutions to the subprob-
lem(s) to produce a solution to the original problem.

We can model the divide-and-conquer approach by using a parametern to de-
note the size of the original problem, and letS(n) denote this problem. We solve
the problemS(n) by solving a collection ofk subproblemsS(n1), S(n2), . . ., S(nk),
whereni < n for i = 1, . . . ,k, and then merging the solutions to these subproblems.

For example, in the classic merge-sort algorithm (Section 4.1),S(n) denotes the
problem of sorting a sequence ofn numbers. Merge-sort solves problemS(n) by
dividing it into two subproblemsS(bn/2c) andS(dn/2e), recursively solving these
two subproblems, and then merging the resulting sorted sequences into a single
sorted sequence that yields a solution toS(n). The merging step takesO(n) time.
This, the total running time of the merge-sort algorithm isO(nlogn).

As with the merge-sort algorithm, the general divide-and-conquer technique
can be used to build algorithms that have fast running times.

5.2.1 Divide-and-Conquer Recurrence Equations

To analyze the running time of a divide-and-conquer algorithm we utilize arecur-
rence equation(Section 1.1.4). That is, we let a functionT(n) denote the running
time of the algorithm on an input of sizen, and characterizeT(n) using an equation
that relatesT(n) to values of the functionT for problem sizes smaller thann. In
the case of the merge-sort algorithm, we get the recurrence equation

T(n) =
{

b if n < 2
2T(n/2)+bn if n≥ 2,

for some constantb > 0, taking the simplifying assumption thatn is a power of 2.
In fact, throughout this section, we take the simplifying assumption thatn is an
appropriate power, so that we can avoid using floor and ceiling functions. Every
asymptotic statement we make about recurrence equations will still be true, even if
we relax this assumption, but justifying this fact formally involves long and boring
proofs. As we observed above, we can show thatT(n) is O(nlogn) in this case. In
general, however, we will possibly get a recurrence equation that is more challeng-
ing to solve than this one. Thus, it is useful to develop some general ways of solving
the kinds of recurrence equations that arise in the analysis of divide-and-conquer
algorithms.
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The Iterative Substitution Method

One way to solve a divide-and-conquer recurrence equation is to use theiterative
substitution method, which is more colloquially known as the “plug-and-chug”
method. In using this method, we assume that the problem sizen is fairly large
and we then substitute the general form of the recurrence for each occurrence of
the functionT on the right-hand side. For example, performing such a substitution
with the merge-sort recurrence equation yields the equation

T(n) = 2(2T(n/22)+b(n/2))+bn

= 22T(n/22)+2bn.

Plugging the general equation forT in again yields the equation

T(n) = 22(2T(n/23)+b(n/22))+2bn

= 23T(n/23)+3bn.

The hope in applying the iterative substitution method is that, at some point, we
will see a pattern that can be converted into a general closed-form equation (with
T only appearing on the left-hand side). In the case of the merge-sort recurrence
equation, the general form is

T(n) = 2iT(n/2i)+ ibn.

Note that the general form of this equation shifts to the base case,T(n) = b, when
n = 2i , that is, wheni = logn, which implies

T(n) = bn+bnlogn.

In other words,T(n) is O(nlogn). In a general application of the iterative substitu-
tion technique, we hope that we can determine a general pattern forT(n) and that
we can also figure out when the general form ofT(n) shifts to the base case.

From a mathematical point of view, there is one point in the use of the iterative
substitution technique that involves a bit of a logical “jump.” This jump occurs at
the point where we try to characterize the general pattern emerging from a sequence
of substitutions. Often, as was the case with the merge-sort recurrence equation,
this jump is quite reasonable. Other times, however, it may not be so obvious what
a general form for the equation should look like. In these cases, the jump may
be more dangerous. To be completely safe in making such a jump, we must fully
justify the general form of the equation, possibly using induction. Combined with
such a justification, the iterative substitution method is completely correct and an
often useful way of characterizing recurrence equations. By the way, the colloqui-
alism “plug-and-chug,” used to describe the iterative substitution method, comes
from the way this method involves “plugging” in the recursive part of an equation
for T(n) and then often “chugging” through a considerable amount of algebra in
order to get this equation into a form where we can infer a general pattern.
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The Recursion Tree

Another way of characterizing recurrence equations is to use therecursion tree
method. Like the iterative substitution method, this technique uses repeated sub-
stitution to solve a recurrence equation, but it differs from the iterative substitution
method in that, rather than being an algebraic approach, it is a visual approach. In
using the recursion tree method, we draw a treeR where each node represents a
different substitution of the recurrence equation. Thus, each node inR has a value
of the argumentn of the functionT(n) associated with it. In addition, we associate
an overheadwith each nodev in R, defined as the value of the nonrecursive part
of the recurrence equation forv. For divide-and-conquer recurrences, the overhead
corresponds to the running time needed to merge the subproblem solutions coming
from the children ofv. The recurrence equation is then solved by summing the
overheads associated with all the nodes ofR. This is commonly done by first sum-
ming values across the levels ofR and then summing up these partial sums for all
the levels ofR.

Example 5.3: Consider the following recurrence equation:

T(n) =
{

b if n < 3
3T(n/3)+bn if n≥ 3.

This is the recurrence equation that we get, for example, by modifying the merge-
sort algorithm so that we divide an unsorted sequence into three equal-sized se-
quences, recursively sort each one, and then do a three-way merge of three sorted
sequences to produce a sorted version of the original sequence. In the recursion tree
R for this recurrence, each internal nodev has three children and has a size and an
overhead associated with it, which corresponds to the time needed to merge the sub-
problem solutions produced byv’s children. We illustrate the treeR in Figure 5.4.
Note that the overheads of the nodes of each level sum tobn. Thus, observing that
the depth ofR is log3n, we have thatT(n) is O(nlogn).

Overhead

bn

bn

bn

Figure 5.4: The recursion treeR used in Example 5.3, where we show the cumula-
tive overhead of each level.
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The Guess-and-Test Method

Another method for solving recurrence equations is theguess-and-testtechnique.
This technique involves first making an educated guess as to what a closed-form
solution of the recurrence equation might look like and then justifying that guess,
usually by induction. For example, we can use the guess-and-test method as a kind
of “binary search” for finding good upper bounds on a given recurrence equation.
If the justification of our current guess fails, then it is possible that we need to use
a faster-growing function, and if our current guess is justified “too easily,” then it
is possible that we need to use a slower-growing function. However, using this
technique requires our being careful, in each mathematical step we take, in trying
to justify that a certain hypothesis holds with respect to our current “guess.” We
explore an application of the guess-and-test method in the examples that follow.

Example 5.4: Consider the following recurrence equation (assuming the base case
T(n) = b for n < 2):

T(n) = 2T(n/2)+bnlogn.

This looks very similar to the recurrence equation for the merge-sort routine, so we
might make the following as our first guess:

First guess:T(n)≤ cnlogn,

for some constantc > 0. We can certainly choosec large enough to make this true
for the base case, so consider the case whenn≥ 2. If we assume our first guess is
an inductive hypothesis that is true for input sizes smaller thann, then we have

T(n) = 2T(n/2)+bnlogn

≤ 2(c(n/2) log(n/2))+bnlogn

= cn(logn− log2)+bnlogn

= cnlogn−cn+bnlogn.

But there is no way that we can make this last line less than or equal tocnlogn for
n≥ 2. Thus, this first guess was not sufficient. Let us therefore try

Better guess:T(n) ≤ cnlog2n,

for some constantc > 0. We can again choosec large enough to make this true
for the base case, so consider the case whenn≥ 2. If we assume this guess as an
inductive hypothesis that is true for input sizes smaller thenn, then we have

T(n) = 2T(n/2)+bnlogn

≤ 2(c(n/2) log2(n/2))+bnlogn

= cn(log2 n−2logn+1)+bnlogn

= cnlog2 n−2cnlogn+cn+bnlogn

≤ cnlog2 n,

providedc≥ b. Thus, we have shown thatT(n) is indeedO(nlog2 n) in this case.
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We must take care in using this method. Just because one inductive hypothesis
for T(n) does not work, that does not necessarily imply that another one propor-
tional to this one will not work.

Example 5.5: Consider the following recurrence equation (assuming the base case
T(n) = b for n < 2):

T(n) = 2T(n/2)+ logn.

This recurrence is the running time for the bottom-up heap construction discussed
in Section 2.4.4, which we have shown isO(n). Nevertheless, if we try to prove
this fact with the most straightforward inductive hypothesis, we will run into some
difficulties. In particular, consider the following:

First guess:T(n)≤ cn,

for some constantc > 0. We can choosec large enough to make this true for the
base case, certainly, so consider the case whenn≥ 2. If we assume this guess as an
inductive hypothesis that is true for input sizes smaller thann, then we have

T(n) = 2T(n/2)+ logn

≤ 2(c(n/2))+ logn

= cn+ logn.

But there is no way that we can make this last line less than or equal tocn for n≥ 2.
Thus, this first guess was not sufficient, even thoughT(n) is indeedO(n). Still, we
can show this fact is true by using

Better guess:T(n)≤ c(n− logn),

for some constantc > 0. We can again choosec large enough to make this true for
the base case; in fact, we can show that it is true any timen < 8. So consider the
case whenn≥ 8. If we assume this guess as an inductive hypothesis that is true for
input sizes smaller thann, then we have

T(n) = 2T(n/2)+ logn

≤ 2c((n/2)− log(n/2))+ logn

= cn−2clogn+2c+ logn

= c(n− logn)−clogn+2c+ logn

≤ c(n− logn),

providedc≥ 3 andn≥ 8. Thus, we have shown thatT(n) is indeedO(n) in this
case.

The guess-and-test method can be used to establish either an upper or lower
bound for the asymptotic complexity of a recurrence equation. Even so, as the
above example demonstrates, it requires that we have developed some skill with
mathematical induction.
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The Master Method

Each of the methods described above for solving recurrence equations is ad hoc
and requires mathematical sophistication in order to be used effectively. There is,
nevertheless, one method for solving divide-and-conquer recurrence equations that
is quite general and does not require explicit use of induction to apply correctly. It
is themaster method. The master method is a “cook-book” method for determining
the asymptotic characterization of a wide variety of recurrence equations. Namely,
it is used for recurrence equations of the form

T(n) =
{

c if n < d
aT(n/b)+ f (n) if n≥ d,

whered ≥ 1 is an integer constant,a > 0, c > 0, andb > 1 are real constants, and
f (n) is a function that is positive forn≥ d. Such a recurrence equation would arise
in the analysis of a divide-and-conquer algorithm that divides a given problem into
a subproblems of size at mostn/b each, solves each subproblem recursively, and
then “merges” the subproblem solutions into a solution to the entire problem. The
function f (n), in this equation, denotes the total additional time needed to divide
the problem into subproblems and merge the subproblem solutions into a solution to
the entire problem. Each of the recurrence equations given above uses this form, as
do each of the recurrence equations used to analyze divide-and-conquer algorithms
given earlier in this book. Thus, it is indeed a general form for divide-and-conquer
recurrence equations.

The master method for solving such recurrence equations involves simply writ-
ing down the answer based on whether one of the three cases applies. Each case is
distinguished by comparingf (n) to the special functionnlogb a (we will show later
why this special function is so important).

Theorem 5.6 [The Master Theorem]: Let f (n) andT(n) be defined as above.

1. If there is a small constantε > 0, such thatf (n) is O(nlogb a−ε), thenT(n) is
Θ(nlogb a).

2. If there is a constantk≥ 0, such thatf (n) is Θ(nlogb a logkn), thenT(n) is
Θ(nlogb a logk+1n).

3. If there are small constantsε > 0 andδ < 1, such thatf (n) is Ω(nlogb a+ε)
anda f(n/b) ≤ δ f (n), for n≥ d, thenT(n) is Θ( f (n)).

Case 1 characterizes the situation wheref (n) is polynomially smaller than the
special function,nlogb a. Case 2 characterizes the situation whenf (n) is asymptoti-
cally close to the special function, and Case 3 characterizes the situation whenf (n)
is polynomially larger than the special function.
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We illustrate the usage of the master method with a few examples (with each
taking the assumption thatT(n) = c for n < d, for constantsc≥ 1 andd≥ 1).

Example 5.7: Consider the recurrence

T(n) = 4T(n/2)+n.

In this case,nlogb a = nlog2 4 = n2. Thus, we are in Case 1, forf (n) is O(n2−ε) for
ε = 1. This means thatT(n) is Θ(n2) by the master method.

Example 5.8: Consider the recurrence

T(n) = 2T(n/2)+nlogn,

which is one of the recurrences given above. In this case,nlogb a = nlog2 2 = n.
Thus, we are in Case 2, withk = 1, for f (n) is Θ(nlogn). This means thatT(n) is
Θ(nlog2 n) by the master method.

Example 5.9: Consider the recurrence

T(n) = T(n/3)+n,

which is the recurrence for a geometrically decreasing summation that starts withn.
In this case,nlogb a = nlog3 1 = n0 = 1. Thus, we are in Case 3, forf (n) is Ω(n0+ε),
for ε = 1, anda f(n/b) = n/3 = (1/3) f (n). This means thatT(n) is Θ(n) by the
master method.

Example 5.10: Consider the recurrence

T(n) = 9T(n/3)+n2.5.

In this case,nlogb a = nlog3 9 = n2. Thus, we are in Case 3, sincef (n) is Ω(n2+ε)
(for ε = 1/2) anda f(n/b) = 9(n/3)2.5 = (1/3)1/2 f (n). This means thatT(n) is
Θ(n2.5) by the master method.

Example 5.11: Finally, consider the recurrence

T(n) = 2T(n1/2)+ logn.

Unfortunately, this equation is not in a form that allows us to use the master method.
We can put it into such a form, however, by introducing the variablek = logn,
which lets us write

T(n) = T(2k) = 2T(2k/2)+k.

Substituting into this the equationS(k) = T(2k), we get that

S(k) = 2S(k/2)+k.

Now, this recurrence equation allows us to use master method, which specifies that
S(k) is O(k logk). Substituting back forT(n) impliesT(n) is O(lognlog logn).

Rather than rigorously prove Theorem 5.6, we instead discuss the justification
behind the master method at a high level.
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If we apply the iterative substitution method to the general divide-and-conquer
recurrence equation, we get

T(n) = aT(n/b)+ f (n)
= a(aT(n/b2)+ f (n/b))+ f (n) = a2T(n/b2)+a f(n/b)+ f (n)
= a3T(n/b3)+a2 f (n/b2)+a f(n/b)+ f (n)

...

= alogb nT(1)+
logb n−1

∑
i=0

ai f (n/bi)

= nlogb aT(1)+
logb n−1

∑
i=0

ai f (n/bi),

where the last substitution is based on the identityalogb n = nlogb a. Indeed, this
equation is where the special function comes from. Given this closed-form char-
acterization ofT(n), we can intuitively see how each of the three cases is derived.
Case 1 comes from the situation whenf (n) is small and the first term above domi-
nates. Case 2 denotes the situation when each of the terms in the above summation
is proportional to the others, so the characterization ofT(n) is f (n) times a loga-
rithmic factor. Finally, Case 3 denotes the situation when the first term is smaller
than the second and the summation above is a sum of geometrically decreasing
terms that start withf (n); hence,T(n) is itself proportional tof (n).

The proof of Theorem 5.6 formalizes this intuition, but instead of giving the
details of this proof, we present two applications of the master method below.

5.2.2 Integer Multiplication

We consider, in this subsection, the problem of multiplyingbig integers, that is,
integers represented by a large number of bits that cannot be handled directly by
the arithmetic unit of a single processor. Multiplying big integers has applications
to data security, where big integers are used in encryption schemes.

Given two big integersI and J represented withn bits each, we can easily
computeI +J andI −J in O(n) time. Efficiently computing the productI ·J using
the common grade-school algorithm requires, however,O(n2) time. In the rest
of this section, we show that by using the divide-and-conquer technique, we can
design a subquadratic-time algorithm for multiplying twon-bit integers.

Let us assume thatn is a power of two (if this is not the case, we can padI andJ
with 0’s). We can therefore divide the bit representations ofI andJ in half, with one
half representing thehigher-order bits and the other representing thelower-order
bits. In particular, if we splitI into Ih andIl andJ into Jh andJl , then

I = Ih2n/2 + Il ,

J = Jh2n/2 +Jl .
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Also, observe that multiplying a binary numberI by a power of two, 2k, is
trivial—it simply involves shifting left (that is, in the higher-order direction) the
numberI by k bit positions. Thus, provided a left-shift operation takes constant
time, multiplying an integer by 2k takesO(k) time.

Let us focus on the problem of computing the productI ·J. Given the expansion
of I andJ above, we can rewriteI ·J as

I ·J = (Ih2n/2 + Il) · (Jh2n/2 +Jl) = IhJh2n + Il Jh2n/2 + IhJl 2
n/2 + Il Jl .

Thus, we can computeI ·J by applying a divide-and-conquer algorithm that divides
the bit representations ofI and J in half, recursively computes the product four
products ofn/2 bits each (as described above), and then merges the solutions to
these subproducts inO(n) time using addition and multiplication by powers of two.
We can terminate the recursion when we get down to the multiplication of two 1-bit
numbers, which is trivial. This divide-and-conquer algorithm has a running time
that can be characterized by the following recurrence (forn≥ 2):

T(n) = 4T(n/2)+cn,

for some constantc > 0. We can then apply the master theorem to note that the
special functionnlogb a = nlog2 4 = n2 in this case; hence, we are in Case 1 andT(n)
is Θ(n2). Unfortunately, this is no better than the grade-school algorithm.

The master method gives us some insight into how we might improve this al-
gorithm. If we can reduce the number of recursive calls, then we will reduce the
complexity of the special function used in the master theorem, which is currently
the dominating factor in our running time. Fortunately, if we are a little more clever
in how we define subproblems to solve recursively, we can in fact reduce the num-
ber of recursive calls by one. In particular, consider the product

(Ih− Il) · (Jl −Jh) = IhJl − Il Jl − IhJh + Il Jh.

This is admittedly a strange product to consider, but it has an interesting property.
When expanded out, it contains two of the products we want to compute (namely,
IhJl andIl Jh) and two products that can be computed recursively (namely,IhJh and
Il Jl ). Thus, we can computeI ·J as follows:

I ·J = IhJh2n +[(Ih− Il) · (Jl −Jh)+ IhJh + Il Jl ]2n/2 + Il Jl .

This computation requires the recursive computation of three products ofn/2 bits
each, plusO(n) additional work. Thus, it results in a divide-and-conquer algorithm
with a running time characterized by the following recurrence equation (forn≥ 2):

T(n) = 3T(n/2)+cn,

for some constantc > 0.

Theorem 5.12: We can multiply twon-bit integers inO(n1.585) time.

Proof: We apply the master theorem with the special functionnlogb a = nlog2 3;
hence, we are in Case 1 andT(n) is Θ(nlog2 3), which is itselfO(n1.585).
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Using divide-and-conquer, we have designed an algorithm for integer multipli-
cation that is asymptotically faster than the straightforward quadratic-time method.
We can actually do even better than this, achieving a running time that is “almost”
O(nlogn), by using a more complex divide-and-conquer algorithm called thefast
Fourier transform, which we discuss in Section 10.4.

5.2.3 Matrix Multiplication

Suppose we are given twon×n matricesX andY, and we wish to compute their
productZ = XY, which is defined so that

Z[i, j] =
e−1

∑
k=0

X[i,k] ·Y[k, j],

which is an equation that immediately gives rise to a simpleO(n3) time algorithm.
Another way of viewing this product is in terms of submatrices. That is, let

us assume thatn is a power of two and let us partitionX, Y, andZ each into four
(n/2)× (n/2) matrices, so that we can rewriteZ = XY as(

I J
K L

)
=
(

A B
C D

)(
E F
G H

)
.

Thus,

I = AE+BG
J = AF +BH
K = CE+DG
L = CF +DH.

We can use this set of equations in a divide-and-conquer algorithm that com-
putesZ = XY by computingI , J, K, andL from the subarraysA throughG. By the
above equations, we can computeI , J, K, andL from the eight recursively com-
puted matrix products on(n/2)× (n/2) subarrays, plus four additions that can be
done inO(n2) time. Thus, the above set of equations give rise to a divide-and-
conquer algorithm whose running timeT(n) is characterized by the recurrence

T(n) = 8T(n/2)+bn2,

for some constantb> 0. Unfortunately, this equation implies thatT(n) is O(n3) by
the master theorem; hence, it is no better than the straightforward matrix multipli-
cation algorithm.

Interestingly, there is an algorithm known asStrassen’s Algorithm, that orga-
nizes arithmetic involving the subarraysA throughG so that we can computeI , J,
K, andL using just seven recursive matrix multiplications. It is somewhat myste-
rious how Strassen discovered these equations, but we can easily verify that they
work correctly.
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We begin Strassen’s Algorithm by defining seven submatrix products:

S1 = A(F−H)
S2 = (A+B)H
S3 = (C+D)E
S4 = D(G−E)
S5 = (A+D)(E+H)
S6 = (B−D)(G+H)
S7 = (A−C)(E+F).

Given these seven submatrix products, we can computeI as

I = S5 +S6 +S4−S2

= (A+D)(E+H)+ (B−D)(G+H)+D(G−E)− (A+B)H
= AE+DE+AH+DH +BG−DG+BH−DH +DG−DE−AH−BH
= AE+BG.

We can computeJ as

J = S1 +S2

= A(F−H)+ (A+B)H
= AF−AH+AH+BH
= AF +BH.

We can computeK as

K = S3 +S4

= (C+D)E+D(G−E)
= CE+DE+DG−DE
= CE+DG.

Finally, we can computeL as

L = S1−S7−S3+S5

= A(F−H)− (A−C)(E+F)− (C+D)E+(A+D)(E+H)
= AF−AH−AE+CE−AF +CF−CE−DE+AE+DE+AH+DH
= CF +DH.

Thus, we can computeZ = XY using seven recursive multiplications of matrices of
size(n/2)× (n/2). Thus, we can characterize the running timeT(n) as

T(n) = 7T(n/2)+bn2,

for some constantb > 0. Thus, by the master theorem, we have the following:

Theorem 5.13: We can multiply twon×n matrices inO(nlog7) time.

Thus, with a fair bit of additional complication, we can perform the multiplica-
tion for n×n matrices in timeO(n2.808), which iso(n3) time. As admittedly com-
plicated as Strassen’s matrix multiplication is, there are actually much more com-
plicated matrix multiplication algorithms, with running times as low asO(n2.376).
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5.3 Dynamic Programming

In this section, we discuss thedynamic programmingalgorithm-design technique.
This technique is similar to the divide-and-conquer technique, in that it can be
applied to a wide variety of different problems. Conceptually, the dynamic pro-
gramming technique is different from divide-and-conquer, however, because the
divide-and-conquer technique can be easily explained in a sentence or two, and can
be well illustrated with a single example. Dynamic programming takes a bit more
explaining and multiple examples before it can be fully appreciated.

The extra effort needed to fully appreciate dynamic programming is well worth
it, though. There are few algorithmic techniques that can take problems that seem
to require exponential time and produce polynomial-time algorithms to solve them.
Dynamic programming is one such technique. In addition, the algorithms that re-
sult from applications of the dynamic programming technique are usually quite
simple—often needing little more than a few lines of code to describe some nested
loops for filling in a table.

5.3.1 Matrix Chain-Product

Rather than starting out with an explanation of the general components of the dy-
namic programming technique, we start out instead by giving a classic, concrete
example. Suppose we are given a collection ofn two-dimensional matrices for
which we wish to compute the product

A = A0 ·A1 ·A2 · · ·An−1,

whereAi is a di × di+1 matrix, for i = 0,1,2, . . . ,n− 1. In the standard matrix
multiplication algorithm (which is the one we will use), to multiply ad×e-matrixB
times ane× f -matrixC, we compute the(i, j)th entry of the product as

e−1

∑
k=0

B[i,k] ·C[k, j].

This definition implies that matrix multiplication is associative, that is, it implies
that B · (C ·D) = (B ·C) ·D. Thus, we can parenthesize the expression forA any
way we wish and we will end up with the same answer. We will not necessar-
ily perform the same number of primitive (that is, scalar) multiplications in each
parenthesization, however, as is illustrated in the following example.

Example 5.14: Let B be a2×10-matrix, letC be a10×50-matrix, and letD be
a 50× 20-matrix. ComputingB · (C ·D) requires2 ·10·20+ 10·50·20 = 10400
multiplications, whereas computing(B·C) ·D requires2·10·50+2·50·20= 3000
multiplications.
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Thematrix chain-productproblem is to determine the parenthesization of the
expression defining the productA that minimizes the total number of scalar multi-
plications performed. Of course, one way to solve this problem is to simply enu-
merate all the possible ways of parenthesizing the expression forA and determine
the number of multiplications performed by each one. Unfortunately, the set of all
different parenthesizations of the expression forA is equal in number to the set of
all different binary trees that haven external nodes. This number is exponential in
n. Thus, this straightforward (“brute force”) algorithm runs in exponential time, for
there are an exponential number of ways to parenthesize an associative arithmetic
expression (the number is equal to thenth Catalan number, which isΩ(4n/n3/2)).

Defining Subproblems

We can improve the performance achieved by the brute force algorithm signifi-
cantly, however, by making a few observations about the nature of the matrix chain-
product problem. The first observation is that the problem can be split intosubprob-
lems. In this case, we can define a number of different subproblems, each of which
is to compute the best parenthesization for some subexpressionAi ·Ai+1 · · ·Aj . As
a concise notation, we useNi, j to denote the minimum number of multiplications
needed to compute this subexpression. Thus, the original matrix chain-product
problem can be characterized as that of computing the value ofN0,n−1. This obser-
vation is important, but we need one more in order to apply the dynamic program-
ming technique.

Characterizing Optimal Solutions

The other important observation we can make about the matrix chain-product prob-
lem is that it is possible to characterize an optimal solution to a particular subprob-
lem in terms of optimal solutions to its subproblems. We call this property the
subproblem optimalitycondition.

In the case of the matrix chain-product problem, we observe that, no matter how
we parenthesize a subexpression, there has to be some final matrix multiplication
that we perform. That is, a full parenthesization of a subexpressionAi ·Ai+1 · · ·Aj

has to be of the form(Ai · · ·Ak) · (Ak+1 · · ·Aj), for somek ∈ {i, i + 1, . . . , j − 1}.
Moreover, for whicheverk is the right one, the products(Ai · · ·Ak) and(Ak+1 · · ·Aj)
must also be solved optimally. If this were not so, then there would be a global
optimal that had one of these subproblems solved suboptimally. But this is impos-
sible, since we could then reduce the total number of multiplications by replacing
the current subproblem solution by an optimal solution for the subproblem. This
observation implies a way of explicitly defining the optimization problem forNi, j

in terms of other optimal subproblem solutions. Namely, we can computeNi, j by
considering each placek where we could put the final multiplication and taking the
minimum over all such choices.
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Designing a Dynamic Programming Algorithm

The above discussion implies that we can characterize the optimal subproblem so-
lution Ni, j as

Ni, j = min
i≤k< j

{Ni,k +Nk+1, j +didk+1dj+1},
where we note that

Ni,i = 0,

since no work is needed for a subexpression comprising a single matrix. That is,Ni, j

is the minimum, taken over all possible places to perform the final multiplication,
of the number of multiplications needed to compute each subexpression plus the
number of multiplications needed to perform the final matrix multiplication.

The equation forNi, j looks similar to the recurrence equations we derive for
divide-and-conquer algorithms, but this is only a superficial resemblance, for there
is an aspect of the equationNi, j that makes it difficult to use divide-and-conquer
to computeNi, j . In particular, there is asharing of subproblemsgoing on that
prevents us from dividing the problem into completely independent subproblems
(as we would need to do to apply the divide-and-conquer technique). We can,
nevertheless, use the equation forNi, j to derive an efficient algorithm by computing
Ni, j values in a bottom-up fashion, and storing intermediate solutions in a table of
Ni, j values. We can begin simply enough by assigningNi,i = 0 for i = 0,1, . . . ,n−1.
We can then apply the general equation forNi, j to computeNi,i+1 values, since
they depend only onNi,i andNi+1,i+1 values, which are available. Given theNi,i+1

values, we can then compute theNi,i+2 values, and so on. Therefore, we can build
Ni, j values up from previously computed values until we can finally compute the
value ofN0,n−1, which is the number that we are searching for. The details of this
dynamic programmingsolution are given in Algorithm 5.5.

Algorithm MatrixChain(d0, . . . ,dn):
Input: Sequenced0, . . . ,dn of integers
Output: For i, j = 0, . . . ,n− 1, the minimum number of multiplicationsNi, j

needed to compute the productAi ·Ai+1 · · ·Aj , whereAk is adk×dk+1 matrix

for i← 0 ton−1 do
Ni,i ← 0

for b← 1 ton−1 do
for i← 0 ton−b−1 do

j← i +b
Ni, j ←+∞
for k← i to j−1 do

Ni, j ←min{Ni, j , Ni,k +Nk+1, j +didk+1dj+1}.
Algorithm 5.5: Dynamic programming algorithm for the matrix chain-product
problem.
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Analyzing the Matrix Chain-Product Algorithm

Thus, we can computeN0,n−1 with an algorithm that consists primarily of three
nested for-loops. The outside loop is executedn times. The loop inside is exe-
cuted at mostn times. And the inner-most loop is also executed at mostn times.
Therefore, the total running time of this algorithm isO(n3).

Theorem 5.15: Given a chain-product ofn two-dimensional matrices, we can
compute a parenthesization of this chain that achieves the minimum number of
scalar multiplications inO(n3) time.

Proof: We have shown above how we can compute the optimalnumberof scalar
multiplications. But how do we recover the actual parenthesization?

The method for computing the parenthesization itself is is actually quite straight-
forward. We modify the algorithm for computingNi, j values so that any time we
find a new minimum value forNi, j , we store, withNi, j , the indexk that allowed us
to achieve this minimum.

In Figure 5.6, we illustrate the way the dynamic programming solution to the
matrix chain-product problem fills in the arrayN.

i

j

i,k

k+1,j

i,j

+ didk+1dj+ 1

N

Figure 5.6: Illustration of the way the matrix chain-product dynamic-programming
algorithm fills in the arrayN.

Now that we have worked through a complete example of the use of the dy-
namic programming method, let us discuss the general aspects of the dynamic pro-
gramming technique as it can be applied to other problems.
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5.3.2 The General Technique

The dynamic programming technique is used primarily foroptimizationproblems,
where we wish to find the “best” way of doing something. Often the number of
different ways of doing that “something” is exponential, so a brute-force search
for the best is computationally infeasible for all but the smallest problem sizes.
We can apply the dynamic programming technique in such situations, however, if
the problem has a certain amount of structure that we can exploit. This structure
involves the following three components:

Simple Subproblems: There has to be some way of breaking the global optimiza-
tion problem into subproblems, each having a similar structure to the original
problem. Moreover, there should be a simple way of defining subproblems
with just a few indices, likei, j, k, and so on.

Subproblem Optimality: An optimal solution to the global problem must be a
composition of optimal subproblem solutions, using a relatively simple com-
bining operation. We should not be able to find a globally optimal solution
that contains suboptimal subproblems.

Subproblem Overlap: Optimal solutions to unrelated subproblems can contain
subproblems in common. Indeed, such overlap improves the efficiency of a
dynamic programming algorithm that stores solutions to subproblems.

Now that we have given the general components of a dynamic programming
algorithm, we next give another example of its use.

5.3.3 The 0-1 Knapsack Problem

Suppose a hiker is about to go on a trek through a rain forest carrying a single
knapsack. Suppose further that she knows the maximum total weightW that she
can carry, and she has a setSof n different useful items that she can potentially take
with her, such as a folding chair, a tent, and a copy of this book. Let us assume that
each itemi has an integer weightwi and a benefit valuebi , which is the utility value
that our hiker assigns to itemi. Her problem, of course, is to optimize the total
value of the setT of items that she takes with her, without going over the weight
limit W. That is, she has the following objective:

maximize ∑
i∈T

bi subject to ∑
i∈T

wi ≤W.

Her problem is an instance of the0-1 knapsack problem. This problem is called
a “0-1” problem, because each item must be entirely accepted or rejected. We
consider the fractional version of this problem in Section 5.1.1, and we study how
knapsack problems arise in the context of Internet auctions in Exercise R-5.12.
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A First Attempt at Characterizing Subproblems

We can easily solve the 0-1 knapsack problem inΘ(2n) time, of course, by enu-
merating all subsets ofS and selecting the one that has highest total benefit from
among all those with total weight not exceedingW. This would be an inefficient
algorithm, however. Fortunately, we can derive a dynamic programming algorithm
for the 0-1 knapsack problem that runs much faster than this in most cases.

As with many dynamic programming problems, one of the hardest parts of
designing such an algorithm for the 0-1 knapsack problem is to find a nice char-
acterization for subproblems (so that we satisfy the three properties of a dynamic
programming algorithm). To simplify the discussion, number the items inS as
1,2, . . . ,n and define, for eachk∈ {1,2, . . . ,n}, the subset

Sk = {items inS labeled 1,2, . . . ,k}.
One possibility is for us to define subproblems by using a parameterk so that sub-
problemk is the best way to fill the knapsack using only items from the setSk. This
is a valid subproblem definition, but it is not at all clear how to define an optimal
solution for indexk in terms of optimal subproblem solutions. Our hope would be
that we would be able to derive an equation that takes the best solution using items
from Sk−1 and considers how to add the itemk to that. Unfortunately, if we stick
with this definition for subproblems, then this approach is fatally flawed. For, as we
show in Figure 5.7, if we use this characterization for subproblems, then an optimal
solution to the global problem may actually contain a suboptimal subproblem.

(3,2) (5,4) (8,5) (10,9)

(8,5)(5,4) (4,3)(a)

(b)

(3,2)

20

Figure 5.7: An example showing that our first approach to defining a knapsack
subproblem does not work. The setS consists of five items denoted by the the
(weight, benefit) pairs(3,2), (5,4), (8,5), (4,3), and(10,9). The maximum total
weight isW = 20: (a) best solution with the first four items; (b) best solution with
the first five items. We shade each item in proportion to its benefit.
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A Better Subproblem Characterization

One of the reasons that defining subproblems only in terms of an indexk is fa-
tally flawed is that there is not enough information represented in a subproblem
to provide much help for solving the global optimization problem. We can correct
this difficulty, however, by adding a second parameterw. Let us therefore formulate
each subproblem as that of computingB[k,w], which is defined as the maximum to-
tal value of a subset ofSk from among all those subsets having total weightexactly
w. We haveB[0,w] = 0 for eachw≤W, and we derive the following relationship
for the general case

B[k,w] =
{

B[k−1,w] if wk > w
max{B[k−1,w], B[k−1,w−wk]+bk} else.

That is, the best subset ofSk that has total weightw is either the best subset ofSk−1

that has total weightw or the best subset ofSk−1 that has total weightw−wk plus
the itemk. Since the best subset ofSk that has total weightw must either contain
item k or not, one of these two choices must be the right choice. Thus, we have
a subproblem definition that is simple (it involves just two parameters,k andw)
and satisfies the subproblem optimization condition. Moreover, it has subproblem
overlap, for the optimal way of summing exactlyw to weight may be used by many
future subproblems.

In deriving an algorithm from this definition, we can make one additional ob-
servation, namely, that the definition ofB[k,w] is built fromB[k−1,w] and possibly
B[k−1,w−wk]. Thus, we can implement this algorithm using only a single arrayB,
which we update in each of a series of iterations indexed by a parameterk so that at
the end of each iterationB[w] = B[k,w]. This gives us Algorithm 5.8 (01Knapsack).

Algorithm 01Knapsack(S,W):
Input: SetS of n items, such that itemi has positive benefitbi and positive

integer weightwi; positive integer maximum total weightW
Output: For w = 0, . . . ,W, maximum benefitB[w] of a subset ofS with total

weightw

for w← 0 toW do
B[w]← 0

for k← 1 to n do
for w←W downtowk do

if B[w−wk]+bk > B[w] then
B[w]← B[w−wk]+bk

Algorithm 5.8: Dynamic programming algorithm for solving the 0-1 knapsack
problem.
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Analyzing the 0-1 Knapsack Dynamic Programming Algorithm

The running time of the01Knapsack algorithm is dominated by the two nested
for-loops, where the outer one iteratesn times and the inner one iterates at mostW
times. After it completes we can find the optimal value by locating the valueB[w]
that is greatest among allw≤W. Thus, we have the following:

Theorem 5.16: Given an integerW and a setS of n items, each of which has a
positive benefit and a positive integer weight, we can find the highest benefit subset
of Swith total weight at mostW in O(nW) time.

Proof: We have given Algorithm 5.8 (01Knapsack) for constructing thevalueof
the maximum-benefit subset ofSthat has total weight at mostW using an arrayB of
benefit values. We can easily convert our algorithm into one that outputs the items
in a best subset, however. We leave the details of this conversion as an exercise.

Pseudo-Polynomial-Time Algorithms

In addition to being another useful application of the dynamic programming tech-
nique, Theorem 5.16 states something very interesting. Namely, it states that the
running time of our algorithm depends on a parameterW that, strictly speaking, is
not proportional to the size of the input (then items, together with their weights and
benefits, plus thenumberW). Assuming thatW is encoded in some standard way
(such as a binary number), then it takes onlyO(logW) bits to encodeW. Moreover,
if W is very large (sayW = 2n), then this dynamic programming algorithm would
actually be asymptotically slower than the brute force method. Thus, technically
speaking, this algorithm is not a polynomial-time algorithm, for its running time is
not actually a function of thesizeof the input.

It is common to refer to an algorithm such as our knapsack dynamic program-
ming algorithm as being apseudo-polynomial timealgorithm, for its running time
depends on the magnitude of a number given in the input, not its encoding size. In
practice, such algorithms should run much faster than any brute-force algorithm,
but it is not correct to say they are true polynomial-time algorithms. In fact, there is
a theory known asNP-completeness, which is discussed in Chapter 13, that states
that it is very unlikely that anyone will ever find a true polynomial-time algorithm
for the 0-1 knapsack problem.

Elsewhere in this book, we give additional applications of the dynamic pro-
gramming technique for computing reachability in a directed graph (Section 6.4.2)
and for testing the similarity of two strings (Section 9.4).
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5.4 Exercises

Reinforcement

R-5.1 Let S= {a,b,c,d,e, f ,g} be a collection of objects with benefit-weight values
as follows:a:(12,4), b:(10,6), c:(8,5), d:(11,7), e:(14,3), f :(7,1), g:(9,6).
What is an optimal solution to the fractional knapsack problem forS assuming
we have a sack that can hold objects with total weight 18? Show your work.

R-5.2 Describe how to implement theTaskSchedule method to run inO(nlogn) time.

R-5.3 Suppose we are given a set of tasks specified by pairs of the start times and finish
times asT = {(1,2),(1,3),(1,4),(2,5),(3,7),(4,9),(5,6),(6,8),(7,9)}. Solve
the task scheduling problem for this set of tasks.

R-5.4 Characterize each of the following recurrence equations using the master method
(assuming thatT(n) = c for n < d, for constantsc > 0 andd≥ 1).

a. T(n) = 2T(n/2)+ logn
b. T(n) = 8T(n/2)+n2

c. T(n) = 16T(n/2)+ (nlogn)4

d. T(n) = 7T(n/3)+n
e. T(n) = 9T(n/3)+n3logn

R-5.5 Use the divide-and-conqueralgorithm, from Section 5.2.2, to compute 10110011·
10111010 in binary. Show your work.

R-5.6 Use Strassen’s matrix multiplication algorithm to multiply the matrices

X =
(

3 2
4 8

)
and Y =

(
1 5
9 6

)
.

R-5.7 A complex numbera+bi, wherei =
√−1, can be represented by the pair(a,b).

Describe a method performing only three real-number multiplications to compute
the pair(e, f ) representing the product ofa+bi andc+di.

R-5.8 Boolean matrices are matrices such that each entry is 0 or 1, and matrix multipli-
cation is performed by using AND for· and OR for+. Suppose we are given two
n× n random Boolean matricesA andB, so that the probability that any entry
in either is 1, is 1/k. Show that ifk is a constant, then there is an algorithm for
multiplying A andB whose expected running time isO(n2). What if k is n?

R-5.9 What is the best way to multiply a chain of matrices with dimensions that are
10×5, 5×2, 2×20, 20×12, 12×4, and 4×60? Show your work.

R-5.10 Design an efficient algorithm for the matrix chain multiplication problem that
outputs a fully parenthesized expression for how to multiply the matrices in the
chain using the minimum number of operations.

R-5.11 Solve Exercise R-5.1 for the 0-1 knapsack problem.

R-5.12 Sally is hosting an Internet auction to selln widgets. She receivesm bids, each
of the form “I wantki widgets fordi dollars,” for i = 1,2, . . . ,m. Characterize
her optimization problem as a knapsack problem. Under what conditions is this
a 0-1 versus fractional problem?
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Creativity

C-5.1 A native Australian named Anatjari wishes to cross a desert carrying only a sin-
gle water bottle. He has a map that marks all the watering holes along the way.
Assuming he can walkk miles on one bottle of water, design an efficient algo-
rithm for determining where Anatjari should refill his bottle in order to make as
few stops as possible. Argue why your algorithm is correct.

C-5.2 Consider the singlemachine schedulingproblem where we are given a setT
of tasks specified by their start times and finish times, as in the task scheduling
problem, except now we have only one machine and we wish to maximize the
number of tasks that this single machine performs. Design a greedy algorithm
for this single machine scheduling problem and show that it is correct. What is
the running time of this algorithm?

C-5.3 Describe an efficient greedy algorithm for making change for a specified value
using a minimum number of coins, assuming there are four denominations of
coins (called quarters, dimes, nickels, and pennies), with values 25, 10, 5, and 1,
respectively. Argue why your algorithm is correct.

C-5.4 Give an example set of denominations of coins so that a greedy change making
algorithm will not use the minimum number of coins.

C-5.5 In theart gallery guardingproblem we are given a lineL that represents a long
hallway in an art gallery. We are also given a setX = {x0,x1, . . . ,xn−1} of real
numbers that specify the positions of paintings in this hallway. Suppose that a
single guard can protect all the paintings within distance at most 1 of his or her
position (on both sides). Design an algorithm for finding a placement of guards
that uses the minimum number of guards to guard all the paintings with positions
in X.

C-5.6 Design a divide-and-conquer algorithm for finding the minimum and the maxi-
mum element ofn numbers using no more than 3n/2 comparisons.

C-5.7 Given a setP of n teams in some sport, around-robin tournamentis a collection
of games in which each team plays each other team exactly once. Design an
efficient algorithm for constructing a round-robin tournament assumingn is a
power of 2.

C-5.8 Let a set of intervalsS= {[a0,b0], [a1,b1], . . . , [an−1,bn−1]} of the interval[0,1]
be given, with 0≤ ai < bi ≤ 1, for i = 0,1, . . . ,n− 1. Suppose further that we
assign a heighthi to each interval[ai ,bi ] in S. Theupper envelopeof S is defined
to be a list of pairs[(x0,c0),(x1,c1),(x2,c2), . . . ,(xm,cm),(xm+1,0)], with x0 =
0 andxm+1 = 1, and ordered byxi values, such that, for each subintervals =
[xi ,xi+1] the height of the highest interval inScontainings is ci , for i = 0,1, . . . ,m.
Design anO(nlogn)-time algorithm for computing the upper envelope ofS.

C-5.9 How can we modify the dynamic programming algorithm from simply comput-
ing the best benefit value for the 0-1 knapsack problem to computing the assign-
ment that gives this benefit?

C-5.10 Suppose we are given a collectionA = {a1,a2, . . . ,an} of n positive integers that
add up toN. Design anO(nN)-time algorithm for determining whether there is
a subsetB⊂ A, such that∑ai∈Bai = ∑ai∈A−Bai .
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C-5.11 Let P be a convex polygon (Section 12.5.1). Atriangulation of P is an addition
of diagonals connecting the vertices ofP so that each interior face is a triangle.
Theweightof a triangulation is the sum of the lengths of the diagonals. Assuming
that we can compute lengths and add and compare them in constant time, give an
efficient algorithm for computing a minimum-weight triangulation ofP.

C-5.12 A grammar G is a way of generating strings of “terminal” characters from a
nonterminal symbolS, by applying simple substitution rules, calledproductions.
If B→ β is a production, then we can convert a string of the formαBγ into the
stringαβγ. A grammar is inChomsky normal formif every production is of the
form “A→ BC” or “ A→ a,” whereA, B, andC are nonterminal characters anda
is a terminal character. Design anO(n3)-time dynamic programming algorithm
for determining if stringx= x0x1 · · ·xn−1 can be generated from start symbolS.

C-5.13 Suppose we are given ann-node rooted treeT, such that each nodev in T is given
a weightw(v). An independent setof T is a subsetSof the nodes ofT such that
no node inS is a child or parent of any other node inS. Design an efficient
dynamic programming algorithm to find the maximum-weight independent set
of the nodes inT, where the weight of a set of nodes is simply the sum of the
weights of the nodes in that set. What is the running time of your algorithm?

Projects

P-5.1 Design and implement a big integer package supporting the four basic arithmetic
operations.

P-5.2 Implement a system for efficiently solving knapsack problems. Your system
should work for either fractional or 0-1 knapsack problems. Perform an experi-
mental analysis to test the efficiency of your system.

Chapter Notes

The term “greedy algorithm” was coined by Edmonds [64] in 1971, although the concept
existed before then. For more information about the greedy method and the theory that
supports it, which is known as matroid theory, please see the book by Papadimitriou and
Steiglitz [164].

The divide-and-conquer technique is a part of the folklore of data structure and al-
gorithm design. The master method for solving divide-and-conquer recurrences traces its
origins to a paper by Bentley, Haken, and Saxe [30]. The divide-and-conquer algorithm
for multiplying two large integers inO(n1.585) time is generally attributed to the Russians
Karatsuba and Ofman [111]. The asymptotically fastest known algorithm for multiplying
two n-digit numbers is an FFT-based algorithm by Sch¨onhage and Strassen [181] that runs
in O(nlognloglogn) time.

Dynamic programming was developed in the operations research community and for-
malized by Bellman [26]. The matrix chain-product solution we described is due to God-
bole [78]. The asymptotically fastest method is due to Hu and Shing [101, 102]. The dy-
namic programming algorithm for the knapsack problem is found in the book by Hu [100].
Hirchsberg [95] shows how to solve the longest common substring problem in the same
time given above, but with linear space (see also [56]).
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We therefore begin this chapter by reviewing muòh of this terminology andp
senting the graph ADT, including some elementary properties of graphs Havi
given the graph ADT, we then present, in Section 6 2, three main data structuf
for representing graphs As with trees, traversals are important computations fo
graphs, and we discuss such computations in Section 6 3 We discuss direc
graphs in Section 6.4; where relationships have a given direction, and connecthì
problems become much more interesting. Finally, in Section 6.5, we give a c
study of depth-first search in Java This case study involves the use of two so
ware engineenng design patternsthe decorator pattern and the template metht
patternas well as a discussion of how depth-first search can be used for garb
collection.

Greek mythology tells of an elaborate labyrinth that was built to hou
monstrous part bull, part man Minotaur This labynnth was so complex that n
beast nor human could escape it. No human, that is, until the Greek hero, TIi
with the help of the king's daughter, Ariadne, decided to implement one
algorithms discussed in this chapter. Theseus fastened a ball of thread to 11w
of the labyrinth and unwound it as he traversed the twisting passages in sé
of the monster. Theseus obviously knew about good algorithm design, for,
finding añd defeating the beast, Theseus eaÑily'follòwed the string back out
labyrinth to the loving arms of Ariadne.

Graphs have applications in a host of different domains, including mapp
(in geographic information systems), transportation (in road and flight networ
electncal engineenng (in circuits), and computer networking (in the connectiö
of the Internet) Because applications for graphs are so widespread and divers
people have developed a great deal of terminology to describe different componé
and properties of graphs Fortunately, since most graph applications are relativé
recent developments, this terminology is fairly intuitive.

Being able to determine which objects, such as labyrinth passages, are
nected to which other objects may not always be as vitally important as it w
this story, but it is nevertheless fundamental Connectivity information is prese ii

for example, in city maps, where the objects are roads, and also in the routinjft
bIes for the Internet, where the objécts are computers. Connectivity informa.
is also present in the parent-child relationships defined by a binary tree, where
objects are tree nodes Indeed, connectivity information can be defined by all n

of relationships that exist between pairs of objects The topic we study in ,

chaptergraphsis therefore focused on representatioñs and algorithms for4
ing efficiently with such relationships That is, a graph is a set of objects, c
vertices, together with a collection of pairwise connections between them By
way, this notion of a "graph" should not be confused with bar charts and func
plots, as these kinds of "graphs" are unrelated to the topic of this chapter.
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Viewed abstractly, agraph G is simply a set V of vértices and a collection E of pairs
of vèrtices from V, called edges. Thus, a graph is a way of representing connections
or relationships between pairs of objects from sOme set V. Incidentally, some books
use different terminology for graphs and refer to what we call vertices as nodes and
what we call edges as arcs. We use the terms "vertices" and "edges?'

Edges in a graph are either directed r undirected. An edge (u, y) is said to
be directed from u to y if the pair (u, y) is ordered, with u preceding y. An edge
(u, y) is said to be undirected if the pair (u, y) is not ordered. Undirected edges are
sometimes denoted with set notation., as {u, v}, but for simplicity we use the pair
notation (u, y), noting that in the undirected case (u, y) is the same as (y, u). Graphs
are typically visualized by drawing the vertices as ovals or rectangles and the edges
as segments or curves connecting pairs of ovals and rectangles

Example 6.1: We can visualize collaborations among the researchers of a cer-
tain discipline by constructing a graph whose vertices are associated with the re-
searchers themselves, and whose dges connect pairs of vertices associated with
researchers who have coauthored a paper or book.. (See Figure 6.1.) Such edges
are undirected because coauthorship is a symmetric relation; that is, ifA has coau-
thored something with B, then B necessarily has coauthored something with A.

Snoeyink Tollis

Goodrich. reparatà

Di Battista

Figure 6.1: Graph of coauthorships among some authors.

Example 6.2: We can associate ith an object-Oriented progräma graph whose
vertices represent the clâsses defined in the prograhi, and whose edges indicate
inheritance between classes There is an edge from a vertex y to a vertex u if the

class for y extends the class for u Such edges are directed because the inheritance

relation only goes in one -direction (that i it is asymmetricjH

The Graph Abstract Data Type 289
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If all the edges in a graph are undirected, then ive say the graph is an lindi

graph. Likewise, a directed graph, also called. a digraph, is a graph whose

are all,directed. A graph that has both directed and undirected edges is often

a mixed graph. Note that an undirected or mixed graph êan be converted
directed graph by replacing every undirected edge (u, y) by the pair of dir
edges (u, y) and (y, u). It is often useful, however, to keep :undirected and

graphs represented as they ar, for such graphs have several applications.

Example 6.3: A city map can be modeled by a graph whose vertices are ini.'.
tions or dead ends, and whose edges are stretches of streets without intersec ¡

This graph has both undirected edges, which correspond to stretches of twe
strèets, and directed edges, which correspond to stretches of one-way streets. ,

a graph modeling â city map is a mixed graph.

Example 6.4: Physical examples of graphs are present in the electrical wirin...

plumbing networks of a building. Such networks can be modeled as graphs, W1

each connector, fixture, or outlet is viewed as a vertex, and each unintemj.
stretch of wire or pipe is viewed as an edge. Such graphs are actually conipo

of much larger graphs, namely the local 'power and water distribution net
Depending on the specific aspects of these graphs that we are interested in, w

consider their edges as undireèted .or directed, for, in principle, water can fo
pipe and current can flow in a wire in either direction.

The two vertices joined by an edge are òalled the end vertices of the edge

end vertices of an edge are also known as the endpoints of that edge. If an edgt.
directed, its first endpoint is its origin and the other is the destination of the ed

Two vertices are said to be adjacent if they are endpoints of the same edg.:
edge is said to be incident on a vertex if the vertex is one of the edge's endpo ti

The outgoing edges of a vertex are the directed edges whose origin is that ve :
The incoming edges of a vertex are the directed edges whose destination is i!'

vertex. The degree of a vertex t', denoted deg(v), is the number of incident cxl:
of y. The in-degree and out-degree of a. vertex y are the number of the incó tu

and outgoing edges of y, and are denoted indeg(v) and outdeg(v), respectively.

Example 6.5: We can study air transportation by constructing a graph G, Th

a flight network, whose vertices are associated with airports, and whose '

are associated with flights (See Figure 62) In graph G, the edges are threw

because a given flight has a specific travel direction (from the origin airport tois

destination airport) The endpoints of an edge e in G correspond respectively tÇb
origin and destination for the flight corresponding to e. Two airports are adja:
in G if there is a flight that flies between them, and an edge e is incident uji

vertex y in G if the flight for e flies to or from the airport for y The outgoing e
of a vertex y correspond to the out-bound flights from v's airport, and the inco
edges correspond to the in-bound flights to y 's airport Finally, the in-degree
vertex y of G correspónds to the number of in-bound flights to v's airport, añ

out-degree of a vertex y in G corresponds to the number of out-bound flights.
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Figure 6.2: Example of a directed graph representing a flight network. The end-
points of edge UA 120 are LAX and ORD; hence, LAX and ORD are adjacent.
The in-degree of DFW is 3, and the out-degree of DFW is 2..

The definition df a graph groups edges in a collection, not a set, thus allowing
for two undirected edges to have the same end vertices, and for two directed edges
to have the same origin and destination. Such-edges are called parallel edges or
multiple edges. Parallel edges may exist in a flight network (Example 6.5), in

which case multiple edges between the same pair of vertices could indicate different
flights, operating On the same route at different times of the day. Another special
type of edge is one that connects a vertex to itself. In this case, we say that an edge
(undirected or directed) is a self-loop if its two endpoints coincide. A self-loop
may occur in a graph associated with a city map (Example 6 3), where it would

¡ correspond to a "circle" (a curving street that returns to its starting point).
With few exceptions,' like those mentioned above, graphs do not have paraflel

edges or self-loojs Such graphs are said to be simple Thus, we can usually say
that the edges of a siniplé graph are a set of vertex pairs (and not just a collection).
Throughout this chapter, we shall assume that a graph is simple unless otherwise
specified This assumption simphfies the presentation of data structures and al-
gorithms for graphs. Extending the results of this chapter to general grphs, with.
self-loops and/or parallel edges, is straightforward but tedious.

In the theorems that.follow, we explore a few important properties of degrees
and the number of edges in a graph. These propertiés rèlate the number of vertices
and edges to each. other and tO the degrees of the vertices in a graph.

Theorem 6.6: If G is a graph with ni edges, then

deg(v)=2m.
vEG

Proof An edge (u, y) is counted twice in the above summation, once by its

endpoint u and once by its endpoint y Thus, the total contribution of the edges to

the degrees of the vertices is twice the number of edges
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Theùrem 6.7: lfG is à directed graph with m edges,Jhen

r indeg(v) = . outdeg(v) =n.
vEG vEG

Proof In a directed graph; an edge (u, y) contributes one unit to the out-deg
of its origin u and one unit to the in-degree of its destination y. Thus, the to
contribution of the edges to the out-degrees of the vertices is equal to the num

of edges, and similarly for the in-degrees.

Theorem 6.8: Let G be a simple graph with n vertices and m edges. If G
undirected, then m < n(n - 1)/2, and ifG is directed, then m < n(n_1).

Proof: Suppose that G is undirected Since no two edges: can have the saij
endpoints and there are no self-loops, the maximum degree of a vertex in G is n

in this case. Thus, by Theorem 6.6, 2m n(n - 1). Now suppose that G is direct
Since no two edges can have the same origin and destination, sd there -arejj
self-loops, the maximum in-degree of a vertex in G is n -- i in this case. Thus, b
Theorem67,ni <n(n 1)

Put another way, Theorem 6 8 states that a simple graph with n vertices fi
0(n2) edges. .

.

A path in a graph is a sequence. of alternating vertices and edg5s that starts
a vertex and ends at a vertex, such that each edge is incident to. its predecessor ali
successor vertex A cycle is a path with the same start and end vertices We s
that a path. is simple. if each vertex in .the path is distinct, and we say that a cyç
is simple if each vertex in the cycle is distinct, except for the first and last ones
directed path is a path such that all the edges are direáted and are traversed aloe
their direction A directed cycle is defined similarly

Example 6 9 Given a graph G representing a city map (see Example 63), web

model a couple driving from their home w dinner at a recommended restauran?
traversing a path though G. If they know 'the way, and don 't accidentally go throdg

the same intersection twice, then they traverse a simple path in G. Likewise,:
can model the entire trip the couple takes, from their home to the restaurant 4
back, as a cycle. If they go home from the restaurant ïn a compieèly different %

than how they went, not even going through the same intersection twice, then the

entire round trip is a simple cyclè. Finally, ï! they travel along one-way streets,
their entire trip, then we can modêl theirnight out as a directed cytle.

A subgraph of' a graph G is a graph H whose vertices and edges are subseii
the vertices and edges of G, respectively. A spanning subgraph of G isa subj
of G that contains all the vertices of the graph G. A graph is connected
any two vertices, there is a path between them. If a graph G is not connected,
maximal connected subgraphs are called the connected components of G Afore
is a graph without cycles A tree is a connected forest, that is, a connected wa
withòut cycles.
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As an abstract data type, a graph is a positional container of elements that are stored
at the graph's vertices and edges. Namely, the positions in a graph are its vertices
and edges. Hence, we can store elements in a graph at either its edges or its vertices,
(or both). In terms of an object-oriented implementation, this choice implies' th'at we
can define vertex and edge ADTs that extend the position ADT. Recall from Sec-
tion 2.2.2 that a position has an elementO method, which returns the element, that is
stored at this position. We can also use specialized iterators for 'ertices and edges,
which allow Us to iteratively enumerate a collection of vertices or edges, respec-
tively. Since, a .graph is a positional container, the graph abstract data type supports
the methods sizeO, isEmpty, elementsO, positions, replaceElement(p,o), and
swapElements(p, q)., where p and q denote positions, and o denotes 'an object (that
is, an element). , ' , ,

Graphs are .á much richer abstract data type than those we have disçusse'd in
previous chapters. Their richness derives mostly from the two kinds of positions
that help defin a graph: vertices and edges. So as to present the' rrethods for the

The Graph Abstract Data Type 293

Note that this definition of a tree is somewhat different from the one given in
Section 2.1 Namely, in the context of graphs, a tree has no root. Whenever there is
ambiguity, the trees of Section 2.3 should be called rooted trees, while the trees of
this chapter should be called free frees. The connected components of a forest are
(free) trees. A spanning free of a graph is a spanning subgraph that is a (free) tree.

Example 6.10: Perhaps the most talked about graph today is the Internet, which
can be viewed as a graph whose vertices, are computers and whose (undirected)
edges are communication connections between pairs of computrs on the Inter-
net. The computers and the connections between them in a single domain, like
wiley.com., form a subgraph of the Internet. If this subgraph is connected, then two
users on computers .in this domain can send e-mail to one another without having
their information packets ever leave their domain Suppose the edges of this sub-
graph form a spanning tree. This implies that, even if a single connection goes
down (for example, because someone pulls a communication cable out of the back
of a computer in this domain), then this subgraph will no longer be connected.

There are a number of simple properties of trees, forests, and connected graphs.

Theorem 6.11: Let G be an undirected graph with n vertices andin edges. Then
we have the following:

If G is connected, then in n -
IfGisatree,thenm=n-1.
lfG is a forest, then in< n - 1.

We leave the justification of this theorem as an exercise (C-6. 1).
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graph ADT in as organized a way as possible, we divide the graph meth
three main categories: general methods, methods; dealing with directed edg
methods for updating and modifying graphs. In addition, in order to simp
presentation, we denote a vertex position with y, an edge position with e,

object (element) stored at a vertex or edge with o. Also, we do not thscus
conditions that may ocçur.

General Methods

We begin by describing the fundamental methods for a graph, which igt
direction of the edges. Each of the following methods returns global info

about a graph G:

numVertices() Return the number of vertices in G

numEdgesO: Return the number of edges in G.

verticesü: Return an iterator of the vertices of. G.

edgesO: Return an iterator of the edges of G..

Unlike a tree (which Ms a root), a graph has no special vertex. Hence, we
method that returns an arbitrary vertex of the graph:

aVertexo: Return a vertex of G.

The following accessor methods take vertex and edge positions as argurnen

degree(v): Return the degree of y.

adjacentVertices(v): Return an iterator of the vertices adjacent to y.

¡ncidentEdges(v): Return an itertor of theedges incident upon V.

endVertices(e): Return an array of size 2 storing the end verticeñ

opposite(v, e): Return the. endpoint Qf edge e distinct from y.

areAdjacent(i w): Return whether vertices y and W are adjacent.

Methods Dealing with Directed Edges

When we allow for some or all the edges in a graph to be directed, then th'

several additional methods we should include in the graph ADT We begi
sorne methods for dealing specifically with directed edges.

directedEdgesÇ): Return an iterator.of all directed edges.

undirectedEdgesO: Return an iteratör of all undirected edges.

destinatiön(e): Return the destination of the directed edge e.

origin(e): Return the origin of the directed edge e.

¡sDirectecj(e): Return true if and only if the edge e is directed.

http://www.cvisiontech.com


The Graph Abstract Data Type 295'

In addition, the existence of directed edges require that we have ways of relating
vertices and edges in terms of directions:

inDegree(i): Return the in-degree of v.

outDegree(v): Return the out-degree of y.

inlncidentEdges(v): Return an iterator of all the incoming edges to y.

outlncidentEdges(v): Return ah iterator of all theoutgoing edges from y.

i n-AdjacentVertices(v): Return an iterator of 'all the vertices adjacent to y along
incoming edges to y.

outAdjacerttVertices(v) Return an iterator of all the vertices adjacent to y along
oUtgoing edges from y.

Methods for Updating Graphs

We can also allow for update methods that add or delete edges and vertices:

insertEdge(v, w, o): Insert and return an undirected edge between vertices y
and w, storing the object o at this position.

i nse riD ¡ rected Edge(v,w, ö) Insert and return a directed edge from, vertex y to ver-
tex w, storing the object o at this position.

InsertVertex(o): Insert and return a new (isolated) vertex storing the object
o at this psition.

removeVertex(v): Remove vertex y and all its incident edges.

removeEdge(e): Remove edge e.

makeUndirected(e): Make edge e undirected.

reverseDirection(e): Reverse the direction of directed edge e.

setDi rection From (e, y): Make edge e directed away from, vertex y.

setDirecttonTo(e, y) Make edge e directed into vertex y

There are admittedly a lot of methods in the graph ADT, The number of meth-.

ods is to a certain extent unavoidable, however, since graphs are such ach struc-
tures Graphs support two kinds of positionsvertices and edgesand even then
allow for edges to be either directed or undirected We need to have differeilt meth-

ods for accessing and updating all these different positions, as well as dealing with
the. relationships that can exist between these different positions.
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62 Data Structures for Graphs

There' are several ways to realize the graph ADT with a concrete data structui
this sectiòn, we discuss three popular approaches, usually referred to as the e

list structure, the adjacency list Ñtructure, and the adjacency matrix. In all the t
representations, we use a container (a list or vector, for example) to store the.
tices of the graph. Regarding the edges, there js a fundamental di'iference betw
the first two structures and the latter. The edge list sÑructure and the adjacency

structure only store the edges actually present in the graph, while the adj aces
matrix stores a placéholder for every pair of vertices (whether there is an edge

tween them or nOt). As we will explain in this section, this difference implies
for a graph. G with n vertices and m edges, an edge list or adjacency list represe

lion uses O(n + m) space, whereas an adjacency matnx representation uses O

space.

ìt

6.2.1 The Edge List Structure

The edge list structure is possibly the simplest, though not the most efficient
resentation of a graph G. Inthis representation, a vertex y of G storing an ele
o is explicitly represented by a vertex object. All such vertex objects are stor
a container V, which would typically be a list, vector, or dictionary If we repre
V as a vector, for example, then we would naturally think of the vertices as 1e

numbered If we represent V as a dictionary, on the other hand, then we vo
naturally thrnk of each vertex as being identified by a key that we associate wi
Note that the elements of container V are the vertex positions of graph G

Vertex Objects

The vertex object for a vertex. y storing element o has instance vauiables. for

A reference to o

. Counters for the number of incident undirected edges, incomin
edges, and outgoing directed edges

/
A reference to the positioti (or locator) of the vertex-object in container

The distinguishing feature of the edge list structure is not how it represents ve
however, but the way in which it represents edges In this structure an edge e

stonng an element o is explicitly represented by an edge object The edge o?l
are stored in a container E, which would typically be a list, vector, or dic
(possibly supporting the locator pattern).
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Edge Objects

The edge object for an edge e storing element o has instance variables' for
Areference too
A Boplean indicator of whether e is directed or undirected
References to the vertex objects in V associated with the endpoint vertices ofe (if the edge e is undirected) or to the ongrn and destination vertices of e (ifthe edge e is directed)
A reference to the position (or locator) of the edge-object in container E

We illustrate the edge list structure for a directed graph GIn Figure 6.3.

NW35 DL247 AA49 DL335 AA1387 AA523 AA411 UAI2O AA9O3 UA877 PW45

Figure 6.3: (a) A directed, graph G; (b) schematic representation of the edge listSstructure for G. To. avoid clutter, we do not show the following fields of the vertexobjects the three counters for the incident edges and the reference to the position(pr locator) of the vertex-object in container V. Also, we do not show the followingfields of the edge objects: the. Boolean direction indicator,änd the réference to theposition (or locator) of the edge-object in cöntainer E. FinElly, we visualize theelements stored in the vertex and edge objects, with the element names, instead ofwith actual references to the element objects.:' .
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The Edge List

The reason this structure is called the edge list structure is that the simpl

most common implementation of the container E is with a list Even so, in oi

be able to conveniently search for specific objects associated with edges, w

wish to implement E with a dictionary, in spite of our calling this the "edg

We may also wish to implement the container V as a dictionary for the same re

Still, in keeping with tradition, we call this structure the edge list structure

The main feature of the edge list structure is that it provides direct access

edges to the vertices they are incident upon This allows us to define simple

nthms for implementing the different edge-based methods of the graph AD

example, methods endVertices, origin, and destination) We can simply acces

appropnate components of the given edge object to implement each such me

Nevertheless, the "inverse" operationthat of accessing the edges that ares

dent upon a vertexrequires an exhaustive inspection of all the edges in E

incidentEdges(v) runs in. time proportional to the number of edges in the

not in time proportional to the degree of vertex y, as we would like In fact,'

to check if two vèrtices y and w are adjacent, by the areAdjacent(v, w) 'i

requires that we search the entire edge list looking for the edge (y, w) or (

Moreover, since removing a vertex involves removing all of its incident edge

method removeVert.ex also requires a complete search of the edge list, È.

Performance

Important performance charactenstics of the edge list structure, assuming

and E are realized with doublylinked lists, include the following:
. I

Methods numVerticesO, numEdges, and sizeO are implemented ih

time by accessing size fields associated with the lists V and/or E.

The counters stored with each vertex object allow us to perform, in cons

time, methods degree, in Degree, and outDegree.

Methods vertices() and edges() are implemented by returning an iterato

the vertex or edge list, respectively Likewise, we can implement iterk

directedEdges() and undirectedEdgesO extending an iterator for the lis

to returmng only those edges that are of the correct type

Since the containers V and E are lists implemented with a doubly linie

we can insert vertices, and insert and remove edges, in 0(1) time

Methods incidentEdges, ini ncidentEdges, outi ncidentEdges, adjacen

tices, i nAdjacentVertices, outAdjacentVertices, and areAdjacent all

0(m) tithe, for to determine which edges are incident upon a verte»

must inspect all edges.
i,

The update method removeVertex(v) takes 0(m) time, since it require

we inspect all the edges to find and remove those incident upon y.
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6.2.2 The Adjacency List Structure

The edge list representation is simple but has its limitations, for many methods that
should be fast for individual vertices must instead examine the entire edge list to
perform correctly. The adjacency list structure for a graph G extends the edge list
structure, adding extra information that supports direct access to the incident edges
(and thus to the adjacent vertices) of each vertex. While the edge list, structure
views the edge-vertex incidence relation only from the point of view of the. edges,
the adjacency list structure considèrs it from both viewpoints. This symmetric ap-
proach allows us to use the adjacency list structure to implement a number of vertex
methods of the giaph ADT much faster than is possible with the edge list structure,

even though these two representations both use an amount of space proportional to
the number of vertices and edges in the graph The adjacency list structure includes
all the structural components of the edge list structure plus the following:

The vertex object y holds a reference to. a container 1(v), called the incidence
container, that stores references to the edges incident on y If directed edges
are allowed, then we partition 1(v) into I,, (y), I (y), and I (y), which store
the in-doming, out-going, and undirected edges incident to y, respectively.

The edge object for an edge (u, y) holds references to the positions (or loca-

tors) of the edge in the incidence containers 1(u). and 1(v).

The Adjacency List

Traditionally, the incidénöe container 1(v) for a vertex y is realized by means of a
list, whIch is why we call this way of representing a graph the adjacency list struc-

ture Still, there may be some contexts where we wish to represent an incidence
container 1(v) as, say, a dictionary or a priority queue, so let us stick with think-.
ing of 1(v) as a genenc container of edge objects If we want to support a graph
representation that can represent a graph G potentially containing both directed
and undirected edges, then we have, for each vertèX, three incidence containers,

'in (y), I (y), and (y), that store refereúces to the edge objects associated with

the directed incoming, directed outgoing, and undirected edges incident on y, re-
spectively; . .

The adjacency list strUcture provides direct access from both the edgés to the
vertices. añd from the vertices to their incident edges: BeIng able to provide access
between vertices and edges in both directions allows us to speed up the performance

of a number of the graph methods by using an adjacency list structure instead of

an edge list structure We illustrate the adjacency list structure of a directed graph

in Figure 6 4 For a vertex y, the space used by the incidence container of y is

proportional to the degree of y, that is, it is O(.deg(v)). Thus, by Theorem 6.6, the

space requirement of the adjacency list structure is ..O(n ± in).

299
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(a)

UAl2O AA903 UA877 TW45

(b)
Figure 6.4: (a) A directed graph G; (b) schematic representation of the ädj
list structure of G As in Figure 6 3, we visualize the elements of contante

names Also, we only show the incidence containers for directed edges, sinq

are no undirected edges in this graph
f

The adjacency list structure matches the performance of the edge list b
provides improved runmng time for the following methods

Methods returmng iterators of incident edges or adjacent vertices for

vcan run in time proportional to their output size, that is, in O(deg(v

Method areAdjacent(u, y) can be performed by inspecting either Sh
dence container of u or that of y By choosing the smaller of the two,
O(min{deg(u), deg(v)}) ruñning time.
Method removeVertex(v) requires calling incidentEdges(v) to iden

edges to be removed as a consequence of the operation The subs
deg(v) edge removals each take 0(1) time.

in out Øout flout flout flout flout
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6.2.3 The Adjacency Matrix Structure

Like the adjacency list structure, the adjacency matrix representation of a graph
also exiends the edge-structure with an additional component. In this case, we
augment the edge list with a matrix (a twò-dimensional array) A that allows us to
determine adjacencies between pairs of vertices in constant time. As we shall see,
achieving this speedup comes at a price in the space usage of the data structure.

In the adjacency matrix representation, we number the vertices O, i,... , n - 1,
and we view the edges as being pairs of such integers. We represent the graph G
with an n x n array, A, such that A[i, J] stores a reference to the edge (i, J)' if such
an edge exists. If there is no edge (i, J), then A [i, J]. is null.

Speciflcally,.the adjacency matrix extends the edge list structûre as follows:

A vertex object y also stores a distinct integer key in the range 0, 1,... , n - i,
called the index of y. To simplify the discussion, we may refer to the vertex
with index i simply as "vertex i."
We keep a two-dimensional n x n array A, such that the cell A[i, j] holds a
reférence to the edge e incident on vertices i and J, if such an edge exists. If:
the edge e, connecting vertices i and j, is undirected, then we store referençes
to e idbothA[i,j] and A[J,i]. If there is no edge from vertex i to vertex j,
then A[i, J] references the null object (or some other indicator that this cell is
associated with no edge).

Using an adjacency matrix A, we can perform method areAdjacent(v, w) in.
0(1) time. We achieve this performance by accessing the vertices y and w to de-.
termine their respective indices i and j, and then testing whether the cell A[i, J] is
null or not. This performance achievement is traded off by an increase in the space
usage, however, which is now 0(n2), and in the running time of other methods. For
example, methods such as incidentEdges and adjacentVerticesnow require that we
examine an entire row or column of array A, whiéh takes 0(n) time. The adjacency
list structure is superior to the adjacency matrix in space, and is superior in time for
all methods except for the areAdjacent method.

Historically, the adjacency matrix was the firsùt representation used for graphs,.

with the adjacency matrix being deflnèd strictly as a Boolean matrix; as follows:

A
i if(i,j)isanedge

11'JJ - O otherwise

Thus, the adjacency matrix has a natural appeal s a mathematical structure (for

example, an undirected graph has a symmetric adjacency matrix). Our adjacency
matrix definition updates this historical perspective to an object-oriented frame-

work. Most of the graph algorithms .we examine will run thost . efficiently when

acting upon a graph stored using the adjaeñcy list .representation. In some casçs,

however, a trade-off occurs, dèpending on how many edges are in the graph.

We illustrate an example adjacency matrix in Figure 6.5.

pata Structures for Graphs 301
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0 1 2 3 4 5 6

BOS DFW JFK LAX MIA 01W SF0

(e)

Figure 6.5: Schematic representation of the adjacency matrix structure: (a) t
rected graph G; (b) a numbering of its vertices; (c) the adjacency matrix A for

: 1' 2 3 4. 5 .6

0 0 0 NW
:35

0 DL
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0 0

1 0 0 0 AA
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0' DL
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2 0 AA,
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0 0 AA
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0 .TW
.45

3 ø.ø'ø 0 ØUA
120

4 0 AA
523

Ø AA
411

:

5'ø UA
877,

0.0" 0. 0 0

6 0' 0 '0 '0 0 0'
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6.3 Graph Traversal

A traversal is a systematic procedure for exploring a graph by examining all of
its vertices and edges. For example, a Web spider, or crawler, which is the data
collecting part of a search engine, must explore a graph of hypertext documents
by examining its vertices, which are the documents, and its edges, which are the
hyperlinks between documents. A traversal is efficient if it visits all the vertices
and edges in time proportional to their number, that is, in linear time

303

6.3.1 Depth-First Search

The first traversal algorithm We consider is depth-first search (DFS) in an undi-
rected graph. Depth-first search is useful for performing a number of computations.
on graphs, including finding a path from one vertex to another, determining whether
or not a graph is connected, añd computing a spanning tree of a connected graph.

Traversing a Graph via the Backtracking Technique

Depth-first search in an undirected graph G applies the backtracking technique and
is analogous to wandering in a labyrinth with a string and a can of paint without
getting lost. We begin at a specific starting vertex s in G, which we initialize by
fixing one end of our string to s and painting s as "visited." The vertex s. is now
our "current" vertexcall our current vertex u. We then traverse G by considering
an (arbitrary) edge (u, y) incident to the current vertex u. If the edge (u, y) leads us
to an alrèady visited (that is, painted) vertex y, then we immediately backtrack to
vertex u. If, on the other hand, (u, y) leads to an unvisited vertex y, then we unroll
our string, and goto y. We then paint y as "visited," and make it the current vertex,
repeating the abovç computation. Eventually, we will get to a "dead end," that is, a
current vertex u, such that all the edges incident on u lead to vertices already visited
Thus, taking any edge incident on u will cause us to return to u. To get out of this
impasse, we roll our string back up, backtracking along the edge that brought us to
u, going back to a previously visited vertex y. We then make y our current vertex
and repeat the above computation for any edges incident upon y that we have not
looked at before. If all of v's incident edges lead to visited vertices, then we again
roll up our string and backtùack to the vertex we came,from to get! to y, and repeat
the procedure at that vertex. Thus, we continue to backtrack along the path that we
have tráced so far until we find a vertex that .has yet unexplored edges, at whiçh
point we take one such edge and continue the traversal. The .prôcess terminates
when our backtracking leads us back to the start vertex s, and there are no jiiore
unexplored edges incident on s. This simple probess traverses he edges of G in an

elegant, systematic way. (See Figure 6.6.)

Ir!
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(a)

(e)

0 0
0

O.0s O°
o'---o--o 'e

000
(e)

(d)

(t)

Figure 6.6: Example of depth-first search traversal on a graph starting at verte
Discovery edges are drawn with solid lines and back edges are drawn with d
lines. The current vertex is drawn with a thick line: (a) input graph; (b) pa
discovery edges traced from A until back edge (B,A) is hit; (c) reaching F, sQ
is a dead end, (d) after backtracking to C, resuimng with edge (C,G), and hi
another dead end, J; (e) after backtrackiñg to G; (f) after backtracking to N.
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Visualizing Depth-First Search

We can visualize a DFS traversal by orienting the edges along the direction in
which they are explored duringthe traversal, distinguishing the edges used to dis-
cover new vertices, called discovery edges, or free edges, from those that lead to
aheady visited vertices, called back edges. (See Figure 6.6f.) In the analogy above,
discovery edges are the edges where we unroll our string when we traverse them,
and back edges are the èdges where we immediately return withoùt unrolling any
stnng The discovery edges form a spanmng tree of the connected component of

the starting vertex s, calledDFS free We call the edges not m the DFS tree "back
edges" because, assuming that the DFS tree is rooted at the start vertex, each such

P edge leads back from a vertex in this tree to one of its ancestors m the tree

Recursive Depth-First Search

The pseudo-code for a DFS traversal starting at a vertex y follows our analogy
with string and paint based on the backtracking technique. We use recursion to
implement this approach. We assume that we have a mechanism (similar to the
painting analogy) o determine if a vertex or edge has. been explored or not, and
to label the edges as discovery edges or back edges A pseudo-code descnption of

recursive DFS is giv6n in Algoritl»n 6.7..
There, are a number of observations that we can make about the depth-first.

search algorithm, many of which derive, from the way the DFS algorithm partitions
the edges of the undirected graph G into two groups, the discovery edges and the
back edges. For example, since back edges always connect a vertex i' to a pre-
viously visited vertex u, each back edge implies a cycle in G, consisting of the
discovery edges from u to y plus the back edge (u, y).

i Theorem 6.12, which follows, identifies sorne other important properties of the
depth-first search traversal 'method.

Algorithm DFS(G,v):
Input: A graph G and a vertex,v of G

Output: A labeling Qf the edges in the connected óomponent of as discovery
'fr edges and back'edges '

for all edges e in G.incidentEdges(v) do
if edge e is unexplored then

w - G.opposite(v, e)
if vertex w is unexplored theú

label e as 'a discovery edge
recursively call DFS(G,w)

else
label e as aback edge ' '

Algorithm 6.7: A Recursive description of the DFS. algorithm.
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Theorem 6.12: Let G be an undirected graph Qn which a DES traversal
at a vertex s has been performed. Then the traversal visits all the vertice
connected component of s, and the thscovery edges form a spanning tree
connected component of s

Proof: Suppose, for the sake of a contradiction, there is at least one vertex
connected component ñot visited. Let w' be the first unvisited vertex on '80m
from s to y (we may have y = w): Since w is thé first unvisited vertex on this
has a neighbor u that was visited. But when we Visited u, we must have cons
the edge (u, w), hence, it cannot be correct that w is unvisited Therefore, thp
no unvisited vertices in s's connected compoilent. Since we only mark edge
we go to unvisited vertices, we will never form a. cycle with discovery edg
is, the discovery edges form a tree. Moreover, this is a spanning tree becau
depth-first search visits each vertex in the connected component of s.

- Note that DFS is called exactly once on each vertex, and that every :è
examined exactly twice, once from each of its end vertices Let m5 deno
number of edges in the connected component of vertex s. A DFS starting
in 0(m5) time provided the following conditions are satisfied:

The graph is represented by a data structure with the following perfo

o method ¡ncidentEdges(v) takes 0(degrèe(v)) time
o methods hasNext() and nextEdge() of the Edgelterator retu

¡ncidentEdges(v) each take 0(1) time
o method opposite(v,e) takes 0(1) time

The adjacency list structure satisfies, these properties; the adjacency:
structure does not.

s We have a way to "mark" a vertex or edge as explored, and to test if 4
or edge has beèn explored in 0(1) time. One way to do such markiii
extend the functioñality of the node positions implementing vertices ò
to contain a visited flag Another way is to use the decorator design P?
which is discussed in Section 6.5.

Theorem 6.13: Let G be a graph with n vertices and m edges represente
the adjacency list structure. A DES, traversal of G can be performed in O,(
time Also, there exist O(n + m) -time algorithms based on DFS for the foil

problems

Testing whether G is connected
Computing a spanning 'forest ofG
Computing the connected components of G
Computing a path between two vertices of G, or reporting that no suc,
exists,-
Computing a cycle in G, or reporting that G has no cycles.

We explore the details of the proòf of this theorem in several exercises.
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Figure 6.8: Biconnected components, shown circléd with dashed lines. C, F, and K
are separation vertices; (C, F) and (K, L) are separation edges.
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6.3.2 Biconnected components

Let G be a connected graph. A separation edge of G is an edge whose removal
disconnects G A separation veflex is a vertex whose removal disconnects G Sep-
aration edges and vertices correspond to single points of failure in a network, hence,
we often wish to identify them. A connected graph G is biconhected if, for any two
vertices u and y of G, there are two disjoint paths between u and y, that is, two paths
sharing no common edges or vertices, except u Sd V. A biconnected Component
of G is a subgraph satisfying one of the following (sée Figure 6.8):

A subgraph of G that is biconnected and for which adding any additional
vertices or edges of G would force it to stop being biconnected
A single, edge of G consisting of a separation edge and its endpoints.

If G is biconnected, it has one bicorineòted component: G itself. If G has no cycles,
on 'the other 'hand,' then each edge of G is a biconnected componént. Biconnected
components are important in computer networks, where vertices represent routers
and edges represent connections, for even if a router in a biconnected component
fails, messages can still 'be routed in that componént using the remaining routers.

As stated in the following lemnia, whose proof is left as an exercise (C-6.5),
biconnectivity is equivalent to the absence of separation vertices and edges.

Lemma 6.14: Let G be a connected graph. The follówing are equivalent:

I. G is biconnectèd.
For any two vertices of G, thereis a simple cycle containing them.
G does not have separation vertióes or separation edges.
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Equivalence Classes and the Linked Relation

Any time we have a collection C of objects, we can define a Boo1ean'j
R(x,y), for each pair x and y in C. That is, R(x,y) is defined for each x and
as being either true or false The relation R is an equivalence relation if i h
following properties:

reflexive property: R(x,x) is true for each x in C.
s symmetric property: R(x,y) =R(y,x), for each pairxandyin C.

transitive property: If R(x,y) is true and R(y,z) is true, then R(x,z
for every x, y and z iii C.

For example, the usual "equals" operator (=) is an equivalence relation for ait
of numbers. The equivalence class for any object x in C is the set of all obj
such that R(x,y) is true. Note. that any equivalence relation R for a set C parti
the set C into disjoint subsets that consist of the equivalence .òlasses of the olj
inC.

We can define n interesting link relation. on the edges of a graph G. We
two edges e and f of G are linked if e = f or G has a simple cycle containing
e and. f. The following lemma gives fundamental propertieà of the link relatión

Lemma 6.15: Let G be a connected graph. Then,

The link relation forms an equivalence relation on the edges df G.
A biconnected component of G is the subgraph induced by an equivale
class of linked edges.

An edèe e of G is a separation edge if and only if e forms a single-eleni
equivalence class of linked edges. 1

4 A vertex y of G is a separation vertex if añd only if y has incident edges
least two distinct equivalence classes of linked edges.

Proof: It is readily seen that the link relation is reflexive and symmetric. To sho
that it is transitive, suppose that edges f and g are linked, and edges g and h
linked. 11f = g or g = h, then f = h or there is a simple cycle containing f'
h; hence, f and h are linked. Suppose, then, that f, g, and h are distinct. ThatTi
there is a simple cycle Cfg through f and g, and there is a simple cycle Cgh thrqu
g and h. Consider the. graph obtained by the union of cycles Cjg and Cgh.
this graph may not be a simple cycle itself (although we could have Cfg = Cgh),
contains a simple cycle Cfh through f and h. Thus, f and h are linked. Therefor
the link relation is an equivalence relation..

The correspondence between equivalence classes of the link relation and bico.
.nected components of G is a consequence of Lemma 6.14.
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A Linked Approach to Computing Biconnected Components via DFS Sinöe 
the equivalence élasses of the link relation on the edges of G are the same as

the 
biconflected components, by Lemma 6 15, to construct the biconnected compo-

nents of G we need only compute the equivalence classes of the link relation among

G's edges; To perform this computation, let us begin with a DFS traversal of G,

and construct an auxiliary graph B as follows (see Figure 6.9):

The vertices of B are the edges of G.
FoÈ.evefy back edge e of G, let fi,. . . ,fj. be the discovery edges. of G that

form a cycle with e. Graph B contains.theedgt.s (e,fi)......(e,fk).
Since there are m - n + i back edges and each èycle induced by a back edge has at

most 0(n) edges, the graph B has at most 0(nm) edges;

Lu» l'II I L_. -

GH HL L'Il

309

Figure 6.9: Auxiliary graph used to compute link .components: (a) graph Ç on

which a DFS traversal, has been. performed (the, back edges are drawn with dshed

lines); (b) auxiliary .graph associated withG and its. DFS. traversal.
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An O(nm)-Time Algorithm

From Figure 6.9, it appears that each connected component in .B corresp0
equivalence class in the lrnk relation for the graph G After all, we includ
(e, f) in B for each back edge e found on the cycle containing f that
by e and the DFS spanning tree.

The following lemma, whose proof is left as an exercise (C-6.7), es
a strong relationship between the graph B and the equivalence classes ii
relation on G's components of G, where, for brevity; we call the equivalen
in the link relation the link components of G.

Lemma 6.16: The connected components of the auxiiiaiy graph B coir
the lihk components of the graph G that induced B.

Lemma 6 16 yields the following O(nm)-time algorithm for computgj
link components of a graph G with n vertices and m edges:

Perform a DFS traversal T on G.

Compute the auxiliary graph B by identifying the cycles of G ini
each back edge with respect to T.

Computé the èonnected components of B, f& example, by performin
travetsal of the auxiliary graph B.

For each connected component of B, output the vertices of B (which are
of G) as a link component of G.

From the identification of the link components in G, we can then deternu
biconnected components, separation vertices, and separation edges of the
in linear time Namely, after the edges of G have been partitioned into equi
classes with respect to the link relation, the biconnected components, sep
vertices, and separation edges of G can be identified in O(n + in) time, usib
simple rules listed in Lemma 6.15. Unfortunately, constructing the auxiliary
B can take as much as O(nm) time; hence, the bottleneck computation in this
rithm is the construction of B.

But note that we don't actually need all of the auxiliary graph B in order
the biconnected components of G. We only need to identify the connected co
nents in B. Thus, it would actually be sufficient if we were to simply comp
spanning tree for each connected component in B, that is, a spaùning forest
Since, the connected components in a spanning forest for B are the same asi
graph B itself, we don't actually need all the edges of Bjust enough of thç
construct a spanning forest of B.

Therefore, let us concentrate on how we can apply this more efficient sp
forest apptoach to compute the equivalence classes Of the edges of G with re
to the link relation.
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A Linear_Time Algorithm

As outlined above, we can reduce the time r 4uired to compute the link components

of G to 0(m) time by using an auxiliary graph of smaller size, which is a spanning

forest of B The algorithm is described in Algorithm 6.10.

L

Algorithm Lih.kComponeflts(G»

Input: A conneçted graph G

Output: The link components of G

Let F be, an initially empty auxiliary graph..

Perform a DFS traversal of G starting at an arbitrary vertex s.

Add each DFS discovery edge f as a vertex in.F and mark f "unl)nked2

For each vertex y of G, let p(v) be the parent of y in the DFS spañning tree.

for each vertex y, in increasing rank order as visited in the DES traversal do

for each back edge e = (u, y) with destination y do

Add e as .averteC of the graph F.
{March up from u to s adding edges to F only as necessary.}

while u do
Let f be the vertex in F corresponding to the discovery edge (u, p(u)).

Add thé edge (e,f) toF.
if f is mark$ "unlinked" then

Mark f as "linked?'
u4-p(u)

else
u t- s {shortcut to the end of the while loop}

Compute the connected omponènts of the graph F.

Algorithm 6.10: A linear4ime algorithm for computing the link components. Note

that a connected component in F consisting of an individual "unlinked" vertex

corresponds to a separafion edge (related only to itself in the link relation).

Let us analyze the running time of LinkCoinpOfleflts, from Algorithm 6 10.

The initial DFS traversal of G takes 0(m) time. The main computation, however,

is the construction of the auxiliary graph F, which takes time proportional to the

number of vertices and edges of F. Note that at sorne point in the execution of

the algorithm, each edgé of G is added as a vertex of F. We use an accounting

charge method to account for the edges of F. Namely, each time we add to F an

edge (e, f), from a newly encountered back edge ,e to a discover edge f, let us

charge tluis operation to f if f is marked "unlinked" and to,e otherwise. From the

construction of the inner while-loop, we see.that we charge«each .yertex of F at most

once dunng the algonthm using this scheme We conclude that the construction of

F takes 0(m) time Finally, the computation of the connected components of F,

which correspond to the link components of G, takes 0(m) time
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The correctness of the above algorithm follows from the fact that the gt
Li n kComponents is a spanning forest of the graph2ß mentioned in Lemma 6
details, see Exercise C-6.8. Therefore we summarize with the fQ1lowing
and give an example of LinkComponents in Figure 6.11.

Theorem 6.17: Given a connected graph G with m edges, we can comp'
biconnected components, separation vertices, and separation edges in 0(m)

(a)

R1
TT
BC

I
LMJ

AB

DE CD

AB!

(b)

BC

AB.BC

L
MA

CF

KL

fr-

Figure 6.11: Sample execution of algorithm LinkComppnents: (Algorithm 6.
(a) input graph G after a DFS traversal (the vertices are labeled by their rank i'
visit order, and the back edges are drawn with dashed lines); auxiliary graph F,
processing (b) back edge (K,A), (c) back edge (M,A), and (d) back edge (
(e) graph F at the end 1 thp algonthm

(d) (e)
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ireadth-First Search

In this section, we consider the breadth-first search (BPS) traversal algorithm. Like

DES, BFS travérses a connected component of a graph, and in so .doing, defines

a useful spanning tree. BFS is less "adventurous" than DES, however. Instead

of wandering the graph, BFS proceeds, in rounds and subdivides the vertices into

levels. BPS can also be thought of as, a traversal using a string and paint, with BFS
unrolling the string in a more "conservative" manner.

BPS starts at a given vertex s, which is'at level O and defines the "anchor" for

our string. In the first round, we let out the string the length of one edge and we visit

all the vertices we can reach without unrolling the string any farther. In this case,

we visit, and paint as "visited," the vertices adjacent to the start vertex sthese
vertices are placed into level 1. In the second round, we unroll the string the length

of two edges and we visit all the new vertices we can reach without unrolling our

string àny farther. These new vertices, which are adjacent to level, i vertices and flot

previously assigned to a level, are placed into level 2, and so on. The BES traversal
terminates when every vertex has been visited.

Pseudo-code for a BPS traversal starting 'at a vertex s is shown in Algorithm 6.12.

We use auxiliary space to label edges, mark visited vertices, and store containers

associated with levels. That is, the containers Lo, L1, L2, and so on, store the nodes

that are in level O, level 1, level 2, and so on. These containers 'could, for example,

be implemented as 'queues. They also allow BPS to be nonrecursive.

Algorithm BFS(G,$):
Input: A 'graph G and a vertex s of G

Output: A labeling of tliè edges in the connected component of s as discovery
edges and cross edges

create an empty container Lo
insert s into Lo
i4O
while L is not empty do '

create an empty container L+i
for each vertex y in L do

for all edges ein G.incidentEdges(v) do
if edge e is unexplored then

let w be the other endpoint of e
if vertex w is unexplored then

label e as a discovery edge
insert w into L1+i '

else '

label e as a cross edge '

4i+1
Algorithm 6.12: BFS traversal of a graph.
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We illustrate a BFS traversal in Figure 6.13.

o

o i

(c)

0 1 2

A

9i
(f)(e)

Figure 6.13: Example of breadth-first search traversal, where the edges indi

on a vertex are explored by the alphabetical order of the adjacent Vertices.'

discovery edges are shown with' solid lines and the cross edges are showi
dashed lines: (a) graph before the traverSal; (b) discovery of level 1; (e) discó

of level 2; (d) discovery of level 3; (e) discoveryof level 4; (f) discovery of lV.

(d)

2 3
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One f the nicé'prçperties of the BFS approach is that, in performing the BFS
traversal, we can label each vertex by the length of a shortest pàth (in terms of the
number of edges) from the start vertex s. 1n particular, if vertex y is placed into
level i by a BFS starting at vertex s, then the length of a shortest path from s. to y
isi.

As with DFS, we can visualize the BFS traversal by orientiñg the edges along
the direction in which they are explored dunng the traversal, and by distinguishing
the edges used to discover new vertices, called discovery edges, from those that
lead to already visited vertices, called cross edges. (See Figure 6. 13f.) As with the
DFS, the discovery edges form a spanning tree, which in.this ease we call the BFS
tree. We do not call the nontree edges "back edges" in this case, however, for none
of them connects a vertex tò one of its ancestors. Every nontree edge connects a
vertex y to another vertex that is neither v's ancestor nor its descendent.

The BFS traversal algorithm has a number of interesting properties, some of
which we state in the theorem that follows.

Theorem 6.18: Let G be an undirected graph on which a BPS traversal starting
at vertex s has been performed. Then:

The traversal visits all the vertices in the connected component of s.

The discovery edges form
a

spanning tree T of the connected component
of s.

Por each vertex, y at level i, the path Of tree T between s and y has i edges,
and any other path of G between s and y has at least i edges

ff'(u, y) is a cross edge, then the levelnumbers of u and y differ by at most 1:

We leave the justification of this theorem as an exeròise (C-6.20). The analysis
of the Ñnning -time of BFS is similar to the one of DFS.

Theorem 6.19: Let G be a graph with n vertices and m edges represented with
the adjacency list structure. A BPS traversal of G takes O(n + m) time. Also, there
exist O(n + ,n)-time algorithms based on BPS for the followingprobl ems:

Testing whether G is connected
'

Computing a spanning forest of G

Computing the connected components of G

Given a start vertex s of G, computing, for evézy vertex y of G, a path with
the minimum number of edges between s and v, or reporting that no such

path exists. . .

o Computing a èjcle in G, or reporting that G has no cycles.
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A fundamental issue with directed graphs is the notion of reachability, which 4
with determining where we can get to in a directed graph For example, in a

puter network with unidirectional connections, such as those involving sa Ii

connections, it is important to know whether we can reach every other node»

any given node in the network. A traversal in a directed graph always goes

directed paths, that is, paths where all the edges are traversed according to
respective directions Given vertices u and y of a digraph G, we say that u re

y (and y is reachable from u) if G has a directed path from u to y We also s

a vertex y reaches an edge (w, z) if y reaches the ongrn vertex w of the edge

A digraph Ô is strongly connected if, for any two vertices u and y olt

reaches y and y reaches u A directed cycle of G is a cycle where all the edg

traversed according to their respective directions (Note that G may have a

consisting of two edges with opposite direction between the same pair of Verh

A digraph G is acyclic if it has no directed cycles (See Figure 6 14 for

examples)
The transitive closure of a digrph Ô is the digraph Ö* such that the vert2

G* are the same as the vertices of G, and Gt has an edge (u,v), whenever QE

directed path from u to y That is, we define & by starting with the digraph

adding in an extra edge (u, y) for each u and y, such that y is reachable from u

there isn't already an edge (u,v) in Ô)
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Comparing BES and DFS

By Theorem 6.19, the BFS traversal can do everything we claimed for

tráversal. There are a number ofinteresting differences between these two mq

however, and there are, in fact, a number of tasks that each can do bette

the other. The BFS traversal is better at finding shortest paths in a graph (

distance is measured by the number of edges). Also, it produces a spama
such that all the nontree edges are cross edges. The DFS traversal is bett
answering complex connectivity questions, such as determining if every p
vertices in a graph can be connected by two disjoint paths. Also, it procj

spanning tree such that all the nontree edges are back edges. These pr6
only hold for undirected graphs, howevet Nevertheless, as we explore in fl

section, there are a number of interesting properties for the directed analogu

DFS and BFS.

6.4 Directed Graphs
In this section, we consider issues that are specific to directed graphs. Rec

a directed graph, which is also known as a digraph, is a graph whose e

directed.
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(a)
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(b)

(e) (d)

Figure 6.14: Examples of reachability in a digraph: (a) a directed path from BOS

to LAX is drawn with thick lines; (b) a direpted cycle (ORD, MIA, DFW, LAX,

ORD) is drawn with thick lines; its vertices induce a strongly connected subgraph;

(c) the subgraph of the vertices and edges reachable from ORD is shown with thick

lines; (d) removing the dashed edges gives an acycic digraph.

Interesting problems that deal with reächabilìty in a digraph Ô include the fol-

lowing:

Given vertices u and y, determine whether u reaches y.

Find all the vertices of Ô that are reachable from a given vertex s.

DeteñTiine whether Ô is strongly connected.

Determine whether Ô is acyclic.

Compute the transitive closure Ô* of Ô

In the remainder of this section, we explore some efficient .algorihms för solv-

ing these problems
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6.4.1 Traversing a Digraph

As with undirected graph, we can explore a digraph ma systematic way with mé
ods akin to the depth-first search (DFS) and breadth-first search (BFS) algor,
defined previously for undirected graphs (Sections 6.3.1 and 6.3.3). Such exj
rations can be used, for example, to answer reachability questions The direct
depth-first search and breadth-first search methods we develop in this section
performing such explorations are very similar to their undirected counterparts
fact, the onily real difference is that the directed depth-first search and breadth-fl1
searclnÏièthods only traverse edges according to their respective directions

The directed version of DFS starting at a vertex y is illustrated in Figure 6 15

(a)

Figure 6.15: An example of a PFS in a digraph: (a) intermediate step, where, fc
the first time, an already visited vertex (DFW) is reached, (b) the completed DF
The discovery edges are shown with thick solid ines, the back edges are shoy
with thick dashed hnes, and the forward and cross edges are shown with dashqd
thin lines The order in which the vertices are visited is indicated by a label next p
each vertex The edge (ORD,DFW) is a back edge, but (DFW,ORD) is a forwar
edge Edge (BOS,SFO) is a forward edge, and (SFO,LAX) is a cross edge

A directed DFS on a digraph Ô partitions the edges of Ô reachable from thi
starting vertex into discovery edges or tree edges, which lead us to discover a
vertex, and non free edges, which take us to a previously visited vertex The di(
covery edges forni a tree rooted at the starting vertex, called the directed DFS Ít
Also, we can distinguish three kinds of nontree edges (see igure 6. 15b):

back edges, which connect a vertex'to an ancestor in the DFS tree
forward çdges, which connect a vertex to a descendent in the DFS tree
cross edges, which connect a vertex to a vertex that is neither its ancestor rO
its descendent.
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Theorem 6.20: Let Ô be a digraph. Depth-first search on Ô starting at a vertex

s visits all the vertices of G that are reachable from s. Also, the DFS tree contains

directed paths from s to every vertex reachabl.e from s.

Proof: Let V5 be the subset of vertices df Ô visited by DFS starting at vertex s.

We want to show that V5 contains s and every vertex reachable from s belongs to V.

Suppose, for the sake of a contradiction, that there is a vertex w reachable from s

that is not in V5. Consider a directed path from s to w, and let (u, y) be the first edge

on such a path taking us out of V5, that is, u is in V but vis not in V5. When DFS

reaches u, it explores all the outgoing edges of u, and thus must also reach vertex

y via edge (u, y). Hence, y should be in V5, and we have obtained a contradiction.

Therefore, V5 must contain every vertex reachable from s. u

Analyzing the running time of the directed DFS method is analogous to that

for its undirected counterpart. A recursive call is made for each vertex exactly

once, and each edge is traversed exactly once (along its direction). Hence, if the

subgraph reachable from a vertex s has m5 edges, a directed DFS starting at s runs

in O(n5 -f- in5) time, provided the digraph is represented with an adjacency list.

By Theorem 6.20, we can use DFS t find all the vertices reachable from a

given vertex, and hence to find the transitive closure of Ô. That is, we can perform

a DFS, starting from each vertex y of G, to see which yeijices w are reachable from

/ y, adding an edge (y, w) to the transitive closure for each such w. Likewise, by

repeatedly traversing digraph Ô with a DFS, starting in turn at each vertex, we can

easily test whether G is strongly connected. Therefore, G is strongly connected if

each DFS visits all the vertices of G.

Theorem 6.21: Let Ô be a digraph with n vertices and ni edges. The following

problems can be solved, by an algorithm that runs in O(n(n+m)) timeS

Computing, for each vertex y of Ô, the subgraph reachable from y

Testing whether G is strongly connected
Computing the transitive closure G* of G..

Testing for Strong Connectivity

Actually, we can determine if a directed graph Ô is strongly connected much faster

than O(n(n ì ni)) time, just using two depth-first searches.

We begin by performing a DFS of our directed graph Ô starting at an arbitrary

vertex s. If there is any vertex of G that is not visited by this DFS, and is not

reachable from s, then the graph is not strongly connected; So, if this first DFS visits.

each vertex
f G, then we reverse all thefledges of O (using the reverseD i rectiqn

method) aúd perform another DFS starting at s in this "reverse" graph. If every

vertex of G is visited by this second DFS, then the graph is strongly connected, for

each of the vertices visited in this DFS can reach s. . Since this algorithm makes just

two DFS traversals of O, it runs in O(n+ in) timefl
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Directed Breadth-First.Search '

As with DFS, we can extend breadth-first search (BFS) to work for direct
The'algorithm still visits vertices level by level and partitions the set of
free edges (or discovery edges), which together form a directed breadth..fi?'
tree rooted at the start vertex, and non free edges Unlike the directed DF
however, the directed BFS method only leaves tw9 kinds of nontree edges

6

back edges, which connect a vertex to one of its ancestors, and
cross edges, which connect a vertex to aiïother vertex that is neith
cestor nor its descendent.

There are no forward edges, which is a fact we explore in an 'exercise (

6.4.2 Transitive Closure

In this section; we explore an alternative 'technique for computing the transi
sure of a digraph. That is, we describe a direct method for, determining all
vertices (y, w) in a directed graph such that w is reachable from v. Such info
is, useful, for example, in computer networks, for it allows us to immediate
if we can route a message from a node y to a node w, or whether it is approp
say "you can't get there from here" with respect to this message.

Let Ô be a digraph with n vertices and m edges. We compute the ti
closure of G in a series of rounds. We initialize G0 = G. We also arbitrarily ii
the vertices of Ô as

V1,V2,...,Vn.

We then begin the computation of the rounds, beginning with round i In a
round k, we construçt digraph Ô, starting with Gk = Gk_ i. and adding to
directed edge (v,v) if digraph Gk1 contains bòth the edges (y4, vk) and (y
In this way, we will enforce a simple rule embodied in the lemma that follov

Lemma 6.22: Fori= 1,...,n, digraph Ok has an edge (v,v.) if and onl9
graph Ô has a directed path from v to vj, whose intermediate vertices (if ai
in the set {vi,... , v}. In panicular, Ô, is equal to 0*, the transitive closuret

Thié lemma suggests a simple dynamic programming algorithm (Sectio
for computing the transitive closure of G, which is known as the Floyd-TV6
algorithm; Pseudo-code for this method is given in Algorithm 6.16.

The running time of the Floyd-Warshall algorithm is easy to analyze. Thq
loopis 'executed n tithes and the inner loop considèrs each of 0(n2) pairs of ve
performing a constänt-time computation for each pair. If we use a data struë
such as the adjacency matrix structure, that supports methods areAdjacent aij
sert Directed Edge in 0(1.) time, we have that the total running time is 0(n3).
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Algorithm FloydWarshall(Ô)

Input: A digraph O with n vertices
Output: The transitive closure O of O

let v, v2,... , v, be an arbitrary numbering of the vertices of O

4-O
fork4ltofldO

Gk Ok_1
for i4lton,i$kdO

forj - ito n,j i,k do
if both edges (v,vk) and (vk,vJ) are in k-1 then

if 0k does not contain directed edge (vi, v) then..
add directed edge (vi, v) to

return. G, //
Algorithm. 6.16: The Floyd-Warshall algorithm. This dynamic programmiñg algo-

rithm computes the transitive closure G* of G by incrementally computing a .series

ofdigraphsGo,Gi,...,Gn,forkl,...n. -

The above description and analysis imply the following theorem.

Theorem .6.23: Let O be a digraph with n vertices reptesented by the adjacency

matrix structure; The Floyd-Warshall algorithm computes the transitive closure G*

ofO in 0(n3) time

Performancè of the Floyd-Warshall Algorithm

We compare now the running time of the Floyd-Warshall algorithm with that of the

more complicated algorithm of Theorem 6.21, which repeatedly performs a DES n

times, starting at each vertex.

If the digraph is represented by an adjacency matrix structure, then a DFS

traversal takes 0(n2) time (we explore the reason for this in an exercise). Thus,

running DES n times takes 0(n3) time, which is no better than a single execution

of the Floyd-Warshall algorithm
If the digraph is represented by an adjacency list structure, then running the

DES algorithm n times would take 0(n(n + m)) time Even so, if the graph is

dense, that is, if it has 0(n2) edges, then this approach still runs in 0(n3) time

Thus, thefl only case where the algorithm of Theorem 6.21 is better than the

Floyd-Warshall algorithm is when the graph is not dense and is represented. using

an adjaceñcy list structUre.
We illustrate an example run of the Floyd-Warshall algorithm in Figure 6.17.

321
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(a)

(c)

(e)

Figure 6.17: Seauence of digraphs computed by the Floyd-Warshallalgori
initial diraph G = Go and numbering of the vertices; (b) digraph G1; (ç).
03, (e) G4, (1) 05 Note that Ô = 06 = G7 If digraph Ok_1 has the edge

and (vk, vi), but not the edge (v,,v), in the drawing of digraph 0k we sho
(v,,vk) and (vk,vj) with dashed thin lines, and edge (v,,v) with a solid thi.
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6.4.3 DFS and Garbage Collection

In some languages, like C and C++; the memory space for objects must be explicitly
allocated and deallocated by the programmer. This memory-allocation duty is often
overlooked by beginning programmers, and, when done incorrectly, it can even be
the source of frustrating programming errors for experienced programmers. Thus,
the designers of other languages, like Java, place the burden of memory manage-
ment on the run-time environment. A Java programmer does not have to explicitly
deallocate the memory for some object when its life is over. Instead, the garbage
collector mechanism deallocates the memory for such objects.

In Java, memory for most objects is allocated from a pool of memory called the
"memory heap". (hot to be confused with the heap data structure). In addition, the
running threads (Section 2.1.2) store the space. for their instance variables in their
respective method stacks (Section 2.1.1). Since instance variables in the method
stacks can refer to objects in the memory heap, all the variables and objects in the
method stacks of running threads are called root objects. All those objects that cän
be reached by following object references that start from a root object are called live
objects The live objects are the active objects currently being used by the running
program; these objects should noi be deallocated. For example, a running Java
program may store, in a variable, a reference to a sequence S that is implemented
using a doubly linked list The reference variable to S is a root object, while the
object for S is a live object, as are all the node objects that are referenced from this
object and all the elements that are referenced from these node objects.

From time to time, the Java virtual machine (JVM) may. notice that available.
space in the memory heap is becoming scarce. At such times, the JVM can elect to
reclaim the space that is being used for objects that are no longer live This reclama-
tion process is known as garbage collection. There are several different algorithms
for garbage colledtion, but one of the most used is the mark-sweep algorithm.

323

The Mark-Sweep Algorithm
.

In the mark-sweep garbage collection algorithm, we assodiate a "mark" bit with
each object that identifies if that object is live or not. When we determine at some
point that garbage collection is needed, we suspend all other running threads and
clear all of the mark bits of objects currently allocated in the memory heap. We then
trace through the Java stacks of the currently running threads and we mark all of the
(root) objects in these stacks as "live." We must then determine all of the other live
objectsthe ones that are reachable from the root objects. To do this efficiently,
we should use the directed-graph versiOn of the depth-first search traversal.. In this
case, each object in the memory heap is viewed as a vertex in a directed graph,
and the reference from one object to another is viewed as an edge. By pétforming
a directed DFS from each root object, we can correctly identify and mark .each
live object. This process is knOwn as the.. "mark" phase Once this process has
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completed, we then scan through the memory heap and reclaim any spac
- being used for an object that has not been marked. Thisrscanning process
as tIe "sweep" phase, and when it completes, we resuie running the sus,
threads. Thus, the mark-sweep garbage collection algorithm will reclaha
space in time proportional to the number of live objects and,their referenc
the size of the memory heap.

Performing DFS In-place

The mark-sweep algorithm correctly reclaims unused space in the memo
but there is an important issue we must face during the mark phase. Since
reclaimiñg memory space ata time when available memory is scarce, we mû
care not to use extra space during the garbage collection itself The trouble
the DES algorithm, in the recursive way we have described it, can use sp
portional to the number of vertices in the graph. In the case 9f garbage coil
the vertices in our graph are the objects in the memory heap; hence, we do
this much memory to use. So our only alternative is to find a way to perfó
in-place rather than recursively, that is, we must perform DES using only a cq
amount of additional st&age.

The main idea for performing DES in-place is to simulate the recursio
using the edges of the graph (which in the case of garbage collection correspo
object references). Whenever we traverse an edge from a visjted vertex y to
vertex w, we change the edge (y, w) stored in v's adjacency list to point back
parent in the DES tree. When we return back to y (simulating the return fro
"recursive" call at w), we can now switch the edge we modified to point bac
Of course, we need to have sorne way of identifying which edge we need ta
back One possibihty is to number the references going out of y as 1, 2, and
and store, in addition to the mark bit (which we are using for the "visited'e

our DFS), a ount identifier that tells us which edges we have modified.
Using a count identifier of course requires an extra word of storage per p

This extra word can be avoided in some implementations, however. For ex
many implementations of the Java virtual machine represent an object as
position of a reference with a type identifier (which indicates if this objeèt
Integer r some other type) and as a reference to the other objects or data fie
this object. Since the type reference is always supposed tobè the first elenie
the composition. in such implementations, we can use this reference to "mar
edge we changed when leaving an object y and going to some object w. W/
swap the reference at y that refers to the type of y with the reference at y th
to w. When we return to y, we can quickly identify the edge (y, w) we ch
because it will be the first reference in the compositiOn for y, and the positioíy
reference to v's type will tell us the place where this edge belongs in Vs adja
list. Thus, whether we tise this edge-swapping trick or a count identifier,
implement DES in-place without affecting its asymptotic running time
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6.4.4 Directed Acyclic Graphs

Directed graphs without directed, cycles are encountered. in many applications.
Such a digräph is often referred to as a directed acyclic graph, or dag, for short.
Applications of such graphs include the following:

Inheritance between C++ classes or Java interfaces
Prerequisites between courses of a degree. program
Scheduling constraints between the tasks of a project.

Example 6.24: In order to manage a large project, it is convenient to break it i.p
into a collection of smaller tasks. The' tasks, however, are rarely independent, be-
cause scheduling constraints exist between them. (For example, in a house building
project, the task óf ordering nails obviously precedes the task of nailing shingles to
the roof deck.) Clearly, scheduling constraints cannot have ciicularities, because a
circularity would make the project impossible. (For example; in order to get a job
you need to have work experience, but in order to get work experience you need to
have a job..) 'The scheduling constraints impose restrictions on the order in which
the tasks can be executed. Namely, if a constraint says that task a must be cQrn-
pleted before task b is started, then a must precede b in the order of execution of'
the tasks. Thus, if we modél a feasible set of tasks as vertices of a directed graph,
and we place a directed edge from vjto w whenever the task for y must be executed
before the task for w, then we define a directed acyclic graph.

The above example motivates the following definition. Let Ô be a digraph with
n vertices. A topological ordering of Ois an ordering (vi ,2, .. . ,v4 of the vertices

of Ô such that for every edge (vi, y1) of Ô, < j. That is, a topological ordering is an

ordering such that any directed path in Ô traverseyertices in increasing ordet (See
Figure 6.18.) Note that a digraph may have more than one topological ordering.

a) H (b)
Figure 6.18: Two topological orderings of the sanie acyclic digraph.

325
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Theorem 6.25: A digraph has a topological ordering if and only if it is a

Proof The necessity (the "only if' part of the statement) is easy to demons&
Suppose Ô is topologically ordered Assume, for the sake of a contradLction,4
G has a cycle consisting of edges (v0 ,v1), (v1 ,v2),... , (v,_i , w0). Because o
topological ordering, we must have i0 <ii <- - <i <io, which is dea
possible. Thus, Ô must be acyclic.

We now argue sufficiency (the "if' part). Suppose Ois acyclic. We desc
algorithm to build a topological ordéring for G. Since G is acyclic, G must
vertex with no incoming edges (that is, with in-degree O). Let vi be such a
Indeed, if y1 did not exist, then in tracing a directed path from an arbitrary s
tex we would eventually encounter a previously visited 'vertex, thus contradjjm
the acyclicity of Ô If we remove y1 from Ô, together with its outgoing edger
resulting digraph is still acyclic Hence, the resulting digraph also has a vertex
no incoming edges, and we let y2 be such a vertex By repealing thisyrocess
G becomes empty, we obtain an ordenng vi, ,v, of the vertices of G Becaus,,
the above construction, if (y,, V3) i5 an edge of G, then y, must be deleted befoP
can be deleted, and thus i < j. Thus, y1,... ,v is atopologicalordering

The above proof suggests Algorithm 6 19, called topological sowing.

Algorithm TopologicalSort(Ô):

Input: A digraph Ô with n vertices.
Output: A topological ordering y1,... ,v of Ô or an indication that Ôli

directed cycle.

let S be an initially enpty stack
for each vertex u of G do

incounter(u) - indeg(u)
if incounter(u) = O then

S. push (u)
i+-1
while S is not empty do

u - S.popQ
number u as the i-th vertex vii+l
forS each edge e E Ö.outlncidentEdges(u) do

w - G.opposité(u,e)
incounter(iP) - incoüntèr(w) - i
if incoünter(w) O then

S.push(w)
ifSisemptythen

return "digraph G has a directed cycle"
Ah!orithm 619: Tono1òciea1 snrtiiw 5ilenrithm

ha,
vei3
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Theorem 6.26: Let Ô be a digraph with n vertices and m edges. The topological
sorting algorithm runs in 0 (n + m) time using 0(n) auxiliary space, and either com-
putes a topological ordering of Ô or fails to number some vertices, which indicates
that Ô has a directed cycle.

Proof: The initial computation of in-degrees and setup of the incounter variables
can be done with a simple traversal of the graph, which takes 0(n + in) time. We
use an extra field in graph nodes or we use the decorator pattern, described in the
next section, to associate, counter attributes with the vertices. Say that a vertex u
is visited by the topological sorting algorithm when u is removed from the stack S.
A vertex u can be visited only when incòunter(u) = 0, which implies that all its
predeceÑsors (vertices with outgoing edges into u) were previously visited. As a
consequence, any vertex that is on a directed cycle will never be visited, and any
other vertex will be visited exactly once. The algorithm traverses all the outgoing
edges of each visited vertex once, so its running time is proportional to the number
of outgoing edges of the visited vertices. Therefore,' the algorithm runs in 0(n +
m). time. Regarding the space usage, observe that the stack S and the incounter
variables attached to the vertices use 0(n) space.

As a side effect, the algorithm also tests whether the input digraph Ô is acyclic.
Indeed, if the algorithm terminates without ordering all the vertices, then the sub-
graph of the vertices that have not been ordered must contain a directed cycle. (See
Figure 6.20.) '

(a) '(b)

Figure 6.20: Detecting a directed cycle: (a) input digraph; '(b) after algorithm

TopologicalSort (Algorithm 6 19) terminates, the subgraph tf the vertices with un-

defined number contains 'a directed cycle. '

ItT in .i. ...:.,i -..4-:nn n1nr,4tlnm ;,i c;«p jÇ 91
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(g) (h) (i)

Figure 6.21: Example of a run of algorithm TopologicalSort (Algorithm 6.19): (a)

initial configuration, (bi) after each while-loop iteration The vertex labels give
the vertex number and the current incoúnter value. The edges, traversed in previa

ous iterations are drawn with thick solid lines. The edges traversed in the current

o4
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In this section, we describe a case study implementation of the depth-first search
algonthm in Java This implementation is not simply an instantiation of the pseudo-
code in Java, however, as it employs two interesting software engineering design
patternsthe decorator pattern and the template method pattern.

6.5.1 The Decorator Pattern

Marking the explored vertices in a DFS traversal is an example of the decorator
software engineering design pattern. The decorator pattern is used to add attributes
or "decorations" to existing objects Each attribute is identified by a specific deco-

ration object, a, which acts as a kind of key identifying this attribute. Intuitively, the

attribute a is the "name" of the decoration, and we then allow this attribute to take

on different values, for the different objects that are decorated with a attributes. The
use o decorations is motivated by the need of some algöritlìms and data structures
to add extra variables, or temporary scratch data, to objects that do not normally
have such variables. Hence, a decoration is an (attribute, value) pair that can be
dynamically attached to an object. For example, nodes in an AVL tree or red-black

tree could be decorated with height or color attributes. In our DFS example, we
would like to have "decorable" vertices and edges with an explored attribute and:a

Boolean value.
We can realize the decorator pattern for all positional containers by adding the

following methods to the position ADT:

has(a): Tests whetherthe position has attribute a.

get(a):. Rétums thç value of attribute a.

set(a; 4: Sèts to x the value of attribute a.

destroy(a): Removes attribute a andits associated value.

Implementing the Decorator Pattern

The above methods can be implemented by storing at each position a dictionary of

the attributes and their values for that position, for example, in a small hash table.
That is, the attributes, which can either be specific attribute objects or even string

defining "names" for attributes, define the keys used in the hash table. Likewise,

the values are simple base types or objects that assign a specific piece of data to

given attnbutes Such a hash table implementation provides a fast and efficient

way to implement the methods of the decorator pattern. Indeed, although it is not

shown, we use a small hash table in our DFS application to implement the decorator.

pattern.

*%tava
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6.5.2 A DFS Engine

In Code Fragment 6.22, we show the main Java "engine" for a recursive de
se4rch travèrsal embodied in a class named." D FS."

/'k Generic depth first search traversal of a graph using the template
* method pattern. A subclass should override various methods to add
* functionality to this traversal. */

public abstract class DES {
/** The graph being traversed. /
protected lnsectableGraph G;
/** The result of the traversal. */ f

protected Object visitResult;
/** Perform a depth first search traversal. .

* @param g Input graph. -.

* @param start Start vertex of the traversal.
* @param info Auxiliary information (to be used by subclasses),

public Object execute(lnspectableGraph g, Vertex start, Object info) {G=g;
for (Positioniterator Pos = G.positionsQ; pos.hàsNextO; )

unVisit(pos.nextPositionQ);
return null; .

f

}/**,
* Recursive template method for a generic DES traversal.
* @param y Start vertex of the traversal.

protected Object dfsTraversal(Vertex y) {
initResultQ;
startVisit(v);
visit(v);
for (Edgelterator inEdges = G.incidentEdges(v); inEdges.hasNext, ) {

Edge nextEdge = .inEdges.nextEdge;
if (!isVisited(nextEdge)) { // found aninexplored edge, explore it

visit(nextEdge);
Vertex w = G.opposite(v, nextEdge);
if (!isVisited(w)) { // w is unexplored, this isi discovery edge

traverseDiscovery(nextEdge, y);
if (!isDoneQ)

visitResult = dfsTraversal(w);

}
}
fin ishVisit(v);
return resultQ;

}
else // w is explored, this is a back edge

traverseBack(nextEdge, y);

Code Fragment 6.22: Main variables and engiñe (dfsTravrsal) for the DFS cl
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6.5 3 The Template Method Design Pattern

The D F5 class is defined sO that its behavior can be specialized for any particular
application. In Code Fragments 6.23 and 6.24, we show the methods that perform
the specialization and decoration actions in the DFS class. The specialization is
done by redefining the method execute, which activates the computation, and the
following methods, which are called at various times by the recursive template
method dfsTraversa I.

initResultQ: called at the beginning of the execution of dfsTraversal.

startVisit(Vertex y): also called at the beginning of dfsTraversal.

traverseDiscovery(Edge e, Vertex y): balled when traversing a discovery edge
e out Of y.
traverseBack(Edge e, Vertex y): called when travérsing a back edge e out
of y.
isDoné() : called to determine whether to end the traversal early.
finishVisit(Vertex y): called when we are done traversing all the incident
edges of y.
resuitQ: called to return the output of dfsTraversal.

/' Auxiliary methods for specializing a generic DFS /
protected void initResult() {} // Initializes result (called first)
protected void startVisit( Vertex y) {} // Called when we first visit y
prótected void finishVisit( Vertex y) {} // Called when we finish with y
protected void traverseDiscovery(Edge e, Vertex from) {} // Discovery edge
protected void traverseBaçk(Edge e, Vertex from) {} // Back edge
protected boolan isDone() { retúrn false; j // Is DFS done early?
protected Object resulto { return new ObjectQ; j // The result of the DFS

Codé Fragment 6.23: Auxiliary mthods for specializWig the template method
dfsTraversal of class DFS (Code Fragment 6.22).'

/' Attribute and its two values for the visit status of positions. /
protected static Object STATUS =. new ObjectQ; // The status attribute
protected static Object VISITED= new ObjectQ; /f Visited value
protected static Object UNVISITED = new Object(); // Unvisited value
/' Mark a position as visited. */ t
protected void visit(Position p) { p.set(STATUS, VISITED); }
/ ** Mark a position as unvisited. */
protected void ùnVisit(Position p) { p.set(STATUS, UNVISITED); } y

/' Test if a position has been visited. */
protected boolean isVisited(Position p) { return (p.get(STATUS) == VISITED);

Code Fragment6 24 Methods visit, unVisit, and isVisited of class DFS (Code Frag-

ment 6.22) implemented using decorable positions.

331
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Definition of the Template Method Pattern r
5

Our generic depth-first search traversal is based on the template method
which descnbes a generic computation mechanism that can be specialized
defining certain steps. That is, we define a generic class, Algorithm, that pe
some useful and possibly complicated function while also calling a collec
named procedures at certain points Initially, the procedures do nothing, but b
tending the Algorithm class and redefining these methods to do interesting '

then we can construct a nontrivial computation. The Applet class in Java is
ample use of this design pattern. In the case of our DFS application, we us

template method pattern for depth-first search assuming that the undérlying
is undirected, but it can easily be modified to work for directed graphs.

The way we identify the vertices and edges that have been already visite
plored) during thè traversal is encapsulated in the calls to methods isVisited,.
and ii nVisit. Our implementation (see CodeFrame/nt 6.24) assumes that the e

and edge positions support the decorator pattern, which we discuss next. (Alte
tively, we can set up a dictionary of positions and store the visited vertice
edges in it.)

Using the DFS Template r

For us to do anything interesting with the dfsTraversal, we must extend the
class and redefine some of the auxiliary methods of Code Fragment 623 t
something nontrivial This approach conforms to the template method pattern,
these methods specialize the behavior of the template method dfsTraVersal

Class ConnectivityTesterDFS, given in Code Fragment 6.25, for instance,

tends the D FS to create a program that tests whether the graph is connected.
counts the vertices reachable by a DFS traversal starting at a vertçx and comp
this number with the total number of vértices of the graph.

/** This class specializes DFS t determine whether the graph is connected
public class ConnectivityTesterDFS extends DFS {

protected mt reached;
public Object execute(lnspectableGraph g, Vertex start, Object info) {

super.execute(g, start, info);
reached = O;
if (!G.isEmptyQ) {

Vertex y = G.aVertexQ;
dfsTraversal(v);

}
return (new Boolean(reached == G.numVerticesO));

}
public void startVisit(Vertex y) { reached++; J

}
Code Fragment 6.25: Specialization of clas.s DFS to test if the graph is connect
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Extending DFS for Path Finding

We can perform even moreinteresting algorithms by extending theD FS in more

clever ways. .

For example, Class FindPathDFS, given in Code Fragment 6.26, finds a path

between. a pair of given Start and target vertices. It performs a depth-first search
traversal beginning at the start vertex. .

We mantain the path of discovery edges
from the start vertex to the current vertex. When we encounter an unexplored ver'

tex, we. add it tO the end of the path, and when we finish processing a vertex, we

remove it from the path The traversal is terminated when the target vertex is en-
countered, and the path is returned as an iterator of vertices. Note .that the path
found by this class consists of discovery edges

/ ** This class spedalizes DFS to find a path between the start vertex
* and a given target vertex. *7 .

public class FindPathDFS extends DFS {
protected Sequence path;
protected boolean done;
protected Vertex target;

/ @param info target vertex of the path
* @return Iterator of thé vertices in a path from the start vertex
* to the target vertex, or an empty iterator if no such path
* exists in the graph /

public Object execute(lnspectableGraph g, Vertex start, Object info) {
super.execute(g, start, info);
path = new NodeSequenceQ;
dne = false;
target = (Vertex) info; /7 target vertex is stored in info parameter
dfsTraversal(start);
return new VertexlteratorAdapter(path .elementsQ);

}
protected void startVisit( Vertex y) {

path.insertLast(v).;
if (y = target)

done = true;
}
protected void fin ishVisit( Vertex y) {

if (!done)
path. remove(path .IastQ);

}
protectéd boolean isDorie() {

return done;

333.

Code Fragment 6.26: Specialization of class D FS to find a path. between .the start

vertex and a target vertex The auxiliary class VertexlteratorAdapter provides an

adapter from a sequence to a vertex iterator. .
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Extending DFS for Cycle Finding

We can also extend the DFS, as in Class FindCycleDFS, which is given

Fragment 6.27, to fiñd a cycle in the connected component of a given ve

The algorithm performs a depth-first search traversal from y that terminate

a back edge is found. The method returns a (possibly empty) iterator of tiì

formed by the found back edge.
I'

/** Specialize DFS to find a cycle in connected component of start vertex

public class FindCycleDES extends DES {
protected Sequence cycle; // sequence of .edges of the cycle

protected boolean done;
protected Vertex cycleStart, target;

/ ** return Iterator of edges of a cycle iñ the component of start vertex
public Objéct execute(inspectableGraph g, Vertex strt, Object info) {

super.execute(g, start, info);
cycle ríéw NodeSequence;
done = false;
dfsTraversal(start);
if (!cycle.isEmpty() && start cycleStart) {

Positioniterator Pos = cycle.positionsQ;
while (pos.hasNextQ) { // remove.the edges from start to cycleStart

Position p = pos.nextPositionO;
Edge e = (Edge) p.element;
cycle.remove(p);
if (g.arelncident(cycleStart, e)) break;

}
}
return new EdgelteratorAdapter(cycle.elernentSü)

}
protected void fin ish Visit( Vertex y) {

if ((!cycle.isEmptyO) && (Idone)) cycle. remove(cycle.lastQ);

}
protected void traverseDiscovery(Edge e, Vertex from) {

if (!done) cycle.insertLast(e);

}
protected void traverseBack(Edge e, Vertex from) {

if (!done) f
cycle.insertLast(e); // back edge ê creates a cycle
cycleStart = G.opposite(from, e);
done = true;

}

protected boolean isDone() { return done; }
}

Code Fragment 6.27: Specialization of class DFS to find a cycle in the conn

compönent of the start vertex. The auxiliary class EdgelteratorAdapter pro

an adapter from a sequence to an edge iterator.
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Rei nforcement
R-6 i Draw a simple undirected graph G that has 12 vertices, 18 edges, and 3 con-

nected compotntS. Why would it be impossible to thaw G with 3 connected

componenth if G had 66 edges?

R-6.2 Let G be a simple connectedgraph with n vertices and m edges. Explain why

0(10gm) is 0(logn)

R-6.3 Draw a simple connected directed graph with 8 vertices and 16 edges such that

the in-degree and out-degree of each vertex is 2. Show that there is a single

(nonsimple) cycle that includes all the edges of your graph, that is, you can trace

all the edges in their respective directions without ever lifting your pencil. (Such

a cycle is called an Euler tour.)

R-6.4 Bob loves foreign languages and wants to plan his course schedule to take the

following nine language courses: LAiS, LA16, LA22, LA31, LA32, LAl26,

LAl27, LA141, and LA169. The course prerequisites are: -

LAiS: (n9ne) LAl26: LA22, LA32 -
LA16: LAiS LAl27: LA16
LA22: (none) LA141: LA22, LA16
LA31:LAI5
LA32: LA16, LA31

LA169: LA32.

Find a sequence of courses that allows Bob to satisfy all the prerequisites.

R-6.5 Suppose we represent a graph G having n vertices and m edges with the edge list

structure. Why, in this case, does the insertVertex method run in 0(1) time while

the removeVertex method runs in 0(m) time?

R-6.6 Let G be a graph whose vertices are the integers 1 through 8, and let the adjacent

vertices of each vertex be given by the table below:

Assumé that, in a traversal of G, the adjacent vertices of a given vertex are re-

turned in the same order as they are listed in the above table.

a. DrawG.
b Order the vertices as they are visited in a DFS traversal starting at vertex i

c. Order the vertices as they are visited in a BFS traversal starting at verteX 1.

vertex adjacent vertices
1 (2,3,4)
2 (1,3,4):
3 (1,2,4)
4 (1,2,3,6)
5 (6,7,8)
6 (4,5,7)
7 (5,6,8)
8 (5,7)
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R-6.7 Wouldyou use the adjacency list structure or the adjacency matrix Strijc
each of the following cases? Justify your choice.

a. The graph has 10,000 vertices and 20,000 edges, and it is importan
as little space as possible.

b; The graph has 10,000 vertices and 20,000,000 edges, and it is impo
use as little space as possible.

c. You need to answer the query arëAdjacent as fast as possible, no
how much space you use.

R-6.8 Explain why thé DFS traversal runs in (3(n2) timeoti an n-vertex simple
that is represented with the adjacency matrix structure.

R-6.9 Draw the transitive closure of the directed graph shown in Figure 6.2.

R-6 10 Compute a topological ordering for the directed graph drawn with solid edg
Figure 6.14d.

R-6.11 Can we use a queue instead of a stackas an auxiliary data structure in the to
logical sorting algorithm shown in Algorithm 6 i9

R-6.12 Give the order in which the edges are labeled by the DFS traversal sho
Figure 6.6.

R-6.13 Repeat Exercise R-6.12 for Figure 6.13 illustrating a BFS traversal.

R-6.14 Repeat Exercise R-6.12 forFigure 6.15 illustrating a directed DFS traversai.

Creativity
C-6. 1 Justify Theorem 6.11.

T

C-6.2 Describe the details of an Q(n + in)-time algorithm for computing all the
nected compônents of an undirected graph G with n vertices and m edges

C-6.3 Let T be the spanning tree rooted at the start vertex próduced by the depth-
searchof à connected, undirected graph G. Argue why every edge of G, no
T, goes from a vertex in T to one of its ancestors, that is, it is a back edge

Hint: Suppose that such a nontree edge is a cross edge, and argue based upo
order the DFS visits the end vertices of this edge.

C-6.4 Suppose we wish to represent an n-vertex graph G using the edge list struá
assuming that we identify the vertices with the integers in the set {0, 1,. ,n
Describe how to implement the containe[E to support O(logn)-time pç
mance for the areAdjacent method. How are you implementing the metito
this case?

C-6.5 GiveaproofofLemma6.14

C-6.6 Show that if a graph G has at least three vertices, then it has a separation
only if it has a separation vertex.

C6.7 Give aproof of Lemma 6.16

C-6. 8 Supply the details of the proof of correctness Of algorithm Lin kCom ponent
gorithm 6.10).

è6
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C 6.9 Tamarindo University and manyother schools worldwide are doing ajoint project
on multimedia. A computernetwork is built to connect these schools using com-
municationlinks that form a free tree. The schools decide to install a file server
at one of the schools to share data among all the schools. Since the transmission
time on a link is dominated by thç link setup and synchroñization, the cost of a

data transfer is proportional to the number of links used. Hence, it is desirable to
choose a "central" location for the file server. Given a free tree T and a node y of

T, the eccentricity of y is the length of a longest path from y to any other node of
T. A node of T with minimum eccentricity is called a center of T.

Design an efficient algorithm that, iven an n-node free tree T, computes a

center of T.
Is the center unique? If not, how many distinct centers can a free tree have?

C-6.10 Show how to perform a BFS traversal using, as an auxiliary data structure a single

queue instead of the level containers Lo, L1 .....

C-6.11 Show that, if T is a BFS tree produced for a connected graph G, then, for each

vertex ' at level i, the path of T between s and y has i edges, and any other path

of «between s and y has at least i edges.

C-6.12 The time delay of a long-distance call can be determined by multiplying a small
fixed constant by the number of communication links on the telephone network

between the caller and callee. Suppose the telephone network of a company
námed RT&T is a free tree. The engineers Of RT&T Want to compute the maxi-

mum possible time delay that may be experienced in a long-distance call. Given

a free tree T, the diameter of T is the length of a longest path between two nodes

of T. Give an efficient algorithm for computing the diameter of T

C-6.13 A company named RT&T has a network of n switching stations connected by m

high-speed communication links. Each customer's phone is directly connected to

one station in his or her area. The engineers of RT&T have developed a prototype

video-plone system that allows two customers to see each other during aphohe

éall. In ordér t have acceptable image quality, however, the number of links

used to transmit video signals between the two parties cannot exceed 4. Suppose

that RT&T's network is represented by a graph. Design an efficient algorithm

that computes, for each station, the set of stations it can reach using no more than

4 links.

C-6.14 Explain why there are nO forward nontree edges with respect io a BFS tree con-

structed for a directed graph.

C-615 Give a detailed pseudo-code description of the directed DFS traversal algorithm.

How do we determine whether a nontree edge is a back edge, forward edge, or

cross edge?

&6, 16 Explain why the strong cOnnectivity testing algorithm given in Section 6.4.1 is

correct.

C-6 17 Let G be an undirected graph G with n vertices and m edges Descnbe an al-

gorithm running in O(n + m) time that traverses each edge of G exactly once in

Exercises 37
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C-6.18 An independent set of an undirected graph 0= (V, E) is a subset I of
that no two vertices in I are adjacént. That is, if iî,v E I, then (u,v)
maximal independent set M is an independent set such that, if we Weit
any additional vertex to M, then it would not be independent any longer.
graph has a maximal independent set. (Caft. you see this9 This questi
part of the exercise, but it is worth thinking about.) Give an efficient algo
that computes a maximal independent set for a graph G. What is this me
running time?

C-6.19 An Euler tour of a directed graph Ô with n vertices and in edges is a cycl
traverses eaçh edge of Ô exactly once according to its direction. Such a
always exists if Ô is connected and the in-degree equals the out-degree ¿
vertex in Ô. Describe an O(n +m)-time algorithm for finding an Euler to
such a digraph Ô.

C-6.20 Justify Theorem 6.18. /

Projects

P-6 1 Implement a simplified graph ADT that has only methods relevant to undií
graphs and does not include update methods, using the adjacency matnx s
ture. /

P-6.2 Implement the simplified graph ADT describéd in Project P-6.1, using the
cency list structure.

P-6,3 Implement a generic BFS traversal using the template method pattern

P-6.4 Implement the topological sôrting algorithm.

P-6. 5 Implement the Floyd-Warshall transitive closure algorithm.

Chapter Notes
2

The depthfirst search method is a part of the "folklore" of computer science, but Ho
and Tarjan [98, 198] are the ones who showed how useful this algorithm is for solvingì
eral different graph problems. Knuth [118] discusses the tàpological sorting probleni
simple linear-time algorithm that we descnbe in Section 6 4 1 for determimng if a dir
graph is strongly connected is due to Kosaraju. The Floyd-Warshall algorithm appear
a paper by Floyd. [69] and is based upon a theorem of Warshall [209]. The mark-sw
garbage collection method we describe is one f many different algorithms for pdrfo
ing garbage collection. We encourage the reader interested in further study of ga4
collection to examine the book by Jones [110] To learn about different algonthms
drawing graphs, please see the book chapter by Tamassia [194], the annotated bibliográ
of Di Battista et al [58], or the book by Di Battísta eta! [59]

The reader interested in further study of graph algorithms is referred to the boo
by Ahuja, Magnanti, and Orlin [9], Cormen, Leiserson, and Rivest [55], Even [6S],
bons [77], Mehlhorn [149], and Tarjan [200], and the book chapter by van Leeuwen E29
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As we saw in the previous chapter, the breadth-first search strategy can be used
to find a shortest path from some starting vertex to every other vertex in a connected
graph. This approach makes sense in cases where each edge is as good as any other,
but there are many situations where this approach is not appropriate.

For example, we might be using a graph to represent a computer network (such
as the Internet), and we might be interested in finding the fastest way to route a data
packet between two computers. In this case, it is probably not appropriate for all
the edges to be equal to each other, for some connections in a computer network are
typically much faster than others (for example, some edges might represent slow
phone-line connections while others might represent high-speed, fiber-optic con-
nections). Likewise, we might want to use a graph to represent the roads between
cities, and we might be interested in finding the fastest way to travel cross-country.
In this case, it is again probably not appropriate for all the edges to be equal to each
other, for some intercity distances will likely be much larger than others. Thus, it
is natural to consider graphs whose edges are not weighted equally.

In this chapter, we study weighted graphs. Aweighted graphis a graph that
has a numeric labelw(e) associated with each edgee, called theweightof edgee.
Edge weights can be integers, rational numbers, or real numbers, which represent
a concept such as distance, connection costs, or affinity. We show an example of a
weighted graph in Figure 7.1.

BOS

JFK

MIA

ORD

DFW

SFO

LAX

2704

1846 867

740

1258

1090

802
1464

337

2342

1235
1121

187

Figure 7.1: A weighted graph whose vertices represent major U.S. airports and
whose edge weights represent distances in miles. This graph has a path from JFK
to LAX of total weight 2,777 (going through ORD and DFW). This is the minimum
weight path in the graph from JFK to LAX.
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7.1 Single-Source Shortest Paths

Let G be a weighted graph. Thelength (or weight) of a pathP is the sum of the
weights of the edges ofP. That is, if P consists of edgese0,e1, . . . ,ek−1 then the
length ofP, denotedw(P), is defined as

w(P) =
k−1

∑
i=0

w(ei).

Thedistancefrom a vertexv to a vertexu in G, denotedd(v,u), is the length of a
minimum length path (also calledshortest path) from v to u, if such a path exists.

People often use the convention thatd(v,u) = +∞ if there is no path at all from
v to u in G. Even if there is a path fromv to u in G, the distance fromv to u may
not be defined, however, if there is a cycle inG whose total weight is negative.
For example, suppose vertices inG represent cities, and the weights of edges in
G represent how much money it costs to go from one city to another. If someone
were willing to actually pay us to go from say JFK to ORD, then the “cost” of the
edge (JFK,ORD) would be negative. If someone else were willing to pay us to go
from ORD to JFK, then there would be a negative-weight cycle inG and distances
would no longer be defined. That is, anyone can now build a path (with cycles) in
G from any cityA to another cityB that first goes to JFK and then cycles as many
times as he or she likes from JFK to ORD and back, before going on toB. The
existence of such paths allows us to build arbitrarily low negative-cost paths (and
in this case make a fortune in the process). But distances cannot be arbitrarily low
negative numbers. Thus, any time we use edge weights to represent distances, we
must be careful not to introduce any negative-weight cycles.

Suppose we are given a weighted graphG, and we are asked to find a shortest
path from some vertexv to each other vertex inG, viewing the weights on the
edges as distances. In this section, we explore efficient ways of finding all such
single-source shortest paths, if they exist.

The first algorithm we discuss is for the simple, yet common, case when all the
edge weights inG are nonnegative (that is,w(e) ≥ 0 for each edgee of G); hence,
we know in advance that there are no negative-weight cycles inG. Recall that the
special case of computing a shortest path when all weights are 1 was solved with
the BFS traversal algorithm presented in Section 6.3.3.

There is an interesting approach for solving thissingle-sourceproblem based
on thegreedy methoddesign pattern (Section 5.1). Recall that in this pattern we
solve the problem at hand by repeatedly selecting the best choice from among those
available in each iteration. This paradigm can often be used in situations where we
are trying to optimize some cost function over a collection of objects. We can add
objects to our collection, one at a time, always picking the next one that optimizes
the function from among those yet to be chosen.
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7.1.1 Dijkstra’s Algorithm

The main idea in applying the greedy method pattern to the single-source shortest-
path problem is to perform a “weighted” breadth-first search starting atv. In partic-
ular, we can use the greedy method to develop an algorithm that iteratively grows
a “cloud” of vertices out ofv, with the vertices entering the cloud in order of their
distances fromv. Thus, in each iteration, the next vertex chosen is the vertex out-
side the cloud that is closest tov. The algorithm terminates when no more vertices
are outside the cloud, at which point we have a shortest path fromv to every other
vertex ofG. This approach is a simple, but nevertheless powerful, example of the
greedy method design pattern.

A Greedy Method for Finding Shortest Paths

Applying the greedy method to the single-source, shortest-path problem, results in
an algorithm known asDijkstra’s algorithm. When applied to other graph prob-
lems, however, the greedy method may not necessarily find the best solution (such
as in the so-calledtraveling salesman problem, in which we wish to find the short-
est path that visits all the vertices in a graph exactly once). Nevertheless, there are
a number of situations in which the greedy method allows us to compute the best
solution. In this chapter, we discuss two such situations: computing shortest paths
and constructing minimum spanning trees.

In order to simplify the description of Dijkstra’s algorithm, we assume, in the
following, that the input graphG is undirected (that is, all its edges are undirected)
and simple (that is, it has no self-loops and no parallel edges). Hence, we denote the
edges ofG as unordered vertex pairs(u,z). We leave the description of Dijkstra’s
algorithm so that it works for a weighted directed graph as an exercise (R-7.2).

In Dijkstra’s algorithm, the cost function we are trying to optimize in our appli-
cation of the greedy method is also the function that we are trying to compute—the
shortest path distance. This may at first seem like circular reasoning until we realize
that we can actually implement this approach by using a “bootstrapping” trick, con-
sisting of using an approximation to the distance function we are trying to compute,
which in the end will be equal to the true distance.

Edge Relaxation

Let us define a labelD[u] for each vertexu of G, which we use to approximate the
distance inG from v to u. The meaning of these labels is thatD[u] will always store
the length of the best path we have foundso far from v to u. Initially, D[v] = 0
andD[u] = +∞ for eachu 6= v, and we define the setC, which is our “cloud” of
vertices, to initially be the empty set∅. At each iteration of the algorithm, we select
a vertexu not inC with smallestD[u] label, and we pullu into C. In the very first
iteration we will, of course, pullv into C. Once a new vertexu is pulled intoC,
we then update the labelD[z] of each vertexz that is adjacent tou and is outside of
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C, to reflect the fact that there may be a new and better way to get toz via u. This
update operation is known as arelaxation procedure, for it takes an old estimate
and checks if it can be improved to get closer to its true value. (A metaphor for
why we call this a relaxation comes from a spring that is stretched out and then
“relaxed” back to its true resting shape.) In the case of Dijkstra’s algorithm, the
relaxation is performed for an edge(u,z), such that we have computed a new value
of D[u] and wish to see if there is a better value forD[z] using the edge(u,z). The
specific edge relaxation operation is as follows:

Edge Relaxation:

if D[u]+w((u,z)) < D[z] then
D[z]← D[u]+w((u,z)).

Note that if the newly discovered path toz is no better than the old way, then we do
not changeD[z].

The Details of Dijkstra’s Algorithm

We give the pseudo-code for Dijkstra’s algorithm in Algorithm 7.2. Note that we
use a priority queueQ to store the vertices outside of the cloudC.

Algorithm DijkstraShortestPaths(G,v):
Input: A simple undirected weighted graphG with nonnegative edge weights,

and a distinguished vertexv of G
Output: A labelD[u], for each vertexu of G, such thatD[u] is the distance from

v to u in G

D[v]← 0
for each vertexu 6= v of ~G do

D[u]←+∞
Let a priority queueQ contain all the vertices ofG using theD labels as keys.
while Q is not emptydo
{pull a new vertexu into the cloud}
u←Q.removeMin()
for each vertexzadjacent tou such thatz is in Q do
{perform therelaxation procedure on edge(u,z)}
if D[u]+w((u,z)) < D[z] then

D[z]← D[u]+w((u,z))
Change toD[z] the key of vertexz in Q.

return the labelD[u] of each vertexu

Algorithm 7.2: Dijkstra’s algorithm for the single-source shortest path problem for
a graphG, starting from a vertexv.

We illustrate several iterations of Dijkstra’s algorithm in Figures 7.3 and 7.4.
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Figure 7.3: An execution of Dijkstra’s algorithm on a weighted graph. The start
vertex is BWI. A box next to each vertexu stores the labelD[u]. The symbol• is
used instead of+∞. The edges of the shortest-path tree are drawn as thick arrows,
and for each vertexu outside the “cloud” we show the current best edge for pulling
in u with a solid line. (Continued in Figure 7.4.)
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Figure 7.4: Visualization of Dijkstra’s algorithm. (Continued from Figure 7.3.)

Why It Works

The interesting, and possibly even a little surprising, aspect of the Dijkstra algo-
rithm is that, at the moment a vertexu is pulled intoC, its labelD[u] stores the
correct length of a shortest path fromv to u. Thus, when the algorithm terminates,
it will have computed the shortest-path distance fromv to every vertex ofG. That
is, it will have solved the single-source shortest path problem.

It is probably not immediately clear why Dijkstra’s algorithm correctly finds
the shortest path from the start vertexv to each other vertexu in the graph. Why
is it that the distance fromv to u is equal to the value of the labelD[u] at the time
vertexu is pulled into the cloudC (which is also the timeu is removed from the
priority queueQ)? The answer to this question depends on there being no negative-
weight edges in the graph, for it allows the greedy method to work correctly, as we
show in the lemma that follows.
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Lemma 7.1: In Dijkstra’s algorithm, whenever a vertexu is pulled into the cloud,
the labelD[u] is equal tod(v,u), the length of a shortest path fromv to u.

Proof: Suppose thatD[t] > d(v, t) for some vertext in V, and letu be thefirst
vertex the algorithm pulled into the cloudC (that is, removed fromQ), such that
D[u] > d(v,u). There is a shortest pathP from v to u (for otherwised(v,u) =
+∞= D[u]). Therefore, let us consider the moment whenu is pulled intoC, and
let zbe the first vertex ofP (when going fromv to u) that is not inC at this moment.
Let y be the predecessor ofz in path P (note that we could havey = v). (See
Figure 7.5.) We know, by our choice ofz, that y is already inC at this point.
Moreover,D[y] = d(v,y), sinceu is thefirst incorrect vertex. Wheny was pulled
into C, we tested (and possibly updated)D[z] so that we had at that point

D[z]≤ D[y]+w((y,z)) = d(v,y)+w((y,z)).

But sincez is the next vertex on the shortest path fromv to u, this implies that

D[z] = d(v,z).

But we are now at the moment when we are pickingu, notz, to joinC; hence,

D[u]≤ D[z].

It should be clear that a subpath of a shortest path is itself a shortest path. Hence,
sincez is on the shortest path fromv to u,

d(v,z)+d(z,u) = d(v,u).

Moreover,d(z,u) ≥ 0 because there are no negative-weight edges. Therefore,

D[u]≤ D[z] = d(v,z) ≤ d(v,z)+d(z,u) = d(v,u).

But this contradicts the definition ofu; hence, there can be no such vertexu.

C

v

u

z

y
P

D[y] = d(v,y)

D[z] = d(v,z)

the first “wrong” vertex

u picked next

D[u] > d(v,u)

soD[u] ≤ D[z]

Figure 7.5: A schematic illustration for the justification of Theorem 7.1.
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The Running Time of Dijkstra’s Algorithm

In this section, we analyze the time complexity of Dijkstra’s algorithm. We denote
with n andm, the number of vertices and edges of the input graphG, respectively.
We assume that the edge weights can be added and compared in constant time.
Because of the high level of the description we gave for Dijkstra’s algorithm in
Algorithm 7.2, analyzing its running time requires that we give more details on its
implementation. Specifically, we should indicate the data structures used and how
they are implemented.

Let us first assume that we are representing the graphG using an adjacency
list structure. This data structure allows us to step through the vertices adjacent to
u during the relaxation step in time proportional to their number. It still does not
settle all the details for the algorithm, however, for we must say more about how to
implement the other main data structure in the algorithm—the priority queueQ.

An efficient implementation of the priority queueQ uses a heap (see Sec-
tion 2.4.3). This allows us to extract the vertexu with smallestD label, by call-
ing theremoveMin method, inO(logn) time. As noted in the pseudo-code, each
time we update aD[z] label we need to update the key ofz in the priority queue.
If Q is implemented as a heap, then this key update can, for example, be done by
first removing and then insertingz with its new key. If our priority queueQ sup-
ports the locator pattern (see Section 2.4.4), then we can easily implement such
key updates inO(logn) time, since a locator for vertexz would allow Q to have
immediate access to the item storingz in the heap (see Section 2.4.4). Assuming
this implementation ofQ, Dijkstra’s algorithm runs inO((n+m) logn) time.

Referring back to Algorithm 7.2, the details of the running-time analysis are as
follows:

• Inserting all the vertices inQ with their initial key value can be done in
O(nlogn) time by repeated insertions, or inO(n) time using bottom-up heap
construction (see Section 2.4.4).

• At each iteration of thewhile loop, we spendO(logn) time to remove vertex
u from Q, andO(deg(v) logn) time to perform the relaxation procedure on
the edges incident onu.

• The overall running time of thewhile loop is

∑
v∈G

(1+deg(v)) logn,

which isO((n+m) logn) by Theorem 6.6.

Thus, we have the following.

Theorem 7.2: Given a weightedn-vertex graphG with medges, each with a non-
negative weight, Dijkstra’s algorithm can be implemented to find all shortest paths
from a vertexv in G in O(mlogn) time.

Note that if we wish to express the above running time as a function ofn only,
then it isO(n2 logn) in the worst case, since we have assumed thatG is simple.
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An Alternative Implementation for Dijkstra’s Algorithm

Let us now consider an alternative implementation for the priority queueQ using
an unsorted sequence. This, of course, requires that we spendΩ(n) time to extract
the minimum element, but it allows for very fast key updates, providedQ supports
the locator pattern (Section 2.4.4). Specifically, we can implement each key update
done in a relaxation step inO(1) time—we simply change the key value once we
locate the item inQ to update. Hence, this implementation results in a running time
that isO(n2 +m), which can be simplified toO(n2) sinceG is simple.

Comparing the Two Implementations

We have two choices for implementing the priority queue in Dijkstra’s algorithm:
a locator-based heap implementation, which yieldsO(mlogn) running time, and a
locator-based unsorted sequence implementation, which yields anO(n2)-time algo-
rithm. Since both implementations would be fairly simple to code up, they are about
equal in terms of the programming sophistication needed. These two implementa-
tions are also about equal in terms of the constant factors in their worst-case running
times. Looking only at these worst-case times, we prefer the heap implementation
when the number of edges in the graph is small (that is, whenm< n2/ logn), and
we prefer the sequence implementation when the number of edges is large (that is,
whenm> n2/ logn).

Theorem 7.3: Given a simple weighted graphG with n vertices andm edges,
such that the weight of each edge is nonnegative, and a vertexv of G, Dijkstra’s
algorithm computes the distance fromv to all other vertices ofG in O(mlogn)
time, or, alternatively, inO(n2) time.

In Exercise R-7.3, we explore how to modify Dijkstra’s algorithm to output a
treeT rooted atv, such that the path inT from v to a vertexu is a shortest path
in G from v to u. In addition, extending Dijkstra’s algorithm for directed graphs
is fairly straightforward. We cannot extend Dijkstra’s algorithm to work on graphs
with negative-weight edges, however, as Figure 7.6 illustrates.

C

120

- 8

124

10 D[z]=130

z

y

x

v

Figure 7.6: An illustration of why Dijkstra’s algorithm fails for graphs with
negative-weight edges. Bringingz into C and performing edge relaxations will
invalidate the previously computed shortest path distance (124) tox.
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7.1.2 The Bellman-Ford Shortest Paths Algorithm

There is another algorithm, which is due to Bellman and Ford, that can find shortest
paths in graphs that have negative-weight edges. We must, in this case, insist that
the graph be directed, for otherwise any negative-weight undirected edge would
immediately imply a negative-weight cycle, where we traverse this edge back and
forth in each direction. We cannot allow such edges, since a negative cycle invali-
dates the notion of distance based on edge weights.

Let ~G be a weighted directed graph, possibly with some negative-weight edges.
The Bellman-Ford algorithm for computing the shortest-path distance from some
vertexv in ~G to every other vertex in~G is very simple. It shares the notion of edge
relaxation from Dijkstra’s algorithm, but does not use it in conjunction with the
greedy method (which would not work in this context; see Exercise C-7.2). That
is, as in Dijkstra’s algorithm, the Bellman-Ford algorithm uses a labelD[u] that is
always an upper bound on the distanced(v,u) from v to u, and which is iteratively
“relaxed” until it exactly equals this distance.

The Details of the Bellman-Ford Algorithm

The Bellman-Ford method is shown in Algorithm 7.7. It performsn− 1 times a
relaxation of every edge in the digraph. We illustrate an execution of the Bellman-
Ford algorithm in Figure 7.8.

Algorithm BellmanFordShortestPaths(~G,v):
Input: A weighted directed graph~G with n vertices, and a vertexv of ~G
Output: A labelD[u], for each vertexu of ~G, such thatD[u] is the distance from

v to u in ~G, or an indication that~G has a negative-weight cycle

D[v]← 0
for each vertexu 6= v of ~G do

D[u]←+∞
for i← 1 ton−1 do

for each (directed) edge(u,z) outgoing fromu do
{Perform therelaxation operation on(u,z)}
if D[u]+w((u,z)) < D[z] then

D[z]← D[u]+w((u,z))
if there are no edges left with potential relaxation operationsthen

return the labelD[u] of each vertexu
else

return “~G contains a negative-weight cycle”

Algorithm 7.7: The Bellman-Ford single-source shortest-path algorithm, which al-
lows for negative-weight edges.
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Figure 7.8: An illustration of an application of the Bellman-Ford algorithm. The start
vertex is BWI. A box next to each vertexu stores the labelD[u], with “shadows” showing
values revised during relaxations; the thick edges are causing such relaxations.
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Lemma 7.4: If at the end of the execution of Algorithm 7.7 there is an edge(u,z)
that can be relaxed (that is,D[u]+w((u,z)) < D[z]), then the input digraph~G con-
tains a negative-weight cycle. Otherwise,D[u] = d(v,u) for each vertexu in ~G.

Proof: For the sake of this proof, let us introduce a new notion of distance in
a digraph. Specifically, letdi(v,u) denote the length of a path fromv to u that is
shortest among all paths fromv to u that contain at mosti edges. We calldi(v,u)
the i-edge distancefrom v to u. We claim that after iterationi of the main for-
loop in the Bellman-Ford algorithmD[u] = di(v,u) for each vertex in~G. This is
certainly true before we even begin the first iteration, forD[v] = 0 = d0(v,v) and,
for u 6= v, D[u] = +∞= d0(v,u). Suppose this claim is true before iterationi (we
will now show that if this is the case, then this claim will be true after iterationi
as well). In iterationi, we perform a relaxation step for every edge in the digraph.
The i-edge distancedi(v,u), from v to a vertexu, is determined in one of two ways.
Either di(v,u) = di−1(v,u) or di(v,u) = di−1(v,z) + w((z,u)) for some vertexz in
~G. Because we do a relaxation foreveryedge of~G in iteration i, if it is the former
case, then after iterationi we haveD[u] = di−1(v,u) = di(v,u), and if it is the latter
case, then after iterationi we haveD[u] = D[z]+w((z,u)) = di−1(v,z)+w((z,u)) =
di(v,u). Thus, ifD[u] = di−1(v,u) for each vertexu before iterationi, thenD[u] =
di(v,u) for each vertexu after iterationi.

Therefore, aftern−1 iterations,D[u] = dn−1(v,u) for each vertexu in ~G. Now
observe that if there is still an edge in~G that can be relaxed, then there is some
vertexu in ~G, such that then-edge distance fromv to u is less than the(n−1)-edge
distance fromv to u, that is,dn(v,u) < dn−1(v,u). But there are onlyn vertices in~G;
hence, if there is a shortestn-edge path fromv to u, it must repeat some vertexz in
~G twice. That is, it must contain a cycle. Moreover, since the distance from a vertex
to itself using zero edges is 0 (that is,d0(z,z) = 0), this cycle must be a negative-
weight cycle. Thus, if there is an edge in~G that can still be relaxed after running the
Bellman-Ford algorithm, then~G contains a negative-weight cycle. If, on the other
hand, there is no edge in~G that can still be relaxed after running the Bellman-Ford
algorithm, then~G does not contain a negative-weight cycle. Moreover, in this case,
every shortest path between two vertices will have at mostn−1 edges; hence, for
each vertexu in ~G, D[u] = dn−1(v,u) = d(v,u).

Thus, the Bellman-Ford algorithm is correct and even gives us a way of telling
when a digraph contains a negative-weight cycle. The running time of the Bellman-
Ford algorithm is easy to analyze. We perform the main for-loopn−1 times, and
each such loop involves spendingO(1) time for each edge in~G. Therefore, the
running time for this algorithm isO(nm). We summarize as follows:

Theorem 7.5: Given a weighted directed graph~G with n vertices andm edges,
and a vertexv of ~G, the Bellman-Ford algorithm computes the distance fromv to all
other vertices ofG or determines that~G contains a negative-weight cycle inO(nm)
time.
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7.1.3 Shortest Paths in Directed Acyclic Graphs

As mentioned above, both Dijkstra’s algorithm and the Bellman-Ford algorithm
work for directed graphs. We can solve the single-source shortest paths problem
faster than these algorithms can, however, if the digraph has no directed cycles, that
is, it is a weighted directed acyclic graph (DAG).

Recall from Section 6.4.4 that a topological ordering of a DAG~G is a listing of
its vertices(v1,v2, . . . ,vn), such that if(vi ,vj) is an edge in~G, theni < j. Also, recall
that we can use the depth-first search algorithm to compute a topological ordering
of the n vertices in anm-edge DAG~G in O(n+ m) time. Interestingly, given a
topological ordering of such a weighted DAG~G, we can compute all shortest paths
from a given vertexv in O(n+m) time.

The Details for Computing Shortest Paths in a DAG

The method, which is given in Algorithm 7.9, involves visiting the vertices of~G
according to the topological ordering, relaxing the outgoing edges with each visit.

Algorithm DAGShortestPaths(~G,s):
Input: A weighted directed acyclic graph (DAG)~Gwith nvertices andmedges,

and a distinguished vertexs in ~G
Output: A labelD[u], for each vertexu of ~G, such thatD[u] is the distance from

v to u in ~G

Compute a topological ordering(v1,v2, . . . ,vn) for ~G
D[s]← 0
for each vertexu 6= sof ~G do

D[u]←+∞
for i← 1 ton−1 do
{Relax each outgoing edge fromvi}
for each edge(vi ,u) outgoing fromvi do

if D[vi ]+w((vi,u)) < D[u] then
D[u]← D[vi ]+w((vi,u))

Output the distance labelsD as the distances froms.

Algorithm 7.9: Shortest path algorithm for a directed acyclic graph.

The running time of the shortest path algorithm for a DAG is easy to analyze.
Assuming the digraph is represented using an adjacency list, we can process each
vertex in constant time plus an additional time proportional to the number of its
outgoing edges. In addition, we have already observed that computing the topolog-
ical ordering of the vertices in~G can be done inO(n+ m) time. Thus, the entire
algorithm runs inO(n+m) time. We illustrate this algorithm in Figure 7.10.
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Figure 7.10: An illustration of the shortest-path algorithm for a DAG.

Theorem 7.6: DAGShortestPaths computes the distance from a start vertexs to
each other vertex in a directedn-vertex graph~G with m edges inO(n+m) time.

Proof: Suppose, for the sake of a contradiction, thatvi is the first vertex in the
topological ordering such thatD[vi ] is not the distance froms to vi . First, note that
D[vi ] < +∞, for the initialD value for each vertex other thans is +∞ and the value
of a D label is only ever lowered if a path froms is discovered. Thus, ifD[vj ] =
+∞, thenvj is unreachable froms. Therefore,vi is reachable froms, so there is a
shortest path froms to vi . Let vk be the penultimate vertex on a shortest path from
s to vi . Since the vertices are numbered according to a topological ordering, we
have thatk < i. Thus,D[vk] is correct (we may possibly havevk = s). But when
vk is processed, we relax each outgoing edge fromvk, including the edge on the
shortest path fromvk to vi . Thus,D[vi ] is assigned the distance froms to vi . But
this contradicts the definition ofvi ; hence, no such vertexvi can exist.
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7.2 All-Pairs Shortest Paths

Suppose we wish to compute the shortest path distance between every pair of ver-
tices in a directed graph~G with n vertices andm edges. Of course, if~G has no
negative-weight edges, then we could run Dijkstra’s algorithm from each vertex in
~G in turn. This approach would takeO(n(n+ m) logn) time, assuming~G is rep-
resented using an adjacency list structure. In the worst case, this bound could be
as large asO(n3 logn). Likewise, if ~G contains no negative-weight cycles, then we
could run the Bellman-Ford algorithm starting from each vertex in~G in turn. This
approach would run inO(n2m) time, which, in the worst case, could be as large as
O(n4). In this section, we consider algorithms for solving the all-pairs shortest path
problem inO(n3) time, even if the digraph contains negative-weight edges (but not
negative-weight cycles).

7.2.1 A Dynamic Programming Shortest Path Algorithm

The first all-pairs shortest path algorithm we discuss is a variation on an algorithm
we have given earlier in this book, namely, the Floyd-Warshall algorithm for com-
puting the transitive closure of a directed graph (Algorithm 6.16).

Let ~G be a given weighted directed graph. We number the vertices of~G arbi-
trarily as(v1,v2, . . . ,vn). As in any dynamic programming algorithm (Section 5.3),
the key construct in the algorithm is to define a parameterized cost function that is
easy to compute and also allows us to ultimately compute a final solution. In this
case, we use the cost function,Dk

i, j , which is defined as the distance fromvi to vj

using only intermediate vertices in the set{v1,v2, . . . ,vk}. Initially,

D0
i, j =




0 if i = j
w((vi ,vj)) if (vi ,vj) is an edge in~G
+∞ otherwise.

Given this parameterized cost functionDk
i, j , and its initial valueD0

i, j , we can then
easily define the value for an arbitraryk > 0 as

Dk
i, j = min{Dk−1

i, j ,Dk−1
i,k +Dk−1

k, j }.
In other words, the cost for going fromvi to vj using vertices numbered 1 through
k is equal to the shorter of two possible paths. The first path is simply the shortest
path fromvi to vj using vertices numbered 1 throughk− 1. The second path is
the sum of the costs of the shortest path fromvi to vk using vertices numbered 1
throughk−1 and the shortest path fromvk to vj using vertices numbered 1 through
k− 1. Moreover, there is no other shorter path fromvi to vj using vertices of
{v1,v2, . . . ,vk} than these two. If there was such a shorter path and it excludedvk,
then it would violate the definition ofDk−1

i, j , and if there was such a shorter path and

it includedvk, then it would violate the definition ofDk−1
i,k or Dk−1

k, j . In fact, note
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Algorithm AllPairsShortestPaths(~G):
Input: A simple weighted directed graph~G without negative-weight cycles
Output: A numberingv1,v2, . . . ,vn of the vertices of~G and a matrixD, such

thatD[i, j] is the distance fromvi to vj in ~G

let v1,v2, . . . , vn be an arbitrary numbering of the vertices of~G
for i← 1 to n do

for j← 1 to n do
if i = j then

D0[i, i]← 0
if (vi ,vj) is an edge in~G then

D0[i, j]← w((vi ,vj))
else

D0[i, j]←+∞
for k← 1 to n do

for i← 1 ton do
for j← 1 to n do

Dk[i, j]←min{Dk−1[i, j],Dk−1[i,k]+Dk−1[k, j]}
return matrix Dn

Algorithm 7.11: A dynamic programming algorithm to compute all-pairs shortest
path distances in a digraph without negative cycles.

that this argument still holds even if there are negative cost edges in~G, just so long
as there are no negative cost cycles. In Algorithm 7.11, we show how this cost-
function definition allows us to build an efficient solution to the all-pairs shortest
path problem.

The running time for this dynamic programming algorithm is clearlyO(n3).
Thus, we have the following theorem

Theorem 7.7: Given a simple weighted directed graph~G with n vertices and
no negative-weight cycles, Algorithm 7.11 (AllPairsShortestPaths) computes the
shortest-path distances between each pair of vertices of~G in O(n3) time.

7.2.2 Computing Shortest Paths via Matrix Multiplication

We can view the problem of computing the shortest-path distances for all pairs of
vertices in a directed graph~G as a matrix problem. In this subsection, we describe
how to solve the all-pairs shortest-path problem inO(n3) time using this approach.
We first describe how to use this approach to solve the all-pairs problem inO(n4)
time, and then we show how this can be improved toO(n3) time by studying the
problem in more depth. This matrix-multiplication approach to shortest paths is
especially useful in contexts where we represent graphs using the adjacency matrix
data structure.
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The Weighted Adjacency Matrix Representation

Let us number the vertices of~G as (v0,v1, . . . ,vn−1), returning to the convention
of numbering the vertices starting at index 0. Given this numbering of the vertices
of ~G, there is a natural weighted view of the adjacency matrix representation for a
graph, where we defineA[i, j] as follows:

A[i, j] =




0 if i = j
w((vi ,vj)) if (vi ,vj) is an edge in~G
+∞ otherwise.

(Note that this is the same definition used for the cost functionD0
i, j from the previ-

ous subsection.)

Shortest Paths and Matrix Multiplication

In other words,A[i, j] stores the shortest path distance fromvi to vj using one or
fewer edges in the path. Let us therefore use the matrixA to define another matrix
A2, such thatA2[i, j] stores the shortest path distance fromvi to vj using at most two
edges. A path with at most two edges is either empty (a zero-edge path) or it adds
an extra edge to a zero-edge or one-edge path. Therefore, we can defineA2[i, j] as

A2[i, j] = min
l=0,1,...,n−1

{A[i, l ]+A[l , j]}.

Thus, givenA, we can compute the matrixA2 in O(n3) time, by using an algorithm
very similar to the standard matrix multiplication algorithm.

In fact, we can view this computation as a matrix multiplication in which we
have simply redefined what the operators “plus” and “times” mean in the matrix
multiplication algorithm (the programming language C++ specifically allows for
such operator overloading). If we let “plus” be redefined to mean “min” and we
let “times” be redefined to mean “+,” then we can writeA2[i, j] as a true matrix
multiplication:

A2[i, j] = ∑
l=0,1,...,n−1

A[i, l ] ·A[l , j].

Indeed, this matrix-multiplication viewpoint is the reason why we have written this
matrix as “A2,” for it is the square of the matrixA.

Let us continue this approach to define a matrixAk, so thatAk[i, j] is the shortest-
path distance fromvi to vj using at mostk edges. Since a path with at mostk edges
is equivalent to a path with at mostk−1 edges plus possibly one additional edge,
we can defineAk so that

Ak[i, j] = ∑
l=0,1,...,n−1

Ak−1[i, l ] ·A[l , j],

continuing the operator redefining so that “+” stands for “min” and “·” stands
for “+.”
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The crucial observation is that if~G contains no negative-weight cycles, then
An−1 stores the shortest-path distance between each pair of vertices in~G. This
observation follows from the fact that any well-defined shortest path contains at
mostn−1 edges. If a path has more thann−1 edges, it must repeat some vertex;
hence, it must contain a cycle. But a shortest path will never contain a cycle (unless
there is a negative-weight cycle in~G). Thus, to solve the all-pairs shortest path
problem, all we need to do is to multiplyA times itselfn−1 times. Since each such
multiplication can be done inO(n3) time, this approach immediately gives us the
following.

Theorem 7.8: Given a weighted directedn-vertex graph~Gcontaining no negative-
weight cycles, and the weighted adjacency matrixA for ~G, the all-pairs shortest path
problem for~G can be solved by computingAn−1, which can be performed inO(n4)
time.

In Section 10.1.4, we discuss an exponentiation algorithm for numbers, which
can be applied in the present context of matrix multiplication to computeAn−1 in
O(n3 logn) time. We can actually computeAn−1 in O(n3) time, however, by taking
advantage of additional structure present in the all-pairs shortest-path problem.

Matrix Closure

As observed above, if~G contains no negative-weight cycles, thenAn−1 encodes all
the shortest-path distances between pairs of vertices in~G. A well-defined shortest
path can contain no cycles; hence, a shortest path restricted to contain at mostn−1
edges must be a true shortest path. Likewise, a shortest path containing at mostn
edges is a true shortest path, as is a shortest path containing at mostn+ 1 edges,
n+2 edges, and so on. Therefore, if~G contains no negative-weight cycles, then

An−1 = An = An+1 = An+2 = · · · .
Theclosureof a matrixA is defined as

A∗ =
∞
∑
l=0

Al ,

if such a matrix exists. IfA is a weighted adjacency matrix, thenA∗[i, j] is the sum
of all possible paths fromvi to vj . In our case,A is the weighted adjacency matrix
for a directed graph~G and we have redefined “+” as “min.” Thus, we can write

A∗ = min
i=0,...,∞

{Ai}.

Moreover, since we are computing shortest path distances, the entries inAi+1 are
never larger than the entries inAi. Therefore, for the weighted adjacency matrix of
ann-vertex digraph~G with no negative-weight cycles,

A∗ = An−1 = An = An+1 = An+2 = · · · .
That is,A∗[i, j] stores the length of the shortest path fromvi to vj .
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Computing the Closure of a Weighted Adjacency Matrix

We can compute the closureA∗ by divide-and-conquer inO(n3) time. Without
loss of generality, we may assume thatn is a power of two (if not, then pad the
digraph~G with extra vertices that have no in-going or out-going edges). Let us
divide the setV of vertices in~G into two equal-sized setsV1 = {v0, . . . ,vn/2−1} and
V2 = {vn/2, . . . ,vn−1}. Given this division, we can likewise divide the adjacency
matrixA into four blocks,B,C, D, andE, each withn/2 rows and columns, defined
as follows:

• B: weights of edges fromV1 toV1

• C: weights of edges fromV1 to V2

• D: weights of edges fromV2 toV1

• E: weights of edges fromV2 to V2.

That is,

A =
(

B C
D E

)
.

We illustrate these four sets of edges in Figure 7.12.
Likewise, we can partitionA∗ into four blocksW, X, Y, andZ, as well, which

are similarly defined.

• W: weights of shortest paths fromV1 toV1

• X: weights of shortest paths fromV1 toV2

• Y: weights of shortest paths fromV2 to V1

• Z: weights of shortest paths fromV2 toV2,

That is,

A∗ =
(

W X
Y Z

)
.

V1
V2

B

D

C
E

Figure 7.12: An illustration of the four sets of edges used to partition the adjacency
matrix A in the divide-and-conquer algorithm for computingA∗.
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Submatrix Equations

By these definitions and those above, we can derive simple equations to defineW,
X, Y, andZ directly from the submatricesB, C, D, andE.

• W = (B+C ·E∗ ·D)∗, for paths inW consist of the closure of subpaths that
either stay inV1 or jump toV2, travel inV2 for a while, and then jump back
toV1.

• X = W ·C ·E∗, for paths inX consist of the closure of subpaths that start and
end inV1 (with possible jumps toV2 and back), followed by a jump toV2 and
the closure of subpaths that stay inV2.

• Y = E∗ ·D ·W, for paths inY consist of the closure of subpaths that stay in
V2, followed by a jump toV1 and the closure of subpaths that start and end in
V1 (with possible jumps toV2 and back).
• Z = E∗ + E∗ ·D ·W ·C ·E∗, for paths inZ consist of paths that stay inV2

or paths that travel inV2, jump toV1, travel inV1 for a while (with possible
jumps toV2 and back), jump back toV2, and then stay inV2.

Given these equations it is a simple matter to then construct a recursive algo-
rithm to computeA∗. In this algorithm, we divideA into the blocksB, C, D, and
E, as described above. We then recursively compute the closureE∗. GivenE∗, we
can then recursively compute the closure(B+C ·E∗ ·D)∗, which isW.

Note that no other recursive closure computations are then needed to compute
X, Y, andZ. Thus, after a constant number of matrix additions and multiplications,
we can compute all the blocks inA∗. This gives us the following theorem.

Theorem 7.9: Given a weighted directedn-vertex graph~Gcontaining no negative-
weight cycles, and the weighted adjacency matrixA for ~G, the all-pairs shortest path
problem for~G can be solved by computingA∗, which can be performed inO(n3)
time.

Proof: We have already argued why the computation ofA∗ solves the all-pairs
shortest-path problem. Consider, then, the running time of the divide-and-conquer
algorithm for computingA∗, the closure of then× n adjacency matrixA. This
algorithm consists of two recursive calls to compute the closure of(n/2)× (n/2)
submatrices, plus a constant number of matrix additions and multiplications (using
“min” for “ +” and “+” for “ ·”). Thus, assuming we use the straightforwardO(n3)-
time matrix multiplication algorithm, we can characterize the running time,T(n),
for computingA∗ as

T(n) =
{

b if n = 1
2T(n/2)+cn3 if n > 1,

whereb > 0 andc > 0 are constants. Therefore, by the Master Theorem (5.6), we
can computeA∗ in O(n3) time.
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7.3 Minimum Spanning Trees

Suppose we wish to connect all the computers in a new office building using the
least amount of cable. Likewise, suppose we have an undirected computer network
in which each connection between two routers has a cost for usage; we want to
connect all our routers at the minimum cost possible. We can model these problems
using a weighted graphG whose vertices represent the computers or routers, and
whose edges represent all the possible pairs(u,v) of computers, where the weight
w((v,u)) of edge(v,u) is equal to the amount of cable or network cost needed to
connect computerv to computeru. Rather than computing a shortest path tree from
some particular vertexv, we are interested instead in finding a (free) treeT that
contains all the vertices ofG and has the minimum total weight over all such trees.
Methods for finding such trees are the focus of this section.

Problem Definition

Given a weighted undirected graphG, we are interested in finding a treeT that
contains all the vertices inG and minimizes the sum of the weights of the edges
of T, that is,

w(T) = ∑
e∈T

w(e).

We recall from Section 6.1 that a tree such as this, which contains every vertex
of a connected graphG, is said to be aspanning tree. Computing a spanning tree
T with smallest total weight is the problem of constructing aminimum spanning
tree(or MST).

The development of efficient algorithms for the minimum-spanning-tree prob-
lem predates the modern notion of computer science itself. In this section, we
discuss two algorithms for solving the MST problem. These algorithms are all
classic applications of thegreedy method. As was discussed in Section 5.1, we ap-
ply the greedy method by iteratively choosing objects to join a growing collection,
by incrementally picking an object that minimizes some cost function.

The first MST algorithm we discuss is Kruskal’s algorithm, which “grows”
the MST in clusters by considering edges in order of their weights. The second
algorithm we discuss is the Prim-Jarnı́k algorithm, which grows the MST from
a single root vertex, much in the same way as Dijkstra’s shortest-path algorithm.
We conclude this section by discussing a third algorithm, due to Bar˚uvka, which
applies the greedy approach in a parallel way.

As in Section 7.1.1, in order to simplify the description the algorithms, we
assume, in the following, that the input graphG is undirected (that is, all its edges
are undirected) and simple (that is, it has no self-loops and no parallel edges).
Hence, we denote the edges ofG as unordered vertex pairs(u,z).
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A Crucial Fact about Minimum Spanning Trees

Before we discuss the details of these algorithms, however, let us give a crucial fact
about minimum spanning trees that forms the basis of the algorithms. In particular,
all the MST algorithms we discuss are based on the greedy method, which in this
case depends crucially on the following fact. (See Figure 7.13.)

V1 V2

e

min-weight
“bridge” edge

eBelongs to a Minimum Spanning Tree

Figure 7.13: An illustration of the crucial fact about minimum spanning trees.

Theorem 7.10: Let G be a weighted connected graph, and letV1 andV2 be a
partition of the vertices ofG into two disjoint nonempty sets. Furthermore, letebe
an edge inG with minimum weight from among those with one endpoint inV1 and
the other inV2. There is a minimum spanning treeT that haseas one of its edges.

Proof: Let T be a minimum spanning tree ofG. If T does not contain edgee,
the addition ofe to T must create a cycle. Therefore, there is some edgef of this
cycle that has one endpoint inV1 and the other inV2. Moreover, by the choice ofe,
w(e)≤ w( f ). If we removef from T ∪{e}, we obtain a spanning tree whose total
weight is no more than before. SinceT was a minimum spanning tree, this new
tree must also be a minimum spanning tree.

In fact, if the weights inG are distinct, then the minimum spanning tree is
unique; we leave the justification of this less crucial fact as an exercise (C-7.5).

In addition, note that Theorem 7.10 remains valid even if the graphG con-
tains negative-weight edges or negative-weight cycles, unlike the algorithms we
presented for shortest paths.
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7.3.1 Kruskal’s Algorithm

The reason Theorem 7.10 is so important is that it can be used as the basis for
building a minimum spanning tree. In Kruskal’s algorithm, it is used to build the
minimum spanning tree in clusters. Initially, each vertex is in its own cluster all
by itself. The algorithm then considers each edge in turn, ordered by increasing
weight. If an edgee connects two different clusters, thene is added to the set
of edges of the minimum spanning tree, and the two clusters connected bye are
merged into a single cluster. If, on the other hand,e connects two vertices that
are already in the same cluster, thene is discarded. Once the algorithm has added
enough edges to form a spanning tree, it terminates and outputs this tree as the
minimum spanning tree.

We give pseudo-code for Kruskal’s method for solving the MST problem in
Algorithm 7.14, and we show the working of this algorithm in Figures 7.15, 7.16,
and 7.17.

Algorithm KruskalMST(G):
Input: A simple connected weighted graphG with n vertices andm edges
Output: A minimum spanning treeT for G

for each vertexv in G do
Define an elementary clusterC(v)←{v}.

Initialize a priority queueQ to contain all edges inG, using the weights as
keys.
T ←∅ {T will ultimately contain the edges of the MST}
while T has fewer thann−1 edgesdo

(u,v)←Q.removeMin()
LetC(v) be the cluster containingv, and letC(u) be the cluster containingu.
if C(v) 6= C(u) then

Add edge(v,u) to T.
MergeC(v) andC(u) into one cluster, that is, unionC(v) andC(u).

return treeT

Algorithm 7.14: Kruskal’s algorithm for the MST problem.

As mentioned before, the correctness of Kruskal’s algorithm follows from the
crucial fact about minimum spanning trees, Theorem 7.10. Each time Kruskal’s
algorithm adds an edge(v,u) to the minimum spanning treeT, we can define a
partitioning of the set of verticesV (as in the theorem) by lettingV1 be the cluster
containingv and lettingV2 contain the rest of the vertices inV. This clearly defines
a disjoint partitioning of the vertices ofV and, more importantly, since we are
extracting edges fromQ in order by their weights,e must be a minimum-weight
edge with one vertex inV1 and the other inV2. Thus, Kruskal’s algorithm always
adds a valid minimum-spanning-tree edge.
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(e) (f)

Figure 7.15: Example of an execution of Kruskal’s MST algorithm on a graph with
integer weights. We show the clusters as shaded regions and we highlight the edge
being considered in each iteration (continued in Figure 7.16).
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(k) (l)

Figure 7.16: An example of an execution of Kruskal’s MST algorithm (continued).
Rejected edges are shown dashed. (continued in Figure 7.17).
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(m) (n)

Figure 7.17: Example of an execution of Kruskal’s MST algorithm (continued from
Figures 7.15 and 7.16). The edge considered in (n) merges the last two clusters,
which concludes this execution of Kruskal’s algorithm.

Implementing Kruskal’s Algorithm

We denote the number of vertices and edges of the input graphG with n andm,
respectively. We assume that the edge weights can be compared in constant time.
Because of the high level of the description we gave for Kruskal’s algorithm in
Algorithm 7.14, analyzing its running time requires that we give more details on its
implementation. Specifically, we should indicate the data structures used and how
they are implemented.

We implement the priority queueQ using a heap. Thus, we can initializeQ
in O(mlogm) time by repeated insertions, or inO(m) time using bottom-up heap
construction (see Section 2.4.4). In addition, at each iteration of thewhile loop, we
can remove a minimum-weight edge inO(logm) time, which actually isO(logn),
sinceG is simple.

A Simple Cluster Merging Strategy

We use a list-based implementation of a partition (Section 4.2.2) for the clusters.
Namely, we represent each clusterC with an unordered linked list of vertices, stor-
ing, with each vertexv, a reference to its clusterC(v). With this representation,
testing whetherC(u) 6= C(v) takesO(1) time. When we need to merge two clus-
ters,C(u) andC(v), we move the elements of thesmaller cluster into the larger
one and update the cluster references of the vertices in the smaller cluster. Since
we can simply add the elements of the smaller cluster at the end of the list for the
larger cluster, merging two clusters takes time proportional to the size of the smaller
cluster. That is, merging clustersC(u) andC(v) takesO(min{|C(u)|, |C(v)|}) time.
There are other, more efficient, methods for merging clusters (see Section 4.2.2),
but this simple approach will be sufficient.
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Lemma 7.11: Consider an execution of Kruskal’s algorithm on a graph withn
vertices, where clusters are represented with sequences and with cluster references
at each vertex. The total time spent merging clusters isO(nlogn).

Proof: We observe that each time a vertex is moved to a new cluster, the size of
the cluster containing the vertex at least doubles. Lett(v) be the number of times
that vertexv is moved to a new cluster. Since the maximum cluster size isn,

t(v)≤ logn.

The total time spent merging clusters in Kruskal’s algorithm can be obtained by
summing up the work done on each vertex, which is proportional to

∑
v∈G

t(v)≤ nlogn.

Using Lemma 7.11 and arguments similar to those used in the analysis of Di-
jkstra’s algorithm, we conclude that the total running time of Kruskal’s algorithm
is O((n+ m) logn), which can be simplified asO(mlogn) sinceG is simple and
connected.

Theorem 7.12: Given a simple connected weighted graphG with n vertices and
m edges, Kruskal’s algorithm constructs a minimum spanning tree forG in time
O(mlogn).

7.3.2 The Prim-Jarńık Algorithm

In the Prim-Jarńık algorithm, we grow a minimum spanning tree from a single
cluster starting from some “root” vertexv. The main idea is similar to that of
Dijkstra’s algorithm. We begin with some vertexv, defining the initial “cloud” of
verticesC. Then, in each iteration, we choose a minimum-weight edgee= (v,u),
connecting a vertexv in the cloudC to a vertexu outside ofC. The vertexu is then
brought into the cloudC and the process is repeated until a spanning tree is formed.
Again, the crucial fact about minimum spanning trees comes to play, for by always
choosing the smallest-weight edge joining a vertex insideC to one outsideC, we
are assured of always adding a valid edge to the MST.

Growing a Single MST

To efficiently implement this approach, we can take another cue from Dijkstra’s
algorithm. We maintain a labelD[u] for each vertexu outside the cloudC, so that
D[u] stores the weight of the best current edge for joiningu to the cloudC. These
labels allow us to reduce the number of edges that we must consider in deciding
which vertex is next to join the cloud. We give the pseudo-code in Algorithm 7.18.
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Algorithm PrimJarńıkMST(G):
Input: A weighted connected graphG with n vertices andmedges
Output: A minimum spanning treeT for G

Pick any vertexv of G
D[v]← 0
for each vertexu 6= v do

D[u]←+∞
Initialize T← ∅.
Initialize a priority queueQ with an item((u,null),D[u]) for each vertexu,
where(u,null) is the element andD[u] is the key.
while Q is not emptydo

(u,e)←Q.removeMin()
Add vertexu and edgee to T.
for each vertexzadjacent tou such thatz is in Q do
{perform the relaxation procedure on edge(u,z)}
if w((u,z)) < D[z] then

D[z]← w((u,z))
Change to(z,(u,z)) the element of vertexz in Q.
Change toD[z] the key of vertexz in Q.

return the treeT

Algorithm 7.18: The Prim-Jarńık algorithm for the MST problem.

Analyzing the Prim-Jarńık Algorithm

Let n andm denote the number of vertices and edges of the input graphG, respec-
tively. The implementation issues for the Prim-Jarnı́k algorithm are similar to those
for Dijkstra’s algorithm. If we implement the priority queueQ as a heap that sup-
ports the locator-based priority queue methods (see Section 2.4.4), we can extract
the vertexu in each iteration inO(logn) time.

In addition, we can update eachD[z] value in O(logn) time, as well, which
is a computation considered at most once for each edge(u,z). The other steps in
each iteration can be implemented in constant time. Thus, the total running time is
O((n+m) logn), which isO(mlogn). Hence, we can summarize as follows:

Theorem 7.13: Given a simple connected weighted graphG with n vertices and
m edges, the Prim-Jarnı́k algorithm constructs a minimum spanning tree forG in
O(mlogn) time.

We illustrate the Prim-Jarnı́k algorithm in Figures 7.19 and 7.20.
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Figure 7.19: Visualizing the Prim-Jarńık algorithm (continued in Figure 7.20).



7.3. Minimum Spanning Trees 369

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

(g) (h)

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

(i) (j)

Figure 7.20: Visualizing the Prim-Jarńık algorithm (continued from Figure 7.19).

7.3.3 Bar̊uvka’s Algorithm

Each of the two minimum-spanning-tree algorithms we have described previously
has achieved its efficient running time by utilizing a priority queueQ, which could
be implemented using a heap (or even a more sophisticated data structure). This
usage should seem natural, for minimum-spanning-tree algorithms involve appli-
cations of the greedy method—and, in this case, the greedy method must explicitly
be optimizing certain priorities among the vertices of the graph in question. It
may be a bit surprising, but as we show in this section, we can actually design an
efficient minimum-spanning-tree algorithm without using a priority queue. More-
over, what may be even more surprising is that the insight behind this simplification
comes from the oldest known minimum-spanning-tree algorithm—the algorithm of
Barůvka.

We present a pseudo-code description of Bar˚uvka’s minimum-spanning-tree
algorithm in Algorithm 7.21, and we illustrate an execution of this algorithm in
Figure 7.22.
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Algorithm Bar̊uvkaMST(G):
Input: A weighted connected graphG = (V,E) with n vertices andmedges
Output: A minimum spanning treeT for G.

Let T be a subgraph ofG initially containing just the vertices inV.
while T has fewer thann−1 edges{T is not yet an MST} do

for each connected componentCi of T do
{Perform the MST edge addition procedure for clusterCi}
Find the smallest-weight edgee= (v,u), in E with v∈Ci andu 6∈Ci.
Add e to T (unlesse is already inT).

return T

Algorithm 7.21: Pseudo-code for Bar˚uvka’s algorithm.

Implementing Bar̊uvka’s Algorithm

Implementing Bar˚uvka’s algorithm is quite simple, requiring only that we be able
to do the following:

• Maintain the forestT subject to edge insertion, which we can easily support
in O(1) time each using an adjacency list forT

• Traverse the forestT to identify connected components (clusters), which we
can easily do inO(n) time using a depth-first search ofT

• Mark vertices with the name of the cluster they belong to, which we can do
with an extra instance variable for each vertex

• Identify a smallest-weight edge inE incident upon a clusterCi , which we can
do by scanning the adjacency lists inG for the vertices inCi.

Like Kruskal’s algorithm, Bar˚uvka’s algorithm builds the minimum spanning
tree by growing a number of clusters of vertices in a series of rounds, not just one
cluster, as was done by the Prim-Jarnı́k algorithm. But in Bar˚uvka’s algorithm, the
clusters are grown by applying the crucial fact about minimum spanning trees to
each cluster simultaneously. This approach allows many more edges to be added in
each round.

Why Is This Algorithm Correct?

In each iteration of Bar˚uvka’s algorithm, we choose the smallest-weight edge com-
ing out of each connected componentCi of the current setT of minimum-spanning-
tree edges. In each case, this edge is a valid choice, for if we consider a partitioning
of V into the vertices inCi and those outside ofCi , then the chosen edgee for
Ci satisfies the condition of the crucial fact about minimum spanning trees (Theo-
rem 7.10) for guaranteeing thatebelongs to a minimum spanning tree.
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Figure 7.22: Example of an execution of Bar˚uvka’s algorithm. We show clusters as
shaded regions. We highlight the edge chosen by each cluster with an arrow and
we draw each such MST edge as a thick line. Edges determined not to be in the
MST are shown dashed.
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Analyzing Bar̊uvka’s Algorithm

Let us analyze the running time of Bar˚uvka’s algorithm (Algorithm 7.21). We can
implement each round performing the searches to find the minimum-weight edge
going out of each cluster by an exhaustive search through the adjacency lists of
each vertex in each cluster. Thus, the total running time spent in searching for
minimum-weight edges can be made to beO(m), for it involves examining each
edge(v,u) in G twice: once forv and once foru (since vertices are labeled with the
number of the cluster they are in). The remaining computations in the main while-
loop involve relabeling all the vertices, which takesO(n) time, and traversing all
the edges inT, which takesO(n) time. Thus, each round in Bar˚uvka’s algorithm
takesO(m) time (sincen≤m). In each round of the algorithm, we choose one edge
coming out of each cluster, and we then merge each new connected component of
T into a new cluster. Thus, each old cluster ofT must merge with at least one other
old cluster ofT. That is, in each round of Bar˚uvka’s algorithm, the total number
of clusters is reduced by half. Therefore, the total number of rounds isO(logn);
hence, the total running time of Bar˚uvka’s algorithm isO(mlogn). We summarize:

Theorem 7.14: Barůvka’s algorithm computes a minimum spanning tree for a
connected weighted graphG with n vertices andmedges inO(mlogn) time.

7.3.4 A Comparison of MST Algorithms

Although each of the above MST algorithms has the same worst-case running time,
each one achieves this running time using different data structures and different
approaches to building the minimum spanning tree.

Concerning auxiliary data structures, Kruskal’s algorithm uses a priority queue,
to store edges, and a collection of sets, implemented with lists, to store clusters. The
Prim-Jarńık algorithm uses only a priority queue, to store vertex-edge pairs. Thus,
from an ease of programming viewpoint, the Prim-Jarnı́k algorithm is preferable.
Indeed, the Prim-Jarnı́k algorithm is so similar to Dijkstra’s algorithm that an im-
plementation of Dijkstra’s algorithm could be converted into an implementation
for the Prim-Jarńık algorithm without much effort. Bar˚uvka’s algorithm requires a
way of representing connected components. Thus, from an ease of programming
viewpoint, the Prim-Jarńık and Barůvka algorithms seem to be the best.

In terms of the constant factors, the three algorithms are fairly similar in that
they both have relatively small constant factors in their asymptotic running times.
The asymptotic running time for Kruskal’s algorithm can be improved if the edges
are given in sorted order by their weights (using the partition data structure of Sec-
tion 4.2.2). Also, the running time of Bar˚uvka’s algorithm can be changed to be
O(n2) in the worst case with a slight modification to the algorithm (which we ex-
plore in Exercise C-7.12). Thus, there is no clear winner among these three algo-
rithms, although Bar˚uvka’s algorithm is the easiest of the three to implement.
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7.4 Java Example: Dijkstra’s Algorithm

In this section, we present Java code for performing Dijkstra’s algorithm (Al-
gorithm 7.2), assuming we are given an undirected graph with positive integer
weights.

We express our implementation of Dijkstra’s algorithm by means of an abstract
classDijkstra (Code Fragments 7.23–7.25), which declares the abstract method
weight(e) to extract the weight of edgee. ClassDijkstra is meant to be extended by
subclasses that implement methodweight(e). See, for example, classMyDijkstra
shown in Code Fragment 7.26.

/** Dijkstra’s algorithm for the single-source shortest path problem
* in an undirected graph whose edges have integer weights. Classes
* extending ths abstract class must define the weight(e) method,
* which extracts the weight of an edge. */

public abstract class Dijkstra {
/** Execute Dijkstra’s algorithm. */
public void execute(InspectableGraph g, Vertex source) {

graph = g;
dijkstraVisit(source);
}
/** Attribute for vertex distances. */
protected Object DIST = new Object();
/** Set the distance of a vertex. */
protected void setDist(Vertex v, int d) {

v.set(DIST, new Integer(d));
}
/** Get the distance of a vertex from the source vertex. This method

* returns the length of a shortest path from the source to u after
* method execute has been called. */

public int getDist(Vertex u) {
return ((Integer) u.get(DIST)).intValue();
}
/** This abstract method must be defined by subclasses.

* @return weight of edge e. */
protected abstract int weight(Edge e);
/** Infinity value. */
public static final int INFINITE = Integer.MAX VALUE;
/** Input graph. */
protected InspectableGraph graph;
/** Auxiliary priority queue. */
protected PriorityQueue Q;

Code Fragment 7.23:ClassDijkstra implementing Dijkstra’s algorithm (continued
in Code Fragments 7.24 and 7.25).



374 Chapter 7. Weighted Graphs

The algorithm is executed by methoddijkstraVisit. A priority queueQ support-
ing locator-based methods (Section 2.4.4) is used. We insert a vertexu into Q with
methodinsert, which returns the locator ofu in Q. Following the decorator pattern,
we “attach” tou its locator by means of methodsetLoc, and we retrieve the locator
of u with methodgetLoc. Changing the label of a vertexz to d in the relaxation
procedure is done with methodreplaceKey(`,d), where` is the locator ofz.

/** The actual execution of Dijkstra’s algorithm.
* @param v source vertex. */

protected void dijkstraVisit (Vertex v) {
// initialize the priority queue Q and store all the vertices in it
Q = new ArrayHeap(new IntegerComparator());
for (VertexIterator vertices = graph.vertices(); vertices.hasNext();) {

Vertex u = vertices.nextVertex();
int u dist;
if (u==v)

u dist = 0;
else

u dist = INFINITE;
// setDist(u, u dist);
Locator u loc = Q.insert(new Integer(u dist), u);
setLoc(u, u loc);
}
// grow the cloud, one vertex at a time
while (!Q.isEmpty()) {

// remove from Q and insert into cloud a vertex with minimum distance
Locator u loc = Q.min();
Vertex u = getVertex(u loc);
int u dist = getDist(u loc);
Q.remove(u loc); // remove u from the priority queue
setDist(u, u dist); // the distance of u is final
destroyLoc(u); // remove the locator associated with u
if (u dist == INFINITE)

continue; // unreachable vertices are not processed
// examine all the neighbors of u and update their distances
for (EdgeIterator edges = graph.incidentEdges(u); edges.hasNext();) {

Edge e = edges.nextEdge();
Vertex z = graph.opposite(u,e);
if (hasLoc(z)) { // check that z is in Q, i.e., it is not in the cloud

int e weight = weight(e);
Locator z loc = getLoc(z);
int z dist = getDist(z loc);
if ( u dist + e weight < z dist ) // relaxation of edge e = (u,z)

Q.replaceKey(z loc, new Integer(u dist + e weight));
}
}
}
}

Code Fragment 7.24:MethoddijkstraVisit of classDijkstra.
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/** Attribute for vertex locators in the priority queue Q. */
protected Object LOC = new Object();
/** Check if there is a locator associated with a vertex. */
protected boolean hasLoc(Vertex v) {

return v.has(LOC);
}
/** Get the locator in Q of a vertex. */
protected Locator getLoc(Vertex v) {

return (Locator) v.get(LOC);
}
/** Associate with a vertex its locator in Q. */
protected void setLoc(Vertex v, Locator l) {

v.set(LOC, l);
}
/** Remove the locator associated with a vertex. */
protected void destroyLoc(Vertex v) {

v.destroy(LOC);
}
/** Get the vertex associated with a locator. */
protected Vertex getVertex(Locator l) {

return (Vertex) l.element();
}
/** Get the distance of a vertex given its locator in Q. */
protected int getDist(Locator l) {

return ((Integer) l.key()).intValue();
}

Code Fragment 7.25:Auxiliary methods of classDijkstra. They assume that the
vertices of the graph are decorable (continued from Algorithms 7.23 and 7.24).

/** A specialization of class Dijkstra that extracts edge weights from
* decorations. */

public class MyDijkstra extends Dijkstra {
/** Attribute for edge weights. */
protected Object WEIGHT;
/** Constructor that sets the weight attribute. */
public MyDijkstra(Object weight attribute) {

WEIGHT = weight attribute;
}
/** The edge weight is stored in attribute WEIGHT of the edge. */
public int weight(Edge e) {

return ((Integer) e.get(WEIGHT)).intValue();
}
}

Code Fragment 7.26:ClassMyDijkstra that extendsDijkstra and provides a con-
crete implementation of methodweight(e).
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7.5 Exercises

Reinforcement

R-7.1 Draw a simple, connected, weighted graph with 8 vertices and 16 edges, each
with unique edge weights. Identify one vertex as a “start” vertex and illustrate a
running of Dijkstra’s algorithm on this graph.

R-7.2 Show how to modify Dijkstra’s algorithm for the case when the graph is directed
and we want to compute shortestdirected pathsfrom the source vertex to all the
other vertices.

R-7.3 Show how to modify Dijkstra’s algorithm to not only output the distance fromv
to each vertex inG, but also to output a treeT rooted atv, such that the path inT
from v to a vertexu is actually a shortest path inG from v to u.

R-7.4 Draw a (simple) directed weighted graphG with 10 vertices and 18 edges, such
that G contains a minimum-weight cycle with at least 4 edges. Show that the
Bellman-Ford algorithm will find this cycle.

R-7.5 The dynamic programming algorithm of Algorithm 7.11 usesO(n3) space. De-
scribe a version of this algorithm that usesO(n2) space.

R-7.6 The dynamic programming algorithm of Algorithm 7.11 computes only shortest-
path distances, not actual paths. Describe a version of this algorithm that outputs
the set of all shortest paths between each pair of vertices in a directed graph. Your
algorithm should still run inO(n3) time.

R-7.7 Draw a simple, connected, undirected, weighted graph with 8 vertices and 16
edges, each with unique edge weights. Illustrate the execution of Kruskal’s algo-
rithm on this graph. (Note that there is only one minimum spanning tree for this
graph.)

R-7.8 Repeat the previous problem for the Prim-Jarnı́k algorithm.

R-7.9 Repeat the previous problem for Bar˚uvka’s algorithm.

R-7.10 Consider the unsorted sequence implementation of the priority queueQ used in
Dijkstra’s algorithm. In this case, what is the best-case running time of Dijkstra’s
algorithmΩ(n2) on ann-vertex graph?

Hint: Consider the size ofQ each time the minimum element is extracted.

R-7.11 Describe the meaning of the graphical conventions used in Figures 7.3 and 7.4
illustrating Dijkstra’s algorithm. What do the arrows signify? How about thick
lines and dashed lines?

R-7.12 Repeat Exercise R-7.11 for Figures 7.15 and 7.17 illustrating Kruskal’s algo-
rithm.

R-7.13 Repeat Exercise R-7.11 for Figures 7.19 and 7.20 illustrating the Prim-Jarnı́k
algorithm.

R-7.14 Repeat Exercise R-7.11 for Figure 7.22 illustrating Bar˚uvka’s algorithm.
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Creativity

C-7.1 Give an example of ann-vertex simple graphG that causes Dijkstra’s algorithm
to run in Ω(n2 logn) time when its implemented with a heap for the priority
queue.

C-7.2 Give an example of a weighted directed graph~G with negative-weight edges, but
no negative-weight cycle, such that Dijkstra’s algorithm incorrectly computes the
shortest-path distances from some start vertexv.

C-7.3 Consider the following greedy strategy for finding a shortest path from vertex
start to vertexgoal in a given connected graph.

1: Initializepathto start.
2: InitializeVisitedVerticesto {start}.
3: If start=goal, returnpathand exit. Otherwise, continue.
4: Find the edge (start,v) of minimum weight such thatv is adjacent tostart

andv is not inVisitedVertices.
5: Addv to path.
6: Addv to VisitedVertices.
7: Setstart equal tov and go to step 3.

Does this greedy strategy always find a shortest path fromstart to goal? Either
explain intuitively why it works, or give a counter example.

C-7.4? Suppose we are given a weighted graphG with n vertices andm edges, such that
the weight on each edge is an integer between 0 andn. Show that we can find a
minimum spanning tree forG in O(nlog∗n) time.

C-7.5 Show that if all the weights in a connected weighted graphG are distinct, then
there is exactly one minimum spanning tree forG.

C-7.6 Design an efficient algorithm for finding alongestdirected path from a vertexs
to a vertext of an acyclic weighted digraph~G. Specify the graph representation
used and any auxiliary data structures used. Also, analyze the time complexity
of your algorithm.

C-7.7 Suppose you are given a diagram of a telephone network, which is a graphG
whose vertices represent switching centers, and whose edges represent commu-
nication lines between two centers. The edges are marked by their bandwidth.
The bandwidth of a path is the bandwidth of its lowest bandwidth edge. Give an
algorithm that, given a diagram and two switching centersa andb, will output
the maximum bandwidth of a path betweena andb.

C-7.8 NASA wants to linkn stations spread over the country using communication
channels. Each pair of stations has a different bandwidth available, which is
known a priori. NASA wants to selectn−1 channels (the minimum possible) in
such a way that all the stations are linked by the channels and the total bandwidth
(defined as the sum of the individual bandwidths of the channels) is maximum.
Give an efficient algorithm for this problem and determine its worst-case time
complexity. Consider the weighted graphG = (V,E), whereV is the set of sta-
tions andE is the set of channels between the stations. Define the weightw(e) of
an edgee∈ E as the bandwidth of the corresponding channel.
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C-7.9 Suppose you are given atimetable, which consists of:

• A setA of n airports, and for each airporta∈ A, a minimum connecting
timec(a)

• A setF of m flights, and the following, for each flightf ∈A:
◦ Origin airporta1( f ) ∈ A
◦ Destination airporta2( f ) ∈ A
◦ Departure timet1( f )
◦ Arrival time t2( f ).

Describe an efficient algorithm for the flight scheduling problem. In this problem,
we are given airportsa andb, and a timet, and we wish to compute a sequence of
flights that allows one to arrive at the earliest possible time inb when departing
from a at or after timet. Minimum connecting times at intermediate airports
should be observed. What is the running time of your algorithm as a function of
n andm?

C-7.10 As your reward for saving the Kingdom of Bigfunnia from the evil monster,
“Exponential Asymptotic,” the king has given you the opportunity to earn a big
reward. Behind the castle there is a maze, and along each corridor of the maze
there is a bag of gold coins. The amount of gold in each bag varies. You will
be given the opportunity to walk through the maze, picking up bags of gold.
You may enter only through the door marked “ENTER” and exit through the
door marked “EXIT.” (These are distinct doors.) While in the maze you may not
retrace your steps. Each corridor of the maze has an arrow painted on the wall.
You may only go down the corridor in the direction of the arrow. There is no way
to traverse a “loop” in the maze. You will receive a map of the maze, including
the amount of gold in and the direction of each corridor. Describe an algorithm
to help you pick up the most gold.

C-7.11 Suppose we are given a directed graph~G with n vertices, and letM be then×n
adjacency matrix corresponding to~G.

a. Let the product ofM with itself (M2) be defined, for 1≤ i, j ≤ n, as follows:

M2(i, j) = M(i,1)�M(1, j)⊕·· ·⊕M(i,n)�M(n, j),

where “⊕” is the Booleanor operator and “�” is Booleanand. Given this
definition, what doesM2(i, j) = 1 imply about the verticesi and j? What
if M2(i, j) = 0?

b. SupposeM4 is the product ofM2 with itself. What do the entries ofM4

signify? How about the entries ofM5 = (M4)(M)? In general, what infor-
mation is contained in the matrixMp?

c. Now suppose that~G is weighted and assume the following:
1: for 1≤ i ≤ n, M(i, i) = 0.
2: for 1≤ i, j ≤ n, M(i, j) = weight(i, j) if (i, j) ∈ E.
3: for 1≤ i, j ≤ n, M(i, j) =∞ if (i, j) 6∈ E.

Also, letM2 be defined, for 1≤ i, j ≤ n, as follows:

M2(i, j) = min{M(i,1)+M(1, j), . . . ,M(i,n)+M(n, j)}.
If M2(i, j) = k, what may we conclude about the relationship between ver-
ticesi and j?
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C-7.12 Show how to modify Bar˚uvka’s algorithm so that it runs in worst-caseO(n2)
time.

Projects
P-7.1 Implement Kruskal’s algorithm assuming that the edge weights are integers.

P-7.2 Implement the Prim-Jarnı́k algorithm assuming that the edge weights are inte-
gers.

P-7.3 Implement the Bar˚uvka’s algorithm assuming that the edge weights are inte-
gers.

P-7.4 Perform an experimental comparison of two of the minimum-spanning-tree algo-
rithms discussed in this chapter (that is, two of Kruskal, Prim-Jarnı́k, or Barůvka).
Develop an extensive set of experiments to test the running times of these algo-
rithms using randomly generated graphs.

Chapter Notes

The first known minimum-spanning-tree algorithm is due to Bar˚uvka [22], and was pub-
lished in 1926. The Prim-Jarnı́k algorithm was first published in Czech by Jarnı́k [108]
in 1930 and in English in 1957 by Prim [169]. Kruskal published his minimum-spanning-
tree algorithm in 1956 [127]. The reader interested in further study of the history of the
minimum spanning tree problem is referred to the paper by Graham and Hell [89]. The
current asymptotically fastest minimum-spanning-tree algorithm is a randomized method
of Karger, Klein, and Tarjan [112] that runs inO(m) expected time.

Dijkstra [60] published his single-source, shortest path algorithm in 1959. The Bellman-
Ford algorithm is derived from separate publications of Bellman [25] and Ford [71].

The reader interested in further study of graph algorithms is referred to the books
by Ahuja, Magnanti, and Orlin [9], Cormen, Leiserson, and Rivest [55], Even [68], Gib-
bons [77], Mehlhorn [149], and Tarjan [200], and the book chapter by van Leeuwen [205].

Incidentally, the running time for the Prim-Jarnı́k algorithm, and also that of Dijkstra’s
algorithm, can actually be improved to beO(nlogn+ m) by implementing the queueQ
with either of two more sophisticated data structures, the “Fibonacci Heap” [72] or the
“Relaxed Heap” [61]. The reader interested in these implementations is referred to the
papers that describe the implementation of these structures, and how they can be applied to
the shortest-path and minimum-spanning-tree problems.
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382 Chapter 8. Network Flow and Ma

An important problem involving weighted graphs is the maximumfl
lem. In this problem, we are given a weighted directed graph G, with each
representing a "pipe" that can transport some commodity1)with the weight
edge representing the maximum amount it can transport. The maximum-fl04
lem is to find a way of transporting the maximum amount of the given con
from some vertex s, called the source, to some vertex t, called the sink.

Example 8.1: Consider a portion of the Internet modeled by a directed gra
in which each vertex represents a computer, each edge (u, y) represents a
communication channel from computer u to computer y, and the weight of
edge (u, y) represents the the bandwidth of the channel, that is, the maximu,,n:
ber of bytes that can be sent from u to y in one second. If we want to e
high-bandwidth streaming media connection from sOme computer s in G to
computer t in G, the fastest way to send this connection is to divide it into pa
and route these packets through G accorthng to a maxim um flow. (See Pigur,

The maximum flow problem is closely related to the problem of finding
maximum way of matching vertices of one type in a graph with vertices of anb
type We therefore also study the maximum matching problem, showing ho*
maximum flow problem can be used to solve it efficiently

Sometimes we have many different maximum flows. Although all are
mum in terms of how much flow they produce, these flows may in fact be diffe
in how much they cost. Thus,- in this chapter we also study methods for compii
maximum. flows that are of minimum cost, when there are many different n
mum flows and we have some way of measuring their relative costs. We conci
this chapter with a Java implementation of a rnininiurn-cdst flow algorithm.

beta

u--u-,u-
source

-

Figure 8.1: An example flow in a graph representing a computer network, with,
bandwidth of thick edges being 4 MB/s, the bandwidth of medium edges be:
2 MB/s., and the bandwidth of thin edges being i MB/s. We indicate the arno
of data sent through an edge with folder icons, where each folder conesponds
one MB/s going through the channeL Note that the total amount of flow sent fro
the source to the sink (6 MB/s) is not mäximum. Indeed, one additional MB/s C'
be pushed from the source -to gamma, from gamma to delta, and from delta to,
sink. After this extra flow is added, the total flow will be maximum,
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The above example illustrates the rules that a legal flow must obey In order to

precisely say what these rules are, let us carefully define what we mean by a flow.

8.1.1 Flow Networks

A flow network N consists of the following:

A connected directed graph G with nonnegative integer weights on the edges,

where the weight of an edge e is called the capacity c(e) of e

Two distinguished vertices, s and t, of G, called the source and sink, respec-

tively, such that s has no incoming edges and t has no outgoing edges. -

Given such a labeled graph, the challenge is to determine the maximum amount

of some commodity that can be pushed from s to t under the constraint that the

capacity of an edge determines the maximum flow that can go along that edge.

(SeeFigure8.2.)

flows and Cuts

Figure 8.2: A flow network N. Each edge e of N is labeled with its capacity c(e).

Of cOurse, if we wish some commodity to flow from s to t, we need to be more

precise about what we mean by a "flow?' Aflow for network N is an assigmnent of

an integer value f(e) to each edge e of G that satisfies the following properties:

s For each edge e of G,

O f(e) c(e) (capacity rule).

For each vertex y of G distinct from the source s and the sink t

f(e) = f(e) (conservation rule),

eEE(v). eEE(V)

where E (y) and E+(v) denote the the sets of incoming and outgoing edges

of y, respectively.
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384 Chapter 8. Network Flow and Mat

In other words, a flow must satisfy the edge capacity constnints and must,
every vertex y other than s and t, have the total amount of flow going out of y
to the total amount of flow coming into y. Each of the above nies is satisfied;
example,. by the flow illustrated in Figure 8.3.

b

3/7 1/1 2/5 4/6

2/3

1/3

4/9 n
Figure 8.3: A flow f (of vaine If I = 10) for the flow network N of Figure 8.2:

The quantity f(e) is called the flow of edge e. The value of â flow f, which
denote by If I is equal to the total amount of flow coming out from the source-s:-

LfI= X f(e).
eEE (s)

It is easy to show that the flow valUe is also equal to the total amoUnt of flow goin
into the sink t (see Exercise R-8. 1):

IfI= f(e).
eEE(t)

That is, a flow specifies how some commodity is pushed out from s, through tif
network N, and finally into the sink t. A maximum flow for flow network N isa
flow with maximum value over all flows for N (see Figure 8.4). Since a maximu
flow is using a flow network most efficiently, wçare most interested in methods 16
computing maximum flows.

r

6/6 0/3 6/8

6/9

Figure 8.4: A maximum flow f (of value If I = 14) for the flow ñetwork No
Figure 8.2.
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8.1.2 Cuts

It turns out that flows are closely related to another concept, known as cuts. Intu-
itively, a cut is a division of the vertices of a flow network N into two sets, with s

on one side and t on the other Formally, a cut of N is a partition x = (V3,V) of
the verticés of N such that s E V5 andt E V. An edge è of N with origin u E V

and destination y E 14 is said to be afonvard edge of öut x An edge with origin
in 14 and destination in Y is said to be a backward edge. We enviion a cut as a
separation of s and t in N done by cutting across edges of N; with forward edges

going froms's side to ¡"s side and backward edges going in the opposite direction.

(See Figure 8.5.)

(b)

Figure 83: (a) Two cuts, Xi (on the left) and b (on the right), jn the flow network N

of Figure 8 2 These cuts have only forward edges and their capacities are c(xi) =
14 and c(X2) = 18 Cut xi is a immmum cut for N (b) A cut in N with both

forward and backward edges. Its capacity is c(%) = 22..
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Given a flow f for N, the flow across cut X, denoted f(), is eqùal t
of the flows in the forward edges of z minus the sÜm of the flows in the aedges of z. That is, f() is the net amount of commodity that flows fro
of z to ¿"s side of z. The following lemma shows an interesting property0

Lemma 8.2: LetÑ be a flow network, and let f be a flow for N. For any
N, the value off is equal to the flow across cut x that is, Jf = f(x).
Proof.: Consider the sum

F=E( f(e)L E f(e)
vEV \eEE(v) eel (v)

By the conservation rule, for each vertex y of y5 . distinct from s, we hay
'IeEE+(v)f(e) eEE(v)f(e) = O. Thus, F = ¡fJ)

Qn the other hand, for each edge e that is not a forward or a backw
of cut , the sum F contains both the term f(e) and the term f(e), which.
each other, or neither the term f(e) nor the term f(e). Thus, F = f(x).

The above theorem shows that no matter where we cut a flow network to
rate s and t, the flow across that cut is equal to the flow for the entire networ
capacity of cut x denoted c(z), is the sum of the capacities of the forward,
of z (note that we do not include the backward edges). The next lemma sh
a cut capacity c(z) is an upper bound on any flow across z.
Lemma 8.3: LetN be a flow network, and letz be acut of N. Given any
for N, the flow across,cut z chies not exceed the capacity ofz that is, f() ,

Proof: Denote with E () the forward edges of , and with E (z) the bac
edges of z. By the definition of f(z). we havé

f(z) . f(e) - f(e)...
eEE(x) eEE (x)

Dropping nonpositive terms from the above sum; we obtain f(z) LeE+()-
By the capacity rule, for each edge e, f(e) <c(e). Thus, we have

c(e)=c(z).

By combining Lemmas 8.2 and 8.3, we obtain the following important r
relating flows and cuts.

Theorem 8.4: Let N be a flow network Given Zany flow f forN and any cut
N, the value off does not exceed the capacity of , that is, If I c(z).

In other words, given any cut z for a flow network N, the capacity of
upper bound on any flow for N This upper bound holds even for a mInimum C
N, winch is a cut with minimum capacity, taken over all cuts of N In the ex
of Figure 8.5, Xi is a minimum cut.
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Theorem 8.4 implies that the value of a maximum flow is no more than the capacity
of a minimum cut. We will show in this section that these two quantities are actually
equal. In the process, we will outline an approach for constructing a maximum flow.

8.2 1 Residual Capacity and Augmenting Paths

In order to prove that a certain flow f is maximum, we need some way of showing
that there is absolutely. no moré flow that can possibly be "squeezed" into f. Using
the related concepts of residual capadity and augmenting paths, discussed next, we
can provide just such a proof for when a flow f is maximum.

Residual Capacity

Let N be a flow network, which is specified by a graph G, capacity function e,
source s, and sink t. Furthermore, let f be a flow for N. Given an edge e of G
directed from vertex u to vertex y, the residual capacity from u to y with respect to
the flow f, denoted ¿f (u, v),.is defined as

¿f(u,v)=c(e)f(e),

and the residual capacity from y to u is defined as

u) = f(e).

Intuitively, the residual capacity defined by a flow f is any additional capacity that
f has not fully taken advantage of in "pushing" its flow from s to t.

Let it be a path from s to t that is allowed to traverse edges in either the forward
or backward direction, that is, we can traverse the edge e = (u, y) from its origin
u to its destination y or from its destination y to its origin u. Formally, a forward
edge of it is an edge e of it such that, in going from s to t along path ir, thefl Origin
of e is encòuntered before the destination of e. An edge of ir that is not forward is
said to be a backward edge. Let us extend our definition of residual capacity to an
edge e iñ Ir traversed from uto y, so that ¿1(e) = Af(u, y). In other words,

¿ ( .\ - J c(e)f(e) ifeisaforwardedgc
f f(e) if e is a backward edge;

That is, thé residual capacity of an edge e going in the forward direction'is the
additional capacity of e that f has yet to consume, but the residual capacity in the
opposite direction is the flow that f has consumed (and could potentially "give
back" if that allows for another flow of higher value).

jimum Flow 387.
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Augmenting Paths

The residual capacity A1(it) of a path it is the minimum residual capaci
edes. That is,

= iinA1(e).

This value is the maximum amount of additional flow that we can possibl'
down the path ir without violating a capacity constraint. An augmenting p
flow f is a path it from the source s to the s1nk t with nonzero residual ra
that is, foreach edge e 6f ir,

f(e) <c(e) if e is a forward edge
f(e) > O if e is a backward edge.

We show in Figure 8.6 an example of an augmenting path.

2/4

3/3 3/6 2/5 4/9

2/3

3/3

(a)

3/3 1/6 25 6/9

2/3 0 2/3

/7 2/3 4/8

n 3/3/

(b)

p

Figuùe 8.6 Example of an augmenting path: (a) network N, flow J, and

mentrng path ir drawn with thick edges ((vi, v3) is a backward edge), (b) flì
obtained from f by pushing A(it) = 2 umts of flow from s to t along path it(

4/84/7 0/3

http://www.cvisiontech.com


pjaximun1 Flow :389

As shown by the following lemma, we can always add the residual capacity of
ari augmenting path to an existing flow and get another valid flow.

Lemma 8.5: Let ir be an augrnçnting path for flow f in network N. There exists

aflòwf' forN of value If'I = IfI+Af@t).

Proof: We compute the flow f' by modifying the flow of the edges of ir:

-. J f(e)+Af(lt) ifeisaforwardedge
.' " f(e)--A1(ir) ifeisabackwardedge.

Note that we subtract tif (ir) if e is a backward edge, for we are subtracting flow on

e already taken by f in this case In any case, because Af(ir) O is the mimmum

residual capacity of any edge in it, we will violate no capacity constraint on a

forward edge by adding tif (it) nor will we go below zero flow on any backward

edge by subtracting Af(1c). Thus, f' is a valid flow for N, and the value of f'

islfl±Af(it). (

u

By Lemma 8 5, the existence of an augmenting path ir for a flow f implies that

f is not maximum. Also, given an. augmenting path ir, we can rno&fy f to increase

its value by pushing Aj(ir) units of flow from s t t along path ir; as showñ in the

proof of Lemma 8.5. -

What if there is no augmenting path for a flow
j

in network N? In this case, we

have that f is a maximum flow, as stated by the following lemma.

Lemma 8.6: If a network N does not have an augmenting path with respect to a

flow f, then f is a maximum flow. Also, there is a cut x of N such that If I =

Proof Let f be a flow for N, and suppose there is no augmenting path in N with

respect to f. We construct from f a cut z = (Vs, V1) by placing in set V5 all the

vertices y, such that there is a path from the source s to vertex y consisting of edges

of nonzero residual capacity Such a path is called an augmenting path from s to y

Set V contains the remaining vertices of N.. Since there is no augmenting path for

flow f, the sink t of N is in V Thus, z = (V5, V1) satisfies the definition of a cut.

By the definitión of x each forward edge and backward edge of cut z has zero

residual capacity, that is,

,( J c(e) ifeisaforwardedgeof
\eJ - O ife is abackward edge ofx.

Thus, the capacity of z is equal to the value of f. That is,

By Theorem 8.4, we have that f is a maximum flow. . .

-N

As a consequénce of Theorem 8.4 and Lemma 8.6, we have the following fun-

damental result relating maximum flows and minimum cuts

Theorem 81 (The Max-Flow, Mm-Cut Theorem): The value ofamaximunl

flowis equal to the öàpacity of a minimum cut.
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8.2.2 The Ford-Fulkerson Algorithm

A. classic algorithm, due to Ford and Fulkerson, computes a maximum 1h
network by applying the greedy method to the augmenting-path approach j1

prove the Max-Flow, Mm-Cut Theorem (Theorem 8.7).

The main idea of this FordFulkerson algorithm is to incrementally in
the value of a flow in stages, where at each stage some amount of flow is
along an augmenting path from the source to the sink. Initially, the flow o
edge is equal to O. At each stage, än augmenting path it is computed and an
of flow equal to the residual capacity of ir is pushed along it, as in the p
Lemma 8 5 The algonthm terminates when the current flow f does not a
augmenting path. Lemma 8.6 guarantöes tht f is a maximum flow in this cas

We provide a pseudocode description of the Ford-Fulkerson solution
problem of finding a maximum flow in Algorithm 8.7.

Algorithm MaxFlowFòrdFulkerson(N):
Input: Flow network N = (G,c,s,t)
Output: A maximum flow f for N

foreachedgeeeNdo
f(e)-O

stop - false
ùepeat

traverse G starting at s to find an augmenting path for f
if an augmenting path ir exists then

{ Compute the residual capacity Af(it) of it }
A4+OO
foE each edge e EE it do

ifAf(e)<A then
A*A1(e)

{ Push A = Af(ic) units of flow along path ir }
for eachedgeeeit d

if e is a forward edge then
f(e)4f(e)+A

else
f(e) t- f(e) A {e is a backward edge}

else
stop - true {f is a maximum flow}

until stop

Algorithm 8.7: The Ford-Fulkerson algorithm for computing a maximum flòi

network.

We visualize the Ford-Fulkerson algorithm in Figure 8.8..
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(c)

Ill

(g)

omega. 2/2

(d)

1/1

Figure 8.8: Example execution of the Ford-Fulkerson algorithm on the flowaetwork
of Figure 8 1 Augmenting paths are drawn with with thick lines

azimuTh Flow 391
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8.2.3 Analyzing the Ford-Fulkerson Algorithm

The analysis of the runmng lime of the Ford-Fulkerson algorithm is a littler i'
This is because the algorithm does not specify the exact way to find augmej
paths and, as we shall see, the choice of augmenting path has a major impact òj
algonthm's runmng time

Let n and in be the number of vertices and edges of the flow network, r&í*
lively, and let f* be a maximum flow Since the graph underlying the netwot
connected, we have that n Ç in +1 Note that each time we find an augmentmg i

we increase the value of the flow by at least 1, since edge capacities and fiow' u

integers Thus, f! the value of a maximum flow, is an upper bound on the n iii
of times the algonthm searches for an augmenting path Also note that we cnJÌ
an augmenting path by a simple graph traversal, such as a DFS or BFS trai i

which takes 0(m) time (see Theorems 6 13 and 6 19 and recall that n
Thus, we can bound the runmng time of the Ford-Fulkerson algorithm as be \
most 0(If* ni) As illustrated in Figure 8 9, this bound can actually be attarndli
some choices of augmenting paths We conclude that the Ford-Fuilcerson algon
is a pseudo-polynomial-time algorithm (Section 5 3 3), since its running time
pends on boththe:sizeof the input änd also the value of a numeric paratheter
the time bound of the Ford-Fulkerson algorithm can bé quite slow if. f* is
and augmenting paths are chosen poorly. -

392 Chapter & Network Flow mid:

Implementation Details

There are important implementation details for the Ford-Fulkersonalgo
impact how we represent a flow and how we compute augmenting paths,
senting a flow is actually quite easy We can label each edge of the neb
an attribute representing the flow along that. edge (Section 6.5). To cóïiÇ
augmenting path, we use a specialized traversal of the graph G underlyin
network Such a traversal is a simple modification of either a DFS travers
lion 6 3 1) or a BFS traversal (Section 6 3 3), where instead of considering
edges incident on the current vertex y, we consider only the following edgd

Outgoingedges of y with flow less than the capacity
Incoming edges of y with nonzero flow.

Alternatively, the computation of an augmenting path with respect to t1te
flow f can be reduced to a simple path finding problem in a new directed gá
derived from G The vertices of Rf are the same as the vertices of G Fc
ordered pair of adjacent vertices u and y of G, we add a directed edge fronÇ
if A1(u, y) > O Graph Rf is called the residual graph with respect to flow
augmenting path with respect to flow f corresponds to a directed path g

the residual graph R» This path can be computed by a DFS traversal of
at the source s. (See Sections 6.3 and 6.5.) C
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8.2.4 The EdmondsLKarp Algorithm

0/1,000,Ò00 011,000,000 0/1,000,000 1/1,000,000

S 0/1 t - s t

0/1,000,000 0/1,000,000 1/1,000,000 Òí1,000,000.

(2,000,000 iterations total)

Figure 8.9: An example f a network for which the standard Ford-Fulkerson al-
gorithm runs s1ow1y. If the augmenting paths chosen by the algorithrn alternate
between (s, x, y, t) and (s, y, x, t), then the algorithm will make a total of , 000,000
iterations, even though two iterations would have sufficed.

The Edmonds-Karp algorithm is a variation of the Ford-Fulkerson algorithm. It
uses a simple techniqúe for findiñg good augmenting paths that results in faster
running time. This technique is based on the notion of being "more greedy" in
our application of the greedy method to the maximum-flow problem. Namely, at
each iteration, we choose an augmenting,path with the smallest number of edges,
which can be easily done in 0(m) time by a modified BFS traversal We will show
that with these Edmoñds-Karp áugmentations, the number of iterátions is no more
than nm, which implies an O(nm2) running time for the Edmonds-Karp algorithm;

We begin by introdu6ing some notation. We call the length of a path lt the
number of .edges in ir. Let f be a flow for network N. Given a -vertex y, we denote
with d1(v) the minimum length of an augmenting path with respectto f from the
source s to vertex y, and call this quantity the residual distante of y with respectto
flow f

The following discussion shows -how residual distance of each vertex impacts
the running lime of the Edmonds-Karp-algorithm. - -

-.

Augmenting the flow

y

Finding an augmenting-path

y
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Performance of the Edmorids-Karp Algorithm

We begin our analysis by noting that residual distance is nondecreasing

seuence of Edmonds-Karp augmentations..

Lemma 8.8: Let g be the flow obtained from flow f with an augmentatlo

à path it of Minimum length. Then, for each vertex y,

df(v) <d(v).

Proof: Suppose there is a vertex violating the above inequality. Let y b

vertex with smallest residual distance with respect to g. That is,

d1(v) >dg(y)

dg(v) dg(u), for each u such that d1(u)>dg(u).

Considef an augmenting: path y of miñimum length from s to y with re

flow g. Lét u be the vertéx immediately preceding y on y and let e be the ed

with endpoints u and y (see Figure 8.10). By the above definition, we have4;

Ag(uJ) >0.

Also, since u immediately precedes y in shortest path y,we have

dg(v)dg(u)+1.

Finally, by (8.2) and ( 8.4), we have

df(u)dg(u).
We now show that A1(u,v) O. Indeed, if we had Af(u,v) > 0, we qo

from u to y along an augmenting path with respect to flow f This would inj

df(v) d1(is)+1
t

dg(u)+1 by(8.5)
= dg(v) by(8.4),

thus contradicting (8.1).
Since Af(u,v) = O and, by (8.3), Ag(u,v) > 0, the augmenting path ir,

produces g from f, must traverse the edge e from y to u (see Figure 8.1O).

d1(v) = df(u) - i because it is a shortest path
dg(u)l by(8.5)

dg(v)2 by(8.4)
< dg(v).

Thùs, we have obtained a contradiction with (8.1), which completes the pi

Jntuitively, Lemma 8 8 implies that each time we do an Edmonds-K,

mentation, the residua.! distance from s to any vertex y can only increase o1

same. This fact gives us the following.

http://www.cvisiontech.com


t-

Figure 8;1O: Illustration of the proof of Lemma 8.8.

39g

Lemma 8.9: When executing the Edmonds-Karp algorithm on a network with n
vertices and rn edges, the number of flow augmentations is no more than nm.

Proof: Let fi be the flow in the network before the i-th augmentation, and let it be
the path used in such augmentation. We say that an edge e of iv is a bottleneck for
m if the residual capacity of e is equal to the residual capaòity of its. Clearly, every
augmenting path used by the Edmonds-Karp algorithm has at least one bottleneck.

Consider a pair of vertices u and vjoined by an edge e, and suppose that edge e
is a bottleneck for two augmenting paths ,t and ltk, with i <k, that traverse e from
u to y. The above assurnptioñs imply each of the following:

Ajj1(u,v) =.O
ISÀ(u,v)>O.

Thus, there must be ail intermediate 'j-th augmentation, with i < j < k whose aug-
menting path ir traverses edge e from y to u We therefore obtain

df (ti) = d, (y) + i (because it is a shortest path)
d(v) + i (by Lemma 8.8).
d (u) +2 (because it is a shortest path).

Since the residual distance of a vertex is always less than the number öf ver-
ticés n, eäch edge can be a bottleneck at most n times during the execution of the
Edmonds-Karp algorithm (n/2 times for each of the two directions in which it can

be traversed by an augmenting path). Hence, the overall number of augmentations
is no morethann,n.7 . .. .

U

Since a single flow augmentation can be done in 0(m) time using a modifiéd
BPS strategy, we can summarize the above discussion. as follows.

Theorem 8 10 Given a flow network with n vertices and m edges, the Edmonds-

Karp algonthm computes a maximum flow in 0(nm2) time
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8.3 Maximum Bipartite. Matching

A problem that arises in a number of important applications is the. màxjm&
partite matching problem. In this problem, we are given a: connected un
graph with the following properties:

The vertices of G are partitioned into two sets, X and Y.
Every edge of G has one endpoint in X and the other endpoint in Y

Such a graph is called a bipartite graph. A matching in G is a set of edges
have n endpoints in commonsuch a et "pairs" up vertices in X with ve
in Y so that each vertex has at most one "partner" in the other set The maxm
bipartite matching problem is to find a matching with the greatest number of
(over all matchings): . ... . . . . ... ..

Example 8 11 Let G be a bipartite graph where the setX represents a grou
young men and the set Y represents a group of young women, who are all tole
at a community dance Let there be an edge joining x in X and y in Y ifx
are willing to dance with one another A maximum matching in G corresponds
largest set of compatible pairs of men and women who can all be hàppily dan
at the same time: .

Example 8.12: Let G be a bipartite graph where the set X represents a
of college courses and the set Y represents a group of classrooms. Let there
edge joiningx in X andy in Y if, based on its enrollment and audio-visual needs
course x can be taught in classroom y. A maximum matching in G corresponds
largest set of college courses that can be taught simultaneously without conflic

These two examples provide a. small sample of the kinds of applications
the maximum bipartite matching problem can be used to solve Fortunately, th
is a simple way of solving the maximum bipartite matching problem.

8.3.1 A Reduction to the Maximum Flow Problem

Let G be a bipartite graph whose vertices are partitioned into sets X and Y We,
ate a flow network H such that a maximum flow in H can be immediately conve
into a maximum matching in G

We begin by including all the vertices of G in H, plus a new source vert.
andanewsinkvertext. . . . . .

Next, we. add every edge of G to H, butdirect each such edge so that i
oriented from the endpoint in X to the endpoint in i'. In addition, we inse
a directed edge from s to each vertex in X, and a directed edge from e
vertex in .y to Finally, we assign to each edge H a capacity of 1.
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Given a flow f for H, we use f to define a set M of edgés of G using thé ruib
that an edge e is in M whenever f(e)= 1. (See Figure 8.11.) We now show that.:the
setM is à matching. Since the capacities in H are all 1, the flow through each edge
of H is either O or 1. Moreover, sinceeach vertex x in X has éxactly one iúcoming
edge, the conservation nie implies that at most one outgoing edge of x has nonzero

flow. Similarly, since each vertex y in Y has exactly one outgoinedge, at most one
incoming edge of y has nonzero flow. Thus, each vertex in X will be paired by M
with at most one vertex in Y, thatis, set M is a matching. Also, we can easily see.

that the size of M is equal to If I the value of flow f.
A reverse transformatiOn can also be defined. Namely, given a matching M in

graph G, we can use M to define a flowf for H using the following nies:

For each edgee of H that is also in G, f(e) = life E M andf(e) = O.
otherwise. . .

. For each edge e of H incident to s or t, f(e) = i if y is an endpoint of some.

edge of M and f(e) = O otherwise, where y denotes the other endpoint of e

It is easy to venfy that f is a flow for H and the value of f is equal to the size of M
Therefore, any maximum flow algonthm can be used to solve the maximum

bipartite matching problem on a graph G with n vertices and m edges Namely

1. We construct network H from the bipartite graph G. This step takes O(n + in)
time. Network H has n + 2vertices and n + in edges.

2 We compute a maximum for H using the standard Ford-Fulkerson algonthm
SInce the value of the maximum flow is equal to 1Ml, the size of the maximum

matching, and 1Ml <n/2, this step takes O(n(n + m)) time, which is O(nm)

because G is connected

Therefore, we have the following.

Theorem 8.13: Let G be a bipartite graph with nvertices and in edges. A maxi-

mum matching in G can be computed in O(nm) time.

G: H:

X Y . . Y

Figûre tilt (a) A bipartite graph G. (b) Flow network H derived from G a$ a
maximum flow in H; thick edges have unit flow and other edges have zero flow.

axil""" Bipartite Matching 397:
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8.4 Minimum-Cost Flow
There' is another variant of the maximum flow problem that applies ii?
where there is a cost associated with sending a ùñit of flow through an
section, we extend the. definition of a network by specifying a second no
integer weight 4e) for each edge e, representing the cost of edge e.

Given a flow f, we define the cost of f as

where E denotes the set of edges in the network. Flow f is said to be ak
cost flow if f has minimum cost among all flows: of value If I. The minim
flow problem consists of finding a maximum flow that has the lowest
all maximum flows. A variation of. the minimum-cost flow problem asics
a minirnumcost flow with a given flow value. Given an, augmenting pa
respect to a flow f, we define the cost of ir, denoted w(Jt), as the sum oÊtii
of the forward edges of ir minus the sum of the costs of the backward edje

14

8.4.1. Augmenting Cycles

An augmenting cycle with respect to flow f is an augmenting path whose
last vertices are the same. In more mathematical terms, i? is a directed cycl'
vertices ,v(k 1),vk = vo, such that Aí(v,v+i) > O for i =
(see Figure 8.12). The definitions of residual capacity (given in Section &2,
cost (given above) also apply to an augmenting cycle. In addition, note tha
it is a cycle, we can add the flow of an augmenting cycle to ah existing flow'
changing its flow value. . .

w(f) =
éeE

(a) . . (b)
Figure 8.12: (a) Network with flow f, where éach edge e is labeled
f(e)/c(e),w(e). We:have If I

= 2 and w(f) = 8. Augmenting cycle y= (s,v

drawn with thick edges. The residual :capacity of yis A, (y) 1. The costo
w(y) = 1. .(b) Flow f' obtained from f by pushing one unit of flow along cy
We have If'I =IfI and w(f') = w(f)+w(y)Af(y) = 8+(-4) i = 7.
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Adding the Flow from an Augmenting CyCI.!

The following lemma is analogoUs to Lenima 8.5, as it shows that a maximum flow

can be changed into another maximum flow using a. augmenting cyle.

Lemma 8.14: Lety be an augmenting cycle forflowf in networkN. There exists

i

w(f').W(f)±W(Y)f(T

We leave the proof of Lemma 8.14 as an exercise (R8. 13).

A Condition for Minimum-Cost Flows

Ñote that Lemma 8.14 implies that if a flow f has an augmenting cycle of negative

cost, then f does not have minimum cost. The following theorem shows that the

converse is also true, giving us a condition for testiñg: when a flow is in fact a

minimum-cost flow.

Theorem 8.15: A flow f has minimum cost among all flows of value if I if and

only if there is no augmenting cycle of negati ve cost wjth respect to f.

Proof: The "only-if' part follows immediately from Lemma 8.14. To prove the

"if' part, suppose that flow f does not have minimum cost, and let g be a flow

of value f with minimum cost. Flow g can be obtained from f by a series of

augmentations along augmenting cycles. Since the .cost of gis less than the cost of

f, at least onó of these dycles must have negative cost.

An Algorithmic Approach for Finding Minimum-Cpst Flows

Theorem 8 15 suggests an algonthm for the mimmum-cost flow problem based

on repeatedly augmenting flow along negative-cost cycles. We first find a maxi-

mum flow f* using the Ford-FullcersOn algorithm or the Edmonds-Kail) algorithm.

Next, we determine whether flo* f* admits a negative-cost augmenting cycle. The

Bellman-Ford algorithm (Section .7.1.2) can be used to find a negative cyclein time

O (nui). Let w" denote the total costS of the initial maximum flow f After each

execution of the Bellman-Ford algorithm, the cost of the flow decreases by at least

one umt Hence, starting from maximum flow f we can compute a maximum

flow of minimum cost in time O(w*nin). Therefore,we have the following:

Theorem 8 16. Given an n-vertex flow network N with costs associated with its,

m edges, together with a maximum flow f*, we can compute a maximum flow of

minimum cost in O(w*nm) time, where w is the total cost of fC

We can do much better than this, however, by being mc re careful in how we

compute augmenting cycles,, as we show in the remainder of this. Section.
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8.4.2 Successive Shortest Paths

In this section, we present an alternative method for computing a nummu
flow., The idea is to start from an empty flow and bUild up to a thaxjmu
by. a series of augmentations along minimum-éost paths. The following

tu
provides the foundation of thiS approach.

Theorem 8.17: Let f be a minimum -cost flow, and let f' be a the flow ob'by augmenting f along an augmenting path ir of minimum cost. Plow fminimum-cost flow.

Proof: The proof is illustrated in Figure 8.13.

Figure 8.13: Illustration of the proof of TheoreIi 8.17.

Suppose, for the sake of a contradiction, that f' does not have minimum c
By Theorem 8 15, f' has an augmenting cycle yof negative cost Cycle ymusth
at least one edge e in common with path ir and traverse e in the direction opposi
to that of it, since otherwise y would be an augmenting cycle of negative cost *1
respect to flow f, which is impossible, since f has mimmum cost Consider
path ft obtained from ir by replacing edge e with ye. The path ft is an augmentiñ
path with respect to flow f. Also path ft has cost

w(*) =wØt)+w(y) <wØt)
This contradicts the assumption that ir is an augmenting path of mimmum cost w
respect to flow f.

Starting from-an initial null flow, we öan compute a maximum flow of mininiu
cost by a repeated applkation of Theorem 8.17 (sée Figurè 8.14). Given the curen
flow f, we assign a weight to the edges of the residUal graph Rf as follows (rec
the definition of residual graph from Section 8.2.2). Fór eaçh edge e, direcC.
from u to V, of the original network, the edge of R1 from u to y, denoted (u, y), h
weight w(u, y) = w(e), while the edge (y, u) from vto u has weight w(v, u) =
The computation of a shortest path m R,c can be done by using the Bellman-Fo1
algorithm (see Section 7.1.2) since, by Theorem 8.15, r does not have negative-
cost cycles Thus, we obtain a pseudo-polynomial-time algorithm (Section 5 33.)
that-computes a maximum flow of minimum cost f in time O( f km).
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An example execution of the above algorithm is shown in Figure 8.14.

2

(f)

401

Figure 8.14: Exampleof computation of a minimum-cost flow by successivè short-
est path augmentations. At each step, we shOw the network on the left änd the
resjdual network on the right. Vertices are labelçd with their distance from the
source In the network, each edge e is labeled with f(e)/c(e) , w(e).. In the resid-
ual network, each edge is labeled with its isidual capacity and cost (edges with
zero residual capacity are omitted) Augmnìing paths are drawn with thick lines
A nimnimum-cost flow is computed with two augmentations In the first augmenta-
lion, two units of flow are pushed along path (s, y, u, t) In the second augmentation,
one unit of flow is pushed along path (s,u,v,t).

(a) (b)

(c) (d)
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8.4.3 Modified Weights

We can reduce the time for the shortest path computations by changing the
in the residual graph R1 so that they are all nonnegative. After the modificatji

can use Dijkstra's algorithm, which runs in O(inlogn) time, instead of the Be
Ford algorithm, which runs in Q(nm) time.

We describe now the modification of the edge weights. Let f be thec
minimum-cost flow We denote with d1 (y) the distance of vertex y from the o

s in Rf, defined as the minimum weight of a path from s to y in R1 (the cost o

augmenting path from the source s to vertex v). Note that this definition of di(
is different from the one used in Section 8.2.4 for the Edmonds-Karp algori

Let g be the flow obtained from y by augmenting f along a minimum-cost:.
We define a new set of edge weights w' for Rg, as follows (see Figure 8.15):

w'(u,v) = w(u,v) +df(u) d1(v).

Lemma 8.18: Éor each edge (u, y) of residual network Rg, we have

w'(u,v)O.
Also, a shortest path in Rg with the modified edge weights w' is also a shortest
with the original edge weights w.

Proof: We distinguish two cases.

Case 1: edge (u, y) exists in Rf.
In this case, the distance df (y) of y fròm s, is no more than the distance
of u from s plus the weight w(u,v) ofedge(u,v), that is,

11(v) <d1(u)+w(u,v).

Thus, we havefl

Case 2: edge (zi,v) does not exist in R1..
In this case, (y, u) must bean edge of the augmenting path used to ob
flow g from flow f and we have

d1(u) d1(v)+w(v,u).
Sincew(v,u) = w(u,), we have

w'(u,v) = O.

Given a.path it of Rg from s to t, the cost w'(m) of ir withrespect to the in

edge weights differs from the cost c(Jr) of it by a òonstant:

w'(ic) = w(lt) + d1(s) - d1(t) = w(lc) - df(t)

Thus, a shortest path in Rg with respect to the onginal weights is also a s
path with respect to the modified weights.
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i

(cj

Figure 8.15: Modification of the, edge costs in the computation o. a minimum-cost
flow by successive shortest path augmentations. (a) Flow network Nf with initial
null flow f and shortest augmenting path ici = (s, y, u, t) with cost w = w(lci) 3. /

Each vertex is labeled with its distance df from the source. (Same as Figure 8. 14.b.)
(b) Residual network Rg after augmenting flow f by two units along path ir and
shortest path.m2 = (s,u,v,t) withcost w(7t2) = 5.' (Same as Figure 8.144) (c)
Residual network Rg with modified edge weights Path 7t2 is sull a shortest path
However, its cost is decreased by w1.

#uImhJumstost Flow 403
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The complete algorithm for computing a minimum-cost flow using the
sive shortest path method is given in Algorithm 8.16 (MinCostFlow).

Algorithm MinCostFlow(N):
Input: Weighted flow network N = (G, c, w,s, t) H

Output: A maximum flow with minimum cost f for N

for each edge e E N do

for each vertex y E N do
d(v)O.

stop - false
repeat

compute the weighted residual network Rf
for èach edge (u, y) e Rf do

w'(u,v) 4w(u,v)+d(u)d(v)
run Dijkstra's algorithm on Rf using the weights w'
for each vertexvÉNdo

d(v) t- distance of y from s in Rf
if d(t)<-j-oo then

{m is an augmenting path with respect to f }
{Compute the residual capacity Af(m) of jr }
A4+oo
for each edge e Em do
ifAf(e)<Athèn

{ Push = Af(lt) units of flow along path it }
for each edge e en do

if e is a forward edge then
f(e) 4f(e)+A

else
f(e) t- f(e) - A {e is a backward edge}

else
stop *- true {f is a maximum flow of minimum cost}

until stop

Algorithm 8.16: Successive shortest path algorithm for computing a minim
flow . -

We summarize this section i the following theorem:

Theorem 8.19: A minimum-cost maximUm flowf for à ñetwork with flY
andm edges can be computed in O(fjinlogn) time. H
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java
Example: Minimuim Cost Flow

JavaExample: Minimum-Cost Flow
In this section, we present portions of a Java implementation of Algorithm 8.16
(MinCostFlow), which computes a minimum-cost flow using successive augmenta-
tions along immmum-cost paths The abstract class MinCostFlowTemplate, based
on the template method pattern, implements the the core functionality of the algo-
rithm. Any concrete class implementing;the abstract class MinCostFlowTempiate
should override the cost(e) arid capaci4v(e) methöds to return cost and capacity
values for edge e specific tothé applicâtion. . The instance variables and the ab-
stract methods, éost (e) and capacity(e) , of class M i n CostFlowTem plate are shown
in Code Fragment 8 18 The core computation of a shortest augmenting path with
method doOne!teration() is shown in Code Fragment 8 19

The algonthm can be run either step-by-step, or at once The two execute meth-
ods shown in Code Fragment 8 20 run the algorithm on the given flow network The
algorithm will run until eithet a given target value for the flow has been reached,

. or theré are no möre augmenting paths . from the source (instance. variable sou rce4
to the sink (instance variable dest4. Optionally, the algorithm. can be executed
one augmenting path at a time, by first initializing the algorithm through method
init(G,s,t) (Code Fragment 8 21), and then repeatedly calling doOnelteration()
Helper methods are shown in Code Fragment 8 22 To remove all auxiliary objects
used by the algòrithm, method cleanup() (not shown) can be callèd.

Code Fragment 8.23 contains methods for working with the residual graph.
Method dista nce(v) returns the distance of a vertex y from the s 6urce of the resid-

ual graph. Method residualWeight(è) returns the modified weight of an edge e.
Method isAtCapacity(v, e) is used to determine whether edge e has null residual
capacity when traversed from endpoint vertex y Additionally, calling method
doOnelteration() returns an iterator over the edges in the current augmenting path
The results are reported by methods f Iow(e), and maximumFiowO (not shown)

Class MinCostFlowTemplate uses ap auxiliary class MinCostFlowDijkstra (not
shown) to compute shortest paths with llijkstra's algorithm Class MinCostFlowDi-
jkstra is a specialization of the generic Dijkstra's shortest path algorithm provided
by the JDSL library [195] (similar to the class givèn in Code Fragments 7.23-7.25).
The main methods of MinCostFlowDtjkstra are as follows Method weight(e) re-
turns the modified weight of edge e, as computed by method residuaIWeight(e
of class MinCostFlowTemplate Method incidentEdges(v) is also ovemdden to
consider only those incident edges of vertex y with nonzero residual capacity (this
method, in effect, "removes" saturated edges from the residual graph). Addition
ally, through the use of decorations, ,MinCostFlowD.ijkstra keeps:trackof the flow /

bottlenecks on the current shortest paths through each node. Thus, at. the end of
each execUtiOn Of MinCostFlowDijkstra, we know the minimum cóst path from the

source to the sink, as well as the maximum amount of flow that can be pushed along

that path. . .

405

http://www.cvisiontech.com


Chapter & Network Flow and M

/**
* implementation of the minimum-cost flow algorithm based án
* successive augmentations along minimum-cost paths: The algorithm
* assumes that the graph has no negative-weight edges The
* implemetation uses the template-method pattern.

public abstract class MinCostFlowTemplate T

// instance variables
protected MinCostFlowDijkstra dijkstra_,
protected InspectableGraph graph_,
protected Vertex source_,
¡rotected Vertex dest_,
prôtéctedbóøleanfinished_;
protected mt maximumFlow_;
protected mt targetFlow_;

/ / various constants
public final mt ZERO = O,
public final mt INFINITY = Integer MAX_VALUE,

// node deéorations
private final Object FLOW = new ObjectQ;
private final Object DISTANCE = new ObjectQ;

* Returns the cost for a specified edge Should be overridden for
* each specific implementation.
* @param e Edge whose cost we want
* @return mt cost for edge e (non-negative) *f

protected abstract mt cost(Edge e);

* Returns thecapacity for the specified edge. Should be
* overridden for each spêcific implementation.
* .@param e Edge whose capacity we want
* @return mt capacity for edge e (non-negative) */

protected abstract mt capacity(Edge e),

Code Fragment 8.18: Instance variables and abstract methods of class MinÇ
FlowTemplate.
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Example: Minimum-Cost Flow

/**
* Performs one iteration of the algorithm. The Edgelterator h
t returns contains the edges that were part of the associated path
* from the source to the dest. .

*
* Qreturn Edgelterator over the edges considered. in the augmenting path */

public final Edgelterator doOnelteration()
throws jdsI.graph.api.InvalidEdgeExcêption

{

Edgelterator returnVal; . .

runDijkstraOnResidualNetworkQ;
updateDistancesQ; H .. .. s.
// check tp see if an augmenting path exists
if (distance(dest_) c INFINITY) {

Edgelterator pathlter = dijkstra._.reportPathQ;..
mt maxFlow = dijkstra_.reportPath.Ftow(dest_);
maximumFlow_ += maxFlow; . .

// push maxFlow along path now. . .

While (pathlter.hasNextQ) {
.

// check if it is a forward edge .

Edge e = pathlter.nextEdgeQ; .

if (isForwardEdge(e)) {
setFlow(e, flöw(e) + maxFlow); . .

}else{ . .. ..
setFlow(e, flow(e) -. maxElow);

}.
}
pathlter.resetQ;
returnVal = pathlter;

}else{
finishedQ;
returnVal = new EdgelteratörAdapter(new ArrayObjectlterator(new Object[O]));

}
return returnVal;

}

Code Fragrneñt 8.19: Method, for computing a minirnumLcöst augmenting path in

class MinCostFlöwTemplate. .
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* Helper method to continually execute iterations of the algorithm
* until it is finished.. . ..

protected final void runUntil() {
while (shouldContinueQ) {

doOnelterationQ; .

}
}/** .

* Execute the algorithtn, which will computethe maximum flow
between sourcé and dest in the Graph g.

* Qparam g a Graph
* @param source of the flow .

* @param dest fo the flow */. . .

-

public final void execute(lñspectableGraph g, Vertex source, Vertex dest)
throws InvalidVertexException {

.

init(g, sourée, dest);
runUntilO; . .

}/** .

* Execute the algorithm, which will executé until the target flow
* is reached, or no more flow is possible.
*
* @param g a Graph
t @param source of the flow.
* @param dest for the flow /

public final void execute(tnspectableGraph g, Vertex sourS, Vertex dest,
mt target)

throws InvalidVertexException {
tàrgetFlow_ = tárget; .

execute(g, source, dest); .

}

Code Fragment 8.20: Methods for controlling the éxecution of the minim
flow algorithm in class MinCostFlowTernptate.
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/**
* Initializes the algorithm. Set up all local instance variables
* and initialize all of the default values for the decorations
* Dijkstra's is also initialized.
*
* @param g a Graph
* @param source of the flow

@param dest for the flòw /
public void init(lnspectableGraph. g, Vertex source Vertex dest)

throws InvalidVertexException {
if(. !g.contains( source ) )

throw new lnvalidVertexException( source .1? not contained in
if( !g:contains( dest ) )

throw new lnvalidVertexException( dest .+ not contained in
graph_ = g;
source_ = source;
dèst_ = dest;
finished_ = false;
maximumFlow_ = ZERO;
targetFlow_ = INFINITY
// mit dijkstra's
dijkstra_ = new MinCostFlowDijkstraQ;
dijkstra_.init(g, sourde);.
// initialize all the default values)
Vertexlterator vertexlter = verticesO,
while (vertexlter.hasNextQ) {

Vertex u = vertexlter.nextVertexo;
setDistance(u, ZERO);

}
Edgelterator edgelter = edgesQ;
while (edgelter.hasNext()) {

Edge e = edgelter.nextEdgeQ;
setFlöw(e, ZERO);}:i

Code Fragment 8.21: Initialization method of class MinCostFlowTemplate.

Java Liample: Minim urn-Cost Flow
409.

" + g);

+ g );
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* Helper method to copy all of the vertex distances from an

* exeution of Dijkstra's algorithm into local decor?tions so they

* can be used in computing the residual network for the next

* execution 6f Dijkstra's. /
protected void updateDistanceSü {

¡f copy distances from residual network to our network

Vertexlterator vertexiter = verticesQ;

while (vertexlter.hasNextü) {
Vertex y = vertexlter.nextVertexü;
try{

setDistance(v, dijkstra_.distance(VTh
} catch (lnvalidQueryExCePtiofl ¡qe) {

¡/ vertex is unreachable; set distance to INFINITY

setDistance(v, INFINITY);

}

i

* Helper methód to execute Dijkstra's on the residual network. We

* are sùrè to cleanup all past executions by first càlling the

* clèanup() method. /
protected void ru nDijkstraOnResidualNetwork() {
:dijkstracleanupQ;

dijkstra._.execute(graph_, source-, dest_);

}

/**
* kelper méthod that is called exactly once when the algorithm is

* finished executing. "7
protected void finished() {

/ finished- = true;

Chapter & NetworkFlow and MI

-t

-. .-
I.

Code Fragment 8.22: Helper methods of class MinCostFIowTemPIate

}
}
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'' Returns the distanceof a vertex from the source.
* @param va vertex
* @return the distance of y främ the source
* @throws invalidQueryException ¡f y has not been reached yet /

public final mt distance( Vertex y) throws lnvalidQueryException {try{
return ((Integer)v.get(flISTANCE)).intValueQ;

catch (lnvalidAttributeException iae) {
throw new lnvaliclQueryException(v+" has not been reached yet");

}
}/*.*
* Returns the-modified weight of edge e in the current residual
* graph. lt can be calculated on the fly becau' distance
* information is only updated aftet every itération of the
* algorithm.
* @param e Edge to find residual weight for
* @return itt residual weight of e

public final mt residualWeight(Edgee) {
// use the absolute value because if we traverse
// the edge backwards, then w(v,u) = -w(u,v)
réturn Math.absÇ cost(e) +

distance(graph_.origin(e)) -
distance(graph_.destination(e)). );

*

}/**
* Determines whether edge e has null residual capacity when
*:traversed sartiñg at ndØoint v.'
* @param y Vertex from which edge is being considered
* @param e Edge to check

@return boolean true if the edge is at capacity, false if -not
public final booléan ¡sAtCapacity( Vertex y, Edge e) {.
.1/ forward edges are full when capacity == flow
if( y == graph_.origin( e ) )

return (capacity(e) flow(e));
7/back edges are full when flow == O
else

return (flow(e) == O);
}

411

Code Fragmeñt8.23 Methods distance residua lWeight, and isAtCa pacityof class
MinCostFlowTemplate.
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8.6 Exercises

Reinforcement
R-8. I Show that for a flow f, the total. flow out of the source is equal to the t

into the sink, that is,
f(e)= f(e)..

eEE+ (s) eEE (t)

R-8.2 Answer the following questions on the flow network N and flow f sh
Figure 8.6a:

. What re the forward edges of augmenting path t? What are the ba6
edges?
How many augmenting paths are there with respect to flow f? F
such path; list the sequence of vertices of the path and the residual e'
ofthepath.
What is the value of a maximum flow in N?

R-8.3 Construct a minimum cut for thê network shown in Pigure 8.4 using the in
in the proof of Lemma 8 6

R-8.4 Illustrate the execution of the Ford-Fulkérson algorithm in the flow netwd
Figure 8.2.

R-8.5 Draw a flow network with 9 vertices and 12 edges. Illustrate an execution
Ford-Fuilcerson algorithm on it. -

R-8.6 Find a minimum eut in thè flow network of Figure 8.8a.

R-8.7 Show that, given a maximum flow in a network with m edges, a minimuni
N can.be computed in 0(m) time

R-8 8 Find two maximum matchings for the bipartite graph of Figure 8 lia that
different from the maximum matching of Figure 8.1 lb:

R-8.9 Let G be a complete bipartite graph such that X = VI = n and for each p'
vertices x EX andy É Y, there is an edge joining x andy. Show that G h'
distinct maximum matchings.

R-8.10 Illustrate the execution of the Ford-Fulkerson algorithm in the flow networ
Figure 8.11b.

R-8.11 Illustrate the execution of the Edmonds-Karp algorithm in the flow networ
Figure 8.8a.

R-8.12 Illustrate the execution of the Edmonds-Karp algorithm in the flow networ
Figure8.2J

R-8.13 GiveaproofofLemma8.14.

R-8.14 illustrate the execution minimum-cost flow algorithm based on successive ¿ii
mentations along negative-cost cycles for the flow network of Figure 8.14a.

412 Chapter8. Network Flow and M
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Creativity
C-8. 1 What is the worst-case running time of the Ford-Fulkerson algorithm if all edge

capacities are bounded by a constant?

C-8 2 Improve the bound of Lemma 8.9 by showing that there are at most nm/4 aug-

mentations in the Edmonds-KarP algorithm.

Hint: Use d1(u,t) in addition to d1(s,v).

C-8.3 Let N be a flow network with n vertices and m edges. Show how to compute an

augmenting path with the largest residual capacity in O((n + m) logn) time.

C-8.4 Show that the Ford-Fulkerson algorithm runs in time O (in2 log n log If* I) when, at

each iteration, the augmenting path with the largest residual capacity is chosen.

C-8.5 You want to increase the maximum flow of a network as much as possible, but

you are only allowed to increase the capacity of one edge.

How do you find such an edge? (Give pseudo-code.) You may assume

the existence of algòrithms to compute max flow and min cut. What's the

running time of your algorithm?
Is it always possible to find such an edge? Justify your answer.

C-8.6 Given a flow networkN and a maximum flow f for N, suppose that the capacity

of an edge e of N is decreased by one, and let N' be the resulting network. Give

an algorithm for computing a maximum flow in network N' by modifying f.

C-8.7 Give an algorithm that determines, in O(n + in) time, whether a graph with n

vertices and in edges is bipartite.

C-8.8 Give an algorithm that determines what is the maximum number of edge-disjoint

paths bètween twò given vertices s and t of an undirected graph.

C-8.9 A taxi company receives pickup requests fthm n locations. There are m taxis

available, where in n, and the distance of taxi i to location j is d. Give an
algorithm for computing a dispatchment of n taxis to the n pickup locations that

minimizes the total distance.

C-8.10 Give an algorithmfor computing a flow of maximum value subject to.the follow-

ing two additional constraints:

Each edge e has a lower bound E(e) on the flow through it.

There are multiple sòurces and sinks, and the valve of the flow is computed

as the total flow out of all the sôurces (eqS to the total flow into aiL the

sinks)

C-8.11 Show that, in a flow network with noninteger capacities the Ford-Fulkerson al-

gorithm tháynot terminate.

£xerciseS
413

R-8.15 ifiustrate the execution minimum-cost flow algorithm based on successive aug-

mentations along minimum-cost paths for the flow network of Figure 8.2, where

the cost of an edge (u, y) is given by deg(u) - deg(v)j.

R-8.16 Is Algorithm 8.16 (Mi nCostFlow) a pseudopolynomial-time algorithm?
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Projects
P-8. i Design and implement an applet that animates the Ford-Fulkerson fid

rithm. Try t be creative about how you illustrate, flow augmentation
capacity, and the actual flow itself.

P-8.2 Implement the Ford-Fulkerson flow algorithm using three differéjit metj
finding augmenting paths. Perform a careful experimental compatho
methods

P-8 3 Implement the algorithm for computing a maximüm bipartite matching
how to reuse an algorithm for computing a maximum flow.

P-8.4 Implement the Edmonds-Karp algorithm.

P-8.5 Implement the minimum-cOst flow algorithm based on successive augmen
along negative-cost cycles.

P-8 6 Implement the minimum-cost flow algorithm based on successive augmeñ
along minimum-cost paths. Implement the vSatiôì .thatuses the Bellm
algorithm and the variation that modifies the costs and uses Dijkstra'
rithm.

F

Chapter Notes
F

Ford and Fulkerson's network flow algorithm (8.2.2) is descr bed in their book [7I]
monds and Karp [65] describe two methods for computing augmenting paths that cau'
Ford-Fulkerson algorithm to run faster: shortest augmenting path (Section 8.2.4) and,
menting paths with maximum residual capacity (Exercise C-8 4) The mimmum-cost
algorithm based on successive augmentations along minimum-cost paths (Section 844
also due to Edmonds and Karp [65] F

The reader interested in ful-ther study of graph algorithms and flow networks is
ferred to the books by Ahuja, Magnanti, añd Orlin [9], Cormen, Leiserson, and Rivest [.
Even [68], Gibbôñs [77] Mehihoni [149], and Tarjan [200], and the book chaptö
van Leeuwen [205].

DtUT1 Polivy devloped the implementation of the minimum-cost flow algorithm gu(é
Section 8.5.. H ' ' . ..

1F
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418 Chapter 9. Text P

Document processing is rapidly becoming one of/the dominant funj1
computers. Computers are used to edit documents,. to search documents, to1
port documents over the Internet, and to display documents on printers and
puter screens. Web "surfing" and Web searching are becoming significant aù
portant computer applications, and many of the key computations in all ¿
document processing involve character strings and string pattern matching p
ample, the Internet document formats HTML and XML are pnmanly text fo
with added links to multimedia content. Making sense of the many terab
information on the Internet requires a considerable amount of text Processing

In this chapter, we study several fundamental text processing algorithnj
quickly perfonmng important string operations We pay particular attention t
gonthms for string searching and pattern matchwg, since these can often be '\,
putational bottlenecks in many document-processing applications We also 5î
some fundamental algorithmic issues involved in text processing, as well :

Text proces'hg algonthms operate primanly on character strings The te
nology and notatibn for strings, as used in this chapter, is fairly intuitive, aún'
turns out that representing a string as an array of characters is quite simple and
cient So we don't spend a lot of attention on string representations Nevertlie
string processing often involves an interesting method for string pattern mat
and we study pattern matching algorithms in Section 9 1 t

In Sectioñ 9.2, we study the the data structure, which is a tree-based strué
that allows for fast searching in a collection of strings.

We study an important teAt processing problem in Section 9.3, namely,.
problem of compressing a document of text so that it fits more efficiently in sto

r ôan be transmitted more efficiently over a network.

The final text processing problem we study,. in Section 9.4, deals With
we can measure the similanty between two documents All of these woble
are topics that arise often in Iniemet computations, such as Web crawlers;-sè
engines, document distribution, and information retrieval.

In addition to having interesting applications, the topics of this chapter
highlight some important algorithmic design patterns (see Chapter 5) In paS
lar, in the section on pattern matching, we discuss the brute-force method, w'
is often inefficient but has wide applicability For text compression we study aiÇ'
plication of the greedy method (Section 5 1), which often allows us to approxinQ
solutions to hard problems, and for some problems such as our text compresS
application actually gives rise to optimal algorithms Finally, in discussing text
ilanty, we give another application of dynamic programmuig (Section 5 3), w
can be applied, in some special instances, to solve a problem in polynomial
that appeau at first to require exponential time
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Strings and Pattern Matching Algorithms

Text documents are ùbiquitous in moderñ computing, as they are used to ommuni-
catè and publish information. From the perspective of algorithm design, such doc-
uments can be viewed as simple character strings. That is, they can be abstracted
as a sequènce of the characters that make up their content. Performing interesting
searching and processing operationson such data, therefore, requires that we have
efficient methods for dealing with character strings.

9.1.1 String Operations

At the heart of algorithms for processing text are methods for dealing with charac-
ter strings Character strings can come from a wide variety of sources, including
scientific, linguistic, and Internet applications. Indeed, the following arç examples
of such strings:

P = 'tCGTAAACTGCTTTAATCAAACGC"

R = "US. Men Wiñ Soccer World Cup!"
S "http:,1/www.wiley. corn/college/goodrich!".

The first string, P, comes from DNA applications, the last string, S, is the Internet
address (URL) for the Web site that accompanies this book, and the middle string,
R, is a fictional news headline. In this section, we present some of the useful oper-
ations that are supported by the string ADT for processing strings such as these.

Several of thetypical string processing operations involve breaking large strings.
into smaller strings. In order to be able to speak about the pieces that result from
such operations, we use the term substring of an rn-character string P to refer to a
string of the formP[i]P[i± 1]P{i+2]t . .p[j], for some 0< i <j< m 1, thatis, the
string formed by the characters in P fröm index i to index j, inclusive. Technically,
this means that a string is actually a substring of itself (taking i = 0. and j m - 1),
so if we want to rule this out as a possibility, we must restrict the definition to
proper substrings, which require that ither i > 0 or j < in - 1. To simplify the
notation for referring to substrings, let us use P[i. .jJ to denote the substring of P
from index i to index j, inclusive. That is, .

P[i..j] =P{i]P[i+1} ....P[j].

We use the convention that if i> J, then P[i. .11 is equal to the null string, which
has length 0. In addition, in order to distinguish some special kinds of substrings,
let us refer to any substring of the fOrm P{0..i], for O < i <rn - 1, as aprefix of P,
and any substring of the form P[i..in 1], for O Ç i < in. 1, as. asuffix of P. For
example, if we again take .P to be the string of DNA given above, then "CGTAA"

is a prefik of P, "CGC " is a suffix of P, and "TTAATC " is a (proper) substhng of P.
Note that the null string is a prefix and a suffix of any other string.
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The Pattern Matching Problem

In the classic pattern matching problem on strings, we are given a text s
of length n and a pattern string P of length in, and want to find wheth
substring of T. The notion of a "match" is that there is a substring of T s
some. index i that matches P, character by character, so that

T[i]=P{O], T[i+1] =P[1], ..., T{i+in.1I =P[m i]
That is,

P=T[i..i+tn-1]. .

Thus, the output from a pattern matching algorithm is either an indication
pattern P does not exist in T or the starting index in T of a substring matchjj

To allow for fairly general notions of a character string, we typicallj%
restrict, the characters in T and P to come explicitly from a well-known ch
sèt, like the ASCII or Unicode character sets. Instead,, we typically use the ge
symbol E to denote the character set; or alphabet, frOm which the chanc
T and P can come. This alphabet E can, of course, be a subset öf the ASt?
Unicode character sets, but it! could also be more general and is even all6w
be infinite. Nevertheléss, since most document processing algorithms are ils
applications where the underlying character set is finite,we usually assume tlìa
size of the alphabet E, denoted with jE is a fixed cönstant.

Example 9.1: Suppose we are given the text string
T = "abacaabaccabacabaabb"

and the pattern string
P = "abacab".

ThenPisasubstringofT. Namely,P=T[lO..15].

In this section, we present three different pattern matching algorithms.

9.1.2 Brute Force Pattern Matching

The brute force algorithmic design pattern is a powerful technique for algori
design when we have something we wish to search for or when we wish to q
mize some function. h applying this technique in a general situation, We typiò
enumerate all possible configurations of the inputs involved and piàk the best ô
these enumerated. configurations.

Brute-Fûrce Pattern Matching

In applying this technique to design the brute-force pattern matching algori
we derive what is probably the first algorithm that we might think of for soiving
pattern matching problemwe simply test all the possible placements of P reM
t T. This approach, shown in Algorithm 9.1, is quite simpló.
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Algorithm BruteForceMatch (T, P):
Input: Strings T (text) with n characters and P (pattern) with in characters
Output: Starting index of the first substring of T matching P, or an indication

that P is not a substring of T

for i - Oto n - in {for each candidate index in T} do
jO
while (j<mandT[i+j]P[j]) do

j4i+1
if j=mthen

return i
ièturn "Thère is no substring of T matching P."

Algorithm 9.1: Brute-force pattern matching.

The brute-force pattern matching algorithm could not be simpler. It consists of

two nestéd loops, with the outer loop indexing through all possible starting indices

of the pattern in the text, and the inner loop indexing through each character of the

pattern, comparing it to its potentially corresponding character, in the text. Thus,
the correctness of the brute-force patifern matching algorithm follows immediately.

The running time of brute-force pattern matching in the wärst case is not good,

however, because, for each candidate index in T, we can perform up to in character

comparisons to discàver that P does not match T at the current index. Referring to
Algorithm 9.1, we see that the outer for-loop is executed at most n - in, ± 1 times,

and the inner loop is executed at most in times. Thus, the running time of the brute-

force method is O((n -zn + 1)m), which is O(nm). Thus, in the worst case, when

n and in are roughly equal, this algorithm has a quadratic running time
i

In Figure 9.2 we Illustrate the execution of the brute-force pattern matching
algorithm on the strings T andP from Exathple 9.1.

lo
b 000

11 comparisOnS

,".,22 2324252627

421

Figure 9.2: Example run'Qf the brute-force pattern rnatchiñg algorithm, the algo-.

rithrn performs 27 charadter comparisons, indicated above.with numriéàl labels,

b con b

89 non b
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9.1.3 The Boyer-Moore Algorithm

At first, we might feel that it is always necessary to examine every ¿ha
T in order to locate a pattern P as a Substring. But this is not always the
for the Boyer-Moore (BM) pattern matching algorithm, which we study ij
section, can sometimes avoid comparisons between P and a sizable fraction c
characters in T. The only caveat is that, whereas the brute-force algont

r

work even with a potentially unbounded alphabet, the BM algorithm assum
alphabet is of fixed, finite size. It works the fastest when the alphabet is modera
sized and the pattern is relatively long.

In this section, we describe a simplified version of the original BM algorj'
The main idea is to improve the running lime of the brute-force algorithm by ad
two potentially time-saving heuristics: i

Looking-Glass Heuristic: When testing a possible placement of P against T, be
the comparisons from the end of P and move backward tO the front of ¡Ç

Character-Jump Heuristic: During the.testing of a possible placement of P ag
T, a mismatch of text character T [iJ = c with the corresponding pattern ch
acter P[j} is handled as follows, 11f c is not contained anywhere in P, thejig
P completely past T[i] (for it cannot match any character in P). Otherwjs
shift P until an occurrence of character c in P gets aligned with T [i]

We will formalize these heuristics shortly, but at an intuitive levél, they work as
integrated team The looking-glass heunstic sets up the other heunstic to allow u
to avoid comparisons between P and whole groups of characters in T. In this case a
least; we can get to the destination faster by going backwards, for ifwe encounters
mismatch during the consideratiön of P at a certain location in T, then we are like!
to avoid lots of needless comparisons by significantly shifting P relätive to T using
the character-jump heuristic. The..character-jump heuristicpays off big if it can be
applied early in the testing ofa potential placement ofF against T.

Therefore, let us define how the character-jump heuristics can be integrated
into a string pattern matching algorithm To implement this heuristic, we define i
function Iast(c) that takes a character c from thé alphabet and specifies how far wé
may shift the pattern P if a character equal to c is found in the text that does no
match the pattern. In particular, we define Iast(c) as follows: i

If c is in P, last(c) is the index.of the last (right-most) occurrence of c in P
Otherwise, we conventionally:define Iast(c) = 1.

If characters can be used as indices in arrays, then the last function can be eas-
ily implemented as a lookup table. We leave the method for computing this table
efficiently as a simple exercise (R-9.6). The last function wilt give lis all the in-
formation we need to perform the character-jump heuristic. In Algorithm 9.3, w
show the BM pattern, matching method. The jump stép is illustráted in Figure 9.4
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Algorithm BM Match(T,P):
Input: Strings T (text) with n characters and P (pattern) with rn chxracters
Output: Starting index of the first substring of T matching P, or an indication

that P is not a substring of T

compute function lastitrniftrni
repeat

if P[j] = T[i] then
iff=Othen N

return i {a match!}
elseii-1jj-1

else
i t- i+ rn - min(j, i + Iast(T[i])) { jump step }

f
untili>n-1
return "There is no substring of T matching P?'

Algorithm 9.3: The Boyer-Moore pattern matching algorithm.

(a)

(b)

1.1-I-i.

J

m(1+ i)

a bu

¡+1

I .1111 I. 1.1.1.1. I.

LI -i-LI b lajl
m-jL4»]

.ÌbIa

423

-J

Figure 94' Illustration of the jump step in the BM algonthir,, where i denotes
Iast(T[z}) We distinguish two cases (a) i + i <j, where we shift the pattern by

j - i umts, (b) j c 1+!, where we shift the pattern by one umt
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In Figure 9.5, we illustrate the execution of the Boyer-Moore pattern maj
algorithm on a similar input string as in Example 9.1.

a b a C

6

13 12 11 10 9 8

The last(c) function:

7

Figure 9.5: An illustration of the BM pattern matching algorithm. The algori
performs 13 character comparisons, which are indicated with numeriòal labels,

The correctness of the BM pattern matching algorithm follows from the
that each time the method makes a shift, it is guaranteed not to "skip" over
possible matches. For last(c) is the location of the last occurrence of c in P.

i
The worst-case running time of the BM algorithm is O(nm + El). Namely

computation of the last function takes time O(m + IEl) and the actual search for.th
pattern takes O(n,n) time in the worst case, the same as the brute-force algori
An example of a text-pattern pair that achieves the worst case is

ns
T = aaaaaa .

m-1

P=baa'a.
The worst-case performance, however, is unlikely to be achieved for English tex

Indeed, the BM algorithm is often able to skip over large portiohs of the te;
(See Figure 9.6.) There is experimental evidence that on English text, the aver,$
number of comparisons done per text character is approximately 0.24 for a fit
character pattern stnng The payoff is not as great for binary strings or for very s1
patterns, however, in which case the KMP algonthm, discussed in Section 9 1 4,o
for very short patterns, the brute-force algorithm, may be bettet

c abc d
last(c) :4 5 3 1

a a C

n b
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auna
4auna
aunati 11 10 9 8 7

Figure 9.6: Execution of the Boyer-Moore algorithm on an English text and pat-

tern, where a significant speedup is achieved. Note that not all text characters are

exaniined.

We have actually presented a simplified version of the Boyer-Moore (BM) al-

gorithm; The original BM algorithm achieves running time O(n + m + Xl) by using

an alternative shift heuristic to the partially matched text stnng, whenever it shifts

the pattern more than the character-jump heuristic This alternative shift heuristic

is. based on applying the main idea from the Knuth-Morris-Pratt pattern matching

algorithnz which we discuss next.

9.1.4 The Knuth-Morris-Pratt Algorithm

In studying the worst-case performance pf the brute-force and BM pattern matching

algorithms on specific instances of the problem, such as that given in Example 9.1,

we should notièe a major inefficiency. Specifically, we may perform many compar-

isons while testing . a potential placement of the pattern against the text, yet if we

discover a pattern character that does not match in the text, then we throw away all

the information gained by these comparisons ánd start over again from scratch with

the,next incremental placement of the pattern. The Knuth'Morris-Pratt (or "KMP")

algorithm, discussed in this section, avoids this waste of information and, in so do-

ing, it aèhieves a running time of O(n + m), which is optimal in the worst case.

That is, in the worst case any pattern matching algorithm will have to examine all

the characters of th text and all the characters of the pattern at least once.

The Failure Function

The main idea of the KMP algorithm is to preprocess the pattern string P so as

to compute a failure function f that indicates the proper shift of P so that, to the

largest extent possible, we can reuse previously performed comparisons.. Specif-

ically, the failure function f(j) is defined as the length of the longest prefix ofF

that is a suffix of P[1 .
.j} (note that we did not put P[O. .j} here). We also use the

convention that f(0) = O. Later, we will discuss how to compute the failure func-

tion efficiently. The importance of this failure function is that it "encodes'rePeated

substrings inside the pattern itself.

;jçjngs and Pattern Matching Algorithms T '425
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Example 9.2: Consider the pattern string P.= "abacab" from Exampje
KMP failure function f(j) for the string P is as shown in the follòwing

I j 012345
P[j] a b a c a b
f(j) 00 1 01 2 ta

The KMP pattern matching algorithm, shown in Algorithm 9.7, incoe
processes the text string T comparing lito the pattern string P. Each time th
match, we mcrement the current indices On the other hand, if there is a
and we have previously made prögress in P, then we consult the failure um

to determine the new index in P where we need to continue checking P ag +

Otherwise (there was a mismatch and we are at. the beginning of P), we A'

increment the mdex for T (and keep the mdex variable for P at its beginning
repeat this process until we find a match of P in T or the index for T reaches
length of T (indicating that we did not find the pattern P in T)

The main part of the KMP algorithm is the while-loop, which performs a
parison between a character in T and a character. in P eaöh iteration. Depe
upon the outcome of this comparison, the algorithm either moves on to thé
characters in T and P, consults the failure function for a new candidate chara4
P, or starts over with the next index in T The correctness of tiis algorithm fo
from the definition of the failure function. The skipped comparisons are ac
unnecessary, for the failure function guarantees that all the ignored comparg
are redundantthey would involve comparing characters we already know nia

AlgorithmKMPMatcb(T,P): .

.

Input: Strings T (text) with n characters and P (pattern) with m characters.
Output: Starting index of the first substring of T matching P, or an indica

thatPisnotasubsthngQfT . . .

.

f +- KMPFailureFunction(P) {construct the failuré function f for
14-0

.je-0
while icc n do

if P[jJ = T[i] then
ifj=mlthen

returni,n+1 {amatch!}
i*i+1 ...jj+1

else if j > O {no match, but we have advanced in P} then
j *- f(j 1) {j indexes just after prefix of P that must match}

else
i4i-j-1 . Ï

return "There. is no substring of T matching P."

Algorithm 9.7: The KMP pattern matching algorithM.
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no comparisol I
needed here

'8 9 lo 11 12

14 15 16 17 1819
á bia'IcI b

Figure 9.8: An illustration of the KMP pattern matching algorithm. The failure

function f for this pattern is given in Example 9.2. The algorithm performs 19

character comparisons, which are indicated with numerical labels.

In Figure 9.8, we illustrate the execution of :tl KMP pattern matching algo-

rithm on the same input strings as in Example 9.1. Note the use of the failure

function to avoid redoing ône of the comparisons .between a character of the pat-

tern añd a character of the text. Also note that the algorithm performs fewer overall

comparisons than the, brute-force algorithm run on the same strings (Figure 9.2).

Performance

Excluding the computation of the failure function, the running time of the KMP

algorithm is clearly proportional to the number of iterations of the while-loop. For

the sake of the analysis, let us define = i - j. Intuitively, k is the total amount by

which the pattern P has been shifted with respect to the text T. Note that throughout

the execution of the algorithm, we have! k Ç n One of the following three cases

occurs at each iteration of the loop.

If Tu = P[j], then i increases by 1, and k does not change, since f also

increases by 1.
JI Tftj $ P[j] and j > O, then i does not change and k increases by at least 1,

since in this case k changes from i j to i - f(j - 1), which is an addition of

j f(j - 1), which is positive because f(j - 1) <j
If T[i} P[j] and j = O, then i increases by land k increases by 1, since j

does not change.

Thus, at each iteratiön of the loop, either i or k increases bY at. least i (possibly.

both), hence, the total number of iterations of the while-loop in the ¡(MP pattern

matching algorithm is at most 2n Of course, achieving this bound assumes that we

have already computed the failure function for P. -

427ringS and Pattern Matching Algorithms
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Constructing the KMP Failure Function

To construct. the failure function used in the ¡(MP pattern matching aljo\
use the method shown in Algorithm 9 9 This algorithm is another ex
"bootstrapping" process quite similar to that used in the KM P Match aj
We compare the pattern to itself as in the KMP algorithm. Each.time we
characters that match, we set f(i) =j+1. Note that since we have i > j
the execution of the, algorithm, f(j - 1) is always deftned when we need j

Algorithm. KMPFailureFunction (P):
Input: String P (pattern) with m characters
Output: The failure function f for P, which maps j to the length of thel

prefixofPthatisasuffixofP[1..j]iti I

j tO
f(0)4O .

while i<m do ' ' .

if P[j] =P[i} then
{we.have matched j + i characters}
f(i)*jH-1ii+1
j*j+1

else if j O then
{j indexes just after a prefix of P that must match}jf(j-1)

else
{we have no match here}
f(i)t--0
i4i+1

Algorithm 9.9: Computation of the failure function used in the ¡(MP pattern matc
ing algorithm. Note how the algorithm uses the previous values of the failure 11m
tion to efficiently compute new values.

Algorithm KMPFailureFunctjon runs in 0(m) time. Its analysis is analogo
to that of algorithm KMPMatch. Thus, we have:

Theorem 9.3: The Knuth-Morris-Pratt algotithm performs pattern matching o':
text string of length n and a pattern string of length m in O(n + m) time.

The running time analysis of the KMP algorithm may seem a little surprisin
at first, for it states that, in time proportional to that nèeded jüst to read the string
T and P separately, we can find the first occurrence of P in T. Also, it should
noted that the runñing time of the KMP algorithm does not depend on the sizeQ
the alphabet
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The pattern matching algorithms presented in the previous section speed up the

searéb in a text by preproòessing the pattern (to cómpute the failure function in

the KMP algorithm or the last fuñction in the BM algorithm). In this section, we

take a complementary approach namely, we present string searching algorithms

that preprocess the text. This approach is suitable for applications where a series of

queries is performed on a fixed text, so that the initial cost of preprocessing the text

is c mpensated by a speedup in each subsequent query (for example, a Web site

that offers pattern matching in Shakespeare's Hamlet or a search engine that offers

Web pages on the Hamlet topic).

A trie (pronounced "try") is a tree-based data structure for storing strings in

order to support fast pattern matching. The main application for tries is in infor-

mation retrieval. Indeed, the name "the" comes from the word "retrieval?' In an

information retrieval applications such as a search for a certain DNA sequence in a

genomic database, we aré given a èollection S of strings, all defined using the same

alphabet.
The primary query opérations that tries support are pattern matchiñg and prefix

matching. The latter operation involves being given a string X, and looking for all

the strings in S that contain X as a prefix..

9.2.1 Standard Tries

Let S be a set of s strings from alphabet L, such that no string in S is a prefix

of another string. A standard trie for S is an ordered tree T with the following.

properties (see Figure 9.1O):

Each node of T, except the root, is labeled with a character of L

The ordering of the children òf an internal node of T is deternìined by a

àanonical ordering of the alphabet L.

T has s external nodes, each associated with a string of S, such that the con-

catenation of the labels of the nodes on-thtkath from the root to an external

node y of T yields the string of S associated with y.

Thus, a trie T represents the sthngs of S with paths from the root to the external

nodes of T. Note the importance of assuming that no string in S is a prefix of

another string. This ensures that each strinj of S is uniquely associated with an

external node of T. We can always satisfy this assumption by adding a special

character that is not in the original alphabet L at the end of each string.

An internal node in a standard trie T can have anywhere between i anti d chil-

dren, where dis the size of the alphabet. There is an edge going from the root r to

one of its children for each charactér that is first in some string in the collection S.
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Figure 9.10: Standard trie for the strings {bear, bell, bid, büll, buy, sell, stock, s;;;;

In addition, a path from the root of T to an internal node y at depth i correspon
an i-character prefix X [O z - 1] of a stnng X of S In fact, for each character éJI
can follow the prefix X[O z - 1] in a string of the set S, there is a child of y lai
with character c In this way, a trie concisely stores the common prefixes that e,»
among a set of strings

If there are only two characters in the alphabet, then the trie is essentiali2
binary tree, although some internal nodes may have only one child (that is, it \

be an improper binary tree) In general, if there are d characters in the aiph
then the trie will be a multi-way tree where each internal node has between F :1

d children In addition, there are likely to be several internal nodes in a stan'
trie that have fewer than d children For example, the trie shown in Figure 9»u\

has several internal nodes with only one child. We can implement a the with a
storing characters at its nodes.

The following theorem provides some important structural properties of s

dardtrie:

430 Chapter 9. Text

Theorem 9.4: A standard trie storing a collection S of s strings of total length.
from an alphabet of sized has the following properties:

Every internal node of T has at most 4 children

Thassexternal nodes

The height of T is equal tè the length of the longest string in S

The number of nodes ofT is 0(n).
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Performance

The worst case for the number ôf nodes of a trie occurs when no two strings share

a common nonempty prefix; that is, except for the root, all internal nodes have one

child.
i

A tne T for a set S of stnngs can be used to implement a dictionary whose keys

are the strings of S Namely, we perform a search in T for a stnng X by tracing

dwn from the roôt the path indicdted by the characters in .X If this path can be

traced and terminates at an external node, then we 1CnQW X is in the dictionary. FQr

example, in the trie in Figure 9.10, tracing the path for "bull" ends up at an external

node If the path cannot be traced or the path can be traced but ternunates at an

internal node, then X is not in the dictionary. In the example in Figure 9.10, the path

for "bet" òannot be traced and the path for "be" ends at an internal node. Neither

such word is in the dictionary. Note that in this implementation of a dictionary,

single characters are cömpared instead of the entire string (key).

It is easy to see that the runmng time of the search for a string of size m is

0(dm), where d Is the size of the alphabet. Indeed, we visit at most m + 1 nodes

of T an6we spend 0(d).time at each node! For some alphabets, we may be able

to-improve the time spent at a node to be 0(1) or O(logd) by using a dictionàry

of characters implemented in a hash table or lookup table. However, since d is

a constant in most applications, we dan stick with the simple approach that takes

0(d) time per.node visited.
From the above discussion, it follows that we can use a trie, to perform a spe-

cial type of 1pattern matching, called word matching, where we want to determine

whether a given pàtterñ matches one of the words of. the text exactly. (See Fig-

ure 9 11.) Word matching. differs from standard pattern matching since the pattern.

cannot match an arbitráry substring of the text, but only one of its words. Using a,

trie, word matching for a pattern of length.m takes 0(dm) time, where d is the size

of the alphabet, independent of the size of the text If the alphabet has constant size

(as is the case for text in natural languages and DNA strings), a query takes 0(m)

time, proportional to the size of the pattern. A simple extension of this scheme

supports prefix matching queries. However,arbitrary occurrences of the pattern in

the text (for example, the pattern is a proper suffix of. a word or spans two words)

cannot be efficiently performed.

To construct a standard trie for a' set S of strings, we can use an incremental

algorithm that inserts the strings one at a time. Recall the assumption that no string

of S is a prefix of another string. To insert a string X into the current trie T, we first

try to trace the path associated with X in T. SinceX is not already in T and no string

in S is a prefix of another string, we will stop tracing the path at an internal node y

of T before reaching the ènd of X. We then creaìe a ñew chain öl node descendents

of y to store the remaining characters of X. The time to insert X is 0(dm), where

m is the leñgth of X and d is the size of the alphâbet. Thus, constructing the entire

trie for set S takes 0(dñ) time, where n is .the total length of the strings of S.
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Figuùe 9.11: Word matching and prefix matching with a standard trie: (a) au
ample text that isto be searched; (b) a standard trie for the words in the text (
articles and prepositions, which are also known as stop words excluded). We sh
external nodes augmented with indications of the corresponding word positions

There is a potential space inefficiency in the standard trie that has prompte&
development of the compressed trie, which is aisp known (for histoncal reaso
as the Patricia trie. Namely, there are potentially a lot of nodes in the standard'
that have only one child, and the existence of such nodes is à waste, for it imp
that the total number of nodes in the tree could be more than the -number of wo
in the corresponding text.

We discuss the compressed trie data- structure in the next subsection.
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9.2.2 Compressed Tries

A compressed trie is similár to a standard trie but it ensures that each internal node

in the trie has at least two children. It enforces this rule by compressing chains of

single-child nodes into individual edges. (See Figure 9.12.) Let T be à standard

trie. We say that an internal node y of T is redundant if y has one child and is not

the root. For exEmple; the trie of Figure 9.10 has eight redundant nodes. Let us

also say that a chain of k 2 edges,
(vo,vl)(vi,v2)...(vk_1,vk),

is redundant if

viisredundantforil,..,kl
v and Vk are not redundant;

We can transform T into a compressed trie by replacing each rçdundant chain

(vo, vi) . ... (vk_ 1, vk)
f

k 2 edges into a single edge (vo, Vk), relabeling vj, with

thé concatenation of the labels of nodes vi,... ; Vk.

o HO

SEO
o ni n n

Figure 9.12: Compressed trie for the strings {bear, bell, bid, bull, buy, sell, stock,

stop}. Compare this with the standard trie shown in Figure 9.10.

Thus, nodes in a compressed trie are labeled with strings, which are substrings

of sthngs in the collection, rather than with individual characters. The advantage of

a compressed trie over a standard trie is that the number of nodes of the compressed

trie is proportional to the number of strings and not to their total length, as shown

in the following theorem (compare with Theorem 9.4).

Theorem 9.5: A compressed triestoring a collection S df s strings from an alpha-

bet of size d has the following properties:

Every internal node of T has at least two children and at mostd children

T has s external nodes
The number of nodes ofT is o(s).

433
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The attentive reader may wonder whether the compression of paths p
any significant advantage, since it is offset by a corresponding expansuja
node labels. Indeed, a compressed trie is truly advantageous only when it i
an auxiliary index structure over a collection of strings already stored ina p
structure, and is not required to actually store all thé characters of the stringi
collection. Given this auxiliary structure, however, the compressed trie is4
quite efficient.

Suppose, for example, that the collection S of strings is ah, array of string
S[s - 1]. Instead of storing the label X of a node explicitly; we rep

it implicitly by a triplet of integers (i, J k), such that X S{i] [j. .k]; that is, x
substring of S[i] consisting of the characters from the jth to the kth included:
the example in Figure 9.13. Also compare with the standard trie of Figure 9.1

Figure 9.13: (a) Collection S of. strings stored in an array. (b) Compact representa
tion of the compressed trie for S.

.. .

This additional compression scheme allows us to reduce the total space for th
the itself from 0(n) for the standard the to o(s) for the.compressed trie, where
is the total length of the strings in S and s is the number of strings in S. We mus
still store the different strings in S, of course, but we nevertheless reduce the spa
for the trie. In the next section, we present an applikation where the collection of
strings can also be stored compactly. .

01234 O i 2 3

e e S[4] = u S[1]

SEl] = S[5] =b e a u y

S[2] = S[6] = S.[9] =s i b i d

S[3] = s t C k
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Suffix Tries

One of the primary applications for tries is for the case when the strings in the
collection S are all the suffixes of a string X. Such a trie is called the suffix trie
(also known as a suffix tree or position free) of string X. For example, Figure 9.14a
shows the suffix trie for the eight suffixes of sthng "minimize".

For a suffix trie, the compact representation presented in the previous section
can be further simplified Namely, we can construct the trie so that the label of each

vertex is a pair (i, J) indicating the string X{i. .j]. (See Figure 9. 14b.) To satisfy the
rule that no suffix of X is a prefix of another suffix, we can add a special character,
denotèd with $, that is not in thefl original alphabet at the end of X (and thus to
every suffix). That is, if string X has length n, we build a trie for the set of n strings

X[i..n-1]$,fori=O,...,nl.

435

Figure 9.14: (a) Suffix the T for the string X = "minimize", (b).Compact repre-

sentation of T, where pair (i,J) denotes X [i. .J].

m i i z e

0 1 2 3 4 5 6 7
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Saving Space

Using a suffix trie allows us to save space over a standard trie by using se
space compression techniques, including those used for the compressed trj.
advantage of the compact representation of tries now becomes apparent fois
tries. Since the total length of the suffixes of a sthng X of length n is

n(n+1)1±2++n=
2

storing all the suffixes of X expliciíly would take 0(n2) space. Even so, th
fix trie represents these strings implicitly in 0(n) space, as formally stated
follo*ing theorem.

Theorem 9.6: The compact representation of a suffix trie T for a string X
length n uses 0(n) space.

Construction

We can construct the suffix trie for a string of length n with an incremental
gorithm like the one given in Section 9.2.1: This coñstruction takés 0(dn2)
because the total length of the suffixes is quadratic in n. However, the (comp
suffix trie for a string of length n can be constructed in 0(n) time with a speci
algorithm, different from the one for general tries. This linear-time constructjo
algorithm is fairly complex, however, and is not reported here. Still, wtçan
advantage of the existence of this fast construction algorithm when we want
a suffix trie to solve other preblems.

Using a Suffix Trie

The suffix trie. T for a string X can be used to efficiently perform pattern matchhi
queries on text X. Namely,. we can determine whether a pattern P is a substring
X by tryiñg to trace a path associated with Pin T. P is a substring of X if and o
if such a path can. betraced The details of the pattern matching algorithm are givç
in Algorithm 9.15, which assumes the following additional property on the 14
of the nodes in the compact representation of the suffix trie:

If node t' has label (i, J) and Y is the string of length y associated with
the path from the root to y (included), then X[J - y ±1..j] =Y.;

i

This property ensures that we can easily compute the start index of the patterIi
the text when a match Occurs.
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Algorithm suffixTrieM atch (T, P):
Input: Compact suffix trie T for a text X and pattern P
Output: Starting index of a substring of X matching P or an indication that P

is not a substring of X

p - P.Iength() .{ length of suffix of the pattern to be matched }

j - O { start of suffix of the pattern to be matched }

v4T.root()
repeat

f. +- true { flag indicating that no child was successfully processed }

for each child w of V do
j start(v)
il' P[j] = T[i} then

{ process child w
x4end(w)i±l
ifp<.x then

{ suffix is shorter than or of the same lèngth of the node label }

jf.P[jj+pfl=X[L.i+pl} then
return i - j { match }

else
return "P is not a substring of X"

else
{ suffix is longer than the node label }
ifP[j..j±x_1]X[i..i±x_llthen

p p x { update' suffix length }

j _ j + x { update suffix start index }
v4w
f 4false
break out of the. for loop

untiif or T.isExternal(v)
return "P is not a substring of X"

Algorithm 9.15: Pattern matching with a suffix trie. . We denote the label of a node

y with (start(v), end (y)) , that is, the pair of indices specifying the substring of the /

text associated with y. .
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Suflix Trié Properties

The correctness of algorithm suffixTrieMatch follows from the fact that w
down the trie T, matching characters of the pattern P one at a time until one',
following events occurs:

We completely match the pattern P

We get a mismatch (caught by the termination of the for-loop Witho
break-out)

We are left with characters of P still to be matched after processing all'e
rial node. H

Let 'n be the size of pattern P and d be the size of the alphabet. In ord
determiñe the running time of algorithm suffixTrieMatch, we make the follo
observations:

We process at most 'n + i nodes of the trie
Each node processed has at most d children

At each node y processed, we perform at most one character comparisoi
each child w of y to determine which child 6f y needs to be processed ne
(which may possibly be improved by using a fast dictionary. tè index
children. of y)

We perform at most 'n charactercomparisons overall in the processed no

We spend 0(1) time for each character comparison.

Performançe t

We conclude that algorithm suffixTrieMatch performs pattern matching queries
0(dm) time (and w9uld possibly run even faster if we used à dictionary to in4e
children of nodes in the suffix the). Note that the running time does not depth
On the size of the text X. Also, the running time is linear iñ the size of the pattern,
that is, it is 0(m), for a constant-size alphabet. Hence, suffix tries are suited f6
repetitive pattern matching applications, where a series of pattern matching queriì
is performed on a fixed text.

We summarize the results of this section in the following theorem.

Theorem 9.1: LetX be a text string with n characters from an alphabet of size
We can perform pattern matching quedes on X in 0(dm.) time, where 'n is thec
length of the pattern, with the suffix trie of X, which uses 0(n) space and can be
constmcted in 0(dn) time.

.

We explore another application of tries ii3. the next subsection.
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9.2.4 Search Engines

The World Wide Web contains a hüge collection of text documents (Web pages).

Information about these pages is gathered by a program called a Web crawler,

which then stores this information in a special dictionary database. A Web search

engine allows users to retrieve relevant information from this database, thereby

identifying relevant pages on the Web containing given keywords. In this section,

we present a simplified model of a search engine.

Inverted Files

The core informatión stored by a search engine is a dictionary, called an inverted

index or inverted file, storing key-value pairs (w,L), where w is a word and .L

is a collection of references to pages containing word w. The keys (words) in

this dictionary are àalled index terms and shoùld be a set of vocabulary entries

and proper nouns as large as possible The elements in this dictionary are called

occurrence lists and should cover as many Web pages as possible.

We can efficiently implement an inverted index with a data structure consisting

of the following:. .

An array storing the occurrence lists of the terms (in no particular order)

A compressed trie for the set of index terms, where each, external node stores

the index of the occurrence list of the associated term.

The reason for storing the occurrence lists outside the tne is to keep the size of the

trie data structure sufficiently small to fit in internal memory Instead, because of

their large total size, the occurrence lists have to be stored on disk

With our data structure, a query for a single keyword is similar to a word intch-

ing query (see Section 9 2 1) Namely, we find the keyword in the trie and we return

the associated occurrence list

When multiple keywords are given and the, desired output is the pages contain-

mg all the given keywords, we retrieve the occurrence list of each keyword using

the trie and return their intersection To facilitate the intersection computation,

each occurrence list should be implemented with a sequence sorted by. address or

with â dictionary (see, for example, the generic merge computation discussed in

Section 4.2). .. '

In addition to the basic task 'of returning 'a list of pages containing given key-

words, search engines provide an importänt additional service by ranking the pages

returned by relevance Devising fast and accurate ranking algorithms for search

engines is a major challenge for compikter researchers and «electronic commerce

companies. . . -

http://www.cvisiontech.com


440 .Chapter9. Text p

9.3 Text Compression

In this section, we consider another text processing application, text comp,
In this problem, we are given a string X defiñed over some alphabet, suc&
ASCII or Unicode character sets, and we want to efficiently encode X into
binary string Y (using only the characters O and 1). Text Òompressidn is Use
any situation where we e communicating over a low-bandwidth chaniiel
as a slow modem line or wireless connection, and we wish to miniñuze thi
needed to transmit our text. Likewise, text compression is also useful for
collections of large documents more efficiently, sO as to allow for a fixed-cab
storage device to contain as many documents as possible.

The method for text compressioñ explored in this section is the HuffInanc
Standard encoding schemes, such as the ASCII and Unicode systems, use fi
length binary strings to encode characters (with 7 bits in the ASCII systeó
16 in the Unicode system). A Huifman code, on the other hand, uses a varia
length encoding optimized for the string X The optimization is based on the
of character frequencies, where we have, for èach charácter e, a count f(c) o
number of times c appears in the string X. The Huifman code saves space o'e
fixed-length encoding by using short code-word strings to encode high-fr&1ue
characters and long code-word 'stringA to encode low-frequency characters.

To encode the string X, we convert each áharaòter iñ X from its fixed-ln
code word to its variable-length code word, and we concatenate all these e
words in order to produce the encoding Y for X. In order to avoid ambiguiti
we insist that no code word in our encoding is a prefix of another code word in b

encoding Such a code is called a prefix code, and it simplifies the decoding o
in order to get back X. (Seç Figure 9.16.) Even with this restriction, the saviij
produced by a variable-length prefix code can be significant, particularly if theré
a wide variance in character frequencies (as is the case for natural language text
almost every spoken language). .

.

Huifman's algorithm for producing an optimal variable-lèngth prefix code fo
X is based on the construction of a binary tree T that represents the code. Eau
node in T, except the root, represents a bit. in a code word, with each left chu
representing a "O" and each right, child representing a "1." Each external node y4
associated with a specific character, añd the code word for that character is defin
by the sequence of bits associated with the nodes in the pathirom the root of T tq1
(See Figure 9.16.) Each external n.,de y has afrequency f(v), which is simply
frequency ii X of the character associated with y. In addition, we give each intern

E

node y in T a frequency, f(v), that is the sum of the frequencies of all the extern,
nodes in the subtree. rooted at y.
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Figure 9.16: An illustration of an example Huifman code for the input string

X = "a fast runner need never be afraid of the dark": (a) frequency

of each cháracter of X; (b) Huifman tree T for string X. The code for a character

c is obtained by tracing the path from the root of T to the external node where c is

stored, and associating a left child with O and a right child with 1. For example, the

code for "a" is 010, and the code for "f" is 1100.

9.3.1 The kuifman Coding Algorithm

The Huifman coding algorithm begins with each of the d distinct characters of the

string X to encode being the root node of a single-node binary tree. The algorithm

proceeds in a senes of rounds In each round, the algorithm takes the two binary

trees with the smallest frequencies and merges them into a single binary tree It

repeats this process until only one tree is left (See Algorithm 9 17)

Each iteration of the. while-loop in Huffman's. algorithm can be implemented

in O(logd) time using a priority queue represented with a heap. In addition, each

iteration takes two nodes out of Q. ánd adds one in, a process that will be repeated

d - i times before exactly one node is left in Q. Thus, this algorithm runs in

O(n + dlogd) time. Although a full justification of this algorithm's correctness is

beyond our scope here, we note that its intuition comes from a simple ideaany

optimal code can be converted into an optimal code in which the code words for the

two lowest-frequency characters, a and b, differ only in their last bit Repealing the

argument for a string with a and b replaced by a character c, gives the following

Theorem 9;8: Huifman 's. algorithm constructs an optimal prefix code for a string

of length. n with d distinct charactérs in O(n + dlogd) time.

Character a b â e f h i k n o r s t U V;

Frequency 9.5 1.3 731114151,2 i, i

http://www.cvisiontech.com


442 Chàptçr9. Text

Algorithm Huffman(X);
Input: String X of length n with d distinct characters
Output: Coding tree, for X

Compute the frequency f(c) of each character c of L
Initialize a priority queue.Q.
for each character c in X do

Create a single-node binary tree T storing c.
Insert T into Q with key f(c).

while Q.sizeO> i do
fi - Q.minKey()
Ti iQ.renioveM/n()
f2 - Q.minKeyO
T2 i- Q.removeMin()
Create à new binary tree T with left subtree T1 and right subtree T2.

Insert T into Q with key fi +f2.
return tree Q.removeMin()

Algorithny 9 17 Huifman coding algonthm

.9.12 Te GrèedyMethod Revisited

Huifman's algorithm for building an optimal encoding is an example applic, ti6
an algorithmic design pattern called the greedy method. We recall from Sectio
that this design pattern is applied to optimization problems, where we are tryiñ

construct some structure while minimizing or maximizing some property of
structure. . . . . . I

Indeed, the Huifman coding algonthm closely follows the general formul
the greedy method pattern Namely, in order to solve the given optimization e
problem using the greedy method, we proceed by a sequence of choices. Thç
quence starts from a well-Understood starting condition, and computes the cost
that initial condition. Finallyíwe iteratively make additional choices by identi«
the decision that achieves the best cost improvement from all of the choices that
currently possible This approach does not always lead to an ontimal solution, b

it does indeed find the optiniaEprefix. codé when used according to the approach

Huifman's algorithm.

This global optimahty for the Huifman coding algonthm is due to the fact
the optimal prefix coding problem possesses' the greedy-choice property Thi

the property that. a global optimal condition can be reached by a series of lociílj

optimal choices (that is, choices that are each the current best from among th

possibilities available at the time), starting from a well-defined starting condilh1

In fact, the problem of compüting an optimal variable-length prefix code is Just?
e ample of a problem that possesses the greedy-choice property.
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Text Similarity Testing

A commOn text processing problem, which arises in genetics and software engi-.

neering, is to test the similarity between two text strings. In a genetics application,

the two striñgs could correspond to two strands of DNA, which could, for example,

come from two individuals, who we will consider genetically related if they have

a long subsequence common to their respective DNA sequences Likewise, in a

software engineering application, the two strings could come from tw versions of

source code for thè same program, and we may wish to determine which changes

were made from One version to the. next. In addition, the data gathering systems

of search engiñes, which are called Web spiderÑ. or crawlers must'be able to dis-

tinguish between similar Web pages to avoid needless Web page requests. Indeed,.

determining the similarity between two strings is considered such a common oper-

ation that the UmxlLinux operating systems come with a program, called dit t, for

comparing text filês.

g4 The Longest Common Subsequence Problém

There are several different ways we can define the siimlarity between two stnngs

Even so, we can abstract a simple, yet common, version of this problem using

character strings and their subsequènces. Given a string X of size n, a subsequence

of X isany string that is oíthè form

X[ii]X[iz] ...X[ik], i<i+ifori=l...k
that is, it is a sequence of characters that are not necessarily contiguOus but are

nevertheless taken in order from X. For example, the string AAAG is a subsequence

of the string CGATAATT GAGA. Note that the concept of subsequence of a string

iS different from the one of substring of a string, defined in Section 9.1.1.

Problem Definition

The specific text similarity problem we address here is the longest common subse-

quènée (LCS) problem. In this problem, we are given two character strings, X of

Ñize n and Y of size m, over some alphabet and are asked to find a longest string S

that is a subsequence of both X and Y.

One way to solve the longest common subsequence problem is to enumerate all

subseqûences of X and take the largest one that is also a subsequence of Y Since

each character of X is either in or not in a subsequence, there are potentially 2' dif-

ferent subsequences of X, each of which requiíes .0(m) time to determine whether

it is a subsequence of Y Thus, the brute-force approach yields an exponential algo-

rithm that runs in 0(22m) time, which is very inefficient. In this section, we discuss

how to use dynamic programming (Section 5.3) to solve the longest comm9fl sub-

sequence problem much faster than this.
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9.4.2 Applying Dynamic Programming to the LCS Problerç
We can solve the LCS problem much faster than exponential time Using
programming. As mentioned in Section 5.3,. one of the key components o
namic programming technique is the definition of simple subproblems tha

the subproblem optimization and subproblem overlap properties.
Recall that in the LCS problem, we are given two character strings, x

of length n and m, respectively, and are asked to find a longest string s
subsequence of both X and Y. Since X and Y are character strings, we
natural set of indices with which to define subproblemsindices into the s
and Y. Let us define a subproblem, therefore, as that of computing the len
longest common subsequence of X [0. .i] and Y [O. .1] denoted L[i, j].

This definition allows us to rewrite L[i, j] in terms of optimal subproble
tions. We consider the following two cases (See Figure 9.18.)

Case!: X[i]=Yj]
Let c = X [i = Y [j]. We claim that a longest common subsequence of
and Y[O. .j] ends with c. To prove this claim, let us: 51.lpp0se it is ño
There has to be some longest common subsequenòè X [ii]X [i2]. ¡4
Y[ji]Y[j2] . . .Y[j]. If X[i] c or Y[jk] = c, then we get the same
by setting 1k = i and .1k = j. Alternately, if X[jk] c, then we can get
longer common subsequence by adding c to the eñd. Thus, a longes
mon subsequence of X [0. .i] and Y [O. 1] ends with c = X [i] = Y [j]. Th
weset /

L[i,j]=L[i1,j-1]+1 ifX[i}=Y[j].

Case 2: X{i] $ Y[j]
In this case, we cannot have a common subsequence that includes bo

and Y [j]. That is, a common subsequence can end with X[i], 1f [j], orli
but not both. Therefore, we set I:

L[i,j] = max{L[i 1,j], L[i,j 1]} ifX[i] $ Y[j].

In order to make Equations 9.1 and 9 2 make sense in the boundary cass

i=OEorj=O,wedefineL[i,-1]=Ofori=-1,O,1,...,n-1 andL[-1,j]»

j= -1,O,1,...,m-1.

0 1 2 3 4 5 8 7 8 9 1011 O I 2 3 4 5 6 7 8 910
Y=CGATAATTGAGA Y=CGATAATTGAG

L[8J0]=5 N\\\\ /
X=GTTCCTAA TA X=GTTCCTAATA

0123456789 01 23456789
(a) (b)

Figure 9.18: The two cases in the definition ofL[i, j]: (a) X [i] Y [j]; (b) X [1

L[9,9Ï
L[8, 101
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The [CS Algorithm

The above definition of L[i, j] satisfies subproblem optimizatiòn, for we cannot have

a longest common subsequence without also having longest common subsequences

for the subproblems Also, it uses subproblem overlap, because a subproblern solu-

don L[i, j] can be used in several other problems (namely, the problems L[i + l,j],

L[i;j+1I, and L[i+ 1,j+ 1]).
Turning this definition of L[i, j] into an algorithm is actually quite straightfôr-

ward. We initialize an (n + 1) x (m + 1) array, L, for the boundary çases when

i=0 orj = 0. Namely, we initialize L[i,-1]= 0 for i = 1,0,1,...,n i and
L[i,j] =Oforj= 1,0,1,... ,in 1. (Thisis aslightabuseofnotatiOfl sincein

reality, we would have to index the rows and columns of L starting with 0.) Then,

we iteratively build up values in L until we have L[n - 1,m - 1], the length of a

longest common subsequence of X. and Y. We give a pseudo-code description of

how this approach results in a dynamic programming solution to the longest com-,

mon subsequènce (LCS) problem in Algorithm 919. Note that the algorithm stores

only the L[i, j] values, not the matches.

Algorithm LCS(X,Y):
Inputi Strings X änd Ywith n and m elements, respectively

Output: For i 0,...,n 1, j = 0,...,m 1, the length L[i,j] of a longest

common subsequence of X [0.. i] and Y [0.

for i 4--1 ton-1 do

forjOtomido .

foriOtonldo
forj#Otom ido

if X i] = Y[j] then
Li,)] +L[i i,j 11+1

else
L[i,j] - max{L[i - 1,M, L[i, j ;1]}

return array L

Algorithm 9.19: Dynamic programming algorithm for the LCS problem.

Performance

The runniñg time of Algorithm 9.19 is easy. to analyze, for it is dominated by two.

nested for-loops, with the outer one iterating n times and the inner one iterating m

times Since the if-statement and assignment inside the loop each requires 0(1)

pnmitive operations, this algonthm runs in 0(nin) time Thus, the dynamic pro-

gramming technique can be ápplièd to the longest common subsequence problem
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to improve significantly over the exponential-time brute-force solution to
problem.

Algonthm LCS (9 19) computes the length of the longest common subsj
(stored inL[n - i,m - 1]), but not the subsequence itself As shown in the fofl
theorem, a simple postprocessing step can extract thelongest common subg
from the array L returned by the algorithm.

Theorem 9 9 Given a string X oln characters and a string Y of m characte
can find the longest common subsequence of X and Y in O(nm) time

F

Proof We have already observed that Algonthm LCS computes the lengg»
longest common subsequence of the input strings X and Y in O(nin) time. \,
the table of L[z, j] values, constructing a longest common subsequence is stra,
forward One method is to start from L[n - 1,nz - 1] and work back througi4j
table, reconstructing a longest common subsequence from back to front At
position L[z,j], we determine whether X [z] = Y [j] If this is true, then we take
as the next character of the subsequence (noting that X[i] is before the previ
character we found, if any), moving next to L[i - 1, j - 1]. If X [i] Y [j], thi
move to the larger of L[i, j - 1] and L[i - l,j]. (See Figure 9!20.) We stop whéji
reach a bouñdary entry (with i = 1 .or j = - i). This method constructs a lòd
common subsequence in O(n + m) additional time.

Figure 9.20: illustration of the algorithm for consftuctinga lOngest common subse

quencé from the array L.

L -1 0 1 2 3 4 5 6 7 8 9 10 11

-i 00 0 0 0 00 0.0 00 0 0

0 i0 i 1 1 1 1 1 1 i 1 1

;1 00112222.22222
20011222333333
3 j 1 1 1 2 2 2 3 3 3 3 3 3

401 1 1 2 2 2.3 3
1

5 0 1 1 1 2 2. 2 3 4 4 4 4 4

6 0 1 1 2 2!3 3 3 4 4 5 5 5

701112234444556
80.112334555556
9

0 1 1 2 3 4 4 5 5 5 6 6 6
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Exercises

Reinforcement
R-9.1 How many nonempty prefixes of the string P ="aaabbaaa" are also suffixes

of P?

R-9.2 Drawa figure illustrating the comparisons done by the brute-force pattern match-

ing algorithm for the case when the text is tlaaabaadaabaaa" and the pattern is

"aabaaa".

R-93 Repeat the previous problem for the BM pattern matching algorithme not count-

ing the comparisons made to compute the last function.

R-9.4 Repeat the previous problem for the KMP pattern mátching algorithme not count-

ing the comparisons made to cOmpute the failure function.

R-9.5 Compute a table representing the last function used in the BM pattern matching

algorithm forthe pattern string

"the quick brown fox jumped over a lazy cat"

assuming the fòllowing alphabet (which starts with the space character):

E{ ,a,b,c,d,e,f,g,h,i,i ,k,l,rn,n,o,p,q,r,s,t,u,v,W,x,y,4.

R-9.6 Assuming that the characters in alphabet E can be enumerated and can index

arrays, give äÚ O(m + Ei) time method for constructing the last function from

an mlength pattern string P.

R-9.7 Compute a table representing the KMP failure function for the pattern string

'lcgtacgttCgtac".

R-9.8 Draw a standard trie for the following set of strings:

{abab,baba, ccccc,bbaaaa, caia,bbaacc, cbcc,cbca}.

R-9.9 Draw a compressed trie for the set of strings given in Exercise R-9.8.

R-9.10 Draw the compact representation of the suffix trie for the string

"minimize minime".

R-9.11 What is the longest prefix of the string "cgtacgttcgtacg" that is also a suffix

of this string?

R-9.12 Draw the frequency table and Huffman tree for the following string:

"dogs do not, spot tot pots or cats".

R-9.13 Show how to use dynamic programming to compute the longest corniflou subse-

quâncè between the twO strings "babbabab" and "bbabbaaab".
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Creativity
C-9. i Give an example of a text T of length n and a pattern P of length m that foy

brute-force pattern matching algorithm to have a running time that is

C-9.2 Give a justification of why the KMPÉailureFunction method (Algon.
runs in 0(m) time on a pattern of Iengthm.

C9.3 Show how to modify the KMP string pattern matching algorithm so as to
every occurrence of a pattern string P that appears as a substring in T, whi1
running ino(n + m) time. (Be sure to catch even those matches that overla

C-9.4 Let T be a text of length n, and let P be a pattern of length m. Describe an
m)-time method for finding the longest prefix of P that is a substring of T

C-9,5 Say that a pattern P of length m is a circular substring of a text T of leng&
thereisanindex.O<i<m,suchthatP=T[nm+i..n-1]+T[o i-1]
is, if P is a substring of T or P is equal to the concatenation of a suffix of T'
a prefix of T. Give an 0(n + m)-time algorithm for determining whether Pis
circular substring of T;

C-9.6 The KJvIP pattern matching algorithm can be modified to run faster on bin:
strings by redefining the failure function as

f(j) = the largest k c j such that P[O..k - 2]P[k - 1] is a suffix of P[l. j],

where overlineP[k] denotes the complement Qf thç kth bit of P. Describe ho
to modify the KMP algorithm to be able to take advantage of this new fai?
function and also give a method for computing this failure function. Show th
this method makes at most n comparisotis between the text and the pattern Ç'
opposed to the 2n comparisons needed by the standard KMP algorithm give(
Section.9. 1.4). r

C-9.7 Modify the simplified BM algorithm presented ¡n this chapter using ideas frdl»
the KMP algorithm so that it runs in 0(n + m) time.

C-9,8 Show how to perform prefix matching queries using a suffix trie.

C-9.9 Give an efficient algorithm for deleting a string from a standard trie and analy
its running time.

C-9.10 Give an efficient algorithm for deleting a string from a compressed trie and ana
lyze its running time.

C-9.11 Describe an algorithm for constructing the compact representation of a suffix Md
and analyze its running time.

C-9.12 Let T be a text string of length n. Describe an 0(n)-time method for finding the
longest prefix of T that is a substring of the reyersal 9f T.

448 Chapter 9. Te*tpy

R-9.14 Show the longest common subsequence table L for the two striñgs
X = "skullandbónes"

Y = "lullabybabies".
What is a longest common subsequence between these strings?
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C-9.13 Describe an efficient algorithm to find the longest palindrome that is a suffix of

a string T of length n. Recall that a palindrome is a string that is equal to its
reversal. What is the running time of your method?

C-9.14 Given a sequence S = (xo,xi ,x2,. .. ,x,_.i) of numbers, describe an 0(n2)-time

algorithm for finding a longest subsequence T = (x0 ,x1, x2, .. . , X_ ) of num-

bers, such that i.j C i.i+i and > That is, T is a longest decreasing subse-

quence of S.

C-9.15 Describe an O(nlogn)-time algorithm for the previòus problem.

cL9:16 Show that a sequence of n distinct numbers contains a decreasing or increasing

subsequence of size at least [/j.

C-9.17 Define the edit distance between two strings X and Y of length n and m, respec-
tively, to be the number of edits that it takes to change X into Y. An edit consists
of a character insertion, a character deletion, or a character replacement. For ex-

ample, the strings "algorithm" and "rhythm" have edit distance 6. Design an

O(nm)-time algorithm for computing the edit distance between X and Y.

C-9.18 Let A, B, and C be three length-n character strings taken over the same constant-

sized alphabet E. Designan. O(n3)-time algorithm for finding a longest substring.

that is common to all three of A, B, and C.

C-9.19 Consider the pattern matching algorithm that always returns "no" when asked to

determine whéther a pattérn P of length m is contained in a text T of length n,

with both taken over the same alphabet of sized for some constant d> 1. Give a

big-Oh characterization of the probability that this simple algorithm incorrectly
détermines whether or notP is a substring in T, assuming that all possiblepattern
strings of length in are equally likely? Your bound must be o(i).

Hint: This is a remarkably accurate algorithm when m is large.

C-9.20 Suppose A, B, md C are three integer arrays representing the ASCII or Unicode

vahies of three character strings, each of size n. Given an arbitrary integer x,
design an O(n2 log n)-time algorithm to determine if there exist numbers a e A,

b e B, and C E C, such that a+b+ C.

C-9.21 Give an 0(ñ2)-time algorithm for the previous próblem.

C-9.22 Suppose each charactet c .in a constant-sized alphabet E has an integer worth,

w(c). Two players are going to play a game, given a string P of length 2n taken

Over E. In each tutn, a player must select and remove either the first or last

character in P, reducing its length by one. The goal of each player is to maximize

the total worth of all his or her selected characters. Give an 0(n2)-time algorithm

for computing the optimal strategy for the first player.

Hint: Use dynamic programming.

C-923 Design an 0(n)-time non-losing strategy for the first player in the game of the

previous exercise. Your strategy does not have to be optimal, but it should be

guaranteed to end in a tie or better for the first player.
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Projects
P-9,1 Perform an experimental analysis, using documents found on the Inter4e

efficiency (number of character comparisons performed) of at least twd
pattern matching algorithms for varying-length patterns.

P-9,2 Implement a compression and decompression scheme that is bàsed on
coding.

P-9.3 Create classes that implement a standard and comprçssed trie for a set ¿
strings. Each class should have a constructor that takes a list of strms
argument, and the class should have .a method that tests whether a given s
stored in the trie.

P-9.4 Implement the simplified search engine described in Section 924 for the
of a small Web site. Use all the winds in the pages of the site as index*
excluding stop words such as articles, prepositions, ànd pronouns.

P-93 Implement. a search engine for the pages. of a small Web site by adding a
ranking feature to the simplified search engiñe described in Section 9.2.4:,
page-ranking feature should return the most relevant pages first. Use all th&
in the pages of the site as index terms, excluding stop words, such as aitj
prepositions, and pronouns. Il

P-9.6 Design and implement dynamic programming and geedy methods for sol
the longest common subsequence (LCS) problem. Run experiments comp
the running times of these two methods to the quality of the solutions the9
duce.

P-93 Implement an algorithm that can take any string of text and produce a Flu
code for it.

t!

Chapter Notes i
k

The KMP algorithm is described by Knuth, Morris, and Pratt in their journal article [12
Boyer and Moore published their algorithm in the same year [36]. In their article, ¡(nu
et al. [122] also prove that the BM algorithm runs in linear time. More recently, Cole [49

shows that the BM algorithm makes at most 3n character comparisons in the worst case, ail
this bound is tight. All of the algorithms presented in this chapter are also discussed in di
book chapter by Aho [6], albeit in a more theoretical framework. The reader interested,'
further study of string pattern matching algorithms is referred .to the book by Stephen [19
and the book chapters by Aho [6] and Crochemore and Lecroq [56].

The trie was invented by Morrison [156] aild is discùssed extensively in the classi
Sorting and Searching bookby Knuth [119]. The name "Patricia" is short for "Practicaj
Algorithm to Retrieve Information Coded in Alphanumeric" [156]. McCreight [139] show
how to construct suffix tries in linear time, An introduction to the field of informatiq
retrieval, which includes a discussion of search engines for the Web, is provided in thè
book by Baeza-Yates and Ribeiro-Neto[21]. The application of the greedy method wet
gave to. the coding problem comes from Huifman [104].
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Computers today are used for a multitude of sensitive applications. Customers
utilize electronic commerce to make purchases and pay their bills. Businesses use
the Internet to share sensitive company documents and interact with business part-
ners. And universities use networks of computers to store personal information
about students and their grades. Such sensitive information can be potentially dam-
aging if it is altered, destroyed, or falls into the wrong hands. In this chapter, we
discuss several powerful algorithmic techniques for protecting sensitive informa-
tion, so as to achieve the following goals:

• Data integrity: Information should not be altered without detection. For
example, it is important to prevent the modification of purchase orders or
other contractually binding documents transmitted electronically.

• Authentication: Individuals and organizations that are accessing or commu-
nicating sensitive information must be correctly identified, that is, authen-
ticated. For example, corporations offering telecommuting arrangements to
their employees should set up an authentication procedure for accessing cor-
porate databases through the Internet.

• Authorization: Agents that are performing computations involving sensitive
information must be authorized to perform those computations.

• Nonrepudiation: In transactions that imply a contract, the parties that have
agreed to that contract must not have the ability of backing out of their obli-
gations without being detected.

• Confidentiality: Sensitive information should be kept secret from individuals
who are not authorized to see that information. That is, we must ensure that
data is viewed by the sender and by the receiver, but not by unauthorized
parties who can eavesdrop on the communication. For example, many email
messages are meant to be confidential.

Many of the techniques we discuss in this chapter for achieving the above goals
utilize number theory. Thus, we begin this chapter by discussing a number of im-
portant number theory concepts and algorithms. We describe the ancient, yet sur-
prisingly efficient, Euclid’s algorithm for computing greatest common divisors, as
well as algorithms for computing modular exponents and inverses. In addition, be-
cause prime numbers play such a crucial role in cryptographic computations, we
discuss efficient methods for testing if numbers are prime. We show how many
of these number theory algorithms can be used in cryptographic algorithms that
implement computer security services. We focus on encryption and digital signa-
tures, including the popular RSA scheme. We also discuss, in this chapter, several
protocols that can be built from these algorithms.

We conclude by discussing the fast Fourier transform (FFT), a general divide-
and-conquer technique that can solve many problems with multiplication-like prop-
erties. We show how it use FFT to efficiently multiply polynomial and big integers.
We also give a Java implementation of the FFT algorithm for multiplying big inte-
gers, and we empirically compare the performance of this algorithm to a standard
multiplication method for big integers.
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10.1 Fundamental Algorithms Involving Numbers

In this section we discuss several fundamental algorithms for performing important
computations involving numbers. We describe efficient methods for computing ex-
ponents modulon, for computing multiplicative inverses modulon, and for testing
if an integern is prime. All of these computations have several important applica-
tions, including forming the critical algorithms in well-known cryptographic com-
putations. But before we can present these algorithms, we must first present some
basic facts from number theory. Throughout this discussion, we assume that all
variables are integers. Also, proofs of some mathematical facts are left as exer-
cises.

10.1.1 Some Facts from Elementary Number Theory

To get us started, we need some facts from elementary number theory, including
some notation and definitions. Given positive integersa andb, we use the notation

a|b
to indicate thata dividesb, that is,b is a multiple ofa. If a|b, then we know that
there is some integerk, such thatb = ak. The following properties of divisibility
follow immediately from this definition.

Theorem 10.1: Let a, b, andc be arbitrary integers. Then

• If a|b andb|c, thena|c.
• If a|b anda|c, thena|(ib+ jc), for all integersi and j.
• If a|b andb|a, thena = b or a =−b.

Proof: See Exercise R-10.1.

An integerp is said to be aprime if p≥ 2 and its only divisors are the trivial
divisors 1 andp. Thus, in the case thatp is prime,d|p impliesd = 1 or d = p. An
integer greater than 2 that is not prime is said to becomposite. So, for example, 5,
11, 101, and 98 711 are prime, whereas 25 and 10 403 (= 101·103) are composite.
We also have the following:

Theorem 10.2 (Fundamental Theorem of Arithmetic): Let n > 1 be an in-
teger. Then there is a unique set of prime numbers{p1, . . . , pk} and positive integer
exponents{e1, . . . ,ek}, such that

n = pe1
1 · · · pek

k .

The productpe1
1 · · · pek

k is known as theprime decompositionof n in this case.
Theorem 10.2 and the notion of unique prime decomposition is the basis of several
cryptographic schemes.
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The Greatest Common Divisor (GCD)

Thegreatest common divisorof positive integersa andb, denoted gcd(a,b), is the
largest integer that divides botha andb. Alternatively, we could say that gcd(a,b)
is the numberc, such that ifd|a andd|b, thend|c. If gcd(a,b) = 1, we say thata
andb arerelatively prime. We extend the notion of greatest common divisor to a
pair of arbitrary integers by the following two rules:

• gcd(a,0) = gcd(0,a) = a.
• gcd(a,b) = gcd(|a|, |b|), which takes care of negative values.

Thus, gcd(12,0) = 12, gcd(10403,303) = 101, and gcd(−12,78) = 6.

The Modulo Operator

A few words about themodulo operator(mod) are in order. Recall thata modn is
the remainder ofa when divided byn. That is,

r = a modn

means that

r = a−ba/ncn.

In other words, there is some integerq, such that

a = qn+ r.

Note, in addition, thata modn is always an integer in the set{0,1,2, . . . ,n− 1},
even whena is negative.

It is sometimes convenient to talk aboutcongruencemodulon. If

a modn = b modn,

we say thata is congruentto b modulon, which we call themodulus, and we write

a≡ b (modn).

Therefore, ifa≡ b modn, thena−b = kn for some integerk.

Relating the Modulo Operator and the GCD

The following theorem gives an alternative characterization of the greatest common
divisor. Its proof makes use of the modulo operator.

Theorem 10.3: For any positive integersaandb, gcd(a,b) is the smallest positive
integerd such thatd = ia+ jb for some integersi and j. In other words, ifd is the
smallest positive integer linear combination ofa andb, thend = gcd(a,b).

Proof: Supposed is the smallest integer such thatd = ia+ jb for integersi and
j. Note that, immediately from the definition ofd, any common divisor of botha
andb is also a divisor ofd. Thus,d≥ gcd(a,b). To complete the proof, we need to
show thatd≤ gcd(a,b).
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Let h = ba/dc. That is,h is the integer such thata modd = a−hd. Then

a modd = a−hd

= a−h(ia+ jb)
= (1−hi)a+(−h j)b.

In other words,a modd is also an integer linear combination ofa andb. Moreover,
by the definition of the modulo operator,a modd < d. Butd is the smallest positive
integer linear combination ofa andb. Thus, we must conclude thata modd = 0,
which implies thatd|a. In addition, by a similar argument, we get thatd|b. Thus,
d is a divisor of botha andb, which impliesd≤ gcd(a,b).

As we will show in Section 10.1.3, this theorem shows that the gcd function is
useful for computing multiplicative modular inverses. In the next subsection, we
show how to quickly compute the gcd function.

10.1.2 Euclid’s GCD Algorithm

To compute the greatest common divisor of two numbers, we can use one of the
oldest algorithms known, Euclid’s algorithm. This algorithm is based on the fol-
lowing property of gcd(a,b):

Lemma 10.4: Let a andb be two positive integers. For any integerr, we have

gcd(a,b) = gcd(b,a− rb).

Proof: Let d = gcd(a,b) andc = gcd(b,a− rb). That is,d is the largest integer
such thatd|a andd|b, andc is the largest integer such thatc|b andc|(a− rb). We
want to prove thatd = c. By the definition ofd, the number

(a− rb)/d = a/d− r(b/d)

is an integer. Thus,d divides botha anda− rb; hence,d≤ c.

By the definition ofc, k = b/c must be an integer, sincec|b. Moreover, the
number

(a− rb)/c = a/c− rk

must also be an integer, sincec|(a− rb). Thus,a/c must also be an integer, that is,
c|a. Therefore,c divides botha andb; hence,c≤ d. We conclude then thatd = c.

Lemma 10.4 leads us easily to an ancient algorithm, known as Euclid’s algo-
rithm, for computing the greatest common divisor (GCD) of two numbers, shown
next in Algorithm 10.1.
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Algorithm EuclidGCD(a,b):
Input: Nonnegative integersa andb
Output: gcd(a,b)

if b = 0 then
return a

return EuclidGCD(b,a modb)
Algorithm 10.1: Euclid’s GCD algorithm.

An example of the execution of Euclid’s algorithm is shown in Table 10.2.

1 2 3 4 5 6 7
a 412 260 152 108 44 20 4
b 260 152 108 44 20 4 0

Table 10.2: Example of an execution of Euclid’s algorithm to compute
gcd(412,260) = 4. The argumentsa andb of each recursive invocation of method
EuclidGCD(412,260) are shown left-to-right, with the column headings showing
the level of recursion in theEuclidGCD method.

Analyzing Euclid’s Algorithm

The number of arithmetic operations performed by methodEuclidGCD(a,b) is pro-
portional to the number of recursive calls. So to bound the number of arithmetic
operations performed by Euclid’s algorithm we need only bound the number of re-
cursive calls. First, we observe that after the first call, the first argument is always
larger than the second one. Fori > 0, letai be the first argument of theith recursive
call of methodEuclidGCD. Clearly, the second argument of a recursive call is equal
to ai+1, the first argument of the next call. Also, we have

ai+2 = ai modai+1,

which implies that the sequence of theai ’s is strictly decreasing. We will now show
that the sequence decreases quickly. Specifically, we claim that

ai+2 <
1
2

ai .

To prove the claim, we distinguish two cases:

Case 1: ai+1 ≤ 1
2ai . Since the sequence of theai ’s is strictly decreasing, we have

ai+2 < ai+1≤ 1
2

ai .

Case 2: ai+1 > 1
2ai . In this case, sinceai+2 = ai modai+1, we have

ai+2 = ai modai+1 = ai −ai+1 <
1
2

ai .
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Thus, the size of the first argument to theEuclidGCD method decreases by half
with every other recursive call. We may therefore summarize the above analysis as
follows.

Theorem 10.5: Letaandbbe two positive integers. Euclid’s algorithm computes
gcd(a,b) by executingO(log max(a,b)) arithmetic operations.

We note that the complexity bound here is based on counting arithmetic opera-
tions. We can in fact improve the constant factor in the above bound by taking ad-
vantage of the fact that in modern times Euclid’s algorithm should be implemented
on a digital computer.

Binary Euclid’s Algorithm

A variation of Euclid’s algorithm, called theBinary Euclid’s Algorithm, takes into
account the fact that integer division by 2 in a computer is faster than division by
a general integer, since it can be accomplished by theright-shift native processor
instruction. The binary Euclid’s algorithm is shown in Algorithm 10.3. Like the
original Euclid’s algorithm, it computes the greatest common divisor of two in-
tegers,a andb, in O(log max(a,b)) arithmetic operations, though with a smaller
constant factor. The justification of its correctness and the asymptotic analysis of
its running time are explored in Exercise C-10.1.

Algorithm EuclidBinaryGCD(a,b):
Input: Nonnegative integersa andb
Output: gcd(a,b)

if a = 0 then
return b

else if b = 0 then
return a

else ifa is even andb is eventhen
return 2·EuclidBinaryGCD(a/2,b/2)

else ifa is even andb is oddthen
return EuclidBinaryGCD(a/2,b)

else ifa is odd andb is eventhen
return EuclidBinaryGCD(a,b/2)

else
{a is odd andb is odd}
return EuclidBinaryGCD(|a−b|/2,b)

Algorithm 10.3: The Binary Euclid’s Algorithm for computing the greatest common
divisor of two nonnegative integers.
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10.1.3 Modular Arithmetic

Let Zn denote the set of nonnegative integers less thann:

Zn = {0,1, · · · ,(n−1)}.
The setZn is also called the set ofresiduesmodulon, because ifb = a modn, b is
sometimes called theresidueof a modulon. Modular arithmetic inZn, where op-
erations on the elements ofZn are performed modn, exhibits properties similar to
those of traditional arithmetic, such as the associativity, commutativity, distributiv-
ity of addition and multiplication, and the existence of identity elements 0 and 1 for
addition and multiplication, respectively. Moreover, in any arithmetic expression,
reducing each of its subexpressions modulon produces the same result as com-
puting the entire expression and then reducing that value modulon. Also, every
elementx in Zn has anadditive inverse, that is, for eachx ∈ Zn, there is ay ∈ Zn

such thatx+y modn = 0. For example, the additive inverse of 5 modulo 11 is 6.
When it comes to multiplicative inverses, however, an important difference

arises. Letx be an element ofZn. A multiplicative inverseof x is an element
z−1 ∈ Zn such thatxx−1 ≡ 1 modn. For example, the multiplicative inverse of 5
modulo 9 is 2, that is, 5−1 = 2 in Z9. As in standard arithmetic, 0 does not have
a multiplicative inverse inZn. Interestingly, some nonzero elements also may not
have a multiplicative inverse inZn. For example, 3 does not have a multiplica-
tive inverse inZ9. However, ifn is prime, then every elementx 6= 0 of Zn has a
multiplicative inverse inZn (1 is its own multiplicative inverse).

Theorem 10.6: An elementx > 0 of Zn has a multiplicative inverse inZn if and
only if gcd(x,n) = 1 (that is, eitherx = 1 or x does not dividen).

Proof: Suppose that gcd(x,n) = 1. By Theorem 10.3, there are integersi and j
such thatix+ jn = 1. This impliesix modn = 1, that is,i modn is the multiplica-
tive inverse ofx in Zn, which proves the “if” part of the theorem.

To prove the “only if” part, suppose, for a contradiction, thatx > 1 dividesn,
and there is an elementy such thatxy≡ 1 modn. We havexy= kn+ 1, for some
integerk. Thus, we have found integersi = y and j =−k such thatix+ jn = 1. By
Theorem 10.3, this implies that gcd(x,n) = 1, a contradiction.

If gcd(x,n) = 1, we sayx andn arerelatively prime(1 is relatively prime to all
other numbers). Thus, Theorem 10.6 implies thatx has a multiplicative inverse in
Zn if and only if x is relatively prime ton. In addition, Theorem 10.6 implies that
the sequence 0,x,2x,3x, . . . ,(n−1)x is simply a reordering of the elements ofZn,
that is, it is a permutation of the elementsZn, as shown in the following.

Corollary 10.7: Let x > 0 be an element ofZn such thatgcd(x,n) = 1. Then

Zn = {ix : i = 0,1, . . . ,n−1}.

Proof: See Exercise R-10.7.
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In Table 10.4, we show the multiplicative inverses of the elements ofZ11 as an
example. When the multiplicative inversex−1 of x exists inZn, the notationy/x in
an expression taken modulon means “yx−1 modn.”

x 0 1 2 3 4 5 6 7 8 9 10

x−1 mod 11 1 6 4 3 9 2 8 7 5 10

Table 10.4:Multiplicative inverses of the elements ofZ11.

Fermat’s Little Theorem

We now have enough machinery for our first major theorem, which is known as
Fermat’s Little Theorem.

Theorem 10.8 (Fermat’s Little Theorem): Let p be a prime, and letx be an
integer such thatx mod p 6= 0. Then

xp−1≡ 1 (modp).

Proof: It is sufficient to prove the result for 0< x < p, because

xp−1 mod p = (x mod p)p−1 mod p,

since we can reduce each subexpression “x” in “ xp−1” modulo p.

By Corollary 10.7, we know that for 0< x < p, the set{1,2, . . . , p− 1} and
the set{x ·1,x ·2, . . . ,x · (p−1)} contain exactly the same elements. So when we
multiply the elements of the sets together, we get the same value, namely, we get

1·2· · · (p−1) = (p−1)!.

In other words,

(x·1) · (x·2) · · · (x· (p−1))≡ (p−1)! (modp).

If we factor out thex terms, we get

xp−1(p−1)! ≡ (p−1)! (modp).

Sincep is prime, every nonnull element inZp has a multiplicative inverse. Thus, we
can cancel the term(p−1)! from both sides, yieldingxp−1≡ 1 modp, the desired
result.
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In Table 10.5, we show the powers of the nonnull elements ofZ11. We observe
the following interesting patterns:

• The last column of the table, with the valuesx10 mod 11 forx = 1, · · · ,10,
contains all ones, as given by Fermat’s Little Theorem.

• In row 1, a subsequence of one element (1), is repeated ten times.
• In row 10, a subsequence of two elements, ending with 1, is repeated five

times, since 102 mod 11= 1.
• In rows 3, 4, 5, and 9, a subsequence of five elements, ending with 1, is

repeated twice.
• In each of the rows 2, 6, 7, and 8, the ten elements are all distinct.
• The lengths of the subsequences forming the rows of the table, and their

number of repetitions, are the divisors of 10, that is, 1, 2, 5, and 10.

x x2 x3 x4 x5 x6 x7 x8 x9 x10

1 1 1 1 1 1 1 1 1 1
2 4 8 5 10 9 7 3 6 1
3 9 5 4 1 3 9 5 4 1
4 5 9 3 1 4 5 9 3 1
5 3 4 9 1 5 3 4 9 1
6 3 7 9 10 5 8 4 2 1
7 5 2 3 10 4 6 9 8 1
8 9 6 4 10 3 2 5 7 1
9 4 3 5 1 9 4 3 5 1
10 1 10 1 10 1 10 1 10 1

Table 10.5:Successive powers of the elements ofZ11 modulo 11.

Euler’s Theorem

Euler’s totient function of a positive integern, denotedφ(n), is defined as the
number of positive integers less than or equal ton that are relatively prime ton.
That is, φ(n) is equal to the number of elements inZn that have multiplicative
inverses inZn. If p is a prime, thenφ(p) = p−1. Indeed, sincep is prime, each of
the numbers 1,2, . . . ,p−1 are relatively prime to it, andφ(p) = p−1.

What if n isn’t a prime number? Supposen = pq, wherep andq are primes.
How many numbers are relatively prime ton? Well, initially, we observe that there
are pq positive integers between 1 andn. However,q of them (includingn) are
multiples ofp, and so they have a gcd ofp with n. Similarly, there arep multiples
of q (again, includingn). Those multiples can’t be counted inφ(n). Thus, we see
that

φ(n) = pq−q− (p−1) = (p−1)(q−1).
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Euler’s totient function is closely related to an important subset ofZn known as
themultiplicative groupfor Zn, which is denoted asZ∗

n. The setZ∗
n is defined to be

the set of integers between 1 andn that are relatively prime ton. If n is prime, then
Z∗

n consists of then−1 nonzero elements inZn, that is,Z∗
n = {1,2, . . . ,n−1} if n

is prime. In general,Z∗
n containsφ(n) elements.

The setZ∗
n possesses several interesting properties, with one of the most im-

portant being that this set is closed under multiplication modulon. That is, for any
pair of elementsa andb of Z∗

n, we have thatc = ab modn is also inZ∗
n. Indeed, by

Theorem 10.6,a andb have multiplicative inverses inZn. To see thatZ∗
n has this

closure property, letd = a−1b−1 modn. Clearly,cd modn= 1, which implies that
d is the multiplicative inverse ofc in Zn. Thus, again applying Theorem 10.6, we
have thatc is relatively prime ton, that is,c∈ Z∗

n. In algebraic terminology, we say
thatZ∗

n is agroup, which is a shorthand way of saying that each element inZ∗
n has

a multiplicative inverse and multiplication inZ∗
n is associative, has an identity, and

is closed inZ∗
n.

The fact thatZ∗
n hasφ(n) elements and is a multiplicative group naturally leads

to an extension of Fermat’s Little Theorem. Recall that, in Fermat’s Little Theorem,
the exponent isp−1 = φ(p), sincep is prime. As it turns out, a generalized form
of Fermat’s Little Theorem is true, too. This generalized form is presented in the
following, which is known asEuler’s Theorem.

Theorem 10.9 (Euler’s Theorem): Let n be a positive integer, and letx be an
integer such thatgcd(x,n) = 1. Then

xφ(n) ≡ 1 (modn).

Proof: The proof technique is similar to that of Fermat’s Little Theorem. Denote
the elements of setZ∗

n, the multiplicative group forZn, asu1,u2, . . . ,uφ(n). By the
closure property ofZ∗

n and Corollary 10.7,

Z∗
n = {xui : i = 1, · · · ,φ(n)},

that is, multiplying elements inZ∗
n by x modulon merely permutes the sequence

u1,u2, . . . ,uφ(n). Thus, multiplying together the elements ofZ∗
n, we obtain

(xu1) · (xu2) · · · (xuφ(n))≡ u1 u2 · · ·uφ(n) (modn).

Again, we collect a termxφ(n) on one side, giving us the congruence

x(u1 u2 · · ·uφ(n))≡ u1 u2 · · ·uφ(n) (modn).

Dividing by the product of theui ’s, gives usxφ(n) ≡ 1 modn.

Theorem 10.9 gives a closed-form expression for the multiplicative inverses.
Namely, ifx andn are relatively prime, we can write

x−1≡ xφ(n)−1 (modn).



462 Chapter 10. Number Theory and Cryptography

Generators

Given a primep and an integera between 1 andp−1, theorderof a is the smallest
exponente> 1 such that

ae≡ 1 modq.

A generator(also calledprimitive root) of Zp is an elementgof Zp with orderp−1.
We use the term “generator” for such an elementa, because the repeated expo-
nentiation ofa can generate all ofZ∗

p. For example, as shown in Table 10.5, the
generators ofZ11 are 2, 6, 7, and 8. Generators play an important role in many
computations, including the Fast Fourier Transform algorithm discussed in Sec-
tion 10.4. The existence of generators is established by the following theorem,
stated without proof.

Theorem 10.10: If p is a prime, then setZp hasφ(p−1) generators.

10.1.4 Modular Exponentiation

We address first exponentiation. The main issue in this case is to find a method other
than the obvious brute-force. Before we describe an efficient algorithm, however,
let us review the naive algorithm, for it already contains an important technique.

Brute-Force Exponentiation

One of the most important considerations in any exponentiation algorithms is to
keep any intermediate results from getting too large. Suppose we want to compute,
say 3019243791 mod 65301. Multiplying 30192 by itself 43791 times andthen
taking the result modulo 65301 will yield unpredictable results in most program-
ming languages due to arithmetic overflows. Thus, we should take the modulo at
each iteration, as shown in Algorithm 10.6.

Algorithm NaiveExponentiation(a, p,n):
Input: Integersa, p, andn
Output: r = ap modn

r← 1
for i← 1 to p do

r← (r ·a) modn
return r

Algorithm 10.6: A brute-force method for modular exponentiation.

This “naive” exponentiation algorithm is correct, but it is not very efficient, for
it takesΘ(p) iterations to compute the modular exponentiation of a number to the
powerp. With large exponents, this running time is quite slow. Fortunately, there
is a better method.
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The Repeated Squaring Algorithm

A simple but important observation for an improved exponentiation algorithm is
that squaring a numberap is equivalent to multiplying its exponentp by two. In
addition, multiplying two numbersap andaq is equivalent to computinga(p+q). Let
us therefore write an exponentp as a binary numberpb−1. . .p0, that is,

p = pb−12b−1 + · · ·+ p02
0.

Of course, each of thepi ’s is either 1 or 0. Using the above observation, we can
computeap modn by a variation of Horner’s rule to evaluate polynomials, where
the polynomial in question is the above binary expansion of the exponentp. Specif-
ically, defineqi as the number whose binary representation is given by the leftmost
i bits of p, that is,qi is written in binary aspb−1. . .pb−i . Clearly, we havep = qb.
Note thatq1 = pb−1 and we can defineqi recursively as

qi = 2qi−1 + pb−i for 1 < i ≤ b.

Thus, we can evaluateap modnwith the recursive computation, called therepeated
squaringmethod, given in Algorithm 10.7.

The main idea of this algorithm is to consider each bit of the exponentp in turn
by dividing p by two until p goes to zero, squaring the current productQi for each
such bit. In addition, if the current bit is a one (that is,p is odd), then we multiply
in the base,a, as well. To see why this algorithm works, define, fori = 1, . . . ,b,

Qi = aqi modn.

From the recursive definition ofqi , we derive the following definition ofQi :

Qi = (Q2
i−1 modn)apb−i modn for 1 < i ≤ b

Q1 = apb−1 modn.
(10.1)

It is easy to verify thatQb = ap modn.

Algorithm FastExponentiation(a, p,n):
Input: Integersa, p, andn
Output: r = ap modn

if p = 0 then
return 1

if p is even then
t← FastExponentiation(a, p/2,n) { p is even, sot = ap/2 modn }
return t2 modn

t← FastExponentiation(a,(p−1)/2,n) { p is odd, sot = a(p−1)/2 modn }
return a(t2 modn) modn

Algorithm 10.7: Algorithm FastExponentiation for modular exponentiation using
the repeated squaring method. Note that, since the modulo operator is applied after
each arithmetic operation in methodFastExponentiation, the size of the operands
of each multiplication and modulo operation is never more than 2dlog2 ne bits.
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p 12 6 3 1 0
r 1 12 8 2 1

Table 10.8:Example of an execution of the repeated squaring algorithm for modular
exponentiation. For each recursive invocation ofFastExponentiation(2,12,13), we
show the second argument,p, and the output valuer = 2p mod 13.

We show a sample execution of the repeated squaring algorithm for modular
exponentiation in Table 10.8.

The running time of the repeated squaring algorithm is easy to analyze. Refer-
ring to Algorithm 10.7, a constant number of arithmetic operations are performed,
excluding those in the recursive call. Also, in each each recursive call, the expo-
nent p gets halved. Thus, the number of recursive calls and arithmetic operations
is O(logp). We may therefore summarize as follows.

Theorem 10.11: Let a p, andn be positive integers, witha < n. The repeated
squaring algorithm computesap modn usingO(logp) arithmetic operations.

10.1.5 Modular Multiplicative Inverses

We turn now to the problem of computing multiplicative inverses inZn. First, we
recall Theorem 10.6, which states that a nonnegative elementx of Zn admits an
inverse if and only if gcd(x,n) = 1. The proof of Theorem 10.6 actually suggests a
way to computex−1 modn. Namely, we should find the integersi and j referred to
by Theorem 10.3, such that

ix+ jn = gcd(x,n) = 1.

If we can find such integersi and j, we immediately obtain

i ≡ x−1 modn.

The computation of the integersi and j referred to by Theorem 10.3 can be done
with a variation of Euclid’s algorithm, calledExtended Euclid’s Algorithm.

Extended Euclid’s Algorithm

Let a andb be positive integers, and denote withd their greatest common divisor,

d = gcd(a,b).

Let q = a modb andr be the integer such thata = rb+q, that is,

q = a− rb.

Euclid’s algorithm is based on the repeated application of the formula

d = gcd(a,b) = gcd(b,q),

which immediately follows from Lemma 10.4.



10.1. Fundamental Algorithms Involving Numbers 465

Suppose that the recursive call of the algorithm, with argumentsb andq, also
returns integersk andl , such that

d = kb+ lq.

Recalling the definition ofr, we have

d = kb+ lq = kb+ l(a− rb) = la+(k− lr )b.

Thus, we have

d = ia+ jb, for i = l and j = k− lr .

This last equation suggests a method to compute the integersi and j. This method,
known as the extended Euclid’s algorithm, is shown in Algorithm 10.9. We present,
in Table 10.10, a sample execution of this algorithm. Its analysis is analogous to
that of Euclid’s algorithm.

Theorem 10.12: Let a and b be two positive integers. The extended Euclid’s
algorithm for computing a triplet of integers(d, i, j) such that

d = gcd(a,b) = ia+ jb,

executesO(logmax(a,b)) arithmetic operations.

Corollary 10.13: Let x be an element ofZn such thatgcd(x,n) = 1. The multi-
plicative inverse ofx in Zn can be computed withO(logn) arithmetic operations.

Algorithm ExtendedEuclidGCD(a,b):
Input: Nonnegative integersa andb
Output: Triplet of integers(d, i, j) such thatd = gcd(a,b) = ia+ jb

if b = 0 then
return (a,1,0)

q← a modb
Let r be the integer such thata = rb+q
(d,k, l)← ExtendedEuclidGCD(b,q)
return (d, l ,k− lr )

Algorithm 10.9: Extended Euclid’s algorithm.

a 412 260 152 108 44 20 4
b 260 152 108 44 20 4 0
r 1 1 1 2 2 5
i 12 -7 5 -2 1 0 1
j -19 12 -7 5 -2 1 0

Table 10.10:Execution ofExtendedEuclidGCD(a,b), for a = 412 andb = 260, to
compute(d, i, j) such thatd = gcd(a,b) = ia+ jb. For each recursive invocation,
we show the argumentsa andb, variabler, and output valuesi and j. The output
valued is always gcd(412,260) = 4.
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10.1.6 Primality Testing

Prime numbers play an important role in computations involving numbers, includ-
ing cryptographic computations. But how do we test whether a numbern is prime,
particularly if it is large?

Testing all possible divisors ofn is computationally infeasible for largen. Al-
ternatively, Fermat’s Little Theorem (Theorem 10.8) seems to suggest an efficient
solution. Perhaps we can somehow use the equation

ap−1≡ 1 modp

to form a test forp. That is, let us pick a numbera, and raise it to the powerp−1.
If the result isnot 1, then the numberp is definitely not prime. Otherwise, there’s a
chance it is. Would repeating this test for various values ofa prove thatp is prime?
Unfortunately, the answer is “no.” There is a class of numbers, calledCarmichael
numbers, that have the property thatan−1 ≡ 1 modn for all 1≤ a≤ n− 1, but
n is composite. The existence of these numbers ruins such a simple test as that
proposed above. Example Carmichael numbers are 561 and 1105.

A Template for Primality Testing

While the above “probabilistic” test won’t work, there are several related tests that
will, by making more sophisticated use of Fermat’s Little Theorem. These prob-
abilistic tests of primality are based on the following general approach. Letn be
an odd integer that we want to test for primality, and letwitness(x,n) be a Boolean
function of a random variablex andn with the following properties:

1. If n is prime, thenwitness(x,n) is always false. So ifwitness(x,n) is true,
thenn is definitely composite.

2. If n is composite, thenwitness(x,n) is false with probabilityq < 1.

The functionwitness is said to be acompositeness witness functionwith error
probability q, for q bounds the probability thatwitness will incorrectly identify
a composite number as possibly prime. By repeatedly computingwitness(x,n) for
independent random values of the parameterx, we can determine whethern is prime
with an arbitrarily small error probability. The probability thatwitness(x,n) would
incorrectly return “false” fork independent randomx’s, whenn is a composite
number, isqk. A generic probabilistic primality testing algorithm based on this
observation is shown in Algorithm 10.11. This algorithm, which is described using
a design technique known as the template method pattern, assumes that we have
a compositeness witness function,witness, that satisfies the two conditions above.
In order to turn this template into a full-blown algorithm, we need only specify the
details of how to pick random numbersx and computewitness(x,n), the composite
witness function.
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Algorithm RandomizedPrimalityTesting(n,k):
Input: Odd integern≥ 2 and confidence parameterk
Output: An indication of whethern is composite (which is always correct) or

prime (which is incorrect with error probability 2−k)

{This method assumes we have a compositeness witness functionwitness(x,n)
with error probabilityq < 1.}
t← dk/ log2(1/q)e
for i← 1 to t do

x← random()
if witness(x,n) then

return “composite”
return “prime”

Algorithm 10.11: A template for a probabilistic primality testing algorithm based
on a compositeness witness functionwitness(x,n). We assume that the auxiliary
methodrandom() picks a value at random from the domain of the random vari-
ablex.

If the methodRandomizedPrimalityTesting(n,k,witness) returns “composite,”
we know with certainty thatn is composite. However, if the method returns “prime,”
the probability thatn is actually composite is no more than 2−k. Indeed, suppose
thatn is composite but the method returns “prime.” We have that the witness func-
tion witness(x,n) has evaluated to true fort random values ofx. The probability of
this event isqt . From the relation between the confidence parameterk, the number
of iterationst, and the error probabilityq of the witness function established by the
first statement of the method, we have thatqt ≤ 2−k. The second argument,k, of
the template methodRandomizedPrimalityTesting is aconfidence parameter.

The Solovay-Strassen Primality Testing Algorithm

TheSolovay-Strassen algorithmfor primality testing is a specialization of the tem-
plate methodRandomizedPrimalityTesting. The compositeness witness function
used by this algorithm is based on some number-theoretic facts, which we review
below.

Let p be an odd prime. An elementa> 0 of Zp is said to be aquadratic residue
if it is the square of some elementx of Zp, that is,

a≡ x2 (modp)

For a≥ 0, theLegendre symbol
(

a
p

)
is defined by:

(
a
b

)
=




1 if a mod p is a quadratic residue
0 if a mod p = 0
−1 otherwise.
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The notation for the Legendre symbol should not be confused with the division
operation. It can be shown (see Exercise C-10.2) that

(
a
p

)
≡ a

p−1
2 (modp).

We generalize the Legendre symbol by removing the restriction thatp be a
prime. Letn be a positive odd integer with prime decomposition

n = pe1
1 · · · pek

k .

Fora≥ 0, theJacobi symbol,
(

a
n

)
,

is defined by the following equation:

(
a
n

)
=

k

∏
i=1

(
a
pi

)ei

=
(

a
p1

)e1

·
(

a
p1

)e1

· · ·
(

a
pk

)ek

.

Like the Legendre symbol, the Jacobi symbol is equal to either 0, 1, or−1. We
show in Algorithm 10.12 a recursive method for computing the Jacobi symbol.
The justification of its correctness is omitted (see Exercise C-10.5).

Algorithm Jacobi(a,b):
Input: Integersa andb

Output: The value of the Jacobi symbol

(
a
b

)

if a = 0 then
return 0

else if a = 1 then
return 1

else if a mod 2= 0 then
if (b2−1)/8 mod 2= 0 then

return Jacobi(a/2,b)
else

return −Jacobi(a/2,b)
else if (a−1)(b−1)/4 mod 2= 0 then

return Jacobi(b moda,a)
else

return −Jacobi(b moda,a)

Algorithm 10.12: Recursive computation of the Jacobi symbol.
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If n is prime, then the Jacobi symbol

(
a
n

)
is the same as the Legendre sym-

bol. Thus, for any elementa of Zn, we have(
a
n

)
≡ a

n−1
2 (modn), (10.2)

whenn is prime. Ifn is composite, there may be values ofa such that Equation 10.2
is still satisfied. So, if Equation 10.2 is satisfied, then we say thatn is anEuler
pseudo-primewith basea. The following lemma, given without proof, gives a
property of Euler pseudo-primes that yields a compositeness witness function.

Lemma 10.14: Letn be a composite number. There are at most(n−1)/2 positive
values ofa in Zn such thatn is an Euler pseudo-prime with basea.

The Solovay-Strassen primality testing algorithm uses the following compos-
iteness witness function:

witness(x,n) =
{

f alse if n is an Euler pseudo-prime with basex
true otherwise,

wherex is a random integer with 1< x≤ n−1. By Lemma 10.14, this function has
error probabilityq≤ 1/2. The Solovay-Strassen primality testing algorithm can be
expressed as a specialization of the template methodRandomizedPrimalityTesting
(Algorithm 10.11) that redefines the auxiliary methodswitness(x,n) andrandom(),
as shown in Algorithm 10.13.

Algorithm witness(x,n):
return (Jacobi(x,n) modn) 6= FastExponentiation

(
x, n−1

2 ,n
)

Algorithm random():
return a random integer between 1 andn−1

Algorithm 10.13: Solovay-Strassen algorithm obtained by specializing the auxiliary
methods of algorithmRandomizedPrimalityTesting (Algorithm 10.11).

The analysis of the running time of the Solovay-Strassen algorithm is simple.
Since the error probability of the compositeness witness function is no more than
1/2, we can setq = 2, which implies that the number of iterations equal to the
confidence parameterk. At each iteration, the computation ofwitness(x,n) takes
O(logn) arithmetic operations (see Theorem 10.11 and Exercise C-10.5). We con-
clude as follows.

Theorem 10.15: Given an odd positive integern and a confidence parameter
k > 0, the Solovay-Strassen algorithm determines whethern is prime with error
probability2−k by performingO(k logn) arithmetic operations.
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The Rabin-Miller Primality Testing Algorithm

We now describe theRabin-Miller algorithm for primality testing. It is based on
Fermat’s Little Theorem (Theorem 10.8) and on the following lemma.

Lemma 10.16: Let p > 2 be a prime. Ifx is an element ofZp such that

x2≡ 1 (modp),

then either

x≡ 1 (mod p)

or

x≡−1 (modp).

A nontrivial square root of the unityin Zn is defined as an integer 1< x< n−1
such that

x2 ≡ 1 (modn).

Lemma 10.16 states that ifn is prime, there are no nontrivial square roots of the
unity in Zn.

For an odd integern, let the binary representation ofn−1 be

rb−1rb−2 · · · r1r0.

Definesi as the number whose binary representation is given by the leftmosti bits
of n−1, that is,si is written in binary as

rb−1 · · · rb−i .

Given an integerx, define the elementXi of Zn as

Xi = xsi modn.

The Rabin-Miller algorithm defines its compositeness witness function (that is,
witness(x,n)) so that it is true if and only ifxn−1 modn 6= 1. Xi is a nontrivial square
root of the unity for some 1< i < b−1. The computation of this function is easier
than it may seem. Indeed, if we computexn−1 modn using the repeated squaring
algorithm (Algorithm 10.7), the integersXi are just a byproduct of the computation
(see Exercise C-10.6). The error probability is provided by the following lemma,
stated without proof.

Lemma 10.17: Let n be a composite number. There are at most(n− 1)/4 pos-
itive values ofx in Zn such that the Rabin-Miller compositeness witness function
witness(x,n) returns true.

We conclude as follows.

Theorem 10.18: Given an odd positive integern and a confidence parameterk >
0, the Rabin-Miller algorithm determines whethern is prime, with error probability
2−k, by performingO(k logn) arithmetic operations.

The Rabin-Miller algorithm is widely used in practice for primality testing.
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Finding Prime Numbers

A primality testing algorithm can be used to select a random prime in a given range,
or with a prespecified number of bits. We exploit the following result from number
theory, stated without proof.

Theorem 10.19: The number,π(n), of primes that are less than or equal ton is
Θ(n/ lnn). In fact, if n≥ 17, thenn/ lnn < π(n) < 1.26n/ lnn.

In the above theorem, lnn is the natural logarithm ofn, that is, the logarithm ofn in
basee, wheree is Euler’s number, a transcendental number whose first few digits
are 2.71828182845904523536. . . .

A consequence of Theorem 10.19 is that a random integern is prime with prob-
ability 1/ lnn. Thus, to find a prime with a given numberb of bits, we generate ran-
domb-bit odd numbers and test them for primality until we find a prime number.

Theorem 10.20: Given an integerb and a confidence parameterk, a random
prime withb bits can be selected with error probability2−k by performingO(kb)
arithmetic operations.

10.2 Cryptographic Computations

The Internet is enabling a growing number of activities, such as correspondence
(email), shopping (Web stores), and financial transactions (online banking), to be
performed electronically. However, the Internet itself is an insecure transmission
network: data transmitted over the Internet travels through several intermediate
specialized computers, calledrouters, which can observe the data and potentially
modify it.

A variety of cryptographic techniques have been developed to support secure
communication over an insecure network such as the Internet. In particular, cryp-
tography research has developed the following useful cryptographic computations:

• Encryption/decryption: A messageM to be transmitted, called theplaintext,
is transformed into an unrecognizable string of charactersC, called theci-
phertext, before being sent over the network. This transformation is known
as encryption. After the ciphertextC is received, it is converted back to
the plaintextM using an inverse transformation (that depends on additional
secret information). This reverse transformation is calleddecryption. An
essential ingredient in encryption is that it should be computationally infea-
sible for an outsider to transformC back toM (without knowing the secret
information possessed by the receiver).

• Digital signatures: The author of a messageM computes a messageSthat is
derived fromM and secret information known by the author. The messageS
is adigital signatureif another party can easily verify that only the author of
M could have computedS in a reasonable amount of time.
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Using Cryptographic Computations for Information Security Services

The computations of encryption and digital signatures are sometimes combined
with other cryptographic computations, some of which we discuss later in this chap-
ter. Still, the two techniques above are already sufficient to support the information
security services discussed in the introduction:

• Data integrity: Computing a digital signatureS of a messageM not only
helps us determine the author ofM, it also verifies the integrity ofM, for a
modification toM would produce a different signature. So, to perform a data
integrity check we can perform a verification test thatS is, in fact, a digital
signature for the messageM.

• Authentication: The above cryptographic tools can be used for authentica-
tion in two possible ways. Inpasswordauthentication schemes, a user will
type a user-id and password in a client application, with this combination
being immediately encrypted and sent to an authenticator. If the encrypted
user-id and password combination matches that in a user database, then the
individual is authenticated (and the database never stores passwords in plain-
text). Alternatively, an authenticator can issue a challenge to a user in the
form of a random messageM that the user must immediately digitally sign
for authentication.

• Authorization: Given a scheme for authentication, we can issue authoriza-
tions by keeping lists, calledaccess control lists, that are associated with
sensitive data or computations that should be accessed only by authorized
individuals. Alternatively, the holder of a right to sensitive data or computa-
tions can digitally sign a messageC that authorizes a user to perform certain
tasks. For example, the message could be of the form, “I U.S. Corporation
vice president give personx permission to access our fourth quarter earnings
data.”

• Confidentiality: Sensitive information can be kept secret from nonauthorized
agents by encrypting it.

• Nonrepudiation: If we make the parties negotiating a contract,M, digitally
sign that message, then we can have a way of proving that they have seen and
agreed to the content of the messageM.

This section gives an introduction to cryptographic computations. Conventional
names of personae, such as Alice, Bob, and Eve, are used to denote the parties
involved in a cryptographic protocol. We focus primarily onpublic-key cryptogra-
phy, which is based on the number-theoretic properties and algorithms discussed
in the previous section. Still, before we introduce the concepts of public-key cryp-
tography, we briefly discuss an alternate approach to encryption.
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10.2.1 Symmetric Encryption Schemes

As mentioned above, a fundamental problem in cryptography is confidentiality,
that is, sending a message from Alice to Bob so that a third party, Eve, cannot
gain any information from an intercepted copy of the message. Moreover, we have
observed that confidentiality can be achieved byencryption schemes, or ciphers,
where the messageM to be transmitted, called theplaintext, is encryptedinto an
unrecognizable string of charactersC, called theciphertext, before being sent over
the network. After the ciphertextC is received, it is decrypted back to the plaintext
M using an inverse transformation calleddecryption.

Secret Keys

In describing the details of an encryption scheme, we must explain all the steps
needed in order to encrypt a plaintextM into a ciphertextC, and how to then decrypt
that ciphertext back toM. Moreover, in order for Eve to be unable to extractM from
C, there must be some secret information that is kept private from her.

In traditional cryptography, a commonsecret keyk is shared by Alice and Bob,
and is used to both encrypt and decrypt the message. Such schemes are also called
symmetric encryptionschemes, sincek is used for both encryption and decryption
and the same secret is shared by both Alice and Bob.

Substitution Ciphers

A classic example of a symmetric cipher is asubstitution cipher, where the secret
key is a permutationπ of the characters of the alphabet. Encrypting plaintextM
into ciphertextC consists of replacing each characterx of M with charactery =
π(x). Decryption can be easily performed by knowing the permutation functionπ.
Indeed,M is derived fromC by replacing each charactery of C with characterx =
π−1(y). TheCaesar cipheris an early example of a substitution cipher, where each
characterx is replaced by character

y = x+k modn,

wheren is the size of the alphabet and 1< k < n is the secret key. This substitution
scheme is known as the “Caesar cipher,” for Julius Caesar is known to have used it
with k = 3.

Substitution ciphers are quite easy to use, but they are not secure. Indeed, the
secret key can be quickly inferred usingfrequency analysis, based on the knowl-
edge of the frequency of the various letters, or groups of consecutive letters in the
text language.
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The One-Time Pad

Secure symmetric ciphers exist. Indeed, the most secure cipher known is a symmet-
ric cipher. It is theone-time pad. In this cryptosystem, Alice and Bob each share a
random bit stringK as large as any message they might wish to communicate. The
string K is the symmetric key, for to compute a ciphertextC from a messageM,
Alice computes

C = M⊕K,

where “⊕” denotes the bitwise exclusive-or operator. She can sendC to Bob using
any reliable communication channel, even one on which Eve is eavesdropping,
because the ciphertextC is computationally indistinguishable from a random string.
Nevertheless, Bob can easily decrypt the ciphertext messageC by computingC⊕K,
since

C⊕K = (M⊕K)⊕K

= M⊕ (K⊕K)
= M⊕0

= M,

where0 denotes the bit string of all 0’s the same length asM. This scheme is clearly
a symmetric cipher system, since the keyK is used for encryption and decryption.

The one-time pad is computationally efficient, for bitwise exclusive-or is one
of the fastest operators that computers can perform. Also, as already mentioned,
the one-time pad is incredibly secure. Nevertheless, the one-time pad cryptosystem
is not widely used. The main trouble with this system is that Alice and Bob must
share a very large secret key. Moreover, the security of the one-time pad depends
crucially on the fact that the secret keyK is used only once. IfK is reused, there are
several simple cryptoanalyses that can break this system. For practical cryptosys-
tems, we prefer secret keys that can be reused and are smaller than the messages
they encrypt and decrypt.

Other Symmetric Ciphers

Secure and efficient symmetric ciphers do exist. They are referred to by their
acronyms or colorful names, such as “3DES,” “IDEA,” “Blowfish,” and “Rijndael”
(pronounce “Rhine-doll”). They perform a sequence of complex substitution and
permutation transformations on the bits of the plaintext. While these systems are
important in many applications, they are only mildly interesting from an algorith-
mic viewpoint; hence, they are out of the scope of this book. They run in time
proportional to the length of the message being encrypted or decrypted. Thus, we
mention that these algorithms exist and are fast, but in this book we do not discuss
any of these efficient symmetric ciphers in any detail.
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10.2.2 Public-Key Cryptosystems

A major problem with symmetric ciphers iskey transfer, or how to distribute the
secret key for encryption and decryption. In 1976, Diffie and Hellman described
an abstract system that would avoid these problems, thepublic-key cryptosystem.
While they didn’t actually publish a particular public-key system, they discussed
the features of such a system. Specifically, given a messageM, encryption function
E, and decryption functionD, the following four properties must hold:

1. D(E(M)) = M.
2. Both E andD are easy to compute.
3. It is computationally infeasible1 to deriveD from E.
4. E(D(M)) = M.

In retrospect, these properties seem fairly common sense. The first property merely
states that, once a message has been encrypted, applying the decryption procedure
will restore it. Property two is perhaps more obvious. In order for a cryptosystem
to be practical, encryption and decryption must be computationally fast.

The third property is the start of the innovation. It means thatE only goes one
way; it is computationally infeasible to invertE, unless you already knowD. Thus,
the encryption procedureE can be made public. Any party can send a message,
while only one knows how to decrypt it.

If the fourth property holds, then the mapping is one-to-one. Thus, the cryp-
tosystem is a solution to thedigital signatureproblem. Given an electronic mes-
sage from Bob to Alice, how can we prove that Bob actually sent it? Bob can apply
his decryption procedure to some signature messageM. Any other party can then
verify that Bob actually sent the message by applying the public encryption proce-
dureE. Since only Bob knows the decryption function, only Bob can generate a
signature message which can be correctly decoded by the functionE.

Public-key cryptography is the basis of modern cryptography. Its economic
importance is fast growing, since it provides the security infrastructure of all elec-
tronic transactions over the Internet.

The design of public-key cryptosystems can be described in general terms. The
idea is to find a very tough problem in computer science, and then somehow tie the
cryptosystem to it. Ideally, one arrives at an actual proof that breaking the cryp-
tosystem is computationally equivalent to solving the difficult problem. There’s a
large class of problems, calledNP-complete, which do not have known polynomial
time algorithms for their solution. (See Chapter 13.) In fact, it is widely believed
that there are none. Then, to generate the particular encryption and decryption keys,
we create a particular set of parameters for this problem. Encrypting then means
turning the message into an instance of the problem. The recipient can use secret
information (the decryption key) to solve the puzzle effortlessly.

1The concept of computational difficulty is formalized in Chapter 13.
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10.2.3 The RSA Cryptosystem

Some care must be taken in how a computationally difficult problem is tied to a
cryptosystem. One of the earlier public-key cryptosystems, the Merkle-Hellman
system, linked encryption to something called the knapsack problem, which isNP-
complete. Unfortunately, the problems the system generates turn out to be a special
subclass of the knapsack problem that can be easily solved. So designing public-
key cryptosystems has its share of subtleties.

Probably the most well-known public-key cryptosystem is also one of the old-
est, and is tied to the difficulty of factoring large numbers. It is namedRSAafter
its inventors, Rivest, Shamir, and Adleman.

In this cryptosystem, we begin by selecting two large primes,p and q. Let
n = pq be their product and recall thatφ(n) = (p− 1)(q− 1). Encryption and
decryption keyseandd are selected so that

• eandφ(n) are relatively prime
• ed≡ 1 (modφ(n)).

The second condition means thatd is the multiplicative inverse ofe modφ(n). The
pair of valuesn ande form the public key, whiled is the private key. In practice,e
is chosen either randomly or as one of the following numbers: 3, 17, or 65537.

The rules for encrypting and decrypting with RSA are simple. Let us assume,
for simplicity, that the plaintext is an integerM, with 0 < M < n. If M is a string,
we can view it as an integer by concatenating the bits of its characters. The plain-
text M is encrypted into ciphertextC with one modular exponentiation using the
encryption keyeas the exponent:

C←Me modn (RSA encryption).

The decryption of ciphertextC is also performed with an exponentiation, using
now the decryption keyd as the exponent:

M←Cd modn (RSA decryption).

The correctness of the above encryption and decryption rules is justified by the
following theorem.

Theorem 10.21: Let p andq be two odd primes, and definen = pq. Let e be
relatively prime withφ(n) and letd be the multiplicative inverse ofemoduloφ(n).
For each integerx such that0 < x < n,

xed≡ x (modn).

Proof: Let y = xed modn. We want to prove thaty = x. Because of the way we
have selectede andd, we can writeed= kφ(n)+ 1, for some integerk. Thus, we
have

y = xkφ(n)+1 modn.

We distinguish two cases.
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Case 1: x does not dividen. We rewritey as follows:

y = xkφ(n)+1 modn

= xxkφ(n) modn

= x(xφ(n) modn)k modn.

By Theorem 10.9 (Euler’s theorem), we havexφ(n) modn= 1, which implies
y = x·1k modn = x.

Case 2: x divides n. Sincen = pq, with p and q primes,x is a multiple of ei-
ther p or q. Supposex is a multiple ofp, that is,x = hp for some positive
integerh. Clearly, x cannot be a multiple ofq as well, since otherwisex
would be greater thann = pq, a contradiction. Thus, gcd(x,q) = 1 and by
Theorem 10.9 (Euler’s theorem), we have

xφ(q) ≡ 1 (modq).

Sinceφ(n) = φ(p)φ(q), raising both sides of the above congruence to the
power ofkφ(q), we obtain

xkφ(n) ≡ 1 (modq),

which we rewrite as

xkφ(n) = 1+ iq,

for some integeri. Multiplying both sides of the above equality byx, and
recalling thatx = hpandn = pq, we obtain:

xkφ(n)+1 = x+xiq

= x+hpiq

= x+(hi)n.

Thus, we have

y = xkφ(n)+1 modn = x.

In either case, we have shown thaty= x, which concludes the proof of the theorem.

Using RSA for Digital Signatures

The symmetry of the encryption and decryption functions implies that the RSA
cryptosystem directly supports digital signatures. Indeed, a digital signatureS for
messageM is obtained by applying the decryption function toM, that is,

S←Md modn (RSA signature).

The verification of the digital signatureS is now performed with the encryption
function, that is, by checking that

M ≡ Se (modn) (RSA verification).
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The Difficulty of Breaking RSA

Note that, even if we know the valuee, we cannot figure outd unless we knowφ(n).
Most cryptography researchers generally believe that breaking RSA requires that
we computeφ(n) and that this requires factoringn. While there is noproof that
factorization is computationally difficult, a whole series of famous mathematicians
have worked on the problem over the past few hundred years. Especially ifn is
large (≈ 200 digits), it will take a very long time to factor it. To give you an idea of
the state of the art, mathematicians were quite excited when a nationwide network
of computers was able to factor the ninth Fermat number, 2512− 1. This number
has “only” 155 decimal digits. Barring a major breakthrough, the RSA system will
remain secure. For if technology somehow advances to a point where it is feasible
to factor 200 digit numbers, we need only choose ann with three or four hundred
digits.

Analysis and Setup for RSA Encryption

The running time of RSA encryption, decryption, signature, and verification is sim-
ple to analyze. Indeed, each such operation requires a constant number of modular
exponentiations, which can be performed with methodFastExponentiation (Algo-
rithm 10.7).

Theorem 10.22: Let n be the modulus used in the RSA cryptosystem. RSA en-
cryption, decryption, signature, and verification each takeO(logn) arithmetic op-
erations.

To set up the RSA cryptosystem, we need to generate the public and private key
pair. Namely, we need to compute the private key(d, p,q) and the public key(e,n)
that goes with it. This involves the following computations:

• Selection of two random primesp andq with a given number of bits. This
can be accomplished by testing random integers for primality, as discussed
at the end of Section 10.1.6.

• Selection of an integererelatively prime toφ(n). This can be done by picking
random primes less thanφ(n) until we find one that does not divideφ(n). In
practice, it is sufficient to check small primes from a list of known primes
(oftene= 3 or e= 17 will work).

• Computing the multiplicative inversed of e in Zφ(n). This can be done using
the extended Euclid’s algorithm (Corollary 10.13).

We have previously explained algorithms for each of these number theory problems
in this chapter.
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10.2.4 The El Gamal Cryptosystem

We have seen that the security of the RSA cryptosystem is related to the difficulty
of factoring large numbers. It is possible to construct cryptosystems based on other
difficult number-theoretic problems. We now consider the El Gamal cryptosystem,
named after its inventor, Taher El Gamal, which is based on the difficulty of a
problem called the “discrete logarithm.”

The Discrete Logarithm

When we’re working with the real numbers, logb y is the valuex, such thatbx = y.
We can define an analogous discrete logarithm. Given integersb andn, with b < n,
thediscrete logarithmof an integery to the baseb is an integerx, such that

bx≡ y modn.

The discrete logarithm is also calledindex, and we write

x = indb,ny.

While it is quite efficient to raise numbers to large powers modulop (recall
the repeated squaring algorithm, Algorithm 10.7), the inverse computation of the
discrete logarithm is much harder. The El Gamal system relies on the difficulty of
this computation.

El Gamal Encryption

Let p be a prime, andg be a generator ofZp. The private keyx is an integer
between 1 andp−2. Let y = gx mod p. The public key for El Gamal encryption
is the triplet (p,g,y). If taking discrete logarithms is as difficult as it is widely
believed, releasingy = gx mod p does not revealx.

To encrypt a plaintextM, a random integerk relatively prime top− 1 is se-
lected, and the following pair of values is computed:

a← gk mod p
b←Myk mod p

(El Gamal encryption).

The ciphertextC consists of the pair(a,b) computed above.

El Gamal Decryption

The decryption of the ciphertextC = (a,b) in the El Gamal scheme, to retrieve the
plaintextM, is simple:

M← b/ax mod p (El Gamal decryption).
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In the above expression, the “division” byax should be interpreted in the con-
text of modular arithmetic, that is,M is multiplied by the inverse ofax in Zp. The
correctness of the El Gamal encryption scheme is easy to verify. Indeed, we have

b/ax mod p = Myk(ax)−1 mod p

= Mgxk(gkx)−1 mod p

= M.

Using El Gamal for Digital Signatures

A variation of the above scheme provides a digital signature. Namely, a signature
for messageM is a pairS= (a,b) obtained by selecting a random integerk relatively
prime top−1 (which, of course, equalsφ(p)) and computing

a ← gk mod p
b ← k−1(M−xa) mod(p−1)

(El Gamal signature).

To verify a digital signatureS= (a,b), we check that

yaab≡ gM (modp) (El Gamal verification).

The correctness of the El Gamal digital signature scheme can be seen as fol-
lows:

yaab mod p = ((gx mod p)a mod p)((gk mod p)k−1(M−xa) mod(p−1) mod p)
= gxagkk−1(M−xa) mod (p−1) mod p
= gxa+M−xa mod p
= gM mod p.

Analysis of El Gamal Encryption

The analysis of the performance of the El Gamal cryptosystem is similar to that of
RSA. Namely, we have the following.

Theorem 10.23: Let n be the modulus used in the El Gamal cryptosystem. El
Gamal encryption, decryption, signature, and verification each takeO(logn) arith-
metic operations.
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10.3 Information Security Algorithms and Protocols

Once we have some tools, like the fundamental algorithms involving numbers and
the public-key encryption methods, we can start to compose them with other al-
gorithms to provide needed information security services. We discuss several such
protocols in this section, many of which use, in addition to the algorithms discussed
above, the topic we discuss next.

10.3.1 One-way Hash Functions

Public-key cryptosystems are often used in conjunction with aone-way hash func-
tion, also called amessage digestor fingerprint. We provide an informal descrip-
tion of such a function next. A formal discussion is beyond the scope of this book.

A one-way hash functionH maps a string (message)M of arbitrary length
to an integerd = H(M) with a fixed number of bits, called thedigestof M, that
satisfies the following properties:

1. Given a stringM, the digest ofM can be computed quickly.

2. Given the digestd of M, but notM, it is computationally infeasible to findM.

A one-way hash function is said to becollision-resistantif, given a stringM, it is
computationally infeasible to find another stringM′ with the same digest, and is
said to bestrongly collision-resistantif it is computationally infeasible to find two
stringsM1 andM2 with the same digest.

Several functions believed to be strongly collision-resistant, one-way hash func-
tions have been devised. The ones used most in practice are MD5, which produces
a 128-bit digest, and SHA-1, which produces a 160-bit digest. We examine now
some applications of one-way hashing.

A first application of one-way hash functions is to speed up the construction of
digital signatures. If we have a collision-resistant, one-way hash function, we can
sign the digest of a message instead of the message itself, that is, the signatureS is
given by:

S= D(H(M)).

Except for small messages, hashing the message and signing the digest is faster,
in practice, than signing the message directly. Also, this procedure overcomes a
significant restriction of the RSA and El Gamal signature schemes, namely that the
messageM must be less than the modulusn. For example, when using MD5, we
can sign messages of arbitrary length using a fixed modulusn that is only required
to be greater than 2128.
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10.3.2 Timestamping and Authenticated Dictionaries

The next application istimestamping. Alice has a documentM and wants to obtain
a certification that the documentM exists at the present timet.

In one method for timestamping, Alice uses the services of a trusted third party,
Trevor, to provide timestamping. Alice can sendM to Trevor and have him sign a
new documentM′ consisting of the concatenation ofM andt. While this approach
works, it has the drawback that Trevor can seeM. A collision-resistant, one-way
hash functionH can eliminate the problem. Alice computes the digestd of M using
H, and asks Trevor to sign a new messageM′′ consisting of the concatenation ofd
andt.

Authenticated Dictionaries

In fact, we can define another method for timestamping that does not require that
we fully trust Trevor. This alternative method is based on the concept of anau-
thenticated dictionary.

In an authenticated dictionary, the third party, Trevor, collects a dictionary
database of items. In the timestamping application, the items are the digests of
documents that need to be timestamped as existing on a certain date. In this case,
however, we do not trust Trevor’s signed statement that a digestd of Alice’s doc-
umentM exists on a certain datet. Instead, Trevor computes a digestD of the
entire dictionary and he publishesD in a location where timestamping cannot be
questioned (such as the classified section of a well-known newspaper). In addition,
Trevor responds to Alice with partial digestD′ that summarizes all the items in the
dictionary except for Alice’s document digestd.

For this scheme to work effectively, there should be a functionf such that
D = f (D′,d), with f being easy to compute (for Alice). But this function should be
one-way in the sense that, given an arbitraryy, it should be computationally difficult
(for Trevor) to compute anx such thatD = f (x,y). Given such a function, we can
rely on Trevor to compute the digest of all the documents he receives and publish
that digest to the public location. For it is computationally infeasible for Trevor to
fabricate a response that would indicate that a valued was in the dictionary when
in fact it was not. Thus, the key component of this protocol is the existence of
the one-way functionf . In the remainder of this subsection we explore a possible
method for constructing a functionf suitable for an authenticated dictionary.

Hash Trees

An interesting data structure approach, known as thehash treescheme, can be used
to implement an authenticated dictionary. This structure supports the initial con-
struction of the dictionary database followed by query operations or membership
responses for each item.
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A hash treeT for a setS stores the elements ofS at the external nodes of a
complete binary treeT and a hash valueh(v) at each nodev, which combines the
hash of its children using a well-known, one-way hash function. In the timestamp-
ing application the items stored at the external nodes ofT are themselves digests
of documents to be timestamped as existing on a particular day. The authenticated
dictionary forS consists of the hash treeT plus the publication of the valueh(r)
stored in the rootr of T. An elementx is proven to belong toS by reporting the
values stored at the nodes on the path inT from the node storingx to the root,
together with the values of all nodes that have siblings on this path.

Given such a pathp, Alice can recompute the hash valueh(r) of the root. More-
over, sinceT is a complete binary tree, she need only performO(logn) calls to the
hash functionh to compute this value, wheren is the number of elements inS.

10.3.3 Coin Flipping and Bit Commitment

We now present a protocol that allows Alice and Bob toflip a random coin by
exchanging email messages or otherwise communicating over a network. LetH
be a strongly collision-resistant, one-way hash function. The interaction between
Alice and Bob consists of the following steps:

1. Alice picks a numberx and computes the digestd = H(x), sendingd to Bob.
2. After receivingd, Bob sends Alice his guess of whetherx is odd or even.
3. Alice announces the result of the coin flip: if Bob has guessed correctly, the

result is heads; if not, it is tails. She also sends to Bobx as proof of the result.
4. Bob verifies that Alice has not cheated, that is, thatd = H(x).

The strong collision-resistance requirement is essential, since otherwise Alice could
come up with two numbers, one odd and one even, with the same digestd, and
would be able to control the outcome of the coin flip.

Related to coin flipping isbit commitment. In this case, Alice wants to commit
to a valuen (which could be a single bit or an arbitrary string) without revealing
it to Bob. Once Alice revealsn, Bob wants to verify that she has not cheated. For
example, Alice may want to prove to Bob that she can predict whether a certain
stock will be up (n = 1), down (n =−1), or unchanged (n = 0) tomorrow. Using a
strongly collision-resistant, one-way hash functionH, the protocol goes as follows:

1. She sends Bobx plus the digest of the concatenation ofx, y, andn. In keep-
ing with tradition in cryptographic literature, we denote the concatenation of
stringsa andb with “a||b” in this chapter. Thus, using this notation, Alice
sends Bobd = H(x||y||n). Note that Bob is unable to figure outn from x
andd.

2. At the close of trading the next day, whenn becomes publicly known, Alice
sendsy to Bob for verification.

3. Bob verifies that Alice has not cheated, that is,d = H(x||y||n).
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10.3.4 The Secure Electronic Transaction (SET) Protocol

Our final application is significantly more complex and involves the combined use
of encryption, digital signatures, and one-way hashing. It is actually a simplified
version of theSET (secure electronic transaction) protocol for secure credit card
payment over the Internet.

Alice wants to purchase a book from Barney (an Internet bookstore) using a
credit card issued by Lisa (a bank). Alice is concerned about privacy: on one hand,
she does not want Barney to see her credit card number; on the other hand, she does
not want Lisa to know which book she purchased from Barney. However, she wants
Barney to send her the book, and Lisa to send the payment to Barney. Finally, Alice
also wants to ensure that the communication between Barney, Lisa, and herself
is kept confidential even if someone is eavesdropping over the Internet. Using a
strongly collision-resistant, one-way hash functionH, the protocol is described in
Algorithm 10.14.

Properties of the SET Protocol

The following observations show that the confidentiality, integrity, nonrepudiation,
and authentication requirements of the protocol are satisfied.

• Barney cannot see Alice’s credit card number, which is stored in the payment
slip P. Barney has the digestp of P. However, he cannot computeP from p
sinceH is one-way. Barney also has the ciphertextCL of a message that
containsP. However, he cannot decryptCL since he does not have Lisa’s
private key.

• Lisa cannot see the book ordered by Alice, which is stored in the purchase
orderO. Lisa has the digesto of O. However, she cannot computeO from o
sinceH is one-way.

• The digital signatureS provided by Alice serves a dual purpose. It allows
Barney to verify the authenticity of Alice’s purchase orderO, and Alice to
verify the authenticity of Alice’s payment slipP.

• Alice cannot deny that she ordered the specific book indicated inO and to
have charged her credit card for the given amount indicated inP. Indeed,
sinceH is collision-resistant, she cannot forge a different purchase order
and/or payment slip that hash to the same digestso andp.

• All communication between the parties uses public-key encryption and en-
sures confidentiality, even in the presence of eavesdroppers.

Thus, although it is somewhat intricate, the SET protocol illustrates how crypto-
graphic computations can be composed to perform a nontrivial electronic com-
merce operation.
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1. Alice prepares two documents, a purchase orderO stating that she intends to
order the book from Barney, and a payment slipP, providing Lisa the card
number to be used in the transaction, and the amount to be charged. Alice
computes digests

o = H(O)
p = H(P),

and produces a digital signatureS for the digest of the concatenation ofo
andp, that is,

S= DA(H(o||p)) = D(H(H(O)||H(P))),

whereDA is the function used by Alice to sign, based on her private key.
Alice encrypts the concatenation ofo, P, andSwith Lisa’s public key, which
yields ciphertext

CL = EL(o||P||S).

She also encrypts with Barney’s public key the concatenation ofO, p, andS,
yielding ciphertext

CB = EB(O||p||S).

She sends to BarneyCL andCB.
2. Barney retrievesO, p, andSby decryptingCB with his private key. He veri-

fies the authenticity of the purchase orderO with Alice’s public key by check-
ing that

EA(S) = H(H(O)||p),

and forwardsCL to Lisa.
3. Lisa retrieveso, P, andSby decryptingCL with her private key. She verifies

the authenticity of the payment slipP with Alice’s public key by checking
that

EA(S) = H(o||H(P)),

and verifies thatP indicates a payment to Barney. She then creates an au-
thorization messageM that consists of a transaction number, Alice’s name,
and the amount she agreed to pay. Lisa computes the signatureT of M, and
sends the pair(M,T) encrypted with Barney’s public key to Barney, that is,
CM = EB(M||T).

4. Barney retrievesM and T by decryptingCM and verifies the authenticity
of the authorization messageM with Lisa’s public key, by checking that
EL(T) = M. He verifies that the name inM is Alice’s, and that the amount
is the correct price of the book. He fulfills the order by sending the book
to Alice and requests the payment from Lisa by sending her the transaction
number encrypted with Lisa’s public key.

5. Lisa pays Barney and charges Alice’s credit card account.

Algorithm 10.14: Simplified version of the SET protocol.
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10.3.5 Key Distribution and Exchange

A public-key cryptosystem assumes that public keys are known to all the parties.
For example, if Alice wants to send a confidential message to Bob, she needs to
know Bob’s public key. Similarly, if Alice wants to verify Bob’s digital signature,
she needs Bob’s public key as well. How does Alice get Bob’s public key? Bob
can just send it to Alice, but if Eve can intercept the communication between Bob
and Alice, she could replace Bob’s public key with her key, and thus trick Alice
into revealing her message meant for Bob, or believing that a message was signed
by Bob, while it was signed instead by Eve.

Digital Certificates

A solution to the problem requires the introduction of a third party, Charlie, who is
trusted by all the participants in a protocol. It is further assumed that each partic-
ipant has Charlie’s public key. Charlie issues each participant acertificate, which
is a statement digitally signed by Charlie that contains the name of the participant
and its public key. Bob now sends Alice the certificate issued to him by Charlie.
Alice extracts Bob’s public key from the certificate and verifies its authenticity by
using Charlie’s public key (recall the assumption that each participant has Charlie’s
public key). Certificates are widely used in practical public-key applications. Their
format is described in theX.509 ITU (International Telecommunication Union)
standard. In addition to the subject of the certificate and its public key, a certificate
also contains a unique serial number and an expiration date. An issuer of certifi-
cates is called acertificate authority(CA).

In a realistic setting, the protocols described in the previous section should be
modified by introducing certificates to distribute public keys. Also, the certificates
should be validated using the CA’s public key.

Certificate Revocation

Private keys are sometimes lost, stolen, or otherwise compromised. When this hap-
pens, the CA should revoke the certificate for that key. For example, Bob may have
kept his private key in a file on his laptop computer. If the laptop is stolen, Bob
should request the CA to immediately revoke his certificate, since otherwise the
thief could impersonate Bob. The CA periodically publishes acertificate revoca-
tion list (CRL), which consists of the signed list of the serial numbers of all the
unexpired certificates that have been revoked together with a timestamp.

When validating a certificate, a participant should also get the latest CRL from
the CA, and verify that that the certificate has not been revoked. The age of the CRL
(difference between the current time and the timestamp) provides a measure of risk
for the participant examining a certificate. Alternately, there are several online
schemes for checking the validity of a given digital certificate using a networked
server that stores revocation information.
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Using Public Keys for Symmetric Key Exchange

Public key cryptography overcomes the critical bottleneck of symmetric key cryp-
tosystems, since, in a public key cryptosystem, there is no need to distribute secret
keys before engaging in a secure communication. Unfortunately, this advantage
comes at a cost, as the existing public-key cryptosystems take much longer to en-
crypt and decrypt than existing symmetric cryptosystems. Thus, in practice, public-
key cryptosystems are often used in conjunction with symmetric cryptosystems, to
overcome the challenge of exchanging secret keys in order to set up a symmetric
cryptographic communication channel.

For example, if Alice wants to set up a secure communication channel with
Bob, she and Bob can perform the following set of steps.

1. Alice computes a random numberx, computes her digital signatureS of x,
and encrypts the pair(x,S) using Bob’s public key, sending the resulting
ciphertextC to Bob.

2. Bob decryptsC using his private key, and verifies that Alice sent it to him by
checking the signatureS.

3. Bob can then show Alice that he has indeed receivedx, by encryptingx with
Alice’s public key, and sending it back to her.

From this point on, they can use the numberx as the secret key in a symmetric
cryptosystem.

Diffie-Hellman Secret Key Exchange

If Alice and Bob are communicating using a medium that is reliable but perhaps
not private, there is another scheme they can use to compute a secret key that they
can then share for future symmetric encryption communications. This scheme is
calledDiffie-Hellman key exchange, and consists of the following steps:

1. Alice and Bob agree (publicly) on a large primen and a generatorg in Zn.

2. Alice chooses a random numberx and sends BobB = gx modn.

3. Bob chooses a random numbery and sends AliceA = gy modn.

4. Alice computesK = Ax modn.

5. Bob computesK′ = By modn.

Clearly,K = K′, so Alice and Bob can now useK (respectively,K′) to communicate
using a symmetric cryptosystem.
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10.4 The Fast Fourier Transform

A common bottleneck computation in many cryptographic systems is the multipli-
cation of large integers and polynomials. The fast Fourier transform is a surprising
and efficient algorithm for multiplying such objects. We describe this algorithm
first for multiplying polynomials and we then show how this approach can be ex-
tended to large integers.

A polynomial represented incoefficient formis described by a coefficient vec-
tor a = [a0,a1, . . . ,an−1] as follows:

p(x) =
n−1

∑
i=0

aix
i .

Thedegreeof such a polynomial is the largest index of a nonzero coefficientai . A
coefficient vector of lengthn can represent polynomials of degree at mostn−1.

The coefficient representation is natural, in that it is simple and allows for sev-
eral polynomial operations to be performed quickly. For example, given a second
polynomial described using a coefficient vectorb = [b0,b1, . . . ,bn−1] as

q(x) =
n−1

∑
i=0

bix
i ,

we can easily addp(x) andq(x) component-wise to produce their sum,

p(x)+q(x) =
n−1

∑
i=0

(ai +bi)xi .

Likewise, the coefficient form forp(x) allows us to evaluatep(x) efficiently, by
Horner’s rule (Exercise C-1.16), as

p(x) = a0 +x(a1 +x(a2 + · · ·+x(an−2 +xan−1) · · ·)).
Thus, with the coefficient representation, we can add and evaluate degree-(n−1)
polynomials inO(n) time.

Multiplying two polynomials p(x) and q(x), as defined above in coefficient
form, is not straightforward, however. To see the difficulty, considerp(x)q(x):

p(x)q(x) = a0b0 +(a0b1+a1b0)x+(a0b2+a1b1+a2b0)x2 + · · ·+an−1bn−1x2n−2.

That is,

p(x)q(x) =
2n−2

∑
i=0

cix
i , where ci =

i

∑
j=0

ajbi− j , for i = 0,1, . . . ,2n−2.

This equation defines a vectorc= [c0,c1, . . . ,c2n−1], which we call theconvolution
of the vectorsa andb. For symmetry reasons, we view the convolution as a vector
of size 2n, definingc2n−1 = 0. We denote the convolution ofa andb asa∗b. If we
apply the definition of the convolution directly, then it will take usΘ(n2) time to
multiply the two polynomialsp andq.
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The fast Fourier transform (FFT ) algorithm allows us to perform this multi-
plication inO(nlogn) time. The improvement of the FFT is based on an interesting
observation. Namely, that another way of representing a degree-(n−1) polynomial
is by its value onn distinct inputs. Such a representation is unique because of the
following theorem.

Theorem 10.24 [The Interpolation Theorem for Polynomials]: Given a set
of n points in the plane,S= {(x0,y0),(x1,y1),(x2,y2), . . . ,(xn−1,yn−1)}, such that
the xi ’s are all distinct, there is a unique degree-(n− 1) polynomial p(x) with
p(xi) = yi , for i = 0,1, . . . ,n−1.

Suppose, then, that we can represent a polynomial not by its coefficients, but
instead by its value on a collection of different inputs. This theorem suggests an
alternative method for multiplying two polynomialsp andq. In particular, evaluate
p andq for 2n different inputsx0,x1, . . . ,x2n−1 and compute the representation of
the product ofp andq as the set

{(x0, p(x0)q(x0)), (x1, p(x1)q(x1)), . . . , (x2n−1, p(x2n−1)q(x2n−1))}.
Such a computation would clearly take justO(n) time given the 2n input-output
pairs for each ofp andq.

The challenge, then, to effectively using this approach to multiplyp andq is to
come up quickly with 2n input-output pairs forp andq. Applying Horner’s rule to
2n different inputs would take usΘ(n2) time, which is not asymptotically any faster
than using the convolution directly. So Horner’s rule is of no help here. Of course,
we have full freedom in how we choose the set of 2n inputs for our polynomials.
That is, we have full discretion to choose inputs that are easy to evaluate. For
example,p(0) = a0 is a simple case. But we have to choose a set of 2n easy inputs
to evaluatep on, not just one. Fortunately, the mathematical concept we discuss
next provides a convenient set of inputs that are collectively easier to use to evaluate
a polynomial than applying Horner’s rule 2n times.

10.4.1 Primitive Roots of Unity

A numberω is aprimitive nth root of unity, for n≥ 2, if it satisfies the following
properties:

1. ωn = 1, that is,ω is annth root of 1.
2. The numbers 1,ω,ω2, . . . ,ωn−1 are distinct.

Note that this definition implies that a primitiventh root of unity has a multiplicative
inverse,ω−1 = ωn−1, for

ω−1ω = ωn−1ω = ωn = 1.

Thus, we can speak in a well-defined fashion of negative exponents ofω, as well
as positive ones.
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The notion of a primitiventh root of unity may, at first, seem like a strange
definition with few examples. But it actually has several important instances. One
important one is the complex number

e2πi/n = cos(2π/n)+ i sin(2π/n),

which is a primitiventh root of unity, when we take our arithmetic over the complex
numbers, wherei =

√−1.
Primitive nth roots of unity have a number of important properties, including

the following three ones.

Lemma 10.25 (Cancellation Property): If ω is annth root of unity, then, for
any integerk 6= 0, with−n < k < n,

n−1

∑
j=0

ωk j = 0.

Proof: Sinceωk 6= 1,
n−1

∑
j=0

ωk j =
(ωk)n−1

ωk−1
=

(ωn)k−1
ωk−1

=
1k−1
ωk−1

=
1−1

ωk−1
= 0

Lemma 10.26 (Reduction Property): If ω is a primitive(2n)th root of unity,
thenω2 is a primitiventh root of unity.

Proof: If 1,ω,ω2, . . . ,ω2n−1 are distinct, then 1,ω2,(ω2)2, . . . ,(ω2)n−1 are also
distinct.

Lemma 10.27 (Reflective Property): If ω is a primitiventh root of unity and
n is even, then

ωn/2 =−1.

Proof: By the cancellation property, fork = n/2,

0 =
n−1

∑
j=0

ω(n/2) j

= ω0 + ωn/2 + ωn+ ω3n/2 + · · ·+ ω(n/2)(n−2) + ω(n/2)(n−1)

= ω0 + ωn/2 + ω0+ ωn/2 + · · ·+ ω0 + ωn/2

= (n/2)(1+ ωn/2).

Thus, 0= 1+ ωn/2.

An interesting corollary to the reflective property, which motivates its name, is
the fact that ifω is a primitiventh root of unity andn≥ 2 is even, then

ωk+n/2 =−ωk.
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10.4.2 The Discrete Fourier Transform

Let us now return to the problem of evaluating a polynomial defined by a coefficient
vectora as

p(x) =
n−1

∑
i=0

aix
i ,

for a carefully chosen set of input values. The technique we discuss in this section,
called theDiscrete Fourier Transform(DFT), is to evaluatep(x) at thenth roots
of unity, ω0,ω1,ω2, . . . ,ωn−1. Admittedly, this gives us justn input-output pairs,
but we can “pad” our coefficient representation forp with 0’s by settingai = 0, for
n≤ i ≤ 2n−1. This padding would let us viewp as a degree-(2n−1) polynomial,
which would in turn let us use the primitive(2n)th roots of unity as inputs for a
DFT for p. Thus, if we need more input-output values forp, let us assume that the
coefficient vector forp has already been padded with as many 0’s as necessary.

Formally, the Discrete Fourier Transform for the polynomialp represented by
the coefficient vectora is defined as the vectory of values

yj = p(ω j),

whereω is a primitiventh root of unity. That is,

yj =
n−1

∑
i=0

aiωi j .

In the language of matrices, we can alternatively think of the vectory of yj values
and the vectora as column vectors, and say that

y = Fa,

whereF is ann×n matrix such thatF[i, j] = ωi j .

The Inverse Discrete Fourier Transform

Interestingly, the matrixF has an inverse,F−1, so thatF−1(F(a)) = a for all a.
The matrixF−1 allows us to define aninverse Discrete Fourier Transform. If
we are given a vectory of the values of a degree-(n− 1) polynomial p at thenth
roots of unity,ω0,ω1, . . . ,ωn−1, then we can recover a coefficient vector forp by
computing

a = F−1y.

Moreover, the matrixF−1 has a simple form, in thatF−1[i, j] = ω−i j /n. Thus, we
can recover the coefficientai as

ai =
n−1

∑
j=0

yjω−i j /n.

The following lemma justifies this claim, and is the basis of why we refer toF and
F−1 as “transforms.”
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Lemma 10.28: For any vectora, F−1 ·Fa = a.

Proof: LetA= F−1 ·F . It is enough to show thatA[i, j] = 1 if i = j, andA[i, j] = 0
if i 6= j. That is,A= I , whereI is theidentity matrix. By the definitions ofF−1, F,
and matrix multiplication,

A[i, j] =
1
n

n−1

∑
k=0

ω−ikωk j.

If i = j, then this equation reduces to

A[i, i] =
1
n

n−1

∑
k=0

ω0 =
1
n
·n = 1.

So, consider the case wheni 6= j, and letm= j− i. Then thei j th entry ofA can be
written as

A[i, j] =
1
n

n−1

∑
k=0

ωmk,

where−n< m< n andm 6= 0. By the cancellation property for a primitiventh root
of unity, the right-hand side of the above equation reduces to 0; hence,

A[i, j] = 0,

for i 6= j.

Given the DFT and the inverse DFT, we can now define our approach to multi-
plying two polynomialsp andq.

The Convolution Theorem

To use the discrete Fourier transform and its inverse to compute the convolution of
two coefficient vectors,a andb, we apply the following steps, which we illustrate
in a schematic diagram, as shown in Figure 10.15.

1. Pada andb each withn 0’s and view them as column vectors to define

a′ = [a0,a1, . . . ,an−1,0,0, . . . ,0]T

b′ = [b0,b1, . . . ,bn−1,0,0, . . . ,0]T .

2. Compute the Discrete Fourier Transformsy = Fa′ andz = Fb′.
3. Multiply the vectorsy andz component-wise, defining the simple product

y ·z = Fa′ ·Fb′, where

(y ·z)[i] = (Fa′ ·Fb′)[i] = Fa′[i] ·Fb′[i] = yi ·zi,

for i = 1,2, . . . ,2n−1.
4. Compute the inverse Discrete Fourier Transform of this simple product. That

is, computec = F−1(Fa′ ·Fb′).
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Pad with n 0's Pad with n 0's

[a0,a1,a2,...,an-1] [b0,b1,b2,...,bn-1]

DFT DFT

[a0,a1,a2,...,an-1,0,0,...,0] [b0,b1,b2,...,bn-1,0,0,...,0]

[y0,y1,y2,...,y2n-1] [z0,z1,z2,...,z2n-1]

Component
Multiply

inverse DFT

[y0z0,y1z1,...,y2n-1z2n-1]

[c0,c1,c2,...,c2n-1]

(Convolution)

Figure 10.15:An illustration of the Convolution Theorem, to computec = a∗b.
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The reason the above approach works is because of the following.

Theorem 10.29 [The Convolution Theorem]: Suppose we are given twon-
length vectorsa andb padded with0’s to 2n-length vectorsa′ andb′, respectively.
Thena∗b = F−1(Fa′ ·Fb′).

Proof: We will show thatF(a∗b) = Fa′ ·Fb′. So, considerA= Fa′ ·Fb′. Since
the second halves ofa′ andb′ are padded with 0’s,

A[i] =

(
n−1

∑
j=0

ajωi j

)
·
(

n−1

∑
k=0

bkωik

)

=
n−1

∑
j=0

n−1

∑
k=0

ajbkωi( j+k),

for i = 0,1, . . . ,2n−1. Consider, next,B = F(a∗b). By the definition of convolu-
tion and the DFT,

B[i] =
2n−1

∑
l=0

2n−1

∑
j=0

ajbl− j ωil .

Substitutingk for l − j, and changing the order of the summations, we get

B[i] =
2n−1

∑
j=0

2n−1− j

∑
k=− j

ajbkωi( j+k).

Sincebk is undefined fork < 0, we can start the second summation above atk = 0.
In addition, sinceaj = 0 for j > n− 1, we can lower the upper limit in the first
summation above ton−1. But once we have made this substitution, note that the
upper limit on the second summation above is always at leastn. Thus, sincebk = 0
for k > n− 1, we may lower the upper limit on the second summation ton− 1.
Therefore,

B[i] =
n−1

∑
j=0

n−1

∑
k=0

ajbkωi( j+k),

which proves the theorem.

We now have a method for computing the multiplication of two polynomials
that involves computing two DFTs, doing a simple linear-time component-wise
multiplication, and computing an inverse DFT. Thus, if we can find a fast algo-
rithm for computing the DFT and its inverse, then we will have a fast algorithm for
multiplying two polynomials. We describe such a fast algorithm, which is known
as the “fast Fourier transform,” next.
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10.4.3 The Fast Fourier Transform Algorithm

TheFast Fourier Transform(FFT) Algorithm computes a Discrete Fourier Trans-
form (DFT) of ann-length vector inO(nlogn) time. In the FFT algorithm, we
apply the divide-and-conquer approach to polynomial evaluation by observing that
if n is even, we can divide a degree-(n−1) polynomial

p(x) = a0 +a1x+a2x2 + · · ·+an−1xn−1

into two degree-(n/2−1) polynomials

peven(x) = a0 +a2x+a4x2 + · · ·+an−2xn/2−1

podd(x) = a1 +a3x+a5x2 + · · ·+an−1xn/2−1

and noting that we can combine these two polynomials intop using the equation

p(x) = peven(x2)+xpodd(x2).

The DFT evaluatesp(x) at each of thenth roots of unity,ω0,ω1,ω2, . . . ,ωn−1. Note
that, by the reduction property, the values(ω2)0,ω2,(ω2)2,(ω2)3, . . . ,(ω2)n−1 are
(n/2)th roots of unity. Thus, we can evaluate each ofpeven(x) and podd(x) at
these values, and we can reuse those same computations in evaluatingp(x). This
observation is used in Algorithm 10.16 (FFT) to define the, which takes as input
ann-length coefficient vectora and a primitiventh root of unityω. For the sake of
simplicity, we assume thatn is a power of two.

Algorithm FFT(a,ω):
Input: An n-length coefficient vectora = [a0,a1, . . . ,an−1] and a primitiventh

root of unityω, wheren is a power of 2
Output: A vectory of values of the polynomial fora at thenth roots of unity

if n = 1 then
return y = a.

x← ω0 {x will store powers ofω, so initially x = 1.}
{Divide Step, which separates even and odd indices}
aeven← [a0,a2,a4, . . . ,an−2]
aodd← [a1,a3,a5, . . . ,an−1]
{Recursive Calls, withω2 as(n/2)th root of unity, by the reduction property}
yeven← FFT(aeven, ω2)
yodd← FFT(aodd, ω2)
{Combine Step, usingx = ωi}
for i← 0 ton/2−1 do

yi ← yeven
i +x·yodd

i

yi+n/2← yeven
i −x·yodd

i {Uses reflective property}
x← x·ω

return y
Algorithm 10.16: Recursive FFT algorithm.
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The Correctness of the FFT Algorithm

The pseudo-code description in Algorithm 10.16 for the FFT algorithm is decep-
tively simple, so let us say a few words about why it works correctly. First, note
that the base case of the recursion, whenn = 1, correctly returns a vectory with
the one entry,y0 = a0, which is the leading and only term in the polynomialp(x)
in this case.

In the general case, whenn≥ 2, we separatea into its even and odd instances,
aevenandaodd, and recursively call theFFT usingω2 as the(n/2)th root of unity.
As we have already mentioned, the reduction property of a primitiventh root of
unity, allows us to useω2 in this way. Thus, we may inductively assume that

yeven
i = peven(ω2i)

yodd
i = podd(ω2i).

Let us therefore consider the for-loop that combines the values from the recursive
calls. Note that in thei iteration of the loop,x = ωi . Thus, when we perform the
assignment statement

yi ← yeven
i +xyodd

i ,

we have just set

yi = peven((ω2)i)+ ωi · podd((ω2)i)

= peven((ωi)2)+ ωi · podd((ωi)2)
= p(ωi),

and we do this for each indexi = 0,1, . . . ,n/2−1. Similarly, when we perform the
assignment statement

yi+n/2← yeven
i −xyodd

i ,

we have just set

yi+n/2 = peven((ω2)i)−ωi · podd((ω2)i).

Sinceω2 is a primitive (n/2)th root of unity, (ω2)n/2 = 1. Moreover, sinceω is
itself a primitiventh root of unity,

ωi+n/2 =−ωi ,

by the reflection property. Thus, we can rewrite the above identity foryi+n/2 as

yi+n/2 = peven((ω2)i+(n/2))−ωi · podd((ω2)i+(n/2))

= peven((ωi+(n/2))2)+ ωi+n/2 · podd((ωi+(n/2))2)

= p(ωi+n/2),

and this will hold for eachi = 0,1, . . . ,n/2−1. Thus, the vectory returned by the
FFT algorithm will store the values ofp(x) at each of thenth roots of unity.
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Analyzing the FFT Algorithm

TheFFT algorithm follows the divide-and-conquer paradigm, dividing the original
problem of sizen into two subproblems of sizen/2, which are solved recursively.
We assume that each arithmetic operation performed by by algorithms takesO(1)
time. The divide step as well as the combine step for merging the recursive solu-
tions, each takeO(n) time. Thus, we can characterize the running timeT(n) of the
FFT algorithm using the recurrence equation

T(n) = 2T(n/2)+bn,

for some constantb > 0. By the Master Theorem (5.6),T(n) is O(nlogn). There-
fore, we can summarize our discussion as follows.

Theorem 10.30: Given ann-length coefficient vectora defining a polynomial
p(x), and a primitiventh root of unity,ω, theFFT algorithm evaluatesp(x) at each
of thenth roots of unity,ωi , for i = 0,1, . . . ,n−1, in O(nlogn) time.

There is also an inverseFFT algorithm, which computes the inverse DFT in
O(nlogn) time. The details of this algorithm are similar to those for theFFT
algorithm and are left as an exercise (R-10.14). Combining these two algorithms
in our approach to multiplying two polynomialsp(x) andq(x), given theirn-length
coefficient vectors, we have an algorithm for computing this product inO(nlogn)
time.

By the way, this approach for using theFFT algorithm and its inverse to com-
pute the product of two polynomials can be extended to the problem of computing
the product of two large integers. We discuss this method next.

10.4.4 Multiplying Big Integers

Let us revisit the problem studied in Section 5.2.2. Namely, suppose we are given
two big integersI and J that use at mostN bits each, and we are interested in
computingI ·J. The main idea of the method we describe in this section is to use the
FFT algorithm to compute this product. Of course, a major challenge in utilizing
the FFT algorithmic design pattern in this way is to define integer arithmetic so that
it gives rise to primitive roots of unity (see, for example, Exercise C-10.8).

The algorithm we describe here assumes that we can breakI and J up into
words ofO(logN) bits each, such that arithmetic on each word can be done using
built-in operations in our computer model in constant time. This is a reasonable
assumption, since it takesdlogNe bits just to represent the numberN itself. The
number system we use for the FFT in this case is to perform all arithmetic modulo
p, for a suitably chosen prime numberp, which itself can be represented in a single
word of at mostO(logN) bits. The specific prime modulusp we choose is to find
small integersc≥ 1 andn≥ 1, such thatp= cn+1 is prime andN/blogpc ≤ n/2.
For the sake of the simplicity of our description, let us additionally assume thatn
is a power of two.
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In general, we would expectc in the above definition ofp to beO(logn), since
a fundamental theorem from number theory states that a random odd number in
the range[1,n] is prime with probabilityΩ(1/ logn). That is, we expectp to be
represented withO(logN) bits. Given this prime numberp, our intent is to perform
all arithmetic in the FFT modulop. Since we are performing this arithmetic on the
words of a large vector of integers, we also want the size of each word to be less
than half of that used to representp, so we can represent the product of any two
words without having the modulo-p arithmetic “wipe out” any pairwise products
of words. For example, the following values ofp work well for modern computers:

• If n≤ 210 = 1024, then we choosep = 25· 210 + 1 = 25601 as our prime
modulus, which can be represented using a 15-bit word. Moreover, since
p > 214 in this case, such a choice allows us to multiply numbers whose
representations are as large as 210 words of 7 bits each.

• If n≤ 227 = 134217728, then we choosep = 15·227+1 = 2013265921 as
our prime modulus, which uses a 31-bit word. Moreover, sincep > 230 in
this case, we can multiply numbers whose representations are as large as 227

words of 15 bits each, or 240MB.

Given a primep = cn+ 1, for reasonably smallc≥ 1, andn defined so that
N/blogpc is O(n), we definem = b(log p)/2c. We view I andJ respectively as
being vectorsa andb of words that usem bits each, extended with as many 0’s
as needed to makea andb both have lengthn, with at least the last half of their
higher-order terms being 0. We can writeI andJ as

I =
n−1

∑
i=0

ai2
mi

J =
n−1

∑
i=0

bi2
mi.

Moreover, we choosen so that the firstn/2 of theai ’s andbi ’s are nonzero at most.
Thus, we can represent the productK = I ·J, as

K =
n−1

∑
i=0

ci2
mi.

Once we have a prime numberp= cn+1, for a reasonably small integerc≥ 1,
we find an integerx that is a generator of the groupZ∗

p (see Section 10.1). That is,
we findx such thatxi mod p is different for i = 0,1, . . . , p−1. Given such a gen-
erator,x, then we can useω = xc mod p as a primitiventh root of unity (assuming
all multiplication and addition is done modulop). That is, each of(xc)i mod p are
distinct for i = 0,1,2, . . . ,n−1, but, by Fermat’s Little Theorem (Theorem 10.8),

(xc)n mod p = xcn mod p

= xp−1 mod p

= 1.
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In order to compute the product of the bigN-bit integersI andJ, recall that
view I andJ, respectively, as extendedn-length vectorsa andb of words havingm
bits each (with at least then/2 higher-order words being all 0’s). Note that, since
m= blogp/2c, we have that 2m < p. Thus, each of the terms ina andb is already
reduced modulop without us having to do any additional work, and any product of
two of these terms is also reduced modulop.

To computeK = I · J, we then apply the Convolution Theorem, using the FFT
and inverse FFT algorithms, to compute the convolutionc of a and b. In this
computation we useω, as defined above, as the primitiventh root of unity, and
we perform all the internal arithmetic (including the component-wise products of
the transformed versions ofa andb) modulop.

The terms in the convolutionc are all less thanp, but in order to build a repre-
sentative ofK = I ·J, we actually need each term to be represented using exactlym
bits. Thus, after we have the convolutionc, we must compute the productK as

K =
n−1

∑
i=0

ci2
mi.

This final computation is not as difficult as it looks, however, since multiplying by
a power of two in binary is just a shifting operation. Moreover,p is O(2m+1), so
the above summation just involves propagating some groups of carry bits from one
term to the next. Thus, this final construction of a binary representation ofK as
a vector of words ofm bits each can be done inO(n) time. Since applying the
Convolution Theorem as described above takesO(nlogn) time, this gives us the
following.

Theorem 10.31: Given twoN-bit integersI andJ, we can compute the product
K = I ·J in O(N) time, assuming that arithmetic involving words of sizeO(logN)
can be done in constant time.

Proof: The numbern is chosen so that it isO(N/ logN). Thus a running time
of O(nlogn) is O(N), assuming that arithmetic operations involving words of size
O(logN) can be done in constant time.

In some cases, we cannot assume that arithmetic involvingO(logn)-size words
can be done in constant time, but instead, we must pay constant time for every
bit operation. In this model it is still possible to use the FFT to multiply twoN-
bit integers, but the details are somewhat more complicated and the running time
increases toO(N logN log logN).

In Section 10.5, we study some important implementation issues related to the
FFT algorithm, including an experimental analysis of how well it performs in prac-
tice.
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10.5 Java Example: FFT

There are a number of interesting implementation issues related to the FFT algo-
rithm, which we discuss in this section. We begin with the description of a big inte-
ger class that performs multiplication using the recursive version of the FFT, as de-
scribed above in pseudo-code in Algorithm 10.16. We show the declaration of this
class and its important instance variables and constants in Code Fragment 10.17. A
significant detail in these declarations includes our defining the primitiventh root
of unity, OMEGA. Our choice of 3115 derives from the fact that 31 is a generator
for Z∗

p for the prime number 15·227 + 1. We know 31 is a generator for thisZ∗
p,

because of a theorem from number theory. This theorem states that an integerx is
a generator ofZ∗

p if and only if xφ(p)/q mod p is not equal to 1 for any prime divisor
q of φ(p), whereφ(p) is the Euler totient function defined in Section 10.1. For our
particularp, φ(p) = 15·227; hence, the only prime divisorsq we need to consider
are 2, 3, and 5.

import java.lang.*;
import java.math.*;
import java.util.*;

public class BigInt {
protected int signum=0; // neg = -1, 0 = 0, pos = 1
protected int[ ] mag; // magnitude in little-endian format
public final static int MAXN=134217728; // Maximum value for n
public final static int ENTRYSIZE=15; // Bits per entry in mag
protected final static long P=2013265921; // The prime 15*2^{27}+1
protected final static int OMEGA=440564289; // Root of unity 31^{15} mod P
protected final static int TWOINV=1006632961; // 2^{-1} mod P

Code Fragment 10.17:Declarations and instance variables for a big integer class
that supports multiplication using the FFT algorithm.

A Recursive FFT Implementation

We show the multiplication method of our big integer class,BigInt, in Code Frag-
ment 10.18, and, in Code Fragment 10.19, we show our implementation of the re-
cursive FFT algorithm. Note that we use a variable,prod, to store the product that
is used in the subsequent two expressions. By factoring out this common subex-
pression we can avoid performing this repeated computation twice. In addition,
note that all modular arithmetic is performed aslong operations. This requirement
is due to the fact thatP uses 31 bits, so that we may need to perform additions and
subtractions that would overflow a standard-size integer. Instead, we perform all
arithmetic aslong operations and then store the result back to anint.
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public BigInt multiply(BigInt val) {
int n = makePowerOfTwo(Math.max(mag.length,val.mag.length))*2;
int signResult = signum * val.signum;
int[ ] A = padWithZeros(mag,n); // copies mag into A padded w/ 0’s
int[ ] B = padWithZeros(val.mag,n); // copies val.mag into B padded w/ 0’s
int[ ] root = rootsOfUnity(n); // creates all n roots of unity
int[ ] C = new int[n]; // result array for A*B
int[ ] AF = new int[n]; // result array for FFT of A
int[ ] BF = new int[n]; // result array for FFT of B
FFT(A,root,n,0,AF);
FFT(B,root,n,0,BF);
for (int i=0; i<n; i++)

AF[i] = (int)(((long)AF[i]*(long)BF[i]) % P); // Component multiply
reverseRoots(root); // Reverse roots to create inverse roots
inverseFFT(AF,root,n,0,C); // Leaves inverse FFT result in C
propagateCarries(C); // Convert C to right no. bits per entry
return new BigInt(signResult,C);
}

Code Fragment 10.18:The multiplication method for a big integer class that sup-
ports multiplication using a recursive FFT algorithm.

public static void FFT(int[ ] A, int[ ] root, int n, int base, int[ ] Y) {
int prod;
if (n==1) {

Y[base] = A[base];
return;
}

inverseShuffle(A,n,base); // inverse shuffle to separate evens and odds
FFT(A,root,n/2,base,Y); // results in Y[base] to Y[base+n/2-1]
FFT(A,root,n/2,base+n/2,Y); // results in Y[base+n/2] to Y[base+n-1]
int j = A.length/n;
for (int i=0; i<n/2; i++) {

prod = (int)(((long)root[i*j]*Y[base+n/2+i]) % P);
Y[base+n/2+i] = (int)(((long)Y[base+i] + P − prod) % P);
Y[base+i] = (int)(((long)Y[base+i] + prod) % P);
}

}
public static void inverseFFT(int[ ] A, int[ ] root, int n, int base, int[ ] Y) {

int inverseN = modInverse(n); // n^{-1}
FFT(A,root,n,base,Y);
for (int i=0; i<n; i++)

Y[i] = (int)(((long)Y[i]*inverseN) % P);
}

Code Fragment 10.19:A recursive implementation of the FFT algorithm.
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Avoiding Repeated Array Allocation

The pseudo-code for the recursive FFT algorithm calls for the allocation of several
new arrays, includingaeven, aodd, yeven, yodd, andy. Allocating all of these
arrays with each recursive call could prove to be a costly amount of extra work.
If it can be avoided, saving this additional allocation of arrays could significantly
improve the constant factors in theO(nlogn) time (orO(N) time) performance of
the FFT algorithm.

Fortunately, the structure of FFT allows us to avoid this repeated array alloca-
tion. Instead of allocating many arrays, we can use a single array,A, for the input
coefficients and use a single array,Y, for the answers. The main idea that allows for
this usage is that we can think of the arraysA andY as partitioned into subarrays,
each one associated with a different recursive call. We can identify these subarrays
using just two variables,base, which identifies the base address of the subarray,
andn, which identifies the size of the subarray. Thus, we can avoid the overhead
associated with allocating lots of small arrays with each recursive call.

The Inverse Shuffle

Having decided that we will not allocate new arrays during the FFT recursive calls,
we must deal with the fact that the FFT algorithm involves performing separate
computations on even and odd indices of the input array. In the pseudo-code of Al-
gorithm 10.16, we use new arraysaevenandaodd, but now we must use subarrays
in A for these vectors. Our solution for this memory management problem is to take
the currentn-cell subarray inA, and divide it into two subarrays of sizen/2. One of
the subarrays will have the same base asA, while the other has basebase+n/2. We
move the elements at even indices inA to the lower half and we move elements at
odd indices inA to the upper half. In doing so, we define an interesting permutation
known as theinverse shuffle. This permutation gets its name from its resemblance
to the inverse of the permutation we would get by cutting the arrayA in half and
shuffling it perfectly as if it were a deck of cards. (See Figure 10.20.)

0 1110987654321 1512 1413

0 1110987654321 1512 1413

old A:

new A:

Figure 10.20:An illustration of the inverse shuffle permutation.
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Precomputing Roots of Unity and Other Optimizations

There are a number of additional optimizations that we utilized in our FFT im-
plementation. In Code Fragment 10.21, we show some of the important support
methods for our implementation, including the computation of the inversen−1, the
inverse shuffle permutation, the precomputation of all thenth roots of unity, prop-
agation of the carries after the convolution has been computed modulop.

protected static int modInverse(int n) { // assumes n is power of two
int result = 1;
for (long twoPower = 1; twoPower < n; twoPower *= 2)

result = (int)(((long)result*TWOINV) % P);
return result;
}
protected static void inverseShuffle(int[ ] A, int n, int base) {

int shift;
int[ ] sp = new int[n];
for (int i=0; i<n/2; i++) { // Unshuffle A into the scratch space

shift = base + 2*i;
sp[i] = A[shift]; // an even index
sp[i+n/2] = A[shift+1]; // an odd index
}

for (int i=0; i<n; i++)
A[base+i] = sp[i]; // copy back to A

}
protected static int[ ] rootsOfUnity(int n) { //assumes n is power of 2

int t = MAXN;
int nthroot = OMEGA;
for (int t = MAXN; t>n; t /= 2) // Find prim. nth root of unity

nthroot = (int)(((long)nthroot*nthroot) % P);
int[ ] roots = new int[n];
int r = 1; // r will run through all nth roots of unity
for (int i=0; i<n; i++) {

roots[i] = r;
r = (int)(((long)r*nthroot) % P);
}

return roots;
}
protected static void propagateCarries(int[ ] A) {

int i, carry;
carry = 0;
for (i=0; i<A.length; i++) {

A[i] = A[i] + carry;
carry = A[i] >>> ENTRYSIZE;
A[i] = A[i] − (carry << ENTRYSIZE);
}
}

Code Fragment 10.21:Support methods for a recursive FFT.
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An Iterative FFT Implementation

There are additional time improvements that can be made in the FFT algorithm,
which involve replacing the recursive version of the algorithm with an iterative
version. Our iterative FFT is a part of an alternate big integer class, calledFastInt.
The multiplication method for this class is shown in Code Fragment 10.22.

public FastInt multiply(FastInt val) {
int n = makePowerOfTwo(Math.max(mag.length,val.mag.length))*2;
logN = logBaseTwo(n); // Log of n base 2
reverse = reverseArray(n,logN); // initialize reversal lookup table
int signResult = signum * val.signum;
int[ ] A = padWithZeros(mag,n); // copies mag into A padded w/ 0’s
int[ ] B = padWithZeros(val.mag,n); // copies val.mag into B padded w/ 0’s
int[ ] root = rootsOfUnity(n); // creates all n roots of unity
FFT(A,root,n); // Leaves FFT result in A
FFT(B,root,n); // Leaves FFT result in B
for (int i=0; i<n; i++)

A[i] = (int) (((long)A[i]*B[i]) % P); // Component-wise multiply
reverseRoots(root); // Reverse roots to create inverse roots
inverseFFT(A,root,n); // Leaves inverse FFT result in A
propagateCarries(A); // Convert A to right no. of bits/entry
return new FastInt(signResult,A);
}

Code Fragment 10.22:The multiplication method for an iterative FFT.

Computing the FFT in Place

From Code Fragment 10.22, we already can see a difference between this and the
multiply method for the recursive version of the FFT. Namely, we are now per-
forming the FFT in-place. That is, the arrayA is being used for both the input and
output values. This saves us the extra work of copying between output and input ar-
rays. In addition, we compute the logarithm ofn, base two, and store this in a static
variable, as this logarithm is used repeatedly in calls to the iterative FFT algorithm.

Avoiding Recursion

The main challenge in avoiding recursion in an in-place version of the FFT algo-
rithm is that we have to figure out a way of performing all the inverse shuffles in
the input arrayA. Rather than performing each inverse shuffle with each iteration,
we instead perform all the inverse shuffles in advance, assuming thatn, the size of
the input array, is a power of two.

In order to figure out the net effect of the permutation we would get by repeated
and recursive inverse shuffle operations, let us consider how the inverse shuffles
move data around with each recursive call. In the first recursive call, of course,
we perform an inverse shuffle on the entire arrayA. Note how this permutation



10.5. Java Example: FFT 505

operates at the bit level of the indices inA. It brings all elements at addresses that
have a 0 as their least significant bit to the bottom half ofA. Likewise, it brings
all elements at addresses that have a 1 as their least significant bit to the top half of
A. That is, if an element starts out at an address withb as its least significant bit,
then it ends up at an address withb as its most significant bit. The least significant
bit in an address is the determiner of which half ofA an element winds up in. In
the next level of recursion, we repeat the inverse shuffle on each half ofA. Viewed
again at the bit level, forb = 0,1, these recursive inverse shuffles take elements
originally at addresses withb as their second least significant bit, and move them
to addresses that haveb as their second most significant bit. Likewise, forb = 0,1,
the ith levels of recursion move elements originally at address withb as theirith
least significant bit, to addresses withb as theirith most significant bit. Thus, if an
element starts out at an address with binary representation[bl−1 . . .b2b1b0], then it
ends up at an address with binary representation[b0b1b2 . . .bl−1], wherel = log2 n.
That is, we can perform all the inverse shuffles in advance just by moving elements
in A to the address that is the bit reversal of their starting address inA. To perform
this permutation, we build a permutation array,reverse, in themultiply method, and
then use this in thebitReversal method called inside theFFT method to permute the
elements in the input arrayA according to this permutation. The resulting iterative
version of the FFT algorithm is shown in Code Fragment 10.23.

public static void FFT(int[ ] A, int[ ] root, int n) {
int prod,term,index; // Values for common subexpressions
int subSize = 1; // Subproblem size
bitReverse(A,logN); // Permute A by bit reversal table
for (int lev=1; lev<=logN; lev++) {

subSize *= 2; // Double the subproblem size.
for (int base=0; base<n−1; base += subSize) { // Iterate subproblems

int j = subSize/2;
int rootIndex = A.length/subSize;
for (int i=0; i<j; i++) {

index = base + i;
prod = (int) (((long)root[i*rootIndex]*A[index+j]) % P);
term = A[index];
A[index+j] = (int) (((long)term + P − prod) % P);
A[index] = (int) (((long)term + prod) % P);
}
}
}

}
public static void inverseFFT(int[ ] A, int[ ] root, int n) {

int inverseN = modInverse(n); // n^{-1}
FFT(A,root,n);
for (int i=0; i<n; i++)

A[i] = (int) (((long)A[i]*inverseN) % P);
}

Code Fragment 10.23:An iterative implementation of the FFT algorithm.
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protected static void bitReverse(int[ ] A, int logN) {
int[ ] temp = new int[A.length];
for (int i=0; i<A.length; i++)

temp[reverse[i]] = A[i];
for (int i=0; i<A.length; i++)

A[i] = temp[i];
}
protected static int[ ] reverseArray(int n, int logN) {

int[ ] result = new int[n];
for (int i=0; i<n; i++)

result[i] = reverse(i,logN);
return result;
}
protected static int reverse(int N, int logN) {

int bit=0;
int result=0;
for (int i=0; i<logN; i++) {

bit = N & 1;
result = (result << 1) + bit;
N = N >>> 1;
}

return result;
}

Code Fragment 10.24:Support methods for an iterative implementation of the FFT
algorithm. Other support methods are like those in the recursive implementation.

We show the additional support methods used by the iterative FFT algorithm
in Code Fragment 10.24. All of these support methods deal with the operation
of computing thereverse permutation table and then using it to perform the bit-
reversal permutation onA.

Experimental Results

Of course, the goal of using the FFT algorithm for big integer multiplication is to
perform this operation inO(nlogn) time, on integers represented asn-word vectors,
as opposed to the standardO(n2) multiplication algorithm taught in grade schools.
In addition, we designed an iterative version of the FFT algorithm with the goal of
improving the constant factors in the running time of this multiplication method.
To test these goals in practice, we designed a simple experiment.

In this experiment, we randomly generated ten big integers that consisted of 2s

words of 15 bits each, fors= 7,8, . . . ,16, and we multiplied them in consecutive
pairs, producing nine products for each value ofs. We timed the execution time
for performing these products, and compared these times to those for multiplying
integers represented with the same number of bits in a standard implementation of
the JavaBigInteger class. The results of this experiment are shown in Figure 10.25.
The running times are shown in milliseconds. The experiment was performed in
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the Sun Java virtual machine for JDK 1.2 on a Sun Ultra5 with a 360MHz processor
and 128MB of memory.
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Figure 10.25: Running times for integer multiplication. The chart shows running
times for multiplying integers made up of various numbers of words of 15 bits each
(for the FFT), or the equivalent size for a standardBigInteger implementation. Note
that the scales are logarithmic for both thex- andy-axes.

Note that we display the results of the experiment on a log-log scale. This
choice corresponds to the power test (Section 1.6.2) and allows us to see the rel-
ative costs of the different implementations much clearer than we would see on a
standard linear scale. Since lognc = clogn, the slope of a line on a log-log scale
correlates exactly with the exponent of a polynomial in a standard linear scale.
Likewise the height of a line on a log-log scale corresponds to a constant of pro-
portionality. The chart in Figure 10.25 displays time using base-ten on they-axis
and base-two on thex-axis. Using the fact that log210 is approximately 3.322, we
indeed see that the running time of the standard multiplication algorithm isΘ(n2),
whereas the running time of the FFT algorithms is close to linear. Likewise, we
note that the constant factor in the iterative FFT algorithm implementation is about
70% of the constant for the recursive FFT algorithm implementation. Also note the
significant trade-off that exists between the FFT-based methods and the standard
multiplication algorithm. At the small end of the scale, the FFT-based methods are
ten times slower than the standard algorithm, but at the high end of the scale they
are more than ten times faster!
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10.6 Exercises

Reinforcement

R-10.1 Prove Theorem 10.1.

R-10.2 Show the execution of methodEuclidGCD(14300,5915) by constructing a table
similar to Table 10.2.

R-10.3 Write a nonrecursive version of AlgorithmEuclidGCD.

R-10.4 Show the execution of methodEuclidBinaryGCD(14300,5915) by constructing
a table similar to Table 10.2.

R-10.5 Show the existence of additive inverses inZp, that is, prove that for eachx∈ Zp,
there is ay∈ Zp, such thatx+y mod p = 0.

R-10.6 Construct the multiplication table of the elements ofZ11, where the element in
row i and columnj (0≤ i, j ≤ 10) is given byi · j mod 11.

R-10.7 Prove Corollary 10.7.

R-10.8 Give an alternative proof of Theorem 10.6 and Corollary 10.7 that does not use
Theorem 10.3.

R-10.9 Show the execution of methodFastExponentiation(5,12,13) by constructing a
table similar to Table 10.8.

R-10.10 Write a nonrecursive version of AlgorithmExtendedEuclidGCD.

R-10.11 Extend Table 10.10 with two rows giving the values ofia and jb at each step of
the algorithm and verify thatia+ jb = 1.

R-10.12 Show the execution of methodExtendedEuclidGCD(412,113) by constructing a
table similar to Table 10.10.

R-10.13 Compute the multiplicative inverses of the numbers 113, 114, and 127 inZ299.

R-10.14 Describe the inverse FFT algorithm, which computes the inverse DFT inO(nlogn)
time. That is, show how to reverse the roles ofa andy and change the assign-
ments so that, for each output index, we have

ai =
1
n

n−1

∑
j=1

yjω−i j .

R-10.15 Prove a more general form of the reduction property of primitive roots of unity.
Namely, show that, for any integerc > 0, if ω is a primitive(cn)th root of unity,
thenωc is a primitiventh root of unity.

R-10.16 Write in the forma+bi the complexnth roots of unity forn = 4 andn = 8.

R-10.17 What is the bit-reversal permutation,reverse, for n = 16?

R-10.18 Use the FFT and inverse FFT to compute the convolution ofa = [1,2,3,4] and
b = [4,3,2,1]. Show the output of each component as in Figure 10.15.

R-10.19 Use the convolution theorem to compute the product of the polynomialsp(x) =
3x2 +4x+2 andq(x) = 2x3 +3x2 +5x+3.
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R-10.20 Compute the discrete Fourier transform of the vector[5,4,3,2] using arithmetic
modulo 17= 24 +1. Use the fact that 5 is a generator ofZ∗

17.

R-10.21 Construct a table showing an example of the RSA cryptosystem with parameters
p = 17,q = 19, ande= 5. The table should have two rows, one for the plaintext
M and the other for the ciphertextC. The columns should correspond to integer
values in the range[10,20] for M.

Creativity

C-10.1 Justify the correctness of the binary Euclid’s algorithm (Algorithm 10.3) and
analyze its running time.

C-10.2 Let p be an odd prime.

a. Show thatZp has exactly(p−1)/2 quadratic residues.
b. Show that (

a
b

)
≡ a

p−1
2 (modp).

c. Give a randomized algorithm for finding a quadratic residue ofZp in ex-
pectedO(1) time.

d. Discuss the relationship between quadratic residues and the quadratic prob-
ing technique for collision resolution in hash tables (see Section 2.5.5 and
Exercise C-2.35).

C-10.3 Let p be a prime. Give an efficient alternative algorithm for computing the mul-
tiplicative inverse of an element ofZp that is not based on the extended Euclid’s
algorithm. What is the running time of your algorithm?

C-10.4 Show how to modify AlgorithmExtendedEuclidGCD to compute the multiplica-
tive inverse of an element inZn using arithmetic operations on operands with at
most 2dlog2ne bits.

C-10.5 Prove the correctness of methodJacobi(a,b) (Algorithm 10.12) for computing
the Jacobi symbol. Also, show that this method executesO(logmax(a,b) arith-
metic operations.

C-10.6 Give a pseudo-code description of the compositeness witness function of the
Rabin-Miller algorithm.

C-10.7 Describe a divide-and-conquer algorithm, not based on the FFT, for multiplying
two degree-n polynomials with integer coefficients inO(nlog2 3) time, assuming
that elementary arithmetic operations on any two integers run in constant time.

C-10.8 Prove thatω = 24b/m is a primitivemth root of unity when multiplication is taken
modulo(22b +1), for any integerb > 0.

C-10.9 Given degree-n polynomialsp(x) andq(x), describe anO(nlogn)-time method
for multiplying the derivative ofp(x) by the derivative ofq(x).

C-10.10 Describe a version of the FFT that works whenn is a power of 3 by dividing the
input vector into three subvectors, recursing on each one, and then merging the
subproblem solutions. Derive a recurrence equation for the running time of this
algorithm and solve this recurrence using the Master Theorem.
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C-10.11 Suppose you are given a set of real numbersX = {x0,x1, . . . ,xn−1}. Note that,
by the Interpolation Theorem for Polynomials, there is a unique degree-(n−1)
polynomialp(x), such thatp(xi) = 0 for i = 0,1, . . . ,n−1. Design a divide-and-
conquer algorithm that can construct a coefficient representation of thisp(x) in
O(nlog2n) time.

Projects

P-10.1 Write a class that contains methods for modular exponentiation and computing
modular inverses.

P-10.2 Implement the randomized primality testing algorithms by Rabin-Miller and by
Solovay-Strassen. Test the results of these algorithms on randomly generated
32-bit integers using the confidence parameters 7, 10, and 20, respectively.

P-10.3 Implement a simplified RSA cryptosystem for integer messages with a Java class
that provides methods for encrypting, decrypting, signing, and verifying a signa-
ture.

P-10.4 Implement a simplified El Gamal cryptosystem for integer messages with a Java
class that provides methods for encrypting, decrypting, signing, and verifying a
signature.

Chapter Notes

An introduction to number theory is provided in books by Koblitz [123] and Kranakis [125].
The classic textbook on numerical algorithms is the second volume of Knuth’s series on
The Art of Computer Programming[121]. Algorithms for number theoretic problems are
also presented in the books by Bressoud and Wagon [40] and by Bach and Shallit [20].
The Solovay-Strassen randomized primality testing algorithm appears in [190, 191]. The
Rabin-Miller algorithm is presented in [171].

The book by Schneier [180] describes cryptographic protocols and algorithms in detail.
Applications of cryptography to network security are covered in the book by Stallings [192].
The RSA cryptosystem is named after the initials of its inventors, Rivest, Shamir, and
Adleman [173]. The El Gamal cryptosystem is named after its inventor [75]. The hash
tree structure was introduced by Merkle [153, 154]. The one-wayaccumulatorfunction is
introduced in [27, 179].

The Fast Fourier Transform (FFT) appears in a paper by Cooley and Tukey [54]. It is
also discussed in books by Aho, Hopcroft, and Ullman [7], Baase [19], Cormen, Leiser-
son, and Rivest [55], Sedgewick [182, 183], and Yap [213], all of which were influential
in the discussion given above. In particular, the fast integer multiplication algorithm im-
plementation given above is fashioned after the QuickMul algorithm of Yap and Li. For
information on additional applications of the FFT, the interested reader is referred to books
by Brigham [41] and Elliott and Rao [66], and the chapter by Emiris and Pan [67]. Sections
10.1 and 10.2 are based in part on a section of an unpublished manuscript of Achter and
Tamassia [1].
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Network algorithms are written to execute on a computS network, and the
algorithms include those that specify how specialized computers, called
send data packets through the network. The computer network is modeled

,
graph, with the vertices representing processors, or routers, and the edges rep
senting communications channels (See Figure 11.1.) Algorithms that mn on flc
n&works are unconventional, because the inputs to such algorithms are typicaij,
spread throughoùt the network and the execution of such algorithms is distribue
across the processors, in the network.

We begin our study of network algorithms, then, by considering several funth..
mental disthbuted algorithms. These algorithms address some baic issues that aieV
'encountered in network algorithms, including leader election and building spaimc
trees. We examine each algorithm in both a synchronous setting, 'where process0
can operate in "lock step" in a senes of "rounds," and an asyníchronous setting,
where processors can run at relatively different speeds. In some cases, deaJfig
with asynchrony introduces new compliations, but in diverse networks, such asC
the Internet, asynchrony is a reahty that must be dealt with effectively £

A major class of network algorithms are routing algorithms, which specify how
to move information packets between various computers in a network Good rout-
ing algorithms should route packets so as to amve at their destinations quickly and
reliably, while also being "fair" to other packets in the network One challenge to
designing good routing algorithms is that these goals are somewhat contradictory, -:

since fairness sometimes conflicts with speedy packet delivery.: Another challenge
is that the p ocessing needed to implement a routing scheme should 'also be fast and
efficient. We therefore focus the second part of.this chapter on routing algonthms,
including methods for the following communication patterns:

Broadcast routing, which sends a packet to every computer
Unicast routing, which sends a packet to a specific computer
Malticast routing, which sends a packet tO a group of computers.

We will study these routing algorithms by analyzing the costs invOlved in setting up
'the algorithm añd also in routing messages using that algorithm., Before we discuss
how these and other network algorithms work, however, wè hduld explain a bit
more about the computatiönal model in which they are' designed to operate.

Figure 11.1: A computational network, whose vertices are processors añd edges are
communication links Bold edges define a simple cyclé kiow n as a ring nétwork.
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11.1 Complexity Measures and Models

Before we can fully study network algorithms, we need to better understand how
networks, such as the Internet, work. Specifically, we need to explore how inter-

processor communication is performed, modeled, and analyzed.

11.11. The Networking Protocol Stack

One Way to get a handle on the way a network, such as the Internet, functions is in

terms of a layered networking model, having the, following conceptual layers:

Physical layer: This is the layer where raw bits are transmitted across some

medium, such as electrical wires or fiber-optic' cables. The design decisions
for this layer have mostly to do with engineering techniques for representing

l's and 0's, maximizing transmission bandwidth, and minimizing transmis-
sion noise. ' '

Data-link layen This is the layer that handles the methods for breaking
'data into subunits called frames and trânsmitting data froth oné computer,
through the physical layer, to another. A typical example includes the point-
to-pòint protocol, which describes how to send data between two physically
connected computers. '

Network layer: This layer is concerned with methods for breaking data into
packets (different than' frames) and routing those packets from computer to

'computer through the entire network. Algorithmic issues concerned with
this layer deal with methods for routing packets through the network and for
breaking and reassembling packets. The primary Internet protocol used in

this layer is the Internet Protocol, or IP. This protocol uses a "best effort"
approach, which means that no performance guarantees are made and some

packets mayeven be lost.
Transport layen This 'layer accepts, data' from various applications, splits
it up into smaller units if. need be, and passes these to the network layer
in a fashion that fulfills specific guarantees on rehabihty and congestion
coñtrol. The 'two primary Internet protocols that ,exist 'in this layer are the
Transmission Con fr01 Protocol (TCP), which provides error-free, end-to-
end, connection-oriented transmission between two machines on the Internet,

and the User Datagram Protocol (UDP), which is a connectionless, best-
effort protocol.

's Application layer. This is the layer at which applications operate, using the

lower-level protocôls Examples of Internet applications include electronic

máil (SMTP), file transfer (FTP and SCP), virtual teÈniinals (TELNET and

SSH), the World Wide Web (HflP), and the Domain Name Service (DNS),

which maps host names '(such as www.cs.brown.edu) to IP addresses (such

as 128.148.32.110). '

11.1.
Complexity Measures and Models 513
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11.1.2 The Message-Passing Model

. We say very little about the details of the networking protoco1 stack i«
ter Tnstead, the network algonthms we discuss operate in a compu0
that abstracts the functionality provided by the various layers in the abo4
prototol stack: Still, understanding the different layers of the twt
stack allows us to tie concepts in our distributed computational model t
functions and protocols in a real network, such as the Internet.

There are several possible ways of abstracting the functionality of a
a way that would allow us to describe network algorithths. 1n this chapteì
use a message-passing model that is commonly used to describe such diii
algorithms, where loosely coupled processors communicate in order to sol
putatiQnal problems. The alternative model of parallel algorithms is intro
Section 14.2. In a parallel algorithm, tightly coupled multiple processors cto
and coordinate, often through a shared memory space. i;

In the distributed message passing model, which will be our exclusive
this chapter, the network is modeled. as a graph, where the vertices corre4,
processors and the edges correspond to fixed connections between proces
do not: change throughput the computation. Each edge e supports message j,
between the two processors associated with the endpoints of e. Messagesc
sent only in one direction if e is directed, and in both directions if e is undfr
For example, at the network layer of the Internet, vertices cótrespond to spe&
computers called IP )outers, each identified by a unique numeric code call
address, and the messages exchanged by them are basic data transmissiot
called IP packets. Alternatively, vertices could correspond to server computé
the Internet and edges could correspond to pérmanent TCP/IP connections t1

maintained between various pairs of servers.
As the name implies, in the message passing model, information is co

cated in the network by exchanging messages. Each processor in the netwo
assigned a unique numeric identifier (for example, it could be the IP address
router or host on the Internet). Moreover, we assume that each processor know
neighbors in the network, and that it communicates directly only with its neigh
In some cases, we may even allow each proöessor to know the total number of
cessors in the ñetwork, but in many instances this global knowledge is unavail
'or unnecessary.

Another important consideration in network algorithms is whether or not
rithms have to cope with potential changes to the network while they are ru
During the execution of an algorithm, processors may fail (or "crash"), ne
connections may go down, and we could have some processors remain active;'
perform faulty or even malicious computations. Ideally, we would like distribu
algonthms to be dynaimc, that is, be able to respond to changes in the netW
and be fault-tolerant, that is, be able to recover correctly and gracefully from
ures. Nevertheless, the techniques for making distributed algorithms fully roi
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áre.fairly intricate; hence, they are beyond the scope of this book. Therefore, in
this chapter, we assume that the topology of the network does not change and that
processors remain active and nonfaulty while the network is executing a distributed
algorithm. That is, we assume the network remains static during algorithm execw.
tioiì.

One of the most important considerations in the message-passing model for
distributed computing is the assumption we make about the synchronization of pro-
cessors in the network. There are several possible choices we can make regarding
synchronization, but the following are the two most utilized models in distributed
algorithm design:

Synchronous model: In this model, each processor has an internal clock
that times program execution and the clocks of all the processors are syn-
chronized Also, we assume that the! execution speeds of the processors are
uniform and each processor takes the same amount of time to perform the
same operation (such as an addition or comparison). Finally, we assumeï that
it takes the same amount of time to send a message through any connection
in the network.
Asyñchronous model: In this model, we make nô assumptions about any
internal clocks that the processors might havei. Moreover, we do not assume
that the speeds of the processors are necessarily similar. Thus, the steps in an
asyñchronous algorithm are determined by conditions or events, not by clock
"ticks?' Still, there are some reasonable timing assumptions that we make to
allow algorithms to perform their tasks effectively. First, we assume that
each communication channel, represented by an edge, is a first-in, first-out
(FIFO) queue that can buffer an arbitrary number of messages. That is, the
messages that are sent on an edge are stored in a buffer for that edge so that
the messages arrive in the same order they are sent. Second, we assume that
while processor speeds can vary, they are riot arbitrarily different from one
another. That is, there is a basic fairness assumption that guarantees that if a

processor p has an event enabling p to perform a task, then p will eventually
perform that tàsk

In addition to these two extreme versions of the distributéd computing mode!, we
can also consider intermediate versions, where processors have clocks, but these
clocks are not perfectly synchronized. Thus, in such an intermediate model we
cannot assume that procèssors compute in "lock step," but we can nevertheless
make choices based on "time out" events where processors do not respónd after
à lengthy period of time. Although such intermediate models more closely match

the actual timing properties of real networks, such as the Internet, we nevertheless
find it useful to restrict our attention to the synchronous and asynchronous models
described above. Algorithms designed for the synchronous model äre usually quite

simple and can often be translated into algorithms that work in the asynchronous
model. In addition, algorithms designed for the asynchronous model will certainly
still function correctly in an intermediate model that has limited synchronization.
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11. 1.3 Complexity Measures for Network Algorithms

In traditional algorithm design, as studied in other chapters of this booÈ &
mary complexity measures used to determine the efficiency of an algorft
running tithe and mémory space used. Thèse complexity measUres do not
ately translate into the domain of network algorithms, however, since they
itly assume that a computation is performed on a single computer, not a ie
of computers. In network algorithms, inputs are spread across the compute0
network and computations must be carried out across many computers on tij
work. Thus, we must take some care to characterize the performance param
network algorithms..

The complexity measures fär comparing traditional algorithms have
counterparts in distnbuted algonthms, but there are also complexity measures
in the network setting In this chapter, we focus on the following complexiQ
sures:

Computational rounds: Several network algorithms proceed througI
ries of global rounds so as to eventually converge on a solution. The n
of rounds needed for convergence can therefore be used as a crude apI
imation of time In synchronous algorithms, these rounds are dete
by clock ticks, whereas in asynchronous algorithms these rOunds arer
determined by propagating "waves" of events across the network. +

Space: The amouni of space needed by a computation can be used ev
network algorithms, but it must be qualified as to. whether it is a global bp
on the total space used by all computers in the algorithm or.a local bouh
how much space is. needed per computer involved.
Local running time: While it is difficult to ahalyze the global runmng
needed for a computation, particularly for asynchronous algorithms, wc
nevertheless analyze thé amount of local computing time needed for
ticular tomputer to participate in a network algorithm. If all computers
algorithm are essentially performiig the same type of function, then a s
local running time bound can suffice for all.. But if there äre several diffó
classes of computers participating in an algorithm, we should characte
the local running time needed for each class Ql computer. t

Message complexity This parameter measures the total number of mes
(of size at most logarithmic in the number of processors) that are sçnt
tween all pairs of computers dùring the computation. For example, if a i
sage M is routed through p edges to get from one computer t another,
would say that the message complexity of this communication is plMj, wh

1Ml denotes the, length of M (iii words).

Finally, if there is some other obvious complexity' measure that we are trying
optimize in a network algorithm (such as profit in an online auction protoco
retrieval cost in an Online caching scheme), then we should include bounds
thesé complexities as, well.

t
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Fundamental Distributed Algorithms
Complexity measures for network algorithms are often best thought of as being
functiolS of some intuitive notions of the "size" of the problem wç are trying tó
solve. For example, the size of a problem could be expressed in terms otf the fol-

lowing parameters:

The number of words used to express the input;
The number of processor deployed; and
The number of communication connections between processors.

Thus, to properly analyze the complexity measures for a network algorithm we
must formalize what we mean by the size of the problem for that algorithm.

To make these notions more concr6te, we study several fundamental distributed
algorithms in this sectiOn, analyzing their performance using some of the above
complexity measures. The specific problems we study are chosen both to illustrate
fuñdamental distributed algorithm techniques as well as methods for analyzing net-

work algorithms.

517

11,21. Leader Election in a Ring

The first problem we address is leader election in a ring network. In this problem,
we are given a network of n processors, that are connected in a ring, that is, the
graph of the network'is a simple cycle of n vertices. The goal is to identify one
of the n processors as the "leader," and have all the other processors agree on this
selection. We describe an algorithm for the case where the ring is a directed cycle.
Exercise C- 11.1 çonsiders the case of an undirected ring.

We begin b describing a synchronous solution. The main idea of the syn-
chronous solution is to sleët the leader as the processor with the smallest identi-
fier. The challenge is-that iú a ring there is no obvious place to start. So we start
the computation everywhere. At the beginning of the algorithm each processor
sends its identifier to the next pùocessor in the ring. In the subsequent rounds, each
processor performs the following computations:

1. It receives an identifier i frOm its predebessor in the ring
. It compares i to its own identifier,

3. 'It sends the minimum of these two values toits successor in the ring.

If a processor ever receives its own identifier from its predecessor, then this pro-
cessèr knows that it must have' the smallest identifier and hence, it is the leadet
This processor can then send a message around the ring infonning all the other
processors that it is the leader.

We give à descRfion of the above method in Algorithm 11.2. A sample exe-
cution of the algorithm is illustrated in Figure 11.3.

'[J

j
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Algorithm RingLeader(id):
Input: The unique identifier, id, for the processor mnning this algori
Output: The smallest identifier of a processor iñ the ring

M - [Candidate is id]

Send message M to the successor processor in the ring.
done *- false
repeat

Get message M froth the prededéssor processor in the ring.
jIM = [Candidate isi] then

if i=id then
M - [Leader ¡s id]

done - true
else

m - min{i,id}
M i- [Candidate is m]

else
{M is a "Leader is" message}
done - true

Send message M to the next processor in the ring.
until done
returnM {M i a "Leader is" message}

Algorithm 11.2: A synchronous algorithm run by each processor in a direc
to determine a "leader" for that ring of processors.

Before we añalyze algorithm RingLeader, let us first convince ourselves
works correctly. Let n be the number of processors. Each processor begins by s
ing its identifier in the first round: Then, in the next n - 1 rounds, each proc
accepts a "candidate is" message, computes the minimum m of the identifier i üf
message and its own identifier id, and transmits identifier in to the next proces
with a "candidate is" message Let £ be the smallest identifier of a processor j
ring. The first message sent by processor £ will traverse the entire ring and
come back unchanged to processor L. At that point, processor L will realize
it is the leader and will inform all the other processors with a "leader is" mets
that will traverse the entire ring over the next n rounds. It should be noted tha
number n of processors used in the above analysis does hot have to be knowpT
the processors. AlsO, observe that there are no deadlocks in the algonthm, thatt
no two processors are both waiting on messages that need to come from the otlig

Letus now analyze the performance of algorithm RingLeader. First, in te
of the number of rounds, the first "candidate is" message from the leader taW
rounds to traverse the ring. Also, the "leader is" message initiated by the lea4
takes n mOre rounds to. reach all the other processOrs. Thus, there are 2n rounds
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Eigure 11.3: An illustratiòn of the algoñthm for synchronous leader election in a

nng The imtial configuration is labeled as "Round O" For each successive round,

we label each edge with the "candidate is" message sent along the edge We do not

show the final rounds where processor 4 informs the other processors that it is the

leàdèr with a "leader is" message

We analyze now the message complexity of the algonthm We distinguish two

phases in the algòrithm.

1. The first phase consists of the first n rounds where the processors are sending.

"candidate is" méssages md are propagating them on. In this phase, each

processor sènds and receives one message in each round. Thus, 0(n2) mes-

sàgesarë seht in the first phase.

2 The second phase consists of the next n rounds where the "leader is" message

makes its way around the ring In this phase, a processor continues sending

"candidate is" messages until the "leader is" message reaches it At this

point, it forwards the "leader is" message and stops Thus, in this phase,

the leader will send one message, the successor of the leader will send two

messages, its successot will send three messages, and so on. Thus, the total

number of messàges sent iñ the second phase is i, which is Q(n\).

519
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We coûclude as follows.

Theorem 11.1: Suppose we are given an n-node distributed directed h
work, N with distinct node identifiers but no distinguished leader. The RingL
algorithm finds a leader in N using a total of 0(n2) messages. Moreover, tii
message compléxity of the algorithm is 0(n2).

Proof: We have already seen that 0(n2) messages are sent Since each me
uses O(I) words, the total message complexity is 0(n2). T

It i possible to improve thè message complexity for leader election in
by modifying algorithm RingLeader so that it requires fewer messages. We ex
twò possible modifications in Exercises C-1 1.2 and C-11 .3.

Asynchronous Leader Election

Algorithm 11.2 (RingLeader) was described and analyzed under the synchso
model. Moreover, we structured each round so that it would consist of a a mes
receiving step, a processing step, and a message sending step. Indeed this is
typical structure of synchronous distributed algorithms

In an asynchronous algorithm, we cannot assume that the procéssors move

'flock step" any longer. Instead, processing is determined by events, not ei

ticks. Still, the above algorithm for leader election in a ring also works ihk

asynchroñous model. The correctness of the algorithm did not actually depend
the processors acting synchronously It only depended on each processor rece
ing messages from its predecessor in the same sequence as they were sent
condition still holds in the asynchronous model

We summarize our study of leader election in a ring in the following theore

Theorem 11.2: Given a directçd ring with n ptocessors, algorithm RingLia

perfozms leader election with 0(n2) message complexity. Por each proceh
the local computing time is 0(n) and the local space used is 0(1). Algori
RingLeader works under both the synchronous and asynchronous models. Iii
synchronous model, its overall running time is 0(n).

Leader election might seem like a contrived problem at first, but it actuall'li
many applications. Any time we need to cOmpute a global function of a subset

nodes in a network, we essentially havç to perform a leader election. For exanijil

computing the sum of the values stored at computers connected in a ring, or,h
minimum or maximum of such values, can be solved by an algorithm similar to?
leader-election algorithm given above

Qf course, processors are not always connected in a ring. So, in the next sectio

we explore the. sçenario when processors are connected in a (free) tree.
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11.2.2 Leader Election in a Tree

If the network is a (free) tree, electing a leader is much simpler than in a ring, since
a tree has a natural starting place for the computation: the external nodes.

Asynchronous Leader Election in a Tree

An asynchronous leader election algorithm for a tree is shown in Algorithm 11.5.
Again, we choose the processor with the smallest identifier as the leadet. The
algorithm assumes that a processor can perform a constant-time message check on
an incident edge to see if a message has arrived from that edge.

The main idèa of Algorithm TreeLeader is to use two phases. In the accumu-
lation phase, identifiers flow in from the external nodes of the tree. Each node
keeps track of the minimum identifier £ received from its neighbors, and after it
receives identifiers from all but one neighbor, it sends identifier £ to that neighbor.
At some point, a node receives identifiers from.all its neighbors. This node, called
accumulation node, determines the leadeL We illustrate this accumulation phase
in Figure 11 4 Once we have the leader identified at one node, we start the broad-
cast phase. In the broadcast phase, the accumulation node broadcasts the identifier
of the leader toward the external nodes. Note that a tie condition may occur where

two ádjacent nodes become accumulation nodes. In this, case, they broadcast to
their respective "halves" of the tree. Any node in the tree, even an external node,

can be an accumulation node, depending on the relative speed of the processors.

- Round O

Round 2

Round I

Figüre 11.4: An illustration of the algorithm for finding a leader in a tree. We only

show the accumulation phase. Edges that have carried no message yet are shown

with thin lines Edges with messages flowing in that round are drawn as thick

arrows. Grey lines denote edges that have transported. .a message in a previous

round. . . .
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Algorithm TreeLeader(id):
Input The umque identifier, id, for the processor runmng this algonthm
Output The smallest identifier of a processor in the tree

{Accumulation Phase}
let d be the number of neighbors of prodessor id {d l}
in e- O {counter. for messages received}
£ - id {tentative ieader}
repeat

{begin a new round}
for each neighbor j do

check if à message from processor j has arrived
ifa message M = [Candidate is M from j has arrived then

£*min{i,t}

untilrnd-1
if in =4 then

¡k! - [Leader is L]

for each neighbor j k do
send méssage M to processor j

return M {M is a:" leader is" message}
else

M *- [Candidate is L]

send M to the neighbor kthat has not sent a. message yet
{Broadcast Phase}
repeat

{begin a new round}
check if a message froth processor k has arrived
if a message M from k has arrived then

m*m+1 . .

ifM= [Candidate.is i] then
L4min{i,L}
MtjLeader ist]
for each neighbor j do

send message M to processOr j
else

.fM is a " leader is" message}
for each neighbor j $ k do

send message M to processor j
untilm=d
return M {M is a " leader is" message}

Algorithm 11.5: An algorithm for computing a leader in a tree of processors. In
synchroñous version of the algorithm, all the processors begin a round at the sai

time until they stop.
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Synchronous Leader Election in a Tree

In the synchronous version of the algorithm, all the processors begin a round at the

same time Thus, the messages in the accumulation phase flow into the accumula-

lion node like the reverse of npples in a pond after a stone is dropped in Likewise,

in the broadcast phase, the messages propagate out from the accumulation node

like ripples in a pond in the forward direction. That is, in the accumulation phase

messages march into the "center" of the tree, and in the broadcast phase messages

march out.
The diameter of a graph is the length of a longest path between any twp nodes

in the graph. For a tree, the diameter is achieved by a path between two external

nodes. Interestingly, note that the number of rounds in the synchronous version of

the algorithm is exacfly equal to the diameter of the tree.

Performance of Tree Leader Election Algorithms

Analyzing the message complexity of the asynchronous tree leader election algo-

rithm is fairly straightforwàrd. During the accumulation phase, each processor

sends one "candidate is" message. During the broadcast phase, each processor

sends at most one. "leader is" message. Each message has 0(1) size. Thus, the

message complexity is 0(n).
We now study the local running time of the synchronous algorithm under the

assumption that we ignore the time spent waiting to begin a round. The algorithm

fòr processor i takes time O (diD), where d is the number of neighbors of processor

i, Sd D is the diametér of the tree. Also, processor i uses space d to keep track of

the neighbors that have sent messages.
We sunimañze ouustudy of leader election in a tree in the following theorem.

Theorem 11.3: Given a (free) tree with n nodes and with diameter D, algorithm

TreeLeader performs leader election with 0(n) message complexity. Algorithm
TreeLeader wotks under both the synchronous and asynchronous models. In the

synchronous model, for each processor t, the local computing time is 0(d1D) and

the local space used is o(d), where d is the number of neighbors of processor i.

11.2.3 Breadth-First Search

Suppose we have a general connected network of processors and we have identified /

a specific vertex s in this network as a source node. In Section 6.3.3, we discuss a

centralized, algorithm or constructing a breadth-first search for a graph G starting

at a source node s. In this section, we describe distributed algorithms for solving

this problem.
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Synchronous BFS.

We first describe a simple synchronous breadth-first search (BPS) algori.
main ideaof this algorithm is to proceedin "waves" that propagate oUtWd
the source vertex sto construct a BFS tree layer-by-layer from the top down.
synchronization of the processors will benefit us greatly, in this Qase, to malç
propagation process completely coordinated, j

We begin the algorithm by identifying s as an "external node" in the cufr
BPS tree, which is just s at this point. Then, in each round, each external no
sends a message to all of its neighbors that have not contacted y earlier, info L

them that y would like to make them. its children in the BPS tree. These n
respond by picking. y as their parent, if they have not already chosen some 0th
node as theft parent.

We illustrate this algorithm, in Figure 1 Ï .6 and we give the pseudo-code foi:
in Algorithm 11.7.

Round O

Round 2

Round 4

Round i

Figuré 11.6: An illustration of the synchronized BFS algorithm. The thick edgej
are those of the BPS tree,: with the black thick edges being the. ones chosen in th

current round. .
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Algorithm SynchronousBFS(v,$):
Input: The identifier y of the node (processor) executing this algorithm and the

identifier s of the start node of the BFS traversal
Output: For each node y, its parent in a BFS tree rooted at s

repeat
{begin a new round}
if y = s or y has received a message from one of its neighbors then

set parent(v) to be a node requesting y to become its child (or null, if
vr=s)
for each node w adjacent to y that has not contacted y yet do

send a message to w asking w to become a child of y
until y = s or y has received a message

Algorithm 11.7: A synchronous algorithm for computing a breadth-first search tree

in a connected network of processors.

Analyzing algorithm SynchronousBFS is simple. In each round, we propagate
out another level of the BFS. tree. Thus, the runniñg time of this algorithm is pro-
portional to the depth of the BFS trée. In addition, we send at most one message on
each edge in each direction over the entire computation. Thus, the number of mes-

sages sent in a network of n nodes and in edges is O(n+ m). Thus, this algorithm
is quite efficient. But it admittedly makes consiçierable use of the synchronization

of processors.

Asynchronous BFS

We cân make the above BFS algorithm asynchronous at the expense of additional

messages to keep things coordinated. Also, we require each processor to know the
total number of processors in the network.

Rather than relying on synchronized clocks to determine each round in the
computation, we will now have the source node s send out a "pulse" message that
triggers the other processors to perform the next round in the computation. By
using this pulse technique, we can still have the computation propagate out level
by level. The pulsing process itself is like breathingthere is a pulse-down phase,
where a signal is passed down the BFS tree from the root s, and a pulse-up phase
where a signal is combined from the external nodes back up the tree to the root s.

The processors at the external nodes ¿an only go from one round to the next
if they have received a new pulse-down signal from their respective parents. Liker

wise, the root s will not issue a new pulse-down signal until it has received all the

pulse-up signals from its children. In this way, we can be sure that the prpces-

sors are operating in rough synchronization (at the granularity ofthe rounds). We

describe the asynchronous BFS algorithm in detail in Algorithm 11.8.

52E
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Algorithm AsynchronousBFS(v, s, n):
Input The identifier y of the processor running this algonthm, the idenot

s of the start node of the BFS traversal, and the number n of nodes in
network

Output: For each node y, its parent in tÎe BFS tree rooted at s

C i- 0 {verified BFS children for v}
set A to be the set of neighbors of y {candidate BFS children for v}.
repeat

{begin a new round}
if parent(v) is defined or y = s then

if parent(v) is defined then
wait for a pulse-down message from parent(v)

if C is not empty then
{v is an internal node in thè BFS tree}
send a pulse-down message to all nodes in C
wait for a pulse-up message from all nodes mC

else
{v is an external node in the BFS tree}
for each node u in A do

send a make-child message to u
for each node u in A do

get a message M from u and remove u from A
if Mis an accept-child message then

add utoC
send a pulse-up message to parent(v)

else
{v s has no parent yet.}
for each ñòde w lilA do

if w has sènt va make-child message then
remove w from A {wis ño longer a candidate child for y
if parent(v) is undefined then

parent(v) .+- w
send an accept-child message to w

else
send a reject-child message to w

until (y has received message done) or (y = s and has pulsed-down n-1 times
sénd a done mssage to all the nodes in C

H

Algorithm 11.8: An asynchronous algorithm for computing a breadth-first search

tree in a connected network of processors. This algorithm is tò be run simulta
ñeously by each node y in the network. The possible messages are pulse-dowif
pulse-up, make-child, accept-child, reject-child, and done.
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Performance

This asynchronous .BFS algorithm is admittedly more complicated than its syn-
chronous counterpart. The computation sfili operates in a sèrie of rounds, however.
In each round, the root npde s sends "pulse-down" messages down the partially
constructed BFS tree. When these messages reach the external levçl of the tree,
the current external nodes attempt to extend the BFS tree one more level, by issu-
ing "make-Child" messagés to candidate children. When these candidates respond,
either by accepting the invitation to become a child or rejecting it, the processors
send a "pulsé-up" messäge that propagates back up to s. The root s then starts the
wholè process all over again.

Since the BES tree can have height at most n - i nodes, node s repeats the
pulsing action for n - i times, just to make sure that each node in the network has
been included in the BFS tree. Thus, the synchronization from round to round is
done completçly via message passing. A current external node will not operate
until it gets a "pulse-down" message, and it will not issue a "pulse-up" message
until it has heard back from all of its candidate children (who either accept or reject
an invitation to become children). The BFS tree grows level-by-level just as in the
synchronous algorithm.

The number of messages needed to perform all of this coordination is more
than that needed in the syñchronous algorithm, however. Each edge in the network
still has at most one "make-child" message and a response. in each direction. Thus,
the total .messagé complexity for accepting and rejecting make-child requests is
0(m), where. rn is the number of edges in the network. But with each round of
the algorithm we need to prOpagate all the "pulse-down" and "pulse-up" messages.
Since they only travel along edges of the BFS tree, there are at most. 0(n) pulse-up
and pulse-down messages sent each round. Given that the source operates for n - i
roúnds, there are at most 0(n2) messages that are issued for the pulse coordinate.
Theréfore, the total message complexity of the algorithm is 0(n2 ± rn),where rn is
the number of edges in the network. This bound can be further simplified to just
0(n2), since mis 0(n2).

Thus, we summarize the above discussion with the following theorem.

Theorem 11.4: Given a network G with n vertices and m edges, we can compute
a breadth-first spanning tree in G in the asynchronous model using only 0(n2)
messages. .

In Exercise C-ii .4, we explore hQw to improve the. running time of the asyn-
chronous breadth-first search algorithm to be 0(nh + m), where h is the height of

the BFS tree.
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11.2.4 Minimum Spanning Trees,

We recall that a minimum spanning free (MST) of a weighted graph is a
subgraph that is a treè and that has minimum weight (Section 7.3). Iii this
we describe an efficient distributed algorithm for this problem. Before we pro
the details, we first review an efficient sequential algorithm for finding an MS
to Barftvka (Section 7.3.3). The algorithm starts with each node of G in it
connected component of (zero) tree edges. It then proceeds, in a series of rt'
to add tree edges to join connected components .and thereby build up an MST
with all MST algorithms, it is based on the fact that, for any partition {V1 ,v
the vertices into two nonempty subsets, if e is a minimum-weight edge joinuj
and V2, then e belongs to a minimum spanning treé. (See Theorem 7.10.)

For the sake of simplicIty, let us assume that all the edge weights are uniq
Recall that, initially, each node of the graph. is in its own (trivial) connectetj cb
ponent and, the initial set, T, of tree edges is empty. At a high level, BarÛ.
algorithm then performs the following computations:

while there is more than one connected component defined by T do
for each coñnected component C in parallel do

choose the smallest edge e joining c to another component
add e to the set T çf tree edges

Barûvka's algorithm performs the above computations for each connected co
ponent in parallel, and therefore finds tree edges quickly. Note, in fact, that in
round, we are guaranteed tojoin each connectôd component with at least oneo
Thus, the number of connected components decreases by a factor of 2 with ¿a

round (defined by an iteration of the while loop), which impliesthat the total n
ber of rounds is logarithmic in the number of vertices.

Let us implement a distributed Barûvka's algorithm for the synchronous m
(the asynchronous version of this algorithm is left as Exercise C-11 .7). Theré
two critical computations that need to be performed in each roundwe have

determine all the connected components and we need to determine the minim
outgoing edge from each one (recall that we are assuming that edge weights,
unique, so the, minimum outgoing edge from a component will also be uniqúe

(See Figure 11.9.)
We assume that, for each node y, y stores a list of the edges 'of T that

incident on y. Thus, each node y belongs to a tree, but y only stores informC
about its neighbors in T. In each round, the leader election algorithm in a tree fro

Section 11.2.2 is used twice as an auxiliary method:
. I

I. To identify each connected component 1

2: To find, for each connected component, the minimum-weight edge joiniñ

component to another component. I

Barûvka's Algorithm in a Distributed Setting '4
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Figure 11.9: An illustration of a synchronous distributed version of Barüvka's al-

gorithm. The thiòk edges identify MST edges, with the black thick edges being the

ones chosen in the given round.

A round operätes as follows. To identify the connected components, the leader-

election computation is performed using the identifier of each node Thus, each

component gets identified by the smallest identifier of its nodes. Next, each node

y computés the minimum-weight edge e incident on y, such that the endpoints of e

are in different connected. compoúents. If there is no such edge, we use. a fictitious

edge with infinite weight. Leader election is then performed again using the edges

associated with each vertex and their weights, which yields, for each connected

[component C the minimum-weight edge connecting C to another component1 Note

that we cän detect the end of the algorithm as the round in which we compute the

weight of the minimum-weight edge to be infinity.

Let n and. m denote the number of nodes and edges, respectively. To analyze

the message complexity of the distributed version of Barûvka's algorithm, note

thät 0(m) constant-size messages are sent at each round. Thus, since there are

0(logn) rounds, the overall message complexity is O(mlogn). In Exercise 0-11.6,

we examine a way to improve the message complexity for synchronous MST to

Q(m + n log n'), and in Exercise C-1 1.7, we challenge, the reader to find ah asyn-

chronous MST algorithm that still has message complexity O(mlogn).
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11.3 Broadcast and Unicast Routing

Having studied some fundamental distnbqted algonthms, let us now turn to
problems common in communication networksbroadcast routing and unj4]
routing. Broadcast routing is a message that is sent from one processor to ali o
processors in a network. This form of communication is ued when informaj0
a single processor must be shared wjth all, other processors in the network. Uni
routing, on the other hand, involves setting up data structures in a network so
support point-to-point communication, where a single processor has a message
it wishes to have relayed to another processor.

When discussing routing algorithms in the remaining subsections, we referâ
processor as a router. We récall our assumption that the network is fixed and di
not change over time. Thus, we restrict ourselves to the study of static routing al
nthms We also make the assumption that the messages exchanged by the ron
have constant size, which implies that the message complexity is proportional
the total number of messages exáhanged. Throughout the section, we denote w,.

n and in the number of nodes and edges of the network, respectively.
We begin our discussion with broadcast routing and then cover unicast roji

ing and multicast routing. The algorithms presented in this section are simplifi
versions of those used for packet routing in the Internet.

11.3.1 The Flooding Algorithm for Broadcast Routing
- - t

*

The flooding algonthm for broadcast routing is quite simple and requires virtuall
no setup. However, its routing cost is high.

A router s wishingto send a message M to all other routers in the network
gins by simply sending M to its neighbors. When a router y receives a floo
messäge M from an adjacent router u, y simply rebroadcafls M to all its neighbci
except for u itself Of course, left unmodified, this algorithm will cause an "hill
loop" of messages on any network that contains a cycle; a network without cyçi

has a simple routing algorithm, however, as we explore in an exercise (C-11 :5)2
't

Flooding with a Hop Counter

To avoid the infinite loop problem, we must associate some memory, orstate,
the main actors in the flooding algorithm. One possibility is that we add a,
cou nter to each message M and decrement the hop counter for M each time
router processes M. If a hop counter ever reaches o, we then discard the message
belongs to. If we initialize the hop counter for a message M to the diameter of4

network, then we can reach all the routers while avoiding the creation of an mû

number of messages.

530 Chapter 11. Network Algojjj
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flooding with Sequence Numbers

Another possibility is to store a hash table (or another efficient dictionary data
structure) at each router that keeps track of which messages the router has already
processed. When a router x originates a broadcast message, it assigns a unique
sequence number k to it. Thus, a flooding message is tagged by the pair (x, k).
When a router receives a message with .tag (x, k), it checks whether (x, k) is in its

table. If so, it simply discards the message. Otherwise, it adds (x, k) to the table
and rebroadcasts the message to its neighbors.

This approach will certainly eliminate the infinite loop problem, but it is not

space efficient. So a common heuristic tò use is to have each router keep only the

latest sequence number for each other router in the network, with the assumption
being that if a router receives a message onginated by x with sequence number k, it
has probably already processed all the messages sent by x with sequence numbers

.lessthank.

Analysis of Flooding Algorithms

To analyze flooding algorithms, we begin by noting that there is no setup cost
other than having each router know the number n of routers .in the network, and

possibly the diameter. D of the network. If we use the hop-counter heuristic, then

there .is no additional space needed at the ròuters. If we us.e the sequence-number
heuristic, on thé other hand, then the space needed by each router is 0(n) in the

worst case. In both cases, the expected time required by a router to process a
message is proportional to the number of neighbors pf the router, since search and

insertion in a hash table have 0(1) expected running time (see Section 2.5.3).

We now analyze the message complexity of flooding algorithms. When using
the hop-counter heuristic, the message complexity is .0 ( (dm - i )D) in the worst

case, where dM is the maximum degree of the routers in our network. When us-

iñg the sequence-number heuristic, the message complexity is 0(m), since we end

up sending a message along every edge in the network.. Since m is usually much

smaller than (dma i)D sequence numbers are generally preferable to hop coun-

ters. In either case, however, the flooding algorithm is only efficient for messages

we are willing to broadcast to all other routers in our network.

Still, the flooding algorithm is guaranteed to send a message M from its source

to each destination in the fewest number of hops in th synchronized network

model. That is, it always finds a shortest routing path. Given the overheads in-

volved in the flooding algorithm, however, it would be nice td have ah algorithm

that can route messages along shortest paths more efficiently. The algorithm we
discuss next does just this by performing some setup computations for determining

good routes in a network.

531
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11.3.2 The Distance Vector Algorithm for Unicast Routing r

The first unicast routing algorithm we discuss is a distributed yersion of a cl
algorithm for finding shortest paths in a graph attributed to Bellman and Ford(
lion 7.1.2). We assume that we have a positive weight w(e) assigned to each'
e of the network, which represents the cost of sending a message through e:
example, the weight could represent the average "latency" of the commupjc
link

The unicast routing problem is to set up data structures at the nodes t
network that support the efficient routing of a message from an origin node' to
destination node

The distance vector algorithm always routes along shortest paths. Them
idea of this algorithm is for each router x to store a bucket array called the disût
vector of router x, which stores the length of the best known path from x to e'
other routery in the network, denoted DX[y], and the first edge (connection) ofu
a path, denoted C[y]. Initially, for each edge (x,y), we assign

D[yJ=D[x]=w(x,y)

CX[y] =C[x} =(x,y).

All other D entries are set equal to ±oo. We then perform a series of roun
that iteratively1 refine each distance vector to find possibly better paths until eve
distance vector stores the actual distance to all other routers.

Distributed Relaxation

The setup of the distance vector algorithm consists of a series of rounds. In
each round consists of a collection of relaxation steps. At the beginning of a roui
each router sends its distance vector to all of its immediate neighbors m the n
work. After a router x has received the current distance vectors from each of i
nêighbors, it performs the following local computation for n - i rounds:

for each router w connected tò x do
for each router y in the network do

{ relaxation }
if D[y]±w(x,w)<D[y}then

{ a better route from x toy through w has been found}
D[y] *D[y]±w(x,w).
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Perform a rice

Since each vertex x sends a vector of size n to each of its neighbors in each round,
the time and message complexity foi x to complete a round is O(dn), where d is
the degree of x and n is the number of routers in the network. Recall that we iterate
this algorithm for n - i rounds. In fact, we can improve this to D rounds, where
D is the diameter of the network, as the distance vectors will notchange after that
many rounds. I

After the setup, the distance vector of a router x stOres the actual distances of x
to the other routers in the network and th first edge of such paths Therefore, once
we have performed this setup, the routing algorithm is quite simple: if a router x
receives a message intended foi router y, x sends y along the edge C'4y].

Correctness of the Distance Vector Algorithm

The correctness of the, distance vector, algorithm follows by a simple inductive ar-
gument:

Lemma 11.5: At the end of round i, each distance vector stores the shortest path
to every other router restricted to visit at znost.i other routers along the way.

This fact is true at the beginning of the algonthm, and the relaxations done in each
round ensure that it will be true after each round as well.

Analysis of the Distance Vector. Algorithm

Let us analyze the complexity of the distance vector algorithm. Unlike the flooding
algorithm, discussed in Section 11.3.1, the distanèe vector algorithm has a signifi-
cant setup cost. The total number of messages' passed in each round is proportional
to n times the sum of all the degrees in the network.. This is because the number
of messages sent and received at a router x is O(dn), where d denotes the degree
of x. Thus, there are O(nm.) messages per round. Hence, the total message com-
plexity for the setup of the distance vector algorithm is O(Dnm), which is O(n2m)
in the worst case.

After the setup is èompleted, each router stotés a bucket array with n i ele-
ments, which takes 0(n) space, and processes a message in O(i) expected time
Note that the local spaòç requirement matches that of the flooding algorithm under

the sequence-number heuristic Since the distance vector algorithm finØs shortest
paths, like the flooding algorithm, but does so during the setup computhtion, it can
be viewed as träding off setup costs for 'subsequent effiöient message delivery.
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11.3.3 The Link-State Algorithm för Unicast Routing

The last .static routing algorithm we discuss is ,a distributed version of a clasj'c
shortest path algorithm due to Dijkstra As in the distance vector algorithm
scnption, we assume that the edges have positive weights Whereas the distan
vector algorithm performed its setup in a series of röunds that each required o
local communication between adjacent routers, the hnk-state algorithm compus
single communication round that requires lots of global communication throughof
the entire network. T.

The link-state algonthm proceeds as follows The setup begins with eji
router x broadcasting the weights of its incident edges (that is, the "status" of x)
all other routers in the network, using a floodmg routing algorithm with sequen
numbers (which requires no prior setup; see Section 11.3.1); After this broadjt
phase, each router knows the entire network and can mn Dijkstra's shortest pá
algorithm on it to determine the shortest path from it to every other router y and &e

first edge C [y] of such a path. This. intemnal computation takes O(rnlo n) time j
ing standard implementations of Dijkstra's algorithm, or 0(n log n ± m) using moré
sophisticated data structures (recall Section 7 11)

As in the distance-vector algorithm, the data structure constructed by the sethp
at each router has 0(n) space and supports the processing of a message in 0(1)
expectedtime.

Let us now analyze 'the total message complexity of the setup m the link-state
algorithm. A total of m constant-size messages are broadcast, each of which cauè
m mésÑagès to be sent by the flooding algorithm in turn. Thus, the overall messag
complexity of the setup is 0(m2).

Comparison of Broadcast and Unicast Routing Algorithms

We compare the performance of the three static routiñg algorithms discussed in thii
r

section inTabJe 11.10. Note that we aré not including the internal computation üme
that is required of a router that is participating in a preprocessing setup computatiot
in this table.

Table 11 10 Asymptotic performance bounds for static routing algorithms We us

the following notation for the network and routing parameters n, number ofnods
m, number of edges, d, maximum node degree, D, diameter, and p, number ö
edges in a shortest routing path Note that p, d, and D are all Jess than n

Algorithm messages loeal space local time routing time

Floodirigwíhopcount 0(1) 0(J) 0(4)' o((d_1)D)
Flooding w! seq. no. 0(1) 0(n) 0(d) - 0(m)

Distancé vector 0(Dnm) 0(n) 0(1)
.

0(p)
Link state 0(m2) . 0(n) 0(1) 0(p)
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1.1.4 Multicast Routing

So far, we have studied routing algorithms for two types of communication-
broadcast and unicast routingwhich can be viewed as being at. the two extremes
of a, spectrum. Somewhere in the middlé pf this spectrum is multicast routing,
which involves commumcation with a subset of hosts on a network, called a multi-
cast group. . .. .

11 4 1 Reverse Path Forwarding

. The reverse path forwarding (RPF) algorithm adapts the flóoding algorithms for
broadcast routing to multicast routing It is designed to work in conjunction with
the existing shortest-path routing tables available at every routér, in order to broad-
cast a multicast message along the shortest path tree from a source

The method begins with a host that wishes to send a message to a group g The
host sends that message to its local router s in order for s to then send the message
to all of its neighbonng routers When a router x receives, from one if its neighbors
y, a multicast meEsage that originated at the router s, x cheéks its, local routing table
to see if y is on x's shortest path 'to s. If y is not on x's shoitest path to s, then
(assuming all the routing tables are correct and consistent) the link from y to x is.
not in thé shortest path treefrom s. Thus, in this case, x simply discards the packet
sent from y and sends bàck to ya special prune message, which includes the nàme
of the source s and the group g This prune message tells yto stop sending multicast
messages from.s intended for group g (and, if possible, not to señd any multicast
messages from s along this link no matter what, the groùp is). If, on the other hand,
y is on x's shortest path to s, then x replicates the message and sends it out, to 'all
of its neighboring routers; except for y itself. For, in this case, the link fromyto
x is on the shortest .path tree fröm s (again, assuming that all the routing tablesTare
correct and consistent).

This mode of broadcast communication extends outward from s along the short-
est path free T from s until it floods the entire network The fact that the algonthm
broadcasts a multicast message to every router in the network is wasteful if only a
small fraction of the routers on the network have clients wishing to receive multi-
cast messages that are sent to the group g

To. deal with this waste, the RPF algorithm provides an additional type of mès
sage prumng In particular, if a router x, at an external node of T, determines that it
has no clients on its local network that are interested in receiving messages for the
group g, then x issues a prune message to its parent y in T telling y to stop sending
it messages from s to the group g This message in effect tells y to remove the
external node x from' the free T. ..
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Pruning
z

These prune messages can, of course, be issued by many external nodes of
parallel; hence, we can have many external nodes of T remóved at.the same
Moreover, the removal of sème external nodes of T may create new externa ¿%

So, the RPF algorithm has each router x continually test if it has become ari

nal node in T and, if x has, then it should test 'if it has añy client hosts on iSi
networkthat are interested in receiving multicast messages for the group g. Ag
if there are no such clients, then x sends its parent in T a prune message for m
cast messages from s to the group g. This external-nodepruning continues untiL
remaining external nodes in T have clients wishing to receive multicast mesi'
to the group g. At this point the RPF algorithm has reached a steady state.

This steady state cannot be locked in forever, however, for we may have s

client hosts in our network that wish to start receiving messages for the grodp

That is, we may have at least one client h wishing to join the group g. Smc
RPF provides no explicit way for clients to join a group, the only way h can
to:receive multiçasts to group g is if h's router x is receiving those packets B'ijt:
has been pruned from T, then this will not happen. Thus, one additional compq

of the RPF algorithm is that the prunes that are stored at a node in the Interneji

timed out after a certain amount of time

When such a time-out occurs, say for a prune coming nom. a router z to

router x holding z's previous prune message, then x resumes sending multi1
packets for the group g to z. Therefore, if a router really intends not to r
or process certain types of multicast messages, then it must continually inform
upstream neighbors.. of this desire by using prune messages. For thjs reason,r'

RPF algorithm is not an efficient method for performing multicast routing.

Performance

In terms of message efficiency, the RPF initially sends out 0(m) messages, whç
is the number of connections (edges) in the network. After the first wave of
propagate through thé network, however, the complexity of multicasting redu
0(n) messages per multicast message, where n is the number of routers. And
further reduced as additional prune messages are processed. In terms of additiò
storage at the routers,, the RPF algorithm is not too efficient, for it requires that

router store every prune mèssage it receives until that prune message times ou
the worstcase, then, a router xmay have to storé äs many as 0(181 .IÇId) P
messages, where S is the set of sources, Ç is the set of groups, and d is the d

of x in the network. Thus, as we have already observed, the RPF algohthfll
efficient.

http://www.cvisiontech.com


Multicast Routing

11.4.2 Center-Based Trees

A multicast algorithm with message efficiency better than» that of the reverse path
forwarding algorithm is the center-based trees method. In this algorithm, we
choose, for each group g, a single router z on the network that will act as the "cen-
ter" or "rendezvous" node for the group g. The router z forms the root node of the
multicast tree T for g, which is used for sending messages to routers that are a part
of this group. Any source wishing to send a multicast message to the group g first
sends that message toward the center z. In the simplest form of the center-based
trees algorithm, this message proceeds all the way to z, and once it is received by
z, then z broadcasts this message to all the nodes in T. Thus, each router x that is
represented by a node in T knows that if x receives a multicast message for g from
its parent in T, then x replicates this message and sends it to all of its neighbors that
correspond to its children in T. Likewise, in the simplest form of the center-based
trees method, if x receives a multicast message from any other neighbor different
than its parent in T, then it sends this message up the treeto z. Such a message i
coming from some source and should be sent up to z before being multicast to T.

As mentioned above, we must explicitly maintâin the multicast tree T for each
group g. Thus, we must provide a way for routers to join the group g. A join
operation for a router x begins by having x send a join message toward the center
node z. Any other router y receiving a join message frôm a neighbor t looks up
to see which of y's neighbors u is on the shortest path to z, and then y creates and
stores an internal record indicating that y now has a child t and a parent u in the
tree T. If y was already in the tree T (that is, there was already a record saying
that u was y's parent in T), then this completes the join operationthe router x is
now a connected external node in the tree T If y was not already in the tree T,
however, then y propagates the join message up to its (new) parent u in T. (See
Fi 11.11.)

(a) (b)

Figure 11.11: ,An illustration of thefl center-based trees protocol. (a) A multicast
tree centered at z, with thick edges being tree edges, dark gray nodes being group
members, and light.gray nodes being routers that simply propagate messages; (b)
the multicast tree after x joins. Notice that x could have joined using just one edge
and no additional intermediate nodes, but the route to z would not be a shórtest
path.
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Performance

For routers wishing to leave group g, either through explicit leave messages
because a join record times out, we essentially reverse the action weperformed f
à join. In terms of efficiency, the center-based trees methôd only sends messg
along T, the multicast tree for group g, so its message complexity is O(ITIYfo
each multicast. Iii addition, since èach router only stores the local structure of'
the maximüm number of records that neèd to be stored at any router x is o(IgI>i
where Ç is the set of groups and d is the degree of x in the network. Theref&
the center-based tree algorithm has the benefit of efficiency that cornes from alwài'g
sending multicast messages for a group g along a single tree T. This free may
be the most efficient tree for sending such a message, however.

11.4.3 Steiner Trees

The main goal of the Steiner tree algorithm is to optimize the total cost of ali
r

edges we are using to build the multicast tree for a group g. Formally, we j
G = (V, E) denote our network, with V be.ing the set of routers, and we define
metric, c(e), for the edges of G. Additionally, we assume we are given a subset S'
V that indicates the routers in our network that belong to the group.g. The Steine

tree T for S is the tree of immmum total cost that connects all the nodes in S Note
that if SI = 1, then T is a single node, that if 151 = 2, then T is the shortest pá
between the two nodes in S, and if j1 = IVI, then T is the minimum spanning tréc
for T. Thus, for these special cases, we can easily construct the optimal tree,
joining the nodes of S and we can use this tree for all multicasts to the group g
in the center-based trees algorithm. Unfortunately, solving the general case of tb
Steiner tree problem is NP-hard (Section 13.2.1); hence, we should try to emplq
some heuristic algorithm that can approximate the Steiner tree.

The Steiner tree approximation algorithm we describe is based on the minim

spanning tree algorithm describèd above (in Section 11.2.4). It uses informatio
already available at each router in the network and is known as the distance networ
algorithm, for it operates on a graph G1,.: derived from G, known as the distan
network for S. The graph G' is formed by taking the vertices of S as its nod

and connecting each pair of such nodes with an edge. The cost c' (e) of an
e = (y, w) in G' is exactly the distance between y and w in G, that is, the lengtl
the shortest path from y to w in G (we are assumiñg that G is undirected here).

specific algorithm is as follows:

1.. Construct a representation of the distance network, G' for S.
9 Find n minimum snannin free (MST TM in G'.
3 T;anS;teT oatreeAmCy taking the shortest path from y to wf

eachedge(v,w)inTM.
Find the MST TD in the subgraph of G induced by the nodes of TA.
Remóve from 7"D any paths leading to exterhal nodes not in S;
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The last two steps provide some additional improvement to the tree TA, which
is.already a good approximation to the Steiner tree, Ts.

Lemma 11.6: TAl< ITsK2-2/k), wherek= SI.

Proof: Consider the Steiner tree,, Ts, which connects the nodes of.S optimally
in G Consider further the walk, W, formed by taking a continuous (depth-first)
traversäl around the boundary of 7"s That is, imagine that 1's is the map of some
set of roads that we then walk along always staying on the, right side of\the road.
Thus, lW I = 217's I. Subdivide W into the set of k paths connecting pairs of nodes
of S that are visited consecutively in the walk W, subdividing W only at the first
visit we make to each node. (See Figure 1 1.12a.) Let P denote the set of k- i
paths that remain after removing the path of highest cost from this set Thus, PI
(2-2/k)

I

1' Let P' denote the set of paths formed by replacing each path p in P,
which goes from a node vto a node w inS, with the shortest path from y tow. Thus,

IP'I IPl Finally, let T' denote the set of edges in the distance network formed by
replacing each path in P' with its corresponding edge in the distance network for S.
(See Figure 11.1 2b.) Observe that T' is a spanning tree in the distañce network for
S, hence, ITAI Ç IT'I Therefore, ITAI Ç (2-2/k)IT5I

'Since 7'D is no worse than TA, the above lemma implies l'bl (2 2/k)ITsl.

o
ii,

(b)

10

lo

.539

2

Figure 11.12: Illustrating the proQf of Lemma 11.6: (a) The.Steiner tree, Ts,4 with
the vertices in g highlighted and the walk W partitioned into k = 12 paths.' 'The
highest-cost path is shown dashed. (b) The tree T' In thç distance network.
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Analysis

In àddition to producing a good approximation to the. Steiner tree the distance n

work algorithm also is easy to implement in a network setting. The distance nj
work itself is implicitly represented by the distanee vectors that could, be stored

each router in the network (aer either the lrnk-state or distance-vector algoritIij)I

Thus, if each router knows which routers belong to the group g, then there is no
ditional computation needed to form the distance network G' Finding a imnim
spanning tree in G', then, can be done using the distributed minimum spaimjj
tree algorithm described above in, Section 11.2.4, where rather than having nodÇ
examine just their adjacent connections in a single round, we have each node iij
consider all possible shortest paths to other nodes in S. But:'if each node stores
distance vector to all other nodes in the network, we do not need to query othe
nodes to determine the distance to those other nodes. We only need to determtne
in each round for each node x in S, the shortest path to another node in 'S that is no

in the same connected component as x. We can do this by having x send message

in G to the other nodes in S, ordered by their distance, asking that other node j

it is in the same connected component as x That is, each step of the disthbuaj
algorithm can be performed by routing mesÑages in G. Since each such messagá
will require at most D hops, where D is the diameter of G, this implies that we cai
find TA using at most O(k2D) messages. If we wish to additionally compute thè

tree 7"D then' we must perform an additional MST algorithm in G itself,, which cali

be done using O(nlogn + in) messages. Thus, this approximation algorithm to thê
Steiner tree problem has an efficient message complexity.

Still, this algorithm is only suited for groups that are fairly stable over tim,
since any modification 'to a group requires that we build a new multicast tree for
that tree from scratch. Note, therefore, that each of the multicast algorithms wé
discuss has some drawbacks; Indeed, theré is still considerable algorithmic work

that can be done to come up with ñew more-efficient multicast routing algorithms.
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Reinforcement

R- 11.1 Draw a picture that illustrates the messages sent in each round of the synchronous

algorithm for electing a leader in a 1Onode ring.

R-i 1.2 Draw a picture that illustrates the messages sent in each round ofthe synchronous

algorithm for electing a leader in a 10-node tree. Design thi processing so that
two nodes "tie" for leader

R-11. .3 Draw a-figure that illustrates how the synchronous BFS algorithm works. Your

figure should result in a BFS tree with atleast five levels.

R- 11.4 Draw a figure that illustrates how the asynchrqnous BFS algorithm works. Your

figure should result in a BFS tree with at least three levels and should show both

the pulse-down and pulse-up actions.

R-1 1.5 Draw a computer netwòrk that causes the synchronous distributed minImum

spanning tree derived from Barûvka's algorithm to run for four rounds. Show
the edge choices made in each round.

R- 11.6 Give a pseudo-code description of the algorithm that a computer performs to

róute a flooding message that uses a hop counter

R-1 1.7 Give a pseudo-code description of the algorithm that a computer performs to

route a flooding message that uses a sequence number.

R- 11.8 Give a pseudo-code description of the algorithm that a computer performs to

route a unicast message after it has already performed the setup for the link state

or distance veetbr algorithm.

R- i 1.9 Draw a figure that illustrates how the distance vector works in a network of at

least 10 nodes. Your illustration should show a computation that takes at least

three rounds to stabilize.

R-11.10 Exactly how many messages are sent to perform the link state setup algorithm in

a network of 10 nodes and 20 edges, assuming each node already knows the state

of its incident edges? -

R-11.11 Draw a figure that illustrates three prune operations in the reverse-path forward-

ing multicasting algorithm. -

R-11.12 Draw a figure that shows that the center-based trees approach to multicast routing

can use twice as rnàny edges as the Steiner tree approach. -

R-1113 Draw a figure that shows that the reverse-path forwarding approach to multicast

routing can use more than the Steiner tree approach. -

Exercises 541
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Creativity L,
C-1 1.1 Extend the leader election algorithm to the case where. the network is an

rected cycle and messages can be passed in either direction.

Hint: View an undirected cycle as the union of two directed cycles.

C- 11.2. Consider the problem of electing a leader processor in a ring of n 4 processo
each of which has a unique id. Assuming that all the processors know the val'
of n, design a synchronous randomized algorithm whose expected running
is 0(n) and whose expected message complexity.is also 0(n).

Hint: Use the fact that that if each of n 4 processors independently decid
to send a message with probability 4/n, then the expected number of proces
that send messages is 4 and the probability that no processor sends a message
lessthanl/2.

C-11 .3 Consider the problem of electing a leader processor in a ring of n proceso
each of which has a unique id. Design a synchronous deterministic algori
whose running time and message complexity is-0(nlogn). -

Hint: Consider an algorithm with logn phases, where you have each proc
who, in phase i, thinks it might be the leader, send out a "probe" message in
direction that goes 2' hops and comes back if it finds no processor with lowè
value.

C-1 1.4 Design an asynchronous breadth-first search (BFJ algorithm for a network
n vertices and m edges that has a total message còmplexity that is 0(nh ±1
where his the height of the BFS tree.
Hint: Extend the "pulse-down" and "pulse-up" messages so that the root s
know the exact round in which the BFS tree is completely constructed

C- 11.5 Suppose a connected network G contains no cycles; that is, G is a (free)
Describe a way to number the nodes in G so that any node x stores only O
information, but we can route a message from a computer yto a computer z in
without any detours.

C- 11.6 Describe a synchronous distributed algorithm for finding a minimum sp
tree in a weighted network of n vertices and m edges having a message comp
ity that is 0(m+nlogn)..'

t

Hint: Consider that advantage that comes from first sorting the edges inciden

each vertex. ..
I

C-11 .7 Describe an asynchronous distributed algorithm for finding a minimum sp
tree in a weighted network of n vertices and m edges having a message comp
ity that is 0(mlogn).
Hint: .

Consider using a "pulsing" strategy that counts the rounds the algon
performing.

C-1 1.8 Describe a modification to the distributed minimùm spanning free algori
scribed in class so thät we do not need to assume that the weights of the

are unique. ..

Hint Descnbe a local tie-breaking rule so that under this rule the
*

spanning tree is unique.
e
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C-1 1.9 Consider a passive dynamic version of the flooding algorithm using sequence
numbers that is resilient against network partitions occurring while the algorithm
is running. The main idea of thi approach is to have each router that initiates a
flooding broadcast to store old messages for a sufficient amount of time longer
than any anticipated network failure Each router still stores the latest sequence
number for a flooding message coming from each other router But now if a
router x receives a flooding message y with a sequence number z more than i
greater than x's previously recorded sequence number j from y, then x initiates
a reply flooding message that requests that y resend its messages j + i through.
i - 1. Show how accommodatiñg for this "fix" could result in infinitely looping
flooding messages.

C-11.10 Consider a version of the flooding algOrithm using sequence numbers or hop
counters, where each time a roUter x is unable to forward a message M onto
an adjacent router y (for example, because the connectiOn (x,y) is down), then x
buffers the message in a queue. Your algorithm should work in a dynamic setting,
where communication links can fail and be restored. Design your protocol so that
when a link (x,y) is restored, x sends to y all the messages that had previously
been queued up on this connection. Show how this allows for flooding messages
to be sent robustly even in the presence of temporary network partitions. How
much additiónal space is needed to implement this solution? How should this
algorithm be modified to allow for computers that are permanently disconnected
from the network?

C-11.11 Let G be a network represented as a graph, whose n nodes rçpresent routers and
whose m edgesrepresent connections. Suppose further that G is static (that is,
it doesn't change) and that there is a spanning tree T defined on the nodes of
G. T need pot be a minimum spanning tree, but it includes all the nodes of G
änd, for each node y of G, y stores its neighbors in G and it also knows which of
these are also neighbors in7]". Describe how to utilize the tree T to improve the
message complexity for performing the link-state shortest path setup algorithm
(which builds: the routing tables for shortest-path routing). What is the message
complexity of this revised algorithm?

C-11.12 Suppose that a routing algorithm, such as link state or distance vector, has corn-
pleted its setup phase on a stable network (with no link changes). That is, each
router i stores a vector D, such that D[j] stores the distance from router i to router
j, together with the name of the next hop on the pãthto j. Design an efficient al-
gorithm that allows all the routers to verify that all their routing tables arecorrect.
What is the message complexity of this algonthm9

C-1 1.13 Suppose that we are implementing multicasting using the çenter-based tree ap-
proach, so each member of the multicast group dynamically enters the group by
sending a join message toward the root of the tree, and the path this message
traverses forms a new path in the center-based tree (joimng up at some previous
node of the center-based tree) Members leave the tree in a similar, but reversed,
maimer Describe how to modify the join algorithm, so that each time some
router x wants to join the group it is automatically connected to the node in the
center-based tree that is closest to x (note that this node might not actually be a

member of the group).
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C-Il .1.4 Show how to extend your solution to the previous problem so that rath& tiia
finding the closest tree node to a new router x it instead finds the closest groij
member to x. This node is an ideal candidate for an anycast request; Whic
requests that any member of a certain group respond to a certain query.

C-11.1.5 Suppose we use digital signatures in the standard flooding algorithm (using sY
quence numbers), so that each router wanting to send a flooding message nius
sign that message During transmission, if any router receives a packet that
not correctly signed by itS source router, then this packet is discarded. Su&
this algorithm allòws a sourCe x to sign two different flooding messages
the same sequence number and send those out to. different neighbors at the saij
time. Describe an algorithm for detecting if such a problem occurs, assuming tht
the network is biconnected and x is the only "bad" routet What is the messagw
complexity of your algonthm?

Projects
P-li. 1 Use a network access protocol, like "ping " or "HTTP" to collect the followinj

statistics on fout hosts on the Internet that are physically on four different cont1:
nents on the earth (that is, four of the following: North America, South ArnericÇ
Europe, Asia, Africa, Australia, Antarctica):

The minimum, average, standard deviation, aiid maximum round-trip trníe!
taken over 50 consecUtive packet requests (all within afew seconds of eacÍbj
other). Plot your data as a scatter plot, with x-axis representing each round-1
trip and the y-axisrepresenting round-trip time.

.

The average round-trip time, taken over 10 consecutive packet requests (a1141

within a .few seconds of each other), but repeated at least every 4 hours1
over at least 2 days. Ideally, you should repeat your experiment of 10 prngs
every hour for 5 days (using a background process). Plot your data withi
time-of-day as the x-axis, and round-trip time as the y-axis, and overlay tth
statistics from all four hosts as line plots on the same graph.

P-lI 2 Do an experimental companson of the approximation algorithm for the SteinrL3
tree multicasting approach with the center-based trees approach. Is the
usage significantly better for one of these approaches? If so, under what assumj4
tions about the distributiòn of join requests? L'I

Chapter Notes
The reader interested in further study in distributed algorithms is referred to the excelleS
books by Lynch [137], Peleg [166], and Tel [202] The reader interested in further readitâ

on computer networks and protocols is referred to the books by Comer [52], Huitema [105];

and indTanenbaum [196] The distnbuted implementation of Barûvka's algorithm is duet
Galleger et al [74] A simple way to implement it in an asynchronous network is due O

Awerbuch [18].
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We live in a multi-dimensional geometric workL Physical space itself is t
dimensional, foE we áan ue three coordinates, x, y, and z, to describe Points
space. Completely describing the orientation of the tip of a robot arm actuall
requires six dimensions, for we use three dimensions to describe the position of the
lip in space, plus three more dimensions to descnbe the angles the lip is in (whic
are typically called pitch, roll, and yaw). Describing the state of an airplane in fig
takes at least ninedimensions, for we need six to describe itsorieñtation m'the san.j
manner as for the tip of a robot arm, and we need three more to describe, the plane'
velocity. In fact, these physical representations am considered "low-dimensiona
particularly in applications in machine learning or computational biology, whem
loo- and 1000-dimensional spaces are not unusual This chapter is directed a
computatiohal geometry, which studies. data' structures änd algorithms for dealing
with geometric data, such as points, lines, and polygons. ,

There are actually a 'great number of different data structures and algorithn
for processing multi-dimensional geometric data, and it is beyond the scope of thè
chapter to discuss all of them. Instead, we provide an introduction to some of th
more interesting ones in this chapter. We begin with a discussion of range free,
which can store multi-dimensional points so as to, support a special kind of searc1i
operation, called a range-searching query, and we also include an interesting van-a

À

ant of the range tree 'called the priority search tree. Finally, we discuss a class of
data strUctures, called partition frees, which partition space into cells, and focus on2
yariants known as quàdfrees and k-d freés. 1;

We follow this discUssion by introducing a general-purpose algorithmic designt
pattern, called the plane-sweep techniquç, which is particularly useful for solv-
ing two-dimensional geometric probIenis We illustrate the applicability of this-'
technique by showing liS it can b used to solve two-dimensional computational
geometry problérns, by réducing them to a series of one-dimensional problemsi
Specifically, we apply the plane-sweep technique to the cOmputation of the mter-
sections of a set of orthogonal line segments and to the identification of a pair of
points with minimum distance from.a set of points. The plane-sweep technique can
be used for many additional problems, sOme of which we explore in exercises att
the end of this chapter. ' ' '

We conclude this chapter by studying a problem that has applications incomi
puter graphics, statistics, 'geographic information systems, rohotics, and computefl
vision. In this problem, ktown as the convex hull problem, we are interested ip
finding the smallest convex set that contains a given set of points. Constrùcting
such a set-allows us to define the "boundary" of a set of points; hence, this probleiìÇ
also raises some interesting issues about how to represent geometric objects and.
perform geometric tests. t;
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12.1 Range Trees

Mltidimensional data arise in a variety of applications, including statistics and
robotics. The simplest type of multidimensional data are d-dimensional points,
which can be represented by a sequence (xo,xi,... , x.j_1) of numerk coordinates.
In business applications, a d-dimensional point may represent the various attributesf a product or an employee in a database. For example, televisions in an elec-
tronics catalog would probably have different attribute values for price, screen size,
weight, height, width, and depth. Multidimensional data can also come from scien
tific applications, where each point represents attributes of individuai experiments
or observations. For example, heavenly objects in an astronomy sky survey would
probably have different ttribute values for brightness (or apparent mgnitude), di-
ameter, distance, and position in the sky (which is itself two-dimensional).

A natural qúery operation to perform on a set of multi-dimensional points'is a
range-search query, which is a request to retheve all points in a multi-dimensional
co1lection whose cóordinates fall .within given ranges. For example, a consumer
wishing to buy a new televisjon may request, from an electronic store's catalog, all
Units' that have a screensize bétween 24 and 27 inches, añd have a price between
$200 and $400. Alternately, an astronomer interested in studying asteroids may
request all heaveñly objects that are at a distance between 1.5 and 10 astronomical
units, have an apparent magnitude between ± i and + 15, and have a diameter be-
tween 0.5 and. 1,000 kilometers. The range tree data structure, which we discuss in
this section, can be used to answer such queries.

Two-Dimensional Rang&Search Queries

To keep the discussion simple, let us focus on two-dimensional range-searching
queries. Exercise C-12,6 addresses how the corresponding two-dimensional range
tree data structure can be extended to higher dimensions. A two-dimensional dic-
tionary is an ADT for 'storing key-element items suòh that the key is a pair (x, y) of
numbers, called the coordinates of the element. A two-dimensional dictionary D
supports the following fundamental.query operation:

finclAlltnRange(xi ,x2,yI ,y2): Return all the elements of D with coordinates (x,y)
suchthatx1 xx2andyi yY2.

Operation findAllinRange is the reporting version of the range-searching query,
because it asks for all the items satisfying the range constraints. There is also
a counting version of the range query, in which we are simply. interested in the
number of itéms in that range. We present data. structures for realiziùg a two-
dimensional dibtioñary in the remainder of this section.

1?ange Thees 549
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12.1.1 One-Dimensional Range Searching s

Before we proceed to two-dimensional searching, we make a slight digress
study one-dimensional range searehing, where, given an ordered dictionary O

want to perform the following query operation:

findAllinRange(kl,k2): Return allthe elements in dictionary D with key kgu
thatkikk2..

Let us discuss how we can use a binary search tree T representing thctiod
D (see Chapter 3) to perform quçry findAlllnRange(kl,k2). We use a recu

method lDTreeRangeSearch that takes as arguments the range parameters k1
k2 and a node y in T. If node y is external, we are done. If node V is internal,
have three cases, depending on the value of key(v), the key of the item store(f

nodev:

key(v) <k1: We redurse on the right child of y.
k1 key(v) <k2 We report element(v) and recurse on both children of y.
key(y) > k2: We recürse on the left chil4 of y.

j
We describe this search procedure in Algorithm 12 1 (lDTreeRangeSearch) j
illustrate it in Figure 12 2 We perform operation ft ndAl lin Ra nge(ki , k2) by calling

i DTreeRa ngeSea rch (ki , k2, T. rootO). Intuitively, method i DTreeRa ngeSearch1

a modification of the standard binary-tree search method (Algonthm 3 5), a1lowid4

search for "both" keys ki and k2.

Algorithm i DTreeRá ngeSearch (ki , k2, v):

Input: Search keys k1 an. k2, and a node y of a. binary search tree T
Output: The elements stored in the subtree of T rooted at y, whose keys ar6

greater than or equal to k1 and less than or equal to k2

if T.isExternal(v) then
return 0

if k1key(vk2 then
L - iDTreeRangeSearch (k1, k2, T.leftChild(v))
R - iDTreeRangeSearch (k1, k2, T.rightChiid(v))
return LU {element(v)}UR

else if key(v) <k1 then
return lDTreeRa ngeSearch (ki , k2, T.rightChild(v))

else if k2 < key(v) then
return lDTreeRa ngeSèarch (k1, k2, T. leftChiId (y))

Algorithm 12.1: Recursive method for one-dimensional range search in a bit'
search tree.. .
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Figure 12.2: Oné-dimensional range search using a binary search tree for k1 = 30

and k2 = 80 Paths P1 and P2 of boundary nodes are drawn with thick lines The

boundary nodes storing items with key outside the interval [ki , k2] are drawn with

dashed lines. There are ten inside nodes.

Performance

We now analyze the ruñning time of algorithm lDTreeRangeSearch. In our analy-

sis, we assume, fòr simplicity, that T does not contain items with key k1 or k2. The

extension of the analysis to the general case is left as an exercise.

Let Pi the search path traversed when performing a search in tree T for key, k1.

Path Pi starts at the rot of T and ends at an external node of T. Define a path P2

similarly with respect to k2. We ideñtify each node y of T as belonging to one, of

following three groups (see Figure 12.2):

Node v is a boundaty node if y belongs t P or 2; a boundary node stores

an item whose key my be inside or outside the interval [k1 , k2].

Node y is an inside node if v is not a boundary node and y belongs to a

subtree rooted at a right child of a node of P1 or at a left child of a node of' P2;

an internal inside nède stores! añ item whose key is inside the interval [ki , k2]

Node y is. an outside node ifv is not a boundary nodè and i' belongs to a sub-

tree rooted at. a left child of a node of Pi or at a right child of a node of P2; an

internal outside node stores' S itém whose key is outside the interval :'[k1 , k2].
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Consider the execution of algorithm i DTreeRa ngeSea rch (k1, k2, r), whe
the root Of T. We traverse a path of boundary nOdes, calling the algoritj
sively either on the left or on the right child, until we reach either an exte
or an internal node w (which may be the root) with key in the range [k1, k2}
first case (we reach an external node), the algorithm terminates returning the e
set. In the second case, the execution continues by calling .the algorithmrecuiji
at both of w's children. We know that node w is the bottommost node conmio
paths P1 and P2 For each boundary node. y visited from this point on, wej
make a single call at a child of y, which is also a boundary node, or wè make at
at one child of y that is a boundary node and the other cWld.that is an inside 1Ç
Once we visit an iñside node, we will visit all of its (inside node) descendents4

Since we spend a constant amount of work per node visited by the aigorj
the running time of the algorithm is proportional to the number of nodes Visi
We count the nodes visited as follows:

s We visit no outside nodes.
We visit at most 2h + i boundary nodes, where h is the height of T, sin
boundary nOdes are on the search paths Pi and P2 and they share at least o
node (the root of T).
Each time we visit an inside node y, we also visit the entire subtree Tf

/ T rooted at y and we add all the elements. stored at. internal todes of T j
the reported set. If T holds s items, then it has 2s,,, + i nodes. The msi t
nodes can be partitioned into .fdisj oint subtrees T1,. .. , 7) rooted at childié
of boundary nodes, where j < 2h. Denoting. with s the number of itéjí.
stored in tree 7 , we have that the total number of inside nodes visited is '

j
(2s1+1)=2s+j<2s+2h.

¡=1 .

Therefore, at most 2s + 4h + i nodes of T are visited and operation fi ndAi lin Rarg
runs in O(h + s) time. If we wish to minimize h in the worst case, we shouldt
choose. T to be a balanced binary search tree, such as an AVL tree (Section
or a red-black tree (Section 3.3.3), so that h is O(logn). Moreover, by using af;
balanced binary search tree, we can additionally perform operations insertiten' and
removeElement in O(logn) time each. We summarize:

Theorem 12.1: A balanced binary search tree supports ¿nc-dimensional rangé
searching in an ordered dictionary with n items:

The space used is 0(n).
Operation findAllinRange takes 0(logn+s) time, where sis the number of
elements reported.
Operations insertitem and removeEement each take 0(logn) time.
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12.1.2 Two-DimensionaiRange Searching

The two-dimensional range tree (Figure 12.3) is a data structure realizing the two-
dimensional dictionary ADT. It consists of a primary structure, which is a balanced
binary search tree T, together with a number of auxiliary structures. Specifically, as
we describe below, each internal node in the primary structure T stores a reference
to a related auxiliary structure. The function of the primary structure, T, is to
suppòrt searching based on x-coordinates. To also support searching in terms of
the y-coordinates, we use a collection of auxiliary data structures, each of which
is a one-dimensional range tree that usös y-coordinates as its keys. The primary
structure df T is a balanced binary search tree built using the x-coordinates of the
items as the keys.. An internal node y of T stores the following data:

An item, whose coordinates are denoted by x(v) and y(v), and whose element

is denoted by element(v).
A one-dimensional range tree T(v) that stores the Ñame set of items as the
subtree rooted at y in T (including y), but using the y-coordinates as keys.

Figure 12.3: A set of items with two-dimensional keys represent$ by a two-
dimensional.rangç tre, and a range search. on it. The primary struöture T is shown.

The nodes of T visited, by the search algorithm are drawn with thick lines. The
boundary nodes are white-filled, and the allocation nodes are grey-filled. Point a,
stored at boundary node u, is outside the search range The grey vertical strips cover

the points stored at the auxiliary structures of the allocation nodes For example,
the auxiliary. structure of node y stores points b, c, d, and e.
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Lemma 12.2: A two-dimensional range tree storing n items uses -Ò(n1og
L

and can be constructed in 0(nlogn) time.

Proof: The primary structure uses 0(n) space. There are n- secondary stn
The size of an auxiliary structure is proportional to the number of items stor
An item stored at node y of the pnmary structure T is also stored at each a
structureT(u) suéh that u is an ancestor of y. Since trèe T is balanced, node
0(logn) ancestors. Hence, there are 0(logn) copies of .the item in the a
structures; Thus, the total space used is 0(nlogn). The construction algori.
left as an exercise (C-12.2).

The algorithm for operation fi ndAl lin Range(xi , X2 ,yi , y2) begins by perfo
what is essentially a one-dimensiOnal range search on the primary structure
the range [xl ,x2}. Namely, we ttaverse down tree T in search of inside ji
We make one important modification, however: when we reach an inside node
instead of recursively visiting the subtree rooted at y, we perform a one-drmensi
range search for -the interval [y ,y2J in the: auxiliary s4tcture of y. (LI

We call allocation nodes the inside nodes of T that are children of boun
nodes. The algorithm visits the boundary nodes and the allocation nodes of T, iç
nt the other inside nodes. Each boundary node y is classified by the algorithinfr.
a left node, níiddle node, or right Aòde A middle node is in the: intersecfion4,
the search paths P1 for xi and. P2 for x2. A left node is in Pi but not in P2. A rigij%
node is in P2 but not in Pi. At each allocation node y, the algorithm executes a qnç

dimensional range search on the aúxiliary structure 1(v) for the y-range [yj Y2].
We give the details of this method in Algorithm 12.4 (see also Figure 12.3).

L

Theorem 12.3: A two-dimensional rang tree T for a set of n items with two-
dimensional keys uses 0(nlogn) space and can be constructed in 0(nlogn) time.
Using T, a two-dimensional range-search qùery takes time 0(log2n + s), wheres

is the number of eleménts reported. -,

Proof: The space requirement and construction time follow from Lemma 12.2.
We nöw analyze the running tithe of a rànge-search query performed with Algq- L

rithm 12.4 (2DTreeRangeSearch-). We account for the time spent at each boundary
node and allocation node of the primary structure T. - The algorithm spends a con-
stant amount of ti, e at -each boundary- node.- Since- there are Q(logn) boundary
nodes, the overall time spent at the boundary nodes is O(logn). For each allocation
node y, the algorithm spends O(logñ + s) time doing -a one-dimensional range
search in auxiliary structure T(v),: where n is the number of items stored in T(v)
and s is the number of elements returned by the- range search in T(v). Denoting
with A the set of allocation nodes, - we have that the total time spent at the alloca-
tion nodes is proportional to L (log n + sr). Sinée JA I is - 0(log n), n n and

>.veA <s, we have that the overalltime spentat the allocation nodesis 0(log2n+s).
We conölude that a twO-dimensional range search takes 0(log2-n ± s) time. I
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Algorithm 2DTreeRa ngeSearch (xi, x2, yl ,Y2, y, t) :

Input: Search keys x, x2, Yi and y2; node y in the primary structure T of a

twodimen5ional range tree; type t of node y

Output: The items in the subtree rooted at y whose coordinates are in the x-

range [xi ;X2} and in the y-range [yi ,y21

if .T.isExternal(V) then

return0
ifxi <x(') <x2then

if y1<y(v)<y2 then
Mt {eiement(V)}

elsè
Mt--ø

if t = "left".then
L - DTreeRangeSearCh (xl,x2,Y1 ,y2, T.IeftChild(V) ,"left")

R e- TreeRangéSearCh1 (yi ,Y2, T.rightChiìd(V))

else if t = "right" then
L t- jTreeRangeSearCh (yi ,Y2, T.leftChild(V))

R - TreeRangeSearch (xi ,x2,yi ,Y2, T.rightChild(V), "right")

else
{ t = "middle }
L t- TreeRangeSearCh (xi ,x,yi ,Y2, T.ieftChild(V) ,"left")

R t- TreeRangeSearCh (xi ,x,yi ,y2, T.rightChild(V),"ñghlt")

elseM-0.
if x(v5 <xi then

LtO
R t- TreRangeSearCI1 (Xi ,x2,yi ,y2, T.rightChild(V) , t)

else
{x(v)>x2}
L t-
R+-1b

return LUMUR

Algorithm 12.4: Recursive method for twodimenSional range search

in a two-dimensional range tree. The initial method call is

2DTreeRa ngeSearch (xt ,X2 ,yi , y2, T.rootQ ,"middle"). The algorithm is called

recursively on all theboundarY nodes with respect to the x-range [xi ,Xz]. Parameter

t indicates whether y is a left, middle, or nght boundary node

555
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Figure 12.5: A set S of items with two-dimensional lceys and a priority search

for S Each internal node y of T is drawn as a circle around point p(v) The

x-coordinate 1(v) is represented by a dashed line below node y that separa

items stored in the left subtree of y from those stored in the right subtrec..

In this section, we present -the priority search free structure, which can answ-

three-sided range queries on a set S of items with two-dimensional keys:

fjAttInRaflge(Xi,X2i): Return all the items of S with coordinates (x,y)

thatxlxX2andYiY*
L

Geometrically, this query asks us to return ali points betweentwo vertical

(x = xi and x - x2) and above a horizontal line (y = yi). - - -

A priority search tree for set S is a binary tree storing the items of S that beh

like a binary search tree with respect to the x-coordinates, and like a heap W 1h

respect to the y-coordinates For simplicity, let us assume that all the items o

have distinct x and y-coordinates [f set S is empty, T consists of a smgle extet

node Otherwise, let p be the topmost item of of S, that is, the item with

maximum y-coordmate We denote with 1 the median x-coordinate of the item\

S - {p}, and with 5L and 5R the subsets of S - {p} with items having x-coor'

less than or equal to I and greater than 1, rèspectively. We recursively definet1

priority search trée T for S as follows: -

The roOt T stores item p and the median x-coordinate 1.

The left subtree of T is a priority search tree for SL

The right subtree of T is a priority search tree for 5R -

For each internal node v-of T, we denote with p(v), 2(i'), and 9(v). the topmost ib'

stored at y and its coordinates Also, we denote with 1(v) the median i-coon i

stored at y. An example of a priority search tree is shown in Figure 12.5.

k-
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12.2.1 Constructing aPriority Search Tree

The y-coordinates of the items stóred at the nodes of a priority search tree T satisfy
the heap-order property (Section 2.4.3). That is, if u is the parent of y, then 7(u)>
7(v). Also, the median x-coordinates stored at the nodes of T define a binary search
tree (Section 3.1.2). These two facts motivaté the term "priority search tree." Let
us therefore explain how to construct a priority search tree from a set S of n two-
dimensional items We begin by sorting S by increasing x-coordinate, and then call
the recursive method build PST(S) shown in Algorithm 12.6.

Algorithm buildPST(S):
Input: A sequence S of n two-dimensional items, sorted by x-coordinate
Output; A priority search tree T for S
Create an elementary binary tree T consisting of single external node y
if !S.isEmpty() then

Traverse sequence S to find the item ß of S with highest y-coordinate
Remove ¡3 from S

ft - S.elemAtRa.nk(IS.sizeO/2])
1(y) x(ß)
Split S into two subsequences, 5L and 5R, where SL contains the items up to
ft (included), and 5R contains the remaining items
TL +- build PST(SL)
TR +- build PST(SR)
T.expandExternal(v)
Replace the left child of y with Ti.
Replace the right child o1 y with TR

return T
Algorithm 12.6 R cursive tonstruction of a priority search tree.

Lemma 12.4: Given a setS of n two-dimensional items, a priority search tree for
S uses 0 (ti) space, has height 0(log n), and cari be built in O (n log n) time

Proof: The 0(n) space requirement follóws from the fact that every internal
node of the pnonty search tree T stores a distinct item of S The height of T
follòws from the halving of the ñumber of nodes at each level. The preliminary
sorting of the items of S by x-coordinate can be done in 0(nlogn) time using an
asymptotically optimal sortiñg algorithm, such as heapS sort or mçrge sort. The

running time T(n) of method buiIdPST (Algorithm 12.6) is cháractçrized by the
recurrence, T(n) = 2T(n/2) + bn, for some constant b > O Therore, by the
Master Theorem (5.6), T(n) is 0(nlògn) 1
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12.2.2 Searching in ä Priority Search Tree

We now show how to perform a three-sided range query findAIIInRange(x,,

on a priority search tree T. We traverse down T in a fashion similar to that of

dimensional range-search for the range [xi ,x21. One important difference, ho

is that we only continue searching in the subtree of a node y if y(v) ;
give the details of the algorithm for three-sided range searching in Algorith,J4

(PSTSearch) and we illustrate the execution of the algorithm, in Figure 128,

Algorithm PSTsearch (xi ,X2 , y,, y):

Input: Three-sided range, defined by xi, x2, and yi and a node y of a pri

search tree T
Output: 'The items stored in the subtree rooted at vwith coordinates (x,yj

that xl <X X2 and Yi

if 55(v) <yi then
return. 0

if xlÎ(v)x2 then
{we should outpút /3(y)}

else
M+-0

if x 2(v) then
L - PSTSearch(x,,x2,yi,T.Ieft01@'))

else
L+-0

if (v) <X2 then
fi *- PSTSearch (xi ,x2,yi , T.rightChitd(V))

else
R-0

return LUMUR

Algorithm 12.7: Three-sided range searching in a priority search tree T. The-,

rithmis initially called with PsTsearch(x,,x2,Y1,T.r00t0). J

Note that we have defined three-sided ranges to have a left, right, and bo

side, and to be unbounded at the top. This restriction wasmadé without loss q

erality, however, for we could.have defined ur three-sidedrange. queries usifi

thrèe sides of a rectangle: The priority search tree from such an alternate de

is similar to the one defined above, but "turned on its side?'

Let s analyze the running time of method PSTSearch fòr answering a

sided range-search query on a priority search tree T storing a set of n ite

two-dimensional keys. We denote with the number of items reported. S

spend 0(1) time for each node we visit, the running time of method PSTSeá

proportional to the number of visited nodes.
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Figure 12.8: Three-sided range-seärching in a priority search tree. The nodes visited

are drawli with thick lines. The nodes storing reported items are grey-filled.

Each node y visited by method PSTSearch is classified as follows:

Node y is a boundary node if it is on the search path for xl or x2 when viewing

T as a binary search tree on the median x-coordinate stored at its nodes. The

itèm stored at an internal boundary node may be inside or outside the three-

sided range. By Lemma 12.4, the height of T is O(logn). Thus, there are

0(logn) boundary nodes.
e Node y is an inside node if it is internal, it is not a boundary node, and

y(v) yi. The item stored at an internal node is inside the three-sided range.

The number of inside nodes is no more than the number s of items reported.

Node y is a terminal node if it is not a boundary node and, if internal, y(v) <

yi. The item stored at an internal terminal node is outside the three-sided

range. Each terminal node is the child of a boundary node or of an inside

node. Thus, the ñumber of terminal nodes is at most twice the number of

boundary nodes plus inside nodes. Hence, there are O(logn + s) terminal

nodes.

We conclude that PSTSearch visits O(logn + s) nodes, giving us the following.

Theorem 12.5: A priority search tree T storing n items with two-dimensional

keys uses 0(n) space and can be constructed in O (n log n) time Using T, a thrçe-

sided range queries takes O(logn + s) time, where sis the number of items reported.

Of course, three-sided range queries are not as general as regular (four-sidçd)

range queries, which can be answered in O (log2 n + k) time using the range tree data

structure discussed in the previous section. Still, priority search trees can be used

to speed up the running time of answering standard four-sided, twp-dimensional

range queries The resulting data structure, which is known as the priority range

tree, uses priority search trees as auxiliary structures in a way that achieves the

same space bound as traditional range trees. We discuss this. datà structure next.

2.2.
PrioritY Search Trees 559
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12.2.3 Priority Range Trees

Let T be a balanced binary search tree storing n items Lwith two-dimensional key$
ordered according to their x-coordinates. We show how to augment T with prjo
ity search trees as auxiliary structures to answer (four-sided) range queries. Th
resulting data structure is called a priority range tree.

To convert T into a priority range tree, we visit each internal node y of T odie

than the root and cònstruct, as an auxiliary structure, a priority search tree .T(v
for the items stored in the subtree of T rooted at y. If y is a left àhild, T(v) an
swers range queries for three-side ranges unbounded on the right. If y is a righ
child, T(v) answers range queries for three-side ranges unbounded on the left. B

Lemmas 12.2 and 12.4, a priority range tree uses O(nlog n) space and can be cor
structed in O (n log n) time The method for performing a two dimensional rang

query in a priority range tree is given in Algorithm 12.9 (PsTRangeSearch).

Algorithm PST Ra ngeSearch (xl ,x2, yi , y2,

Input: Search keys xi, x2, Yi and y2; node y in the primary structure T. of
priority range tree

Output: The items jn the subtree rOoted at y whose coordinates are in the.

range [xi ,x2] and in the y-range [yi ,y21

fT.isExternal(v) then
return 0

ifx1 <x(v) <x2then
ifyJy(v)y2 then

M f- {element(v)}
else

M+-0
L t- PsTSearch(xi,yi,y2,T(IeftChild(v)).rOOtO)

R t- PSTSearch(x2,y1,y2,T(rightChild(i')).,rOOtQ)

reiurnLUMUR
else if x(v) <xi then

return PSTRangeSearch (xi ,x2,y1 ,y2, T.rightChild(v))
else I

x2 <.x(v) } -

return PSTRangeSearch (xi ,x2,yl ,y2, T.IeftChild(v))

Algorithm 12.9 Range searching in a priority range tree T. The algorithm is'
tially called with PSTRangeSearch(xi,x2,yl ,Y2, T..rootQ);

Theorem 12 6 A priority range tree T for a set of n items with tWO-dífl]CIlSiÇ?

keys uses O(nlogn) space and can be constructed in O(nlogn) tune Usmg
two-dimensional range-search query takes time O(logn + s), where s is the nul»,

of elements reported.
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12.3 Quadtrees and k-D Trees

Multi-dimensional data sets often come from large applications; hence, we often
desire linear-space structures foE storing them. A general framework for designing
such linear-space structures for d-dimensional data, where the dimensionality d is
assumed to be a fixed constant, isbased on an approach called the partition tree.

A partition free is a rooted tree T that has at most n external nodes, where
n is the number of d-dimensional points in our given set S. Each external node
of a partition tree T stores a different small subset from S. Each internal node
y in a partition tree T corresponds to a region of d-dimensjonal space, which is
then divided into some number c of different cells or regions associated with v's
children. For each region R associated with a child u of y, we requiitè, that all the
points in u's si.thtree fall inside the region R. Ideally, the c different cells for v's
children should easily be distinguished using a constant number of comparisons
and arithmetic balculations.

12.3.1 Quadtrees

The first partition tree data structure we discuss is the quadtree. The main ap-
plication for quadtrees is for sets of points that come from images, where x and
y-coordinãtes are integers, becáuse the data points còme from image pixels.. In
addition; they exhibit their .best properties if the distributions, of poiñts is fairly
nonuniform, with some areas being mostly empty and others being dense.

Suppose we are given a set S of n points in the plane. In addition, let R denote a
square region that contains all the points of S (for example, R could be a bounding
box of a 2048 x 2048 image that produced the set S) The quadtree data structure is
a partiiioñ tree T such that the root r of T is associated with the región R. To get to
the next level in T, we subdivide R into four equal-sized squares R1, R2, R3, and R4,
and we associate each square R, with a potential child of the root r Specifically, we
create a child y, of r, if the square R, contains a point in S If a square R, contains
no points of S, then we create no child of r for it This process of refining R into
the squares R1, P2, R3, 'and Rj is called a split.

The quàdtree T is defined by recursively performinga split at each child y of r
if necessary. That is, each òhild y of r has a square region R associated with it, and
if the region R for y contains . more than one point of S, then we perform a split at
y, subdividing R into four equal-sized squares and repeating the above subdivision
process at y. We continue in this manner, splitting squares that contain more than. /
one point into four subsquares, and recursing on the nonempty. subsquares, until
we have separated all the points of S into individuai squares. We then store each
point p. in S at thç external node of T that corresponds to the smallest square. in
the-subdivision process that contarns p We store at each internal node y a concise
representation of the split that we performed for y

j2.3. Quadtrees and k-D T&ees 561
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Figure 12.10: A quadtree. We illustrate an example point set and its correspÓnding

quadtree data structure. . 1

We illustrate an example point set and an associated quadtree in Figure. 12.10-

Note, however, that, contrary to the illustration, there is potentially no upper bouncP

on the depth of a quadtree, as we have previously defined. For example, our poi4

set S coùld contain two points that are very close t one another, and it may take r

long sequence of splits before we separate these two points. Thus, it is customary1

for quadtree designers to specify some upper bound D onthe depth of T . .Given a..

set S of n points in the plane, we can construct a quadtree T for S so as to spend

0(n) time building each level of T. Thus, in the worst case, constructing such a
r

depth-bounded quadtree takes 0(Dn) time .

Answering Range Queries with a Quadtree

One of the qùeries that quadtrees are often used to answer is range searching. Sup-

pose that we are given a rectangle A aligned with the coordinate axes, and are asked

to use a quadtree T to return all the points in S that are contained in A The method

for answenng this query is quite simple We start with the root r of T, and we

compare the región R for r to A. IfA and R do not intersect at all, then we

donethere are no points in the subtree rooted at r that fall inside A Alternatively, cr

ifA completely contains R, then we simply enumerate all the external node descen-
1

dents of r. These are two simple cases. If instead R and A intersect; but A does not

completely contain R, then we recursively perform this search on each child y, of T:

Performance

In performing such a range-searching query, we can traverse the entire tree T anda

not produce any output in the worst case. Thus, the worst-case running time for per-

forming arange query in a depth D quadtree, with n external nodes is 0(Dn). Fr004

a worst-case point of view, answering a range-searching query with a quadUeei

actually worse than a brute-force search through the set S, which, would take 0(n)

time to añswer a two-dimónsional range query. In practice, however, the quadttJ
typically allows for range-searching queries to be processed faster than this

1. b
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12.3.2 k-D Trees

There is .a drawback to quadtrees, which is that they do not generalize well to
higher dimensions. In particular, each node in a four-dimensional analogue of a
quädtree can have as many as 16 children. Each internal node in a d-dimensional
quadtree can have has many as 2' children. To overcome the out-degree drawback
for storing däta from dimensions higher than three, data structure designers often
öonsider alternative partition tree structures that are binary.

Another kind of partition data structure is the k-d tree, which is siwilar to
quadtree structure, but is binary. The k-d tree data structure is actually a family
Of partition tree data structures, all of which are binary partition trees for storing
multi-dimensional data. Like the quadtree data structure, each node y in a k-d treeis
associated with a rectangular region R, although in the case ofk-d trees this region
is not necessarily square The difference is that, when it comes time to perform a
split operation for a node y in a k-d tree, it is done with a single line that is perpen-
dicular to one of the coordinate axes. For three or higher-dimensional data sets,
this "line" is an axis-aligned hyperplane. Thus, no matter the dimensionality, a k-d
tree is a binary tree, for we resolve a split by assOciating the part of v's region R
to the "left" of the splitting line with v's left child, and associating the part of v's
region R to the "right" of the splitting line with v's right child. As with the quadtree
structure, :we stop performing splits if the number of points in a region falls below
some fixed constant threshold. (See Figure 12.11.)

g

Figure 12.11: An example k-d treé.

There are fundamentally two different kinds of k-d trees, region-based k-d trees
and point-based k-d trees. Region-based k-d trees are essentially binary 'versions of
quadtrees. Each time a rectangular region R needs to be. split in a region-based k-d
tree, the region R is divided exactly in half by a line perpepdicular to the longest
side of R. If there is more than one longest side of R, then they are .slit in a "round
robin" fashion. On .the other hand, point-based k-d trees, perform splits based. on
the distribution of points inside a rectangular region. The k-d tree. of Figure 12.11
is point-based. . . .
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The method for splitting a rectangle R containing a subset S' Ç S in a poi.
based k-d tree. involves two steps. In the first step, we determine the dimension
that has the largest variation in dimension i from among those points in S'.
can be done, Mr exämple,. by finding, for each dimçnsion j, the points in s' wjù
mimmum and maximum dimension j values, and taking i to be the dimension

witht
thé largest gap between thesé two values. In the second step,, we determine th
median dimension i valúe from among all those points in .9', and we split R with t»
liñe going through this median perpendicular to the dimension,i axis. Thus, the split
for R divides the set of points in S' in half, but may not divide thê region R itseff Vena'

evenly. Using a linear-time median-finding method (Section 4.7), this splitting step

can be performed in O (k IS' I) time Therefore, the running time for, building a k-il
tree for a set of n points can be characterized by the following recurrençe equatio'
T(n) = 2T(n/2) + kn, which is O(knlogn). Moreover, since we divide thesize oÉr
the set of points associated with a node in two with each split, the height of T jä
[log n]. Figure 12.11 illustrates a point-based k-d tree built using this algorithm.

The advantage of point-based k-d trees is that they. 'are guaranteed to have nice

depth and construction times. The drawback of pointbased schemes is that thç'
may give rise to "long-and-skinny" rectangular regions, which, are usually consid-
ered bad for' most k-d tree' query methods. In practice, however, such long-and-
skinny regions are rare, and most of the rectangular regions associated with the
nodes of a k-d tree are "boxy?' .

Using k-d Trees for 'Nearest Neighbor Searching

Let us discuss how k-d trees can be used to answer queries In particular, let t

focus on nearest-neighbor seärching, where we are given a query point p and asked

to find the point in S that is closest to p. A good way to use a k-d tree T to answer
such a query is as. follows. We first search down the tree T to locate the external

node y with smallest rectangular region R that contains p. Any points of S that fall

in R or in the region associated with v's sibling are then compared to find a current
closest neighbor, q. We can then define a sphere centered at p and containing q as

a current nearest-neighbor sphere, s. Given this sphere, we then perform a traversal
of. T (with a bottom-up traversal being preferred) to find any regions associated with

external nodes of T that intersect s. If, during this traversal, we find a point closer

than q, then we update the reference q to. refer to this new pOint and we úpdate the i

sphere s to contain this new point. We do not visit any nodes that have regions
flot intersecting s. When we have exhausted all possible alternatives, we output the

current point q as 'the nearest nèighbor of p. In the worst case, this method may
take 0(n) time, but there are many different analytic and experimental analysesthat

suggest that the average running time is more"liike'O(logn), using some reasonable
assumptions 'about the distributiqn of points in S. In addition, there-arta number of

useful heuristics for speeding up this search in practice, with one of the bçst being

the priority searching strategy, 'which says that we should, explore subtrees of T in

order of the distance of their associated regions to p. ' /

http://www.cvisiontech.com


r2.4. Th Plane Sweep. Technique '565

12.4. The Plane Sweep Technique

In this section, we study a technique: that can be applied to many different geometric
problems The main idea is to turn a static two-dimensional problem into a dynamic

one-dimensional problem, which we solve using a sequence of insertion, removal,

and query operations. Rather than present this technique in an abstract setting,

however, we illustrate its ùse on a number of conérete examples..

12.4.1 Orthogonal Segment Intersection

The first problem we solve using the plane-sweep technique is that of finding all

the intersecting pairs among a set of n line segments. Of course, we could apply a

brute-force algorithm to check every pair of segments to see whether they intersect.

Since the number of pairs is n(n - 1) /2, this algorithm takes 0(n2) time, since, we

can test any pair for intersection in constant time. If all the pairs intersect, this

algorithm is optimal. Still, we would like to have a faster method for the case

where the number of intersecting pairs is small or there are no intersections at all.

Spécifically, if s is the number of intersecting paiis, we would like to have an output

sensitive algorithm whose running time depends on both n and s. We shall present

an algorithm that uses the plane-sweep technique and runs in 0(nlog n + s) time

for the case when the input set of segments consists of n orthogonal segments,

meaning that each segment in the set is either horizontal or vertical.

One-DimensiOnal Range Searching Revisited

Before we proceed with our algorithm, we make a slight digression to review a.

problem discussed previously in this chapter.

This probleth is the òne-dimensional range-searching problem, in which we

wish to dynamically maintain a dictionary of numbers (that is, points on a number

line), subject to insertiòns and deletions and queries of the following fonn:

findAltlnRange(ki,k2): Return an enumetation of all the elements in D with key

k,suchthatklkk2.

We show in Section 12.1.1 how we can use any balanced binary search tree, such

as an AVL tree or a red-black tree, to maintain such a dictionary in order to achieve

0(logn) time for point insertion and removal, and 0(logn + s) time for answering

findAllinRange queries, where n is the number of points in the dictionary at the time

and s is the number of returned points in the range We will not make use of the

details of this algòrithm, only its existence, so a reader who skipped Section 12.1.1

èan safely take this result on faith and not have, to worry about how it is achieved.
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A Collection of Range-Searching Problems

Let us return to the problem at hand, which is to compute all iniersecting pahj
segments from a collection of n horizontal and vertical segments The mam ideao
the algonthm for solving this problem is to reduce this two-dimensional prob1e
to a collection of one-dimensional range-searching problems Namely, for ea
vertical segment y, we consider the vertical line 1(v) through y, and plunge mto tj
"one-dimensional world" of line 1(v) (See Figure 12 13a and b) Only the ver
tical segment y and the intersections of horizontal segments with 1(v) exist in tins
world In particular, segment y corresponds to an interval of 1(v), a horizontal seg;
ment h intersecting 1(v) corresponds to a point on 1(v), and the horizontal segment
crossing y correspond to the points on 1(v) contained in the interval.

Thus, if we are given the set S(v) of honzontal segments intersecting line ¡(y)
then determimng those that intersect segment y is equivalent to pçrfonmng a range
search in S(v) using the y coordinates of the segments as keys and the intervthl given
by the y-coordinates òf the endpoints ofsegment y as the selection range.

The Plane-Sweep Segment Intersection Algorithm. I
Suppose we are given a set of n horizontal and vertical segments in the plane.
will determine all..pairs of intersecting segments in this set by using the plane sweep
technique and the collective approàch suggested by the above idea. This algorithm
involves simulating the sweeping of à vertical line i, over the segments, moving
from left to right, starting at a location to the left of all the input segments During
the sweep, the set of hOrizontal segments currently intersected by. the sweep line is
maintained by means of insertions into and removals from a dictionary ordered by
y-coordinate. When the sweep encounters a. vertical segment y, a rangç query on
the dictionary is performed to find the horizontal segments intersecting y.

Specifically, during the sweep, we marntain an ordered dictionary S storing
horizontal segments with their keys given by their y-coordinates The sweep pauses
at certain events that trigger the actions shown in Table 12 12 and illustrated w
Figure 12 13

Table 12.12 Events triggering actions in the plane-sweep algorithm for orthogonaL
segment intersection.

Eveút Action
left endpoint of a
horizOntal segment h

insert h into dictionary S
. . .

right endpoint of a
horizontal segment h

remove h from dictionary S
.

vertical segment y perform a range search on S with selection range
given by the y-coordmates of the endpoints of y
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Figure 12.13: Plane sweep for orthogonal segment intersection: (a) a .set of. hor-

izontal and vertical segments, (b) the collection of one-dimensional range-search

problems, (c) beginmngof the plane sweep (the ordered dictionary S of honzäntal

segments is empty), (d) the first (left-endpoint) event, causing an insertion into S,

(e) the second (left-endpoint) event, causmg another insertion into S, (f) the third

(left-endpoint) event, causing yet another insertion into S, (g) the first vertical-

segment event, causing a range search in S (two intersections reported), (h) the

next (left-endpoint) event, causing an insertion into S, (i) a left-endpoint event three

evénts later, cau&ing an insertion into S. . ... .
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Performance

To analyze the running time of this plane-sweep algorithm, first note that we nij
identify all the events and sort them' by x-coordinate. An.event is either an endpoj
of a honzontal segment or a vertical segment Hence, the number of events jjat most 2n. When sorting the events, we compare them by x-coordinate,

wiúéh.takes 0(1) lime Using one of the asymptotically optimal sorting algonthm5
suchas heap-sort (Section 2,4.4) or merge-sort (Section 4.1), we càn order the eventin 0(nlog n) time. The operations performed on the dictionary S are thseniofl5 -

removals, and range searches. Each time an operation is executed, the. size of S is
at most 2n. We implement S as an AVL tree (Section 3.2), or as a red-black tr
(Section 3.3.3), so that insertions añd deletions each take 0(logn) time. As we
have reviewed above (and seen in Section 12.1.1), range searching in an n-element r

ordered dictionary can be performed in O(logn + s) time, using 0(n) space, where
s is the number of items reported. Let us characterize, then, the running time of a
range search triggered by a vertical segment y as O(log n + s(v)), where s(v) is the
number of horizontal segments currently in the dictionary S that intersect y. Thus,
indicating the set of vertical segments with V, the running timé of the sweep is

O 2nlognj- (logn+s(v))
vEli

Since the sweep goes through all the segments, the sum of s(v), over all the ver-
tical segments encountered is equal to the total number s of intersecting pairs of
segments. Hence, we conclude that the sweep takes time 0(nlogn + s).

In summary, the complete segment intersection algorithm, outlined above, con-
sists of the event sorting step followed by the sweep step. Sorting the events takes
O(nlogn) time, while sweeping takes 0(nlogn + s) time Thus, the running lime
of the algorithm is 0(nlogn±s).

12.4.2 Finding a Closest Pair of Points

Another geometric problem that can be solved using the plane sweep technique
involves the concept of proximity, which is the relationship of distance that exists
between geometric objects. Specifically, we focus on the closest pair problem,
which consists of finding a pair of points p and q that are at a minimum distance
from each other in a set of n points This pair is said to be a closest pair. We will
use the Eucidean definition of the distance bétween two points a and b:

dist(,b) = i/(x(a) .-x(b))2+ (y(a)y(b2,
where x(p) and y(p) respectively denote the x- and y-coordinates of the point p
Applications of the closest pair problem include theverification of mechanical parts
and integrated circuits, where it is important that certain separation rules bétween
components be respected.
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A Plane-Sweep Algorithm

A straightforward "brute-force" algorithm for solving the closest pair problem is to
compute the distance between every pair of pointsand select a pair with mimmum
distance Since the number of pairs is n(n - 1)/2, this algonthm takes 0(n2) time
We can apply a more clever strategy, however, which avoids checking all the pairs
of points

It turns out that we can effectively apply the plane-sweep technique to the clos-
est pair problem We solve the closest pair problem, in this case, by imagimng that
we sweep the plane by a vertical line from left to nght, starting at a position to the
left of all n of the input points As we sweep the line across the plane, we keep
track of the closest pair seen so far, and of all those points that are "near" the sweep
line. We also keep track of the distance, d, between the closest pair seen so far. In
particular, as we illustrate in Figure 12.14, while sweeping through the points from
left to right, we maintain the following data:

A closest pair (a, b) among the points encountered, and the distance ci =
dist(a,b)
Añ ordered dictionary S that stores the points lying jn a sthp of width d to
the left of the sweep line and uses the y-coordinates of points as keys.

Each iñput point p corresponds to an event in this plane sweep. When the sweep
line encounters a point p, we perform the following actions:

We update dictionary S by removing the points at horizontal distance greater
than d from p, that is, each point r such that x(p)x(r) > d.
We find the ciòsest point q to the left of p by searching in dictionary S (we
will say in a moment how this is done). If dist(p,q) <d, then we update the
current closèst pair and distance by setting a - p, b t- q, and d t- dist(p, q).

WeinsertpintoS.

Clearly, we can restrict our search of the closest point q to the left of p to the
points in dictionary S, since all other points will have distance greater than d. What

we want are those points in S that lie within the half-circle C(p,d) of radius d
centered at and to the left of point p: (See Figure 12.15.) As a first approximation,

we can get thefl points in the enclosing d x 2d rectangular box B(p, d) of C(p, d)

(Figure 12.15) by performing a range search (Section 12.1.1) on S for the points /

in S with y-coordinates in the interval of keys [y(p) .d,y(p) + d}. We examine
such points, one by one, and find the, closest to p, denoted q. Since the operations

performed on dictionary S art range searches, insertions, and removals of points,

we implement S by means of an AVL tree or red-black tree.
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Figure 12.14: Plane sweep for the closest pair problem: (a) the first minimum dis-
tance d and closest pair (highlighted), (b) the next event (box B(p, d) contains a
point, but the halfcfrcle C(p,d) is empty5; (c) next event (C(p, d) again is empty,
buta point is removed from S); (d) next event (with C(p,d) again empty). The dic-
.tionary S contains the points in the grQy strip of width d; (e) a. point pis encountered
(and a point removed from S), with B(p, d) containing i point, but C(p, d) contain-
ing none, thus, the minimum distance d and closest pair (a, b) stay the same, (f) a'
point p encountered with C(p, d) containing 2 points (and a point is removed from

http://www.cvisiontech.com


B(1d)

The Plane Sweep Technique

t

ni.

d
Figure .12.15: Box B(p, d) and half-circle C(p, d).

The following intuitive property, whose proof is left as an exercise (R-12.3), is

crucial to the analysis of the runmng time of the algorithm

Theorem 12.7 A rectangle of Width d and height .2d can contain at most six

points such that any two points are at distance at least d.

Thus, there are at most six points of S thgt lie in the box B(p,d). So the range-
search operation on S, to find the points in B(p, d), takes time O(log n + 6), which

is O(log n) Also, we can find the point in B (p, d) closest to p in 0(1) time
Before we begin the sweep, we sort the points by x-coordinate, and store them

in añ ordered list X The list X is used for two purposes: /
To get the next point to be processed
To identify the points to be removed from dictionary S

We keep references to two positions in the list X, which we denote as firstinStrip

and lasti n Strip Ppsition lasti nStri p keeps track of the new point to be inserted into

S, while position firstinStrip keeps track of the left-most point in S By advancing

lastinStrip one step at a time, we find the new point to be processed By using

firstinStrip, we identify the points to be removed frOm S. Namely, while. we have

.x(point(firstlnStrip)) c (point(IastlnStrip) -

w perform operation removeEtement(y(po1nt(firStI1StiP))) on dictionary S and

advance firstinStrip
Let n be the number of input poiçits Our analysis of the plane-sweep algorithm

for the closest pair problem is based ön the following observations:

The prehminary sorting by x-coordinate takes time 0(n log n)

Each point is inserted once and removed once from .dictionary S, which has

size at most n, hence, the total time for inserting and removing elements in S

.iso(nlogn). . . .

By Theorem 12.7, each rañge query, in 5 takes .O(logn) time. We execute

sùch a range query each time we process a new point, Thus, the total time

spentlor performing range queries is O(nlogn)..

We conclude that wecan compute a closest pair in a sétof n pointsiñ time O(nlogn)
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12.5 Convex Hulls

One of the most studied geometric problems is that of computing the convex hull of ,

a set of pdints. Informally speaking, the convex hull of a set of points in the Plane t
is the shape taken by a rubber band that is placed "around the points" and aIlowrj f
to shrink to a state of equilibrium. (See Figure 12.16.)

Figure 12.16: The convex hull of a set of points in the plane: (a) an example "rubber
band" placed around the points; (b) the convex hull of the points.

The convex hull corresponds to the intuitive notion of a "boundary" of a set
of points and can be used to approximate the shape of a complex object. Indeed,
computing the convex hull of a set of points is a fundamental operation in compu-
tational geòmetry. Before we describe the convex hull and algorithms to compute
it in detail, we need to first discuss some representational issues for geometric data
objects.

12.5.1 Representations of Geometric Objects

Geometric algorithms take geometric objects of various types as theft inputs. The
basic geometric objects in the plane are points, lines, segments, and polygons.

There are many ways of representing planar geometric objects. Rather tharn
give separate ADT's for points, lines, segments, and polygons, which would be ap-
propriate for a. book òn geometric algorithms, we instead assume we have intuitive
representations for these objects. Even so; we briefly mention some of the choices.
that we can make regarding geometric representations.

We can represent a point in the plane by a pair (x,y) that stores the x and y
Cartesian coordinates for that point. While this representation is quite versatile, i
is not the only one. There may be some applications where a different represen-
tation may be better (such as representing a point as the intersection betwèen two
nonparallel lines).

(a) (b)

http://www.cvisiontech.com


(a) (b) (e)

Figure 12.17: Examples of polygons: (a) intersecting, (b) simple, (c) convex.

Convex Hulls
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Lines, Segments, and Polygons

We can representS a line i as a triple (a, b, c), such that these values aré the coeffi-
cients a, b, and c of the linear equation

ax+by+c=O

associated with i. Alternatively, we may specify instead two different points, q and
q, and associate them with the line that goes through both. Given the Cartesian
coordinates (xi,yi) of ql and (x2,y2) of q, the equation of the line ¡ through qi
and q is given by

YYi
X2Xl Y2Y1'

from which we derive

a=(y2yi);b=-r-(x2xi); c=yl(x2xl)xl(y2yi).

A line segment s is typically represented by the pair (p, q) of points in the
plane thát form s's endpoints, We may also represent sby giving the line through
it, together with a range of x- and y-coordinates, that restrict this line to the segment
s. (Why is it insufficient to include just a range of x- or y-coordinates?)

We can represent a polygon P by a circular sequence of points, called the ver-
tices of P. (See Figure 12.17.) The segments between consecutive vertices of P are
called the edges of P. Polygon P is said to be nonintersecting, or simple, if inter-
sections between pairs of edges of P happen only at a common endpoint vertex. A
polygon is convex if it is simple and all its internal angles are less than ir.

Our disdussion öf different ways of representing points, lines, segments, and
polygons is notmeant to be exha9stive. It is meant simply to indicate the different
ways we can implement these geometric objects.
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125.2 Poiht Orieritition Testing t
An important geometric relationship, which anses in many geometric algori
and particularly for convex hull construction, is orienta/ion Given an ordA
triplet (p; q, r) of points, we say that (p, q, r) . makes a left turn and is oris
counterclockwise if the angle that stays on the left-hand side when going frcn
to q and then to r is less than it If the angle on the nglt-hand side is less that
instead, then we say that (p, q, r) makes a right turn and is oriented clockwise (Sé
Figure 12 18) It is possible that the angles of the left- and right-hand sides are
equal to it, in which case the three points actually do not make a turn,, and we saj
that.their orientation is collin ear. .

Given a triplet (pl ,p2,pa) of three points Pi = (xi ,yi), P2 = (x2,y2), andp3
(x , ya), in the plane, let. ¿(pi ,P2, p3) bè the determinant defined by

The function ¿(pi, p2,p3) is often called the "signed area" function, because its
absolute value is twice the area of the (possibly degenerate) triangle formed by the

points Pi P2 and p In addition, we have the following important fact relating
this function to orientation testing.

Theorem 12.8: The orientation of a. triplet (pi, P2,P3) of points in. the plane ir
counterclockwise, clockwise, or colhnear, depending on whether ¿(pi ,P2,p3) Is

positive, negative, or zero, respectively.

We sketch the proof of Theorem 12.8; we leave the details as an exercise (R-
12.4). In Figüre 12.18, wé show a triplet (pl,p2,p3) of points such that xi <x2<
X3. Clearly, this thplet makes a left turn if the slope of segmentp2P3 is greater than

the slope of segment PiP2 This, is expressed by the following question:

Is y3Y2>Y2Y1
? . (121)

X3X2 X2'Xl

By the expansion of ¿(pi ,P2,p3) shown in 12 1, we can venfy that inequality 122
is equivalent to.A(p1.,p2,p3) >.0.

-p3

pis

Figure 12.18: An example of a left turn The differences between the coordinateS
between Pi and P2 and the cOordinates of P2 and p arealso illustrated.

xi.y1i .

X2 1 =Xiy2X2yi+X3y1 _Xiy3+X2y3X3y2. (12.1)'

x3y3 i
h
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Example 12 9 Using the notion of onentation, let us consider the problem of
testing whether two line segments si and 2 intersect. Speciflcáliy, Let si P14fand s = P22 be two segments in the plane i and 2 intersect if and only if one
of the following two conditions is verified: -

(pt,qt ,p2) and (pi,qi ,q) have different orientations, ànd
(p2,q2,pi) and (p2q2,ql) have different onenttions

(pl,'ql,p2), (pi,qi,q), (p2,q2,pl) and (p,q,qi) arç all collinear

the x-projections of i and s2 intersect, and

(e) the y-projections. of s i and 2 intersect.

Condition 1 is illustrated ip Figure 12.19. We also show, in Table 12.20, thè respöc-
tive orientation of the triplets (p1,q1p2), (pl,ql,q2), (p2,q2,pl), and (p2,q2,qi)in each of S four cases for Condition 1. A complete proOf is left as an exercise
(R-12.5). Note that the conditions also hold ifs1 and/or s.2 M a degenerate sejment
with coincident endpoints.

P2
-

q2

Pi

(a) (b)

P2

81

(c)

q2

/

Figure 12.19: Examples illustrating fòur cases of Condition i of Example 12.9.

ThbIe 12.20: The four cases shown in Figure 12.19 for the orieñtations specified by
Condition i of Example 129, where CCW stands for counterclockwise, CW stands
for clockwise, an COLL stands for collineat

càse (pi,qi,p2) (pi,qi,q2) (p2,q2,pl) (p2,'q2,qi) intersection?
(a)
(b)'
(e)
(d)

- CCW
CCW
COLL
COLL.

' CW
CW
CW
CW

CW
' CW

CW
CW

CCW
GV

CCW
CW

yes
no
yes.
no

j2J Convex Hulls
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s /
Figure 12.21: An example shortest trajectory from a point s to a point t that avoids
a polygonal obstacle P; the trajectory is a clockwise chain from s to t.

Chapter 12. domputationai Geò,ne

12.5.3 Basic Properties of Convex Hulls

We say that a region R is convex if any time two points p and q are in R, the entire;
line segment 4 is also in R. The convex hull of a set of points S is the boundaqt
of the smallest cònvex region that contains all the points of S inside it or on itgd
boundary. The notion of "smallest" refers to either the perimeter or area of the
region, both definitions being equivalent. The convex hull of a set of points s
the plane defines a convex polygon, and the points of S on the boundary of thee.
convex hull define the vertices of this polygon. The following çxample descnb
an application of the convex hull problem in a robot motion planning problem.

Example 12.10: A common problem in robotics is to identify a trajectory from
a start point s to a target point t that avoids a certain obstacle. Amqng the many
possible trajectories, we would like to find one that is as short as possible Let us
assume that the obstacle is a polygon P. We can compute a shortest trajectory from
s to t thatavoids P with the following strategy (see Figure 12.21):

We determine if the line segment L = W intersects P. If it does notïnïersec4
then £ is the shortest trajectory avoiding P.
Otherwise, ift intersects P, then we compute the convex hull H of the ver-
tices of polygon P plus points s and t. Note that s and t subdivide the convex
hull H into two polygonal chains, one going clockwise from s to t and one
going counterclockwise from s to t.
We select and return the shortest of the two polygonâl chains with endpoints
s andt onH.

This shortest chain is the shortest path in the plane that avoids the obstâcle P.

P
w
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There are a number of applications of the convex hull problem, including par-
titioning problems, shape testing problems, and separation problems For example,
if we wish to determine whether there is a half-plane (that is, a region of the plane
on one side of a line) that completely contains a set of points A but completely
avpids a set of points B, it is enough to compute the convex hulls of A and B and
determine whether they intersect each other.

There aremany interesting geometric properties associated with convex hulls.
The following theorem provides an alternate characterization of the points that are
on the convex hull and of those that are not.

Theorem 12 11 LetS be a set of planar points with convex hull H Then

A pair of points a and b of S forni an edge of H if and only if all the other
points of S are contained on one side of the line thrQugh a ánd b.
A point p of S is a vertex of H if and only if there exists a line.l through
p, such that all the other points of S are contained in. the same half-plane
delimited by I (that is, they are all on thé Ñame side of i).

e Apointp of S is not a vertex of H if and only if p is contained in the interior
of a triangle formed by three other points of S or in the interior of a segment
formed by two other points of S..

The properties expressed by Theorem 12.11 are illustrated in Figure 12.22.
A complete proof of them is left as an exercise (R-12.6). As a consequence of
Theorem 12.11, we can immediately verify that, in any set S of points in the plane,
the following critical points are always on the boundary of the coñvex hull of S:

A point with minimum x-coordinate
A point with maximum x-coordinate
A point with minimum y-coordinate
A point with maximum y-coordinate.

a b

't __---
t --
-'I

p 't /
s " J/

I

s
S q

(a)

.

¿
p

C

0

'-o---

t,,'/
i.

s-t--1

o,
s,i I

0,.

0'

a

(b) (c)

.0

Figure 12.22: illustration of the properties of the convex hull given in Theo-
rem 1.2.11: (a) points a and b form an edge of the convex hull; (b) points á and
b do not form an edge of the convex hull; (c) point p is not on the convex hull.

V.5. Convex Hulls
.577

http://www.cvisiontech.com


57$ chaptèr 12. ConiputationaLGeo

G

s

(a) (b)

Figure 12.23: Initialfour wrapping steps of the gift wrapping algorithm.

12.54 The Gift Wrapping Algorithm

Theorem 12.11 basically states that wecan identify a particular point, sayone
minimum y-coordinate, that provides an initial starting configúration for an al
rithm that computes the convex hull. The gift wrapping algprithm fop compu
the convex hull of a set of points in the plane is based on just such a starting po'
and can be intuitively described as follows (see Figure 12.23):- t

1. View the points as pegs implanted iii a level field, and imagine that We
rope to the peg corresponding to the point a with mimmum y-coordinate (Md
mimmum x-coordinate if there are ties) Call a the anchor point, and n1
that a is a vertex of the convex hull 's

2 Pull the rope to the nght of the anchor point and rotate it counterclockw
until it touches another peg, which corresponds to the next vertex of the cón-
vex hull. /

3 Continue rotating the rope counterclockwise, identifying a new vertex of th
convéx hull at each stem until.the rope gets back to the ançhor point.
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Each time we rotate our "rope" around the current peg until it hits another point,
we perform an operation called a wrapping step Geometrically, a wrapping step
involves starting from a given line L known to be tangent to the convex hull at the
current anchor point a, and determining, the line through a and another point in the
set making the smallest angle with L Implementing tins wrapping step does not
require tngonometric functions and angle calculations, however Instead, we can
perform a wrapping step by means of the following theorem, which follows from
Theorem.l2.1L , '

Theorem 12.12: LetS be a setif points in the plane, and Jeta be a point of S that
is a vertex of the convex hull H of S. The next vertex 'of H, going countercloòkwise
from a, is the point p, such that tnplet (a,p,q) makes a left turn with every other
pointqofS.

Recalling the discussion from Sebtion 2.4.1, let us define a comparator C(a)
that uses the orientation of (a, p, q) to compare two points p and q of S. That
is, C(a).isLess(p,q) returns true if triplet (a,p,cj) makes a left turn. We call the,
comparator C(a) the radial comparator, as it compares points in, terms of theirradial
relationships around the anchor point a. By Theorem 12.12, the verteì following a
counterclockwise on the hull is simply the mimmum point with respect to the radial
comparator C(a).

Performance ,

We can now analyze the running time of the gift wrapping algonthm Let n be the
number of poifits of S, and let h < n. be the number of vertices of the convex hull
H of S. Let pe,... ,Ph-i be thevertices of H. Finding 'the anchor pint a takes 
0(n) time. Since with eaph wrapping step of the algorithm we discover a new. 
vertex of the convex hull, the number of wrapping steps is equal to h. Step i is. a 
minimum-finding computation based on radial comparator C(p-i), which' runs
in 0(n) time, since detenmmng the orientation of& triplet takes 0(1) time and we
must examine all the points of S to find the smallest with respect to C(p.....1) We
'conclude that the gift Wrapping algorithm runs in time 0(hn), which is 0(n2) in
the worst case Indeed, the worst case for the gift wrapping algorithm occurs when
h = n, that is, when all the points are on the convex hull

The worst-case runmng time of the gift wrapping algorithm in terms of n is
therefore not very efficient This algorithm is nevertheless reasonably efficient in
practice, however, for it can take advantage of the (common) situation when h, the
number of hull points, is small relative to 'the numbs of input points, n. Thatis,
this algorithm is an output sensitive algorithman algorithm whose runrnng time
depends on the size of the output Gift wrapping has a running time that varies
between linear and quadratic, and is efficient if the convex hull has few vertices In
the next section, we will see an algorithm that is efficient for all hull sizes, although
it is slightly more complicated.

. . ' .

'
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Ï2.5.5 The Graham Scan Algorithm

A convex hull algonthm that has an efficient runmng time no mauer how,
points are on the boundary of the convex is the Graham scan algorjt1»
Graham scan algorithm for computing the convex hull H of a, set P of ¡j

the plane consists of the following three phases

i. We find a point 'a of? that is a vertex of H and call it the anchor po in
can, for examplà, pick as our anchor point a the point in P with
y-coordinate (and minimum x-coordinate if there are ties)

We sort the remàining points of P (that is, P - {a}) using the radai corn
tor C(a), and let S be the resulting sorted list of points. (See Figure l2
In the list S, the points of Pappear sorted counterclockwise "by angle-
respect to the anchor point a, although no explicit 'computation of ang'l
performed by the comparator.

I'

Figure 12.24: Sorting around the anchor point in the Graham scan algori

'After adding the 'anchor point a at the first andlast position of S, wù
through the points in in (radial) order, maintaining at each step a
storing a cônvex chain "surrounding" the points scanned so far. Eacht

we consider new point p, we perform the following test:

If p fonns a left turn with the last two points in H, or if H cod

fewer than two points, then add p to the end of H
Otherwise, remove the last point in H and repeat the test for p

Wé stop when we return to the anchor point a, at which point H sto,
vertices of the convex hull of P in counterclockwise order.

'The details of the scan phäse (Phase 3) se 'spelled out 'in Algorithn1

described in Algorithm 12.25. (See Figure 12.26.)

580 Chapter 12. Computationaj
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Algorithm Scan(S,a):
Input: A list S of points in the plane beginning with potht a, such that a is on thé

convex hull of S and the remaining points of S are sorted counterclockwise
around a

Output: List S with only convex hull vertices remaining

S.insertLast(a) {ädd a copy of a at the end of S}
prey t-'- S.firstO {so that prey = a initially}
curr t- £after(prev) {the next point is on. the current convex chain}
repeat

next t- S.after(curr) {advance}
if points (point(prev), point(curr), point(next)) make a left turn then

prevcurr
else

S. remove(curr) { point curr is not in the convex huil}
prey t- Sbefore(prev) .

curr S.afterprev)
until curr = S.Iast()
$.remove(S.IastQ) {remove the, copy of a}

Âiorithm 12.25: The scan phase.of the Graham scan convex hull álgorithm. (See
Figure 12.26.) Variables prev,curr, andnext are positions (Section 2.2.2) of the
list 5 We assüme that an accessor method point(pos) is defined that returns the
point stored at position pos. We give a simplified description of the algorithm that
works only ifS has at least three points, and no thrS points of S are colliñear.

Performance

Let us now analyze thé ruhning time. of the Graham scan algorithm. We denote the
number of points in,P (and S) with h. The first phase (finding the anchor point)
clearly takes 0(n) time. The second phase (sorting the points around the anchor
point) takes 0(nlog n) lime provided we use one of the asymptotically optimal
sorting algonthms, such as heap-sort (Section 244) or merge-sort (Section 4 1)
The analysis of the scan (third) phas6 is more subtle.

'To analyze the söan phase of the Graham scan algorithm, let us look more
closely at the repeat loop of Algorithm 12.25. At each iteration of the 1oop, either
variable next advances forward by one position in the list S (successful if test), or
variable next stays at the same position but a point is removed from S (unsuccessful
if test) Hence, the number of iterations of the repeat loop is at most 2n Therefore,
each statement of algorithm Scan is executed at most 2n times. Since each state-
ment requires the execution df 0(1) elementary operations .in turn, algorithm Scan
takes 0(n) time In conclusion,' the running time of th.Graham scan algorithm
is dominated by the second phase, where sorting is performed. Thus, the Graham
sòaii:algorithm runs in 0(nlogn) time '
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(g)

Figure 12.26: Third phase of the Graham scan álgorithrn
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.(i)

see Algorithm 12.25).
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12.6 Java Example: Convex Hull
We described the Graham scan algorithm (Algorithm 12.25). assuming it avòidèd
any degeneracies, that is, input configurations that involve annoying special cases
(such as coincident or collinea,r points). When implementing the Graham san
algorithm4 however, it is important to handle all possible iñput conigurations. For
example, two or more of the-points maybe coincident, and some trplets of points
may be. collinear.

. /In Code Fragments 12.27-12.29, we show .a Java implementation of the Gra-
ham scan algorithm. The main method is grahamScan (Code Fragment.12.27),
which uses several auxiliary methods. Because of the degenerate point configura-
tions that may occur, several special situations are handled by method grahamScan.

The input list is first copied into sequence hull, winch will be returned at the
end of the execution (method copylnputPoints f Code. Fragment 12.28).

If the input has zero or one point (the output is the same as the input) return

If there are two input, points, then/if the two points are coincident, remove
one of them and return. ¡

The anchor point is computed and removed, . tOgether with all the points
coincident with it (method anchorPointsearchAndRemove of Code Frag-
ment 12.28). If zero or one point is left, reinsert the anchor point and return.

If none of the above special cases arises; that is,. at least two points are
left, sort the points counterclockwise around 'the änchor point with. method
sortPoints (Code Fragment 12.28), which passes a ConvexHulIComparator
(a comparator that allows for a, generic sorting algorithm sorting algorithm
to sort- points counterclockwise radially around à point, as needed in Algo-
rithm .12.25).

In preparation for the Graham scan, we remove any initial collinear points
in the sorted list, except the' farthest one from the änchor point (mèthod
removel n itial I ntêrmediatePoints of Code Fragment 12.29).

s The scan phase of the algorithm is performed calling method scan' of Code
Fragment 12.29.

In general, when we implement computational geometry algorithms we. must
take special care to handle all possible "degenerate" cases.

12.6. Java Example: Convéx Hull
583
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public claps ConvexHull {
private static Sçqueñce hull;
private static Point2D anchorPoint;
private static GeomTester2D geomTester. = new GeomTester2DlmplQ;

7/ public class method
public static Sequence grahamScan (Sequence points) {

Point2D pl, p2;
copylnp.utPoiñts(points); 7/ copy into hull the sequence of input points

switch (hull.sizeQ) {
case O: case 1:

return hull;
case2:

pl = (Point2D)hull.firsto.elementQ;
p2 (Point2D)hull.last().elemefltü;
if (geomTester.areEqual(pl,p2))

hull.remove(hull.lastQ);
return hull;

default: /7 at least 3 input points
// compute anchor point and remove it together with coincident points
nchorPointSearchAndRemoveo;

switch (hull.sizeO) {.
case O: case 1:

hull .insertFirst(anchorPoint);
return hull;

default: 7/ at least 2 input points eft besidçs the anchor point
sortPointsQ;// sort the points in hull around the anchor point
7/ remove the (possible) initial collinear points in hull except the
// farthest one from thsanchor point
removel nitiall nterrnediatePointsO;
if (hull.size() == 1)

hull.insertEirst(anchorPoint);
else { 7/ insert the anchor pointas first and last element in hull

hull.insertFirst(anchorPoint);
hull. insertLast(anchorPoint);
scanO; 7/ Graham's scan
7/ remove one of the two copies. of the anchor point from hull
hull.remove(hull.lastQ);

}
return hull;

}

¿t

Code Fragment 12.27; Method grahamScan in theJava implementation of the Gra-?

ham sean algorithm ¿4
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}

Code Fragment 12.28: Auxiliary methods copytnputPoints, anchorPointSearchAfl-

dRemove, and sortPoints called by method grahamScan of Çode Fragment 12.27.

12.6. Java Example: Convex Hull 585

private static void copyinputPoints (Sequence points) {
// copy into huit the sequence of input points
huti = new NodeSèquenceQ;
Enumeration pe = points.eiernen.tsQ;
while (pe.hasMoreEtementsO) {

Point2D p = (Point2D)pe.nextEiementQ;
huli.insertLast(p);

}
}
private static void anchorPointSearchAndRempve Q {

// compute the anchor point arid remove it from hull together with
// ali the coincident points
Enumeration pe. = huii.positionsQ;
Position anchor = (Position)pe.nextEiementQ;
anchorPoint = (Point2D)anchor.elementQ;
/ / huit contains at least three elements
while (pe.hasMoreEierhentsQ) {

Position Pos = (Position) pe.nextEiementQ;
Point2D p = (Point2D)pos.elementQ;
mt aboveBeiow = geomTester.aboveBeiow(anchorPpint, p);
mt ieftRight = gèomTester. ieftRight(anchorPoint, p);
if (aboveBeiow == GeomTester2ftBELOW I

aboveBeiow == GeomTester2D.ON &&
leftRight GeomTèster2D.LEFT) {

anchor = pos;
anchorPoint p;

}
else

if (aboveBeiow r= GeornTester2D.ON &&
ieftRight == GeomTester2D.ON)

hutt.remové(pos);

}
huii.removeÇanchor);

}
private static void sortPoints() {

// sort the points in huh around the anchor point
SortObject sorter = new ListMergeSortQ;
ConvexHuiiComparator comp r new ConvêxH uiiComparator(anchorPoint,

geomTester);

sorter.sort(huhl,comp);
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}

private, static void removelnitiallñtermediatePoints() { r

7/ remáve the (possible) initial collinear points in hull except the
/7 farthest onefrom the anchor point
boolean 'côllineai = true;
while (hulI.sizeQ > i && collinear) {

Position posi = hull.firstQ;
Position pos2 = huII.after(posi);
Point2D pl = (Point2D)posl.elementQ;
Point2D p2 = (Point2D)pos2.elementQ.;.
if (geomTester. IeftRightTurn(anchorPoint,pi,p2)

GeomTestèr2D.COLLINEAR) .
J

if (geomTester.closest(anchorPoint,pi p2) pi)
hull. rem ove( posi);

else . .

hull.remove(pos2);
else

coUinear = false;

}
}
private static void .scan() {

/7 GrahamTs scan
Position first = hull.firstQ;
Position last = huIl.IastQ;
Position prey =' hull.firstQ;
Position curr =' hull.after(prev);
do{

Position next = hull.after(curr);
Point2D prevPoint (Point2D)prev.elementQ;
Point2D currPoint = (Point2D)curr.elementQ;
Point2D nextPoint = (Point2D)next.elementQ;
if (geomTester.leftRightTurn(prevPoint,cu.rrPoint,nextPOint) ==

GeomTester2D. LEFT_TURN)
prey curr;

else {
hull.remove(curr);
prey = huIl.before(prev);

}
curr = hull.after(prev);

}
while (curr != last);

}

Còde Fragment 12.29: Auxiliary mèthods removelnitialintermediatePoints and
scan.called by method grahamSdän of Code Fragmentl2.27;
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2.7 Exercises

12.7 Exercises

Reinforcement

R-12 1 Extend the analysis of the running time of Algorithm 12 1 lDTreeRangeSearch
to the case where the binary search tree T contains k1 and/or k2.

R-12.2 Verify that the absolute value of the function A(pj ,p2, p3) is twice the area of the
triangle forméd by the points pi P2 and p in the piane.

R-12.3 Provide a complete proof
f Theorem 12.7.

R- 12.4 Provide à complete proof of Theorem 12.8.

R 12.5 Provide a complete pr?of of Example 12:9.

R- 1.2.6 Provide a complete proof of Theorem 1.. 11.

R-12.7 Providé a complete proof of Theorem 12.12.

R- 12.8 What would be the worst-case space usage of a range tree, if the primary structure

were not required to have O(logn) height?

R12.9 Given a binary search tre T built on the x-coordinates of a set of n objects,
describe an 0(n) time method for computing rnin(v) and max(v) for each node

vin T.

R-12.10 Show that thehigh_y values iñ a priority search tree satisfy the heap-order prop-,

erty.

R-12.11 Argue that the algorithm for answering three-sided range-searching queries with

a priority search tree is correct.

R-12.12 What is the worst-cäse depth ola k-d tree d!fined on n points in the plane7 What

about in higher dimensions?
ç

R-12.13 .Suppose a set S contains n two-dimensional points whose coordinates are all

integers in the range [0,N]. What is the worst-case depth of a quadtree defined

.onS? .

R-12.14 Draw a quadtree for the following set of points, assuming a 16 x 16 bounding

box:

{(1,2), (4,10), (14,3), (6,6), (3,15), (2,2), (3,12), (9,4), (12, 14)}.

R-12.15 Construct a k-d tree fOr the. point set of Exercise R-12.14.

R-12.16 Construct a priority search tree for the point set. of Exercise R-12.14.
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Creativity
. C-12. i The min(v) and max(v) labels used in the two-dimensional range tree e not-P

sthctly neéded. Describe an algorithm for performing a two-'dimensional ranges
searchiñg query in a two-dimensional range tree, where each internal node o
the primary structure only stores a key(y) label (whiph is the x-coordinate of

element)
What is the runmng time of your method9

C- 12.2 Give a pseudo-éode description of an algorithm for constructing a range tree from

a set of n points in the plane in O(nlogn) time.

C-123 Describe an. efficient data structure for storing a set S of n items with order&j
keys, so as to supporta rankRange(a, b) method, which enumerates all the item
with keys whose rank in S is in the range [a, bi,. where a and b are integers in

the interval [O, n - 1]. Describe methods for object insertions and deletion, and
characterize the running times for these and the rankRange method.

C-12.4 Design a static data structure (which does not support insertions and deletions)
that stores a two-dimensiónal set S of n points and can answer queries of the

form countAllin Range(a,b,c,d), in O(log2n) time, which return the numberof
points in S with x-coordinates in the range [a,:b] and y-coordinates in the range
[c, dl. What is the spate used by this structure?

C-12.5 Design a data structure fòr answering4òuntAlllnRange queries (asdefined in thç
previous exercise) in O(logn) time. -

Hint Think of stonng auxiliary structures at each node that are "linked" to the
structures at neighboring nodes.

C- 12.6 Show how to extend the two-dimensional range tree so as to answer d-dimensional

rángê-searchin queries in O(log" n) time for a set of d-dimensional points, where
d2isaconstant.
Hint Design a recursive data structure that builds a d-dimensional structure

usiñg (d 1)-dimensional structures.

C- 12:7 Suppose we are given a range-searching data structure D that can answer range-
searching queries for a set of n points in d-dimensionai space for any fixed di-

mension d (like 8, 10, or 20) in time that is O(log" n + k), where k is the number

of answers. Show how tO use D to änswer the following queries for a set S of n

rectangles in theplane:

findAIIContaining(,y): Return an enumeration of all rectangles in S that

containthe point(x,y).
s fi ndAlllntersecting(a, b, c, d): Return an enumeration of all rectangles that

intersect the rectangle with x-range [a, b] and y-range [c, d].

What is the ninning time needed to answer each of these queries?

C- 12.8 Let S be a set of n intervals of the form [a, b], *here a < b. Design an éfficient4ata
structure that can answer, in O(log n .+ k) time, queries of the form conta i ns(x),
which asks for an enumeration of all intervals in S that contain x, where k is the
number nf cuirh inte.rvabt What is the snace usage 6f your data structure?
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C-12.9. Describe an efficient itiethod for inserting an objectinto: a (balanced) priority

search tree. What is the running time of this method?

C- 12.10 Suppose we are given an array-based sequence S of n nonintersecting segments

so....., s,_ with endpoints on the lines y = O and y = 1, and ordered from left

to right. Giveñ a point q with O zy(q) < 1, design an algorithm.that in Q(logn)

time computes thé segment s of S immediately to right of q, or repOrts that q is

to the right of all the sçgments.

c-12:11 Give an 0(n)-time algorithm for testiñg whether a point is inside, outside, or

on the boundary of a nonintersecting polygon P with n vertices. Your algorithm

should also work correctly for the case when the y-coordinate of q is equal to the

y-coordinate of one or more vertices of P.

C-12.12 Design an 0(n)-time algorithm to test whether a given n-vertex polygon is con-

vex. You should not assume that P is nonintersecting.

C-12.13 Let Shea collection of segments. Give an algorithm for determining whether the

segnients of S form a polygon. Allow the polygon to be intersecting, but do not

alÏow two vertices of the polygon to be coincident.

C-12.14 Let S be a collection of n line segments in the plane. Give an algorithm to enu-

merate all k pairs of intersecting segments in S in 0((n + k) logn).

Hint: Use the plane-sweep technique, including segments intersections as events.

Note that you cannot know these events in advance, but it is always. possible to

know the next event to process as you are sweeping.

C-12.15 Design a data structure for convex polygons that useslinear space and supports

the point inclusion test in logarithmic time.

C-12.16 qiven a set P of n points, design an. efficient algorithm for constructing a nonin-

tersecting polygon whose vertices are the points of P.

C-12.17 Desigii an 0(n2)-time algorithm for testing whether a polygon with n vertices is

noninterseeting. Assume that the polygon is given by the list of its vertices.

C-12.18 Give examples of configurations of input points for which the simplified Graham

scan algorithm, given in Algorithm 12.25, does not work correctly.

C-12.19 Let P bé a set of n points in the plane. Modify the Graham scan algorithm to

compute, for every point p of P that is not a vertex of the convex hull, either a

triangle with vertices in P, or a segment with endpoints in .P that contains p in its

interior.

C-12.20 Givén a set S of points in the plane, define the Voronoi diagram of S to be the set

of regions V(p), cálled Voronoi cells, defined, for each point in S, as the set of

all points q in the plane such that p is a closest neighbor of q in S

Show that each cell in a Voronoi diagram is convex;

Show that if p and q are a closest pair of points in theset S, then the Voronoi

cells V(p) and V(q) touch.
Show that a point p i on the boundary ofthé convex húll of the set S if and

only if the Voronoi cell V (p) for p is unbounded.
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C-12.21 Given a set S of points in the plane, define the Delaúnay triangulation of Sto bthe set of all triangles (p, q, r) such that p, q, and r arè in S and the circle définedto have these points on its boundary is emptyit contains no points of 5 in isinterior.

Show that if p and q are a closest pair of points in the set S, then p and qare joined by än edge in the Delaunay triangulation.
Show that the Voronoi cells V(p) and V(q) shâre an edge in the Voronoidiagram of a point set S if and only if p and q are joined by an edge in the
Delaunay triangulation of 5

Projects

P-12. i Produce an animation of the gift wrapping and Graham scan algorithms for com-puting the convex hull of a set of points.

P-12.2 Implement a class supporting range-searching queries with a range tree or prior-
ity range tree data struéture.

P42.3 Implement the quadtree and k-d tree data structures and perform an experimental
study comparing.their performance on range-sbarching queries.

Chapter Notèá
The convex hull algorithm we present in this chapter is a variant of an algorithm given
by Graham [88]. The plane sweep algorithm we present forintersecting orthogonal line -segments is due to Bentley and Ottmann [31]. The closest point algorithm we present
combines ideas of Bentley [28] and Hinrichs et aL [94].

There are several excellent books for computational geometry, including books by
Edelsbrunner [63], Mehlhorn [150], O'Rourke [160], Preparata and Shamos [168], and
handbooks edited by Goodman and Q'Rourke [83], and Pach [16211 Other sóurces for
further reading include survey papers by Aurenhamnier [17], Lee and Preparata [129],
and book chapters by Goodrich [84], Lee [128], and Yao [212]. Also, the books by
Sedgewick [182, 183] contain several chapteEs on computational geometry, which have
some very nice figures. Indeed, the figures in Sedgewick's books have inspired many of
the figures we presènt in this book.

Multi-dimensional search trees are disbussed in books by Mehlhom [150], Samet [175,
176], and Wood [211]. Please see these books for an extensive discussion of the history of
multi-dimensional search trees, including various data structures for solving range queries.
Priority search trees are due to McCreight [140], although Vuillemin [208] introduced this
structure earlier under the name "Cartesian trees." They are also known as "treaps," as de-
scribed by .McCreight [140] and Aragon and Seidel [12]. Edelsbrunner [62] shows. howpriority search trees can be. used to answer two-dimensional raßge1 queries. AÈya and
Mount [1.4] present the balanced box decomposition treet and they show how it can bóused to solve approximate range searching [15]. The reader interested in recent develop-
ments for range-searching data structures is referred to the book chapters by Agarwal [3,4]
or the survey paper by Matougek [138] Luca Vismara developed the implementation ofthe convex hull algorithm given in Section 12.6.
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Some computational problems are hard. We rack our brains to find efficient
algorithms for solving them, but time and time again we fail. It would be nice
if we could prove that finding an efficient algorithm is impossible in such cases.
Such a proof would be a great relief when an efficient algorithm evades us, for
then we could take comfort from the fact that no efficient algorithm exists for this
problem. Unfortunately, such proofs are typically even harder to come by than
efficient algorithms.

Still, all is not frustration, for the topics we discuss in this chapter let us show
that certain problems are indeed computationally hard. The proofs involve a con-
cept known asNP-completeness. This concept allows us to rigorously show that
finding an efficient algorithm for a certain problem is at least as hard as finding effi-
cient algorithms forall the problems in a large class of problems called “NP.” The
formal notion of “efficient” we use here is that a problem has an algorithm running
in time proportional to a polynomial function of its input size,n. (Recall that this
notion of efficiency was already mentioned in Section 1.2.2.) That is, we consider
an algorithm “efficient” if it runs in timeO(nk) on any input of sizen, for some
constantk > 0. Even so, the classNP contains some extremely difficult problems,
for which polynomial-time solutions have eluded researchers for decades. There-
fore, while showing that a problem isNP-complete is admittedly not the same as
proving that an efficient algorithm for the problem is impossible, it is nevertheless a
powerful statement. Basically, showing that a problemL is NP-complete says that,
although we have been unable to find an efficient algorithm forL, neither has any
computer scientist who has ever lived! Indeed, most computer scientists strongly
believe it is impossible to solve anyNP-complete problem in polynomial time.

In this chapter, we formally define the classNP and its related classP, and we
show how to prove that some problems areNP-complete. We also discuss some
of the best known of theNP-complete problems, showing that each one is at least
as hard as every other problem inNP. These problems include satisfiability, vertex
cover, knapsack, and traveling salesperson problems.

We do not stop there, however, for many of these problems are quite impor-
tant, in that they are related to optimization problems whose solution in the real
world can oftentimes save money, time, or other resources. Thus, we also dis-
cuss some ways of dealing withNP-completeness in this chapter. One of the most
effective methods is to construct polynomial-time approximation algorithms for
NP-complete problems. Although such algorithms do not usually produce optimal
solutions, they oftentimes come close to being optimal. In fact, in some cases we
can provide a guarantee of how close an approximation algorithm will come to an
optimal solution. We explore several such situations in this chapter.

We conclude this chapter by covering techniques that often work well for deal-
ing withNP-complete problems in practice. We present, in particular,backtracking
andbranch-and-bound, which construct algorithms that run in exponential time in
the worst case, but nevertheless take advantage of situations where faster time is
possible. We give Java examples of both techniques.
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13.1 P and NP

In order to studyNP-completeness, we need to be more precise about running time.
Namely, instead of the informal notion of input size as the number of “items” that
form the input (see Chapter 1), we define theinput size, n, of a problem to be the
number of bits used to encode an input instance. We also assume that characters
and numbers in the input are encoded using a reasonable binary encoding scheme,
so that each character uses a constant number of bits and each integerM > 0 is
represented with at mostclogM bits, for some constantc > 0. In particular, we
disallowunary encoding, where an integerM is represented withM 1’s.

Recall that we have, for the rest of this book, defined the input sizen to be the
number of “items” in an input. Let us for the moment, however, refer to the number
of items in an input asN and the number of bits to encode an input asn. Thus, if
M is the largest integer in an input, thenN+ logM ≤ n≤ cNlogM, for some con-
stantc > 0. Formally, we define the worst-caserunning time of an algorithmA to
be the worst-case time taken byA as a function ofn, taken over all possible inputs
having an encoding withn bits. Fortunately, as we show in the following lemma,
most algorithms running in polynomial time in terms ofN still result in polynomial-
time algorithms in terms ofn. We define an algorithm to bec-incremental if any
primitive operation involving one or two objects represented withb bits results in
an object represented with at mostb+c bits, forc≥ 0. For example, an algorithm
using multiplication as a primitive operation may not bec-incremental for any con-
stantc. Of course, we can include a routine in ac-incremental algorithm to perform
multiplication, but we should not count this routine as a primitive operation here.

Lemma 13.1: If a c-incremental algorithmA has a worst-case running timet(N)
in the RAM model, as a function of the number of input items,N, for some constant
c > 0, thenA has running timeO(n2t(n)), in terms of the number,n, of bits in a
standard nonunary encoding of the input.

Proof: Note thatN ≤ n. Thus,t(N)≤ t(n). Likewise, each primitive operation
in the algorithmA, involving one or two objects represented withb≥ 1 bits, can
be performed using at mostdb2 bitwise operations, for some constantd≥ 1, since
c is a constant. Such primitive operations include all comparison, control flow,
and basic non-multiplicative arithmetic operations. Moreover, inN steps of ac-
incremental algorithm, the largest any object’s representation can become iscN+b,
whereb is the maximum size of any input object. But,cN+ b≤ (c+ 1)n. Thus,
every step inA will take at mostO(n2) bit steps to complete.

Therefore, any “reasonable” algorithm that runs in polynomial time in terms of
the number of input items will also run in polynomial time in terms of the number
of input bits. Thus, for the remainder of this chapter, we may revert to usingn
as input size and number of “items” with the understanding that any “polynomial-
time” algorithm must run in polynomial time in terms of the number of input bits.
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13.1.1 Defining the Complexity Classes P and NP

By Lemma 13.1, we know that, for the problems discussed in this book, such as
graph problems, text processing, or sorting, our previous polynomial-time algo-
rithms translate into polynomial-time algorithms in the bit model. Even the re-
peated squaring algorithm (Section 10.1.4) for computing powers of an integerx
runs in a polynomial number of bit operations if we apply it to raisex to a number
that is represented usingO(logn) bits. Thus, the notion of polynomial time is quite
useful as a measure for tractability.

Moreover, the class of polynomials is closed under addition, multiplication,
and composition. That is, ifp(n) andq(n) are polynomials, then so arep(n) +
q(n), p(n) ·q(n), andp(q(n)). Thus, we can combine or compose polynomial-time
algorithms to construct new polynomial-time algorithms.

Decision Problems

To simplify our discussion, let us restrict our attention for the time being todecision
problems, that is, to computational problems for which the intended output is either
“yes” or “no.” In other words, a decision problem’s output is a single bit, which is
either 0 or 1. For example, each of the following are decision problems:

• Given a stringT and a stringP, doesP appear as a substring ofT?
• Given two setsSandT, doSandT contain the same set of elements?
• Given a graphG with integer weights on its edges, and an integerk, doesG

have a minimum spanning tree of weight at mostk?

In fact, the last problem illustrates how we can often turn anoptimization problem,
where we are trying to minimize or maximize some value, into a decision problem.
Namely, we can introduce a parameterk and ask if the optimal value for the opti-
mization problem is at most or at leastk. Note that if we can show that a decision
problem is hard, then its related optimization version must also be hard.

Problems and Languages

We say that an algorithmA acceptsan input stringx if A outputs “yes” on inputx.
Thus, we can view adecision problemas actually being just a setL of strings—the
strings that should be accepted by an algorithm that correctly solves the problem.
Indeed, we used the letter “L” to denote a decision problem, because a set of strings
is often referred to as alanguage. We can extend this language-based viewpoint
further to say that an algorithmA acceptsa languageL if A outputs “yes” for each
x in L and outputs “no” otherwise. Throughout this chapter, we assume that if
x is in an improper syntax, then an algorithm givenx will output “no.” (Note:
Some texts also allow for the possibility ofA going into an infinite loop and never
outputting anything on some inputs, but we are restricting our attention in this book
to algorithms, that is, computations that terminate after a finite number of steps.)
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The Complexity Class P

Thecomplexity class Pis the set of all decision problems (or languages)L that can
be accepted in worst-case polynomial time. That is, there is an algorithmA that, if
x∈ L, then on inputx, A outputs “yes” inp(n) time, wheren is the size ofx and
p(n) is a polynomial. Note that the definition ofP doesn’t say anything about the
running time for rejecting an input—when an algorithmA outputs “no.” Such cases
refer to thecomplementof a languageL, which consists of all binary strings that
are not inL. Still, given an algorithmA that accepts a languageL in polynomial
time, p(n), we can easily construct a polynomial-time algorithm that accepts the
complement ofL. In particular, given an inputx, we can construct a complement
algorithmB that simply runsA for p(n) steps, wheren is the size ofx, terminating
A if it attempts to run more thanp(n) steps. IfA outputs “yes,” thenB outputs “no.”
Likewise, if A outputs “no” or ifA runs for at leastp(n) steps without outputting
anything, thenB outputs “yes.” In either case, the complement algorithmB runs in
polynomial time. Therefore, if a languageL, representing some decision problem,
is in P, then the complement ofL is also inP.

The Complexity Class NP

Thecomplexity class NPis defined to include the complexity classP but allow for
the inclusion of languages that may not be inP. Specifically, withNP problems,
we allow algorithms to perform an additional operation:

• choose(b): this operation chooses in a nondeterministic way a bit (that is, a
value that is either 0 or 1) and assigns it tob.

When an algorithmA uses thechoose primitive operation, then we sayA is non-
deterministic. We state that an algorithmA nondeterministically acceptsa string
x if there exists a set of outcomes to thechoose calls thatA could make on inputx
such thatA would ultimately output “yes.” In other words, it is as if we consider
all possible outcomes tochoose calls and only select those that lead to acceptance
if there is such a set of outcomes. Note this is not the same as random choices.

The complexity classNP is the set of decision problems (or languages)L that
can be nondeterministically accepted in polynomial time. That is, there is a non-
deterministic algorithmA that, if x∈ L, then, on inputx, there is a set of outcomes
to thechoose calls in A so that it outputs “yes” inp(n) time, wheren is the size
of x andp(n) is a polynomial. Note that the definition ofNP does not address the
running time for a rejection. Indeed, we allow for an algorithmA accepting a lan-
guageL in polynomial timep(n) to take much more thanp(n) steps whenA outputs
“no.” Moreover, because nondeterministic acceptance could involve a polynomial
number of calls to thechoose method, if a languageL is in NP, the complement of
L is not necessarily also inNP. Indeed, there is a complexity class, calledco-NP,
that consists of all languages whose complement is inNP, and many researchers
believeco-NP 6= NP.
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An Alternate Definition of NP

There is actually another way to define the complexity classNP, which might be
more intuitive for some readers. This alternate definition ofNP is based on de-
terministic verification, instead of nondeterministic acceptance. We say that a lan-
guageL can beverifiedby an algorithmA if, given any stringx in L as input, there
is another stringy such thatA outputs “yes” on inputz= x+ y, where we use the
symbol “+” to denote concatenation. The stringy is called acertificate for mem-
bership inL, for it helps us certify thatx is indeed inL. Note that we make no
claims about verifying when a string is not inL.

This notion of verification allows us to give an alternate definition of the com-
plexity classNP. Namely, we can defineNP to be the set of all languagesL, defin-
ing decision problems, such thatL can be verified in polynomial time. That is, there
is a (deterministic) algorithmA that, for anyx in L, verifies using some certificate
y thatx is indeed inL in polynomial time,p(n), including the timeA takes to read
its inputz= x+y, wheren is the size ofx. Note that this definition implies that the
size ofy is less thanp(n). As the following theorem shows, this verification-based
definition ofNP is equivalent to the nondeterminism-based definition given above.

Theorem 13.2: A languageL can be (deterministically) verified in polynomial
time if and only ifL can be nondeterministically accepted in polynomial time.

Proof: Let us consider each possibility. Suppose first thatL can be verified in
polynomial time. That is, there is a deterministic algorithmA (making no use of
choose calls) that can verify in polynomial timep(n) that a stringx is in L when
given a polynomial-length certificatey. Therefore, we can construct a nondeter-
ministic algorithmB that takes the stringx as input and calls thechoose method to
assign the value of each bit iny. After B has constructed a stringz= x+y, it then
callsA to verify thatx∈ L given the certificatey. If there exists a certificatey such
that A acceptsz, then there is clearly a set of nondeterministic choices forB that
result inB outputting “yes” itself. In addition,B will run in O(p(n)) steps.

Next, suppose thatL can be nondeterministically accepted in polynomial time.
That is, there is a nondeterministic algorithmA that, given a stringx in L, per-
forms p(n) steps, which may includechoose steps, such that, for some sequence
of outcomes to thesechoose steps,A will output “yes.” There is a deterministic
verification algorithmB that, givenx in L, uses as its certificatey the ordered con-
catenation of all the outcomes tochoose calls thatA makes on inputx in order to
ultimately output “yes.” SinceA runs in p(n) steps, wheren is the size ofx, the
algorithmB will also run inO(p(n)) steps given inputz= x+y.

The practical implication of this theorem is that, since both definitions ofNP
are equivalent, we can use either one for showing that a problem is inNP.
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The P = NP Question

Computer scientists do not know for certain whetherP = NP or not. Indeed, re-
searchers don’t even know for sure whether or notP = NP ∩ co-NP. Still, the
vast majority of researchers believe thatP is different than bothNP andco-NP, as
well as their intersection. In fact, the problems we discuss next are examples of
problems inNP that many believe are not inP.

13.1.2 Some Interesting Problems in NP

Another way of interpreting Theorem 13.2 is that it implies we can always structure
a nondeterministic algorithm so that all of itschoose steps are performed first and
the rest of the algorithm is just a verification. We illustrate with several examples
in this subsection this approach of showing interesting decision problems to be in
NP. Our first example is for a graph problem.

HAMILTONIAN -CYCLE is the problem that takes a graphG as input and asks
whether there is a simple cycle inG that visits each vertex ofG exactly once and
then returns to its starting vertex. Such a cycle is called an Hamiltonian cycle ofG.

Lemma 13.3: HAMILTONIAN -CYCLE is in NP.

Proof: Let us define a nondeterministic algorithmA that takes, as input, a graph
G encoded as an adjacency list in binary notation, with the vertices numbered 1 to
N. We defineA to first iteratively call thechoose method to determine a sequence
Sof N+1 numbers from 1 toN. Then, we haveA check that each number from 1
to N appears exactly once inS (for example, by sortingS), except for the first and
last numbers inS, which should be the same. Then, we verify that the sequenceS
defines a cycle of vertices and edges inG. A binary encoding of the sequenceS is
clearly of size at mostn, wheren is the size of the input. Moreover, both of the
checks made on the sequenceScan be done in polynomial time inn.

Observe that if there is a cycle inG that visits each vertex ofG exactly once,
returning to its starting vertex, then there is a sequenceS for which A will out-
put “yes.” Likewise, ifA outputs “yes,” then it has found a cycle inG that vis-
its each vertex ofG exactly once, returning to its starting point. That is,A non-
deterministically accepts the language HAMILTONIAN -CYCLE. In other words,
HAMILTONIAN -CYCLE is in NP.

Our next example is a problem related to circuit design testing. ABoolean
circuit is a directed graph where each node, called alogic gate, corresponds to a
simple Boolean function, AND, OR, or NOT. The incoming edges for a logic gate
correspond to inputs for its Boolean function and the outgoing edges correspond to
outputs, which will all be the same value, of course, for that gate. (See Figure 13.1.)
Vertices with no incoming edges areinput nodes and a vertex with no outgoing
edges is anoutput node.
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Figure 13.1: An example Boolean circuit.

CIRCUIT-SAT is the problem that takes as input a Boolean circuit with a single
output node, and asks whether there is an assignment of values to the circuit’s inputs
so that its output value is “1.” Such an assignment of values is called asatisfying
assignment.

Lemma 13.4: CIRCUIT-SAT is in NP.

Proof: We construct a nondeterministic algorithm for accepting CIRCUIT-SAT

in polynomial time. We first use thechoose method to “guess” the values of the
input nodes as well as the output value of each logic gate. Then, we simply visit
each logic gateg in C, that is, each vertex with at least one incoming edge. We then
check that the “guessed” value for the output ofg is in fact the correct value for
g’s Boolean function, be it an AND, OR, or NOT, based on the given values for the
inputs forg. This evaluation process can easily be performed in polynomial time.
If any check for a gate fails, or if the “guessed” value for the output is 0, then we
output “no.” If, on the other hand, the check for every gate succeeds and the output
is “1,” the algorithm outputs “yes.” Thus, if there is indeed a satisfying assignment
of input values forC, then there is a possible collection of outcomes to thechoose
statements so that the algorithm will output “yes” in polynomial time. Likewise,
if there is a collection of outcomes to thechoose statements so that the algorithm
outputs “yes” in polynomial time algorithm, there must be a satisfying assignment
of input values forC. Therefore, CIRCUIT-SAT is in NP.

The next example illustrates how a decision version of an optimization problem
can be shown to be inNP. Given a graphG, a vertex coverfor G is a subsetC of
vertices such that, for every edge(v,w) of G, v∈C or w∈C (possibly both). The
optimization goal is to find as small a vertex cover forG as possible.
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VERTEX-COVER is the decision problem that takes a graphG and an integer
k as input, and asks whether there is a vertex cover forG containing at mostk
vertices.

Lemma 13.5: VERTEX-COVER is in NP.

Proof: Suppose we are given an integerk and a graphG, with the vertices ofG
numbered from 1 toN. We can use repeated calls to thechoose method to construct
a collectionC of k numbers that range from 1 toN. As a verification, we insert all
the numbers ofC into a dictionary and then we examine each of the edges inG to
make sure that, for each edge(v,w) in G, v is in C or w is in C. If we ever find an
edge with neither of its end-vertices inG, then we output “no.” If we run through
all the edges ofG so that each has an end-vertex inC, then we output “yes.” Such
a computation clearly runs in polynomial time.

Note that ifG has a vertex cover of size at mostk, then there is an assignment
of numbers to define the collectionC so that each edge ofG passes our test and our
algorithm outputs “yes.” Likewise, if our algorithm outputs “yes,” then there must
be a subsetC of the vertices of size at mostk, such thatC is a vertex cover. Thus,
VERTEX-COVER is in NP.

Having given some interesting examples of problems inNP, let us now turn to
the definition of the concept ofNP-completeness.

13.2 NP-Completeness

The notion of nondeterministic acceptance of a decision problem (or language) is
admittedly strange. There is, after all, no conventional computer that can efficiently
perform a nondeterministic algorithm with many calls to thechoose method. In-
deed, to date no one has shown how even an unconventional computer, such as a
quantum computer or DNA computer, can efficiently simulate any nondeterministic
polynomial-time algorithm using a polynomial amount of resources. Certainly, we
can deterministically simulate a nondeterministic algorithm by trying out, one by
one, all possible outcomes to thechoose statements that the algorithm makes. But
this simulation would become an exponential-time computation for any nondeter-
ministic algorithm that makes at leastnε calls to thechoose method, for any fixed
constantε > 0. Indeed, there are hundreds of problems in the complexity class
NP for which most computer scientists strongly believe there is no conventional
deterministic method for solving them in polynomial time.

The usefulness of the complexity classNP, therefore, is that it formally captures
a host of problems that many believe to be computationally difficult. In fact, there
are some problems that are provably at least as hard as every other problem inNP,
as far as polynomial-time solutions are concerned. This notion of hardness is based
on the concept of polynomial-time reducibility, which we now discuss.
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13.2.1 Polynomial-Time Reducibility and NP-Hardness

We say that a languageL, defining some decision problem, ispolynomial-time
reducibleto a languageM, if there is a functionf computable in polynomial time,
that takes an inputx to L, and transforms it to an inputf (x) of M, such thatx∈ L if
and only if f (x) ∈M. In addition, we use a shorthand notation, sayingL poly−→ M to
signify that languageL is polynomial-time reducible to languageM.

We say that a languageM, defining some decision problem, isNP-hard if every
other languageL in NP is polynomial-time reducible toM. In more mathematical
notation,M is NP-hard, if, for everyL ∈NP, L poly−→ M. If a languageM is NP-hard
and it is also in the classNP itself, thenM is NP-complete. Thus, anNP-complete
problem is, in a very formal sense, one of the hardest problems inNP, as far as
polynomial-time computability is concerned. For, if anyone ever shows that anNP-
complete problemL is solvable in polynomial time, then that immediately implies
that every other problem in the entire classNP is solvable in polynomial time. For,
in this case, we could accept any otherNP languageM by reducing it toL and
then running the algorithm forL. In other words, if anyone finds a deterministic
polynomial-time algorithm for even oneNP-complete problem, thenP = NP.

13.2.2 The Cook-Levin Theorem

At first, it might appear that the definition ofNP-completeness is too strong. Still,
as the following theorem shows, there is at least oneNP-complete problem.

Theorem 13.6 (The Cook-Levin Theorem): CIRCUIT-SAT is NP-complete.

Proof: Lemma 13.4 shows that CIRCUIT-SAT is in NP. Thus, we have yet to
show this problem isNP-hard. That is, we need to show that every problem in
NP is polynomial-time reducible to CIRCUIT-SAT. So, consider a languageL,
representing some decision problem that is inNP. SinceL is in NP, there is a
deterministic algorithmD that accepts anyx in L in polynomial-timep(n), given a
polynomial-sized certificatey, wheren is the size ofx. The main idea of the proof
is to build a large, but polynomial-sized, circuitC that simulates the algorithmD
on an inputx in such a way thatC is satisfiable if and only if there is a certificatey
such thatD outputs “yes” on inputz= x+y.

Recall (from Section 1.1.2) that any deterministic algorithm, such asD, can
be implemented on a simple computational model (called the Random Access Ma-
chine, or RAM) that consists of a CPU and a bankM of addressable memory cells.
In our case, the memoryM contains the input,x, the certificate,y, the working
storage,W, that D needs to perform its computations, and the code for the algo-
rithm D itself. The working storageW for D includes all the registers used for
temporary calculations and the stack frames for the procedures thatD calls during
its execution. The topmost such stack frame inW contains the program counter
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(PC) that identifies whereD currently is in its program execution. Thus, there are
no memory cells in the CPU itself. In performing each step ofD, the CPU reads
the next instructioni, which is pointed to by the PC, and performs the calculation
indicated byi, be it a comparison, arithmetic operation, a conditional jump, a step
in procedure call, etc., and then updates the PC to point to the next instruction to be
performed. Thus, the current state ofD is completely characterized by the contents
of its memory cells. Moreover, sinceD accepts anx in L in a polynomialp(n)
number of steps, wheren is the size ofx, then the entire effective collection of its
memory cells can be assumed to consist of justp(n) bits. For inp(n) steps,D can
access at mostp(n) memory cells. Note also that the size ofD’s code is constant
with respect to the sizes ofx, y, and evenW. We refer to thep(n)-sized collection
M of memory cells for an execution ofD as theconfiguration of the algorithmD.

The heart of the reduction ofL to CIRCUIT-SAT depends on our constructing a
Boolean circuit that simulates the workings of the CPU in our computational model.
The details of such a construction are beyond the scope of this book, but it is well
known that a CPU can be designed as a Boolean circuit consisting of AND, OR,
and NOT gates. Moreover, let us further take for granted that this circuit, including
its address unit for connecting to a memory ofp(n) bits, can be designed so as to
take a configuration ofD as input and provide as output the configuration resulting
from processing the next computational step. In addition, this simulation circuit,
which we will call S, can be constructed so as to consist of at mostcp(n)2 AND,
OR, and NOT gates, for some constantc > 0.

To then simulate the entirep(n) steps ofD, we makep(n) copies ofS, with
the output from one copy serving as the input for the next. (See Figure 13.2.) Part
of the input for the first copy ofSconsists of “hard wired” values for the program
for D, the value ofx, the initial stack frame (complete with PC pointing to the first
instruction ofD), and the remaining working storage (initialized to all 0’s). The
only unspecified true inputs to the first copy ofSare the cells ofD’s configuration
for the certificatey. These are the true inputs to our circuit. Likewise, we ignore
all the outputs from the final copy ofS, except the single output that indicates the
answer fromD, with “1” for “yes” and “0” for “no.” The total size of the circuitC
is O(p(n)3), which of course is still polynomial in the size ofx.

Consider an inputx thatD accepts for some certificatey after p(n) steps. Then
there is an assignment of values to the input toC corresponding toy, such that,
by havingC simulateD on this input and the hard-wired values forx, we will
ultimately haveC output a “1.” Thus,C is satisfiable in this case. Conversely,
consider a case whenC is satisfiable. Then there is a set of inputs, which correspond
to the certificatey, such thatC outputs a “1.” But, sinceC exactly simulates the
algorithmD, this implies that there is an assignment of values to the certificatey,
such thatD outputs “yes.” Thus,D will verify x in this case. Therefore,D accepts
x with certificatey if and only if C is satisfiable.
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Figure 13.2: An illustration of the circuit used to prove that CIRCUIT-SAT is NP-
hard. The only true inputs correspond to the certificate,y. The problem instance,x,
the working storage,W, and the program code,D, are initially “hard wired” values.
The only output is the bit that determines if the algorithm acceptsx or not.
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13.3 Important NP-Complete Problems

So there is indeed anNP-complete problem. But proving this fact was admittedly
a tiring exercise, even taking into account the major shortcut we took in assuming
the existence of the simulation circuitS. Fortunately, now that we are armed with
one problem that is proven to beNP-complete “from scratch,” we can prove other
problems areNP-complete using simple polynomial-time reductions. We explore
a number of such reductions in this section.

Given just a singleNP-complete problem, we can now use polynomial-time
reducibility to show other problems to beNP-complete. In addition, we will make
repeated use of the following important lemma about polynomial-time reducibility.

Lemma 13.7: If L1
poly−→ L2 andL2

poly−→ L3, thenL1
poly−→ L3.

Proof: SinceL1
poly−→ L2, any instancex for L1 can be converted in polynomial-

time p(n) into an instancef (x) for L2, such thatx ∈ L1 if and only if f (x) ∈ L2,
wheren is the size ofx. Likewise, sinceL2

poly−→ L3, any instancey for L2 can be
converted in polynomial-timeq(m) into an instanceg(y) for L3, such thaty∈ L2 if
and only ifg(y) ∈ L3, wherem is the size ofy. Combining these two constructions,
any instancex for L1 can be converted in timeq(k) into an instanceg( f (x)) for
L3, such thatx ∈ L1 if and only if g( f (x)) ∈ L3, wherek is the size off (x). But,
k≤ p(n), since f (x) is constructed inp(n) steps. Thus,q(k) ≤ q(p(n)). Since the
composition of two polynomials always results in another polynomial, this inequal-
ity implies thatL1

poly−→ L3.

In this section we establish several important problems to beNP-complete,
using this lemma. All of the proofs have the same general structure. Given a new
problemL, we first prove thatL is in NP. Then, we reduce a knownNP-complete
problem toL in polynomial time, showingL to beNP-hard. Thus, we showL to
be in NP and alsoNP-hard; hence,L has been shown to beNP-complete. (Why
not do the reduction in the other direction?) These reductions generally take one of
three forms:

• Restriction: This form shows a problemL is NP-hard by noting that a known
NP-complete problemM is actually just a special case ofL.

• Local replacement: This forms reduces a knownNP-complete problemM
to L by dividing instances ofM andL into “basic units,” and then showing
how each basic unit ofM can be locally converted into a basic unit ofL.

• Component design: This form reduces a knownNP-complete problemM
to L by building components for an instance ofL that will enforce impor-
tant structural functions for instances ofM. For example, some components
might enforce a “choice” while others enforce an “evaluation” function.

The latter of the three above forms tends to be the most difficult to construct; it is
the form used, for example, by the proof of the Cook-Levin Theorem (13.6).
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In Figure 13.3, we illustrate the problems we prove areNP-complete, together
with the problems they are reduced from and the technique used in each polynomial-
time reduction.

In the remainder of this section we study some importantNP-complete prob-
lems. We treat most of them in pairs, with each pair addressing an important class
of problems, including problems involving Boolean formulas, graphs, sets, and
numbers. We begin with two problems involving Boolean formulas.

Every problem in NP

CIRCUIT-SAT

CNF-SAT

3SAT

VERTEX-COVER

TSPKNAPSACK

HAMILTONIAN -
CYCLE

SUBSET-SUMSET-COVERCLIQUE

comp. design

comp. design

comp. design

comp. design

local rep.

local rep.
local rep.

local rep.

restriction restriction

Figure 13.3: Illustration of the reductions used in some fundamentalNP-
completeness proofs. Each directed edge denotes a polynomial-time reduction,
with the label on the edge indicating the primary form of that reduction. The top-
most reduction is the Cook-Levin Theorem.
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13.3.1 CNF-Sat and 3Sat

The first reductions we present are for problems involving Boolean formulas. A
Boolean formula is a parenthesized expression that is formed from Boolean vari-
ables using Boolean operations, such as OR (+), AND (·), NOT (drawn as a bar
over the negated subexpression), IMPLIES (→), and IF-AND-ONLY-IF (↔). A
Boolean formula is inconjunctive normal form(CNF) if it is formed as a collec-
tion of subexpressions, calledclauses, that are combined using AND, with each
clause formed as the OR of Boolean variables or their negation, calledliterals. For
example, the following Boolean formula is in CNF:

(x1 +x2 +x4+x7)(x3 +x5)(x2 +x4 +x6+x8)(x1 +x3 +x5+x8).

This formula evaluates to 1 ifx2, x3, andx4 are 1, where we use 0 forfalse and
1 for true. CNF is called a “normal” form, because any Boolean formula can be
converted into this form.

CNF-Sat

Problem CNF-SAT takes a Boolean formula in CNF form as input and asks if there
is an assignment of Boolean values to its variables so that the formula evaluates
to 1.

It is easy to show that CNF-SAT is in NP, for, given a Boolean formulaS, we
can construct a simple nondeterministic algorithm that first “guesses” an assign-
ment of Boolean values for the variables inSand then evaluates each clause ofS in
turn. If all the clauses ofSevaluate to 1, thenS is satisfied; otherwise, it is not.

To show that CNF-SAT is NP-hard, we will reduce the CIRCUIT-SAT problem
to it in polynomial time. So, suppose we are given a Boolean circuit,C. Without
loss of generality, we assume that each AND and OR gate has two inputs and each
NOT gate has one input. To begin the construction of a formulaSequivalent toC,
we create a variablexi for each input for the entire circuitC. One might be tempted
to limit the set of variables to just thesexi ’s and immediately start constructing a
formula forC by combining subexpressions for inputs, but in general this approach
will not run in polynomial time. (See Exercise C-13.3.) Instead, we create a vari-
able yi for each output of a gate inC. Then, we create a short formulaBg that
corresponds to each gateg in C as follows:

• If g is an AND gate with inputsa andb (which could be eitherxi ’s or yi ’s)
and outputc, thenBg = (c↔ (a·b)).

• If g is an OR gate with inputsa andb and outputc, thenBg = (c↔ (a+b)).
• If g is a NOT gate with inputa and outputb, thenBg = (b↔ a).

We wish to create our formulaSby taking the AND of all of theseBg’s, but such
a formula would not be in CNF. So our method is to first convert eachBg to be in
CNF, and then combine all of these transformedBg’s by AND operations to define
the CNF formulaS.
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a b c B = (c↔ (a ·b))
1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 1 1
0 0 1 0
0 0 0 1

DNF formula forB = a ·b ·c+a ·b·c+a·b ·c+a·b·c
CNF formula forB = (a+b+c) · (a+b+c) · (a+b+c) · (a+b+c).

Figure 13.4: A truth table for a Boolean formulaB over variablesa, b, andc. The
equivalent formula forB in DNF, and equivalent formula forB in CNF.

To convert a Boolean formulaB into CNF, we construct a truth table forB, as
shown in Figure 13.4. We then construct a short formulaDi for each table row that
evaluates to 0. EachDi consists of the AND of the variables for the table, with the
variable negated if and only if its value in that row is 0. We create a formulaD by
taking the OR of all theDi ’s. Such a formula, which is the OR of formulas that are
the AND of variables or their negation, is said to be indisjunctive normal form,
or DNF. In this case, we have a DNF formulaD that is equivalent toB, since it
evaluates to 1 if and only ifB evaluates to 0. To convertD into a CNF formula for
B, we apply, to eachDi, De Morgan’s Laws, which establish that

(a+b) = a ·b and (a·b) = a+b.

From Figure 13.4, we can replace eachBg that is of the form(c↔ (a·b)), by

(a+b+c)(a+b+c)(a+b+c)(a+b+c),

which is in CNF. Likewise, for eachBg that is of the form(b↔ a), we can replace
Bg by the equivalent CNF formula

(a+b)(a+b).

We leave the CNF substitution for aBg of the form(c↔ (a+b)) as an exercise (R-
13.2). Substituting eachBg in this way results in a CNF formulaS′ that corresponds
exactly to each input and logic gate of the circuit,C. To construct the final Boolean
formula S, then, we defineS= S′ · y, wherey is the variable that is associated
with the output of the gate that defines the value ofC itself. Thus,C is satisfiable
if and only if S is satisfiable. Moreover, the construction fromC to S builds a
constant-sized subexpression for each input and gate ofC; hence, this construction
runs in polynomial time. Therefore, this local-replacement reduction gives us the
following.

Theorem 13.8: CNF-SAT is NP-complete.
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3Sat

Consider the 3SAT problem, which takes a Boolean formulaSthat is in conjunctive
normal form (CNF) with each clause inShaving exactly three literals, and asks if
S is satisfiable. Recall that a Boolean formula is in CNF if it is formed by the AND
of a collection of clauses, each of which is the OR of a set of literals. For example,
the following formula could be an instance of 3SAT:

(x1 +x2+x7)(x3 +x5 +x6)(x2 +x4+x6)(x1 +x5 +x8).

Thus, the 3SAT problem is a restricted version of the CNF-SAT problem. (Note
that we cannot use the restriction form ofNP-hardness proof, however, for this
proof form only works for reducing a restricted version to its more general form.)
In this subsection, we show that 3SAT is NP-complete, using the local replacement
form of proof. Interestingly, the 2SAT problem, where every clause has exactly two
literals, can be solved in polynomial time. (See Exercises C-13.4 and C-13.5.)

Note that 3SAT is in NP, for we can construct a nondeterministic polynomial-
time algorithm that takes a CNF formulaS with 3-literals per clause, guesses an
assignment of Boolean values forS, and then evaluatesSto see if it is equal to 1.

To prove that 3SAT is NP-hard, we reduce the CNF-SAT problem to it in poly-
nomial time. LetC be a given Boolean formula in CNF. We perform the following
local replacement for each clauseCi in C:

• If Ci = (a), that is, it has one term, which may be a negated variable, then we
replaceCi with Si = (a+b+c) · (a+b +c) · (a+b+c) · (a+b+c), where
b andc are new variables not used anywhere else.

• If Ci = (a+ b), that is, it has two terms, then we replaceCi with the sub-
formula Si = (a+ b+ c) · (a+ b+ c), wherec is a new variable not used
anywhere else.

• If Ci = (a+b+c), that is, it has three terms, then we setSi = Ci.

• If Ci = (a1+a2+a3+ · · ·+ak), that is, it hask > 3 terms, then we replaceCi

with Si = (a1+a2+b1) · (b1+a3+b2) · (b2+a4+b3) · · · (bk−3 +ak−1+ak),
whereb1,b2, . . . ,bk−1 are new variables not used anywhere else.

Notice that the value assigned to the newly introduced variables is completely ir-
relevant. No matter what we assign them, the clauseCi is 1 if and only if the small
formula Si is also 1. Thus, the original clauseC is 1 if and only if S is 1. More-
over, note that each clause increases in size by at most a constant factor and that the
computations involved are simple substitutions. Therefore, we have shown how to
reduce an instance of the CNF-SAT problem to an equivalent instance of the 3SAT

problem in polynomial time. This, together with the earlier observation about 3SAT

belonging toNP, gives us the following theorem.

Theorem 13.9: 3SAT is NP-complete.



608 Chapter 13. NP-Completeness

13.3.2 Vertex-Cover

Recall from Lemma 13.5 that VERTEX-COVER takes a graphG and an integerk
and asks if there is a vertex cover forG containing at mostk vertices. Formally,
VERTEX-COVER asks if there is a subsetC of vertices of size at mostk, such that
for each edge(v,w), we havev ∈C or w ∈C. We showed, in Lemma 13.5, that
VERTEX-COVER is in NP. The following example motivates this problem.

Example 13.10: Suppose we are given a graphG representing a computer net-
work where vertices represent routers and edges represent physical connections.
Suppose further that we wish to upgrade some of the routers in our network with
special new, but expensive, routers that can perform sophisticated monitoring oper-
ations for incident connections. If we would like to determine ifk new routers are
sufficient to monitor every connection in our network, then we have an instance of
VERTEX-COVER on our hands.

Let us now show that VERTEX-COVER is NP-hard, by reducing the 3SAT prob-
lem to it in polynomial time. This reduction is interesting in two respects. First,
it shows an example of reducing a logic problem to a graph problem. Second, it
illustrates an application of the component design proof technique.

Let Sbe a given instance of the 3SAT problem, that is, a CNF formula such that
each clause has exactly three literals. We construct a graphG and an integerk such
thatG has a vertex cover of size at mostk if and only if S is satisfiable. We begin
our construction by adding the following:

• For each variablexi used in the formulaS, we add two vertices inG, one
that we label withxi and the other we label withxi . We also add the edge
(xi ,xi) to G. (Note: These labels are for our own benefit; after we construct
the graphG we can always relabel vertices with integers if that is what an
instance of the VERTEX-COVER problem should look like.)

Each edge(xi ,xi) is a “truth-setting” component, for, with this edge inG, a vertex
cover must include at least one ofxi or xi . In addition, we add the following:

• For each clauseCi = (a+b+c) in S, we form a triangle consisting of three
vertices,i1, i2, andi3, and three edges,(i1, i2), (i2, i3), and(i3, i1).

Note that any vertex cover will have to include at least two of the vertices in
{i1, i2, i3} for each such triangle. Each such triangle is a “satisfaction-enforcing”
component. We then connect these two types of components, by adding, for each
clauseCi = (a+b+c), the edges(i1,a), (i2,b), and(i3,c). (See Figure 13.5.) Fi-
nally, we set the integer parameterk = n+2m, wheren is the number of variables
in Sandm is the number of clauses. Thus, if there is a vertex cover of size at most
k, it must have size exactlyk. This completes the construction of an instance of the
VERTEX-COVER problem.
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Figure 13.5: Example graphG as an instance of the VERTEX-COVER problem
constructed from the formulaS= (x1 +x2 +x3) · (x1 +x2 +x3) · (x2 +x3 +x4).

This construction clearly runs in polynomial time, so let us consider its correct-
ness. Suppose there is an assignment of Boolean values to variables inSso thatS
is satisfied. From the graphG constructed fromS, we can build a subset of vertices
C that contains each literala (in a truth-setting component) that is assigned 1 by
the satisfying assignment. Likewise, for each clauseCi = (a+ b+ c), the satisfy-
ing assignment sets at least one ofa, b, or c to 1. Whichever one ofa, b, or c is
1 (picking arbitrarily if there are ties), we include the other two in our subsetC.
ThisC is of sizen+ 2m. Moreover, notice that each edge in a truth-setting com-
ponent and clause-satisfying component is covered, and two of every three edges
incident on a clause-satisfying component are also covered. In addition, notice that
an edge incident to a component associated clauseCi that is not covered by a vertex
in the component must be covered by the node inC labeled with a literal, for the
corresponding literal inCi is 1.

Suppose then the converse, namely that there is a vertex coverC of size at most
n+2m. By construction, this set must have size exactlyn+2m, for it must contain
one vertex from each truth-setting component and two vertices from each clause-
satisfying component. This leaves one edge incident to a clause-satisfying compo-
nent that is not covered by a vertex in the clause-satisfying component; hence, this
edge must be covered by the other endpoint, which is labeled with a literal. Thus,
we can assign the literal inS associated with this node 1 and each clause inS is
satisfied; hence, all ofS is satisfied. Therefore,S is satisfiable if and only ifG has
a vertex cover of size at mostk. This gives us the following.

Theorem 13.11: VERTEX-COVER is NP-complete.

As mentioned before, the above reduction illustrates the component design
technique. We constructed truth-setting and clause-satisfying components in our
graphG to enforce important properties in the clauseS.
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13.3.3 Clique and Set-Cover

As with the VERTEX-COVER problem, there are several problems that involve se-
lecting a subset of objects from a larger set so as to optimize the size the subset can
have while still satisfying an important property. In this subsection, we study two
more such problems, CLIQUE and SET-COVER.

Clique

A clique in a graphG is a subsetC of vertices such that, for eachv andw in C, with
v 6= w, (v,w) is an edge. That is, there is an edge between every pair of distinct
vertices inC. Problem CLIQUE takes a graphG and an integerk as input and asks
whether there is a clique inG of size at leastk.

We leave as a simple exercise (R-13.7) to show that CLIQUE is in NP. To show
CLIQUE is NP-hard, we reduce the VERTEX-COVER problem to it. Therefore, let
(G,k) be an instance of the VERTEX-COVER problem. For the CLIQUE problem,
we construct the complement graphGc, which has the same vertex set asG, but has
the edge(v,w), with v 6= w, if and only if (v,w) is not inG. We define the integer
parameter for CLIQUE as n− k, wherek is the integer parameter for VERTEX-
COVER. This construction runs in polynomial time and serves as a reduction, for
Gc has a clique of size at leastn− k if and only if G has a vertex cover of size at
mostk. (See Figure 13.6.)

(a) (b)

Figure 13.6: A graphG illustrating the proof that CLIQUE is NP-hard. (a) Shows
the graphG with the nodes of a clique of size 5 shaded in grey. (b) Shows the graph
Gc with the nodes of a vertex cover of size 3 shaded in grey.

Therefore, we have the following.

Theorem 13.12: CLIQUE is NP-complete.

Note how simple the above proof by local replacement is. Interestingly, the next
reduction, which is also based on the local replacement technique, is even simpler.
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Set-Cover

Problem SET-COVER takes a collection ofm setsS1, S2, . . ., Sm and an integer
parameterk as input, and asks whether there is a subcollection ofk setsSi1, Si2, . . .,
Sik, such that

m[

i=1

Si =
k[

j=1

Si j .

That is, the union of the subcollection ofk sets includes every element in the union
of the originalmsets.

We leave it to an exercise (R-13.14) to show SET-COVER is in NP. As to the
reduction, we note that we can define an instance of SET-COVER from an instance
G andk of VERTEX-COVER. Namely, for each each vertexv of G, there is setSv,
which contains the edges ofG incident onv. Clearly, there is a set cover among
these setsSv’s of sizek if and only if there is a vertex cover of sizek in G. (See
Figure 13.7.)
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S1 = {a,b,c,m,d,e}
S2 = {e,h,o,n, i}
S3 = {a, f}
S4 = { j,m}
S5 = {b, j, l ,n,k,g}
S6 = {g,c, i}
S7 = {k,m}
S8 = {d,o, l}

(a) (b)

Figure 13.7: A graph G illustrating the proof that SET-COVER is NP-hard. The
vertices are numbered 1 through 8 and the edges are given letter labelsa through
o. (a) Shows the graphG with the nodes of a vertex cover of size 3 shaded in grey.
(b) Shows the sets associated with each vertex inG, with the subscript of each set
identifying the associated vertex. Note thatS1∪S2∪S5 contains all the edges ofG.

Thus, we have the following.

Theorem 13.13: SET-COVER is NP-complete.

This reduction illustrates how easily we can covert a graph problem into a set
problem. In the next subsection we show how we can actually reduce graph prob-
lems to number problems.
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13.3.4 Subset-Sum and Knapsack

Some hard problems involve only numbers. In such cases, we must take extra care
to use the size of the input in bits, for some numbers can be very large. To clarify
the role that the size of numbers can make, researchers say that a problemL is
strongly NP-hardif L remainsNP-hard even when we restrict the value of each
number in the input to be bounded by a polynomial in the size (in bits) of the input.
An input x of sizen would satisfy this condition, for example, if each numberi in x
was represented usingO(logn) bits. Interestingly, the number problems we study
in this section are not stronglyNP-hard. (See Exercises C-13.12 and C-13.13.)

Subset-Sum

In the SUBSET-SUM problem, we are given a setSof n integers and an integerk,
and we are asked if there is a subset of integers inS that sum tok. This problem
could arise, for example, as in the following.

Example 13.14: Suppose we have an Internet web server, and we are presented
with a collection of download requests. For each each download request we can
easily determine the size of the requested file. Thus, we can abstract each web
request simply as an integer—the size of the requested file. Given this set of in-
tegers, we might be interested in determining a subset of them that exactly sums
to the bandwidth our server can accommodate in one minute. Unfortunately, this
problem is an instance ofSUBSET-SUM. Moreover, because it isNP-complete,
this problem will actually become harder to solve as our web server’s bandwidth
and request-handling ability improves.

SUBSET-SUM might at first seem easy, and indeed showing it belongs toNP
is straightforward. (See Exercise R-13.15.) Unfortunately, it isNP-complete, as
we now show. LetG andk be given as an instance of the VERTEX-COVER prob-
lem. Number the vertices ofG from 1 to n and the edgesG from 1 to m, and
construct theincidence matrixH for G, defined so thatH[i, j] = 1 if and only if the
edge numberedj is incident on the vertex numberedi; otherwise,H[i, j] = 0. (See
Figure 13.8.)

We useH to define some admittedly large (but still polynomial-sized) numbers
to use as inputs to the SUBSET-SUM problem. Namely, for each rowi of H, which
encodes all the edges incident on vertexi, we construct the number

ai = 4m+1 +
m

∑
j=1

H[i, j]4 j .

Note that this number adds in a different power of 4 for each 1-entry in theith row
of H[i, j], plus a larger power of 4 for good measure. The collection ofai ’s defines
an “incidence component” to our reduction, for each power of 4 in anai , except for
the largest, corresponds to a possible incidence between vertexi and some edge.
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H 1 2 3 4 5 6 7 8
a 1 0 1 0 0 0 0 0
b 1 0 0 0 1 0 0 0
c 1 0 0 0 0 1 0 0
d 1 0 0 0 0 0 0 1
e 1 1 0 0 0 0 0 0
f 0 1 1 0 0 0 0 0
g 0 0 0 0 1 1 0 0
h 0 1 0 1 0 0 0 0
i 0 1 0 0 0 1 0 0
j 0 0 0 1 1 0 0 0
k 0 0 0 0 1 0 1 0
l 0 0 0 0 1 0 0 1
m 0 1 0 1 0 0 0 0
n 0 1 0 0 1 0 0 0
o 0 1 0 0 0 0 0 1

(a) (b)

Figure 13.8: A graphG illustrating the proof that SUBSET-SUM is NP-hard. The
vertices are numbered 1 through 8 and the edges are given letter labelsa througho.
(a) Shows the graphG; (b) shows the incidence matrixH for G. Note that there is
a 1 for each edge in one or more of the columns for vertices 1, 2, and 5.

In addition to the above incidence component, we also define an “edge-covering
component,” where, for each edgej, we define a number

bj = 4 j .

We then set the sum we wish to attain with a subset of these numbers as

k ′ = k4m+1 +
m

∑
j=1

2·4 j ,

wherek is the integer parameter for the VERTEX-COVER instance.
Let us consider, then, how this reduction, which clearly runs in polynomial

time, actually works. Suppose graphG has a vertex coverC = {i1, i2, . . . , ik}, of
sizek. Then we can construct a set of values adding tok ′ by taking everyai with an
index inC, that is, eachair for r = 1,2, . . . ,k. In addition, for each edge numbered
j in G, if only one of j ’s endpoints is included inC, then we also includebj in
our subset. This set of numbers sums tok ′, for it includesk values of 4m+1 plus 2
values of each 4j (either from twoair ’s such that this edge has both endpoints inC
or from oneair and onebj if C contains just one endpoint of edgej).

Suppose there is a subset of numbers that sums tok ′. Sincek ′ containsk values
of 4m+1, it must include exactlyk ai ’s. Let us include vertexi in our cover for each
suchai . Such a set is a cover, for each edgej, which corresponds to a power 4j ,
must contribute two values to this sum. Since only one value can come from abj ,
one must have come from at least one of the chosenai ’s. Thus, we have:

Theorem 13.15: SUBSET-SUM is NP-complete.
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Knapsack

In the KNAPSACK problem, illustrated in Figure 13.9, we are given a setSof items,
numbered 1 ton. Each itemi has an integer size,si , and worth,wi. We are also
given two integer parameters,s, andw, and are asked if there is a subset,T, of S
such that

∑
i∈T

si ≤ s, and ∑
i∈T

wi ≥ w.

Problem KNAPSACK defined above is the decision version of the optimization
problem “0-1 knapsack” discussed in Section 5.3.3.

We can motivate the KNAPSACK problem with the following Internet applica-
tion.

Example 13.16: Suppose we haves widgets that we are interested in selling at
an Internet auction web site. A prospective buyeri can bid on multiple lots by
saying that he or she is interested in buyingsi widgets at a total price ofwi dollars.
If multiple-lot requests, such as this, cannot be broken up (that is, buyeri wants
exactly si widgets), then determining if we can earnw dollars from this auction
gives rise to theKNAPSACK problem. (If lots can be broken up, then our auction
optimization problem gives rise to the fractional knapsack problem, which can be
solved efficiently using the greedy method of Section 5.1.1.)

The KNAPSACK problem is inNP, for we can construct a nondeterministic
polynomial-time algorithm that guesses the items to place in our subsetT and then
verifies that they do not violate thesandw constraints, respectively.

KNAPSACK is alsoNP-hard, as it actually contains the SUBSET-SUM problem
as a special case. In particular, any instance of numbers given for the SUBSET-
SUM problem can correspond to the items for an instance of KNAPSACK with each
wi = si set to a value in the SUBSET-SUM instance and the targets for the sizesand
worth w both equal tok, wherek is the integer we wish to sum to for the SUBSET-
SUM problem. Thus, by the restriction proof technique, we have the following.

Theorem 13.17: KNAPSACK is NP-complete.
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Figure 13.9: A geometric view of the KNAPSACK problem. Given a lineL of length
s, and a collection ofn rectangles, can we translate a subset of the rectangles to
have their bottom edge onL so that the total area of the rectangles touchingL is at
leastw? Thus, the width of rectanglei is si and its area iswi.
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13.3.5 Hamiltonian-Cycle and TSP

The last twoNP-complete problems we consider involve the search for certain
kinds of cycles in a graph. Such problems are useful for optimizing the travel of
robots and printer-plotters, for example.

Hamiltonian-Cycle

Recall, from Lemma 13.3, that HAMILTONIAN -CYCLE is the problem that takes a
graphG and asks if there is a cycle inG that visits each vertex inG exactly once,
returning to its starting vertex. (See Figure 13.10a.) Also recall, from Lemma 13.3,
that HAMILTONIAN -CYCLE is in NP. To show that this problem isNP-complete,
we will reduce VERTEX-COVER to it, using a component design type of reduction.

ve,bot

ve,top

we,bot

we,top

(a) (b)

Figure 13.10: Illustrating the HAMILTONIAN -CYCLE problem and itsNP-
completeness proof. (a) Shows an example graph with a Hamiltonian cycle
shown in bold. (b) Illustrates a cover-enforcer subgraphHe used to show that
HAMILTONIAN -CYCLE is NP-hard.

Let G and k be a given instance of the VERTEX-COVER problem. We will
construct a graphH that has a Hamiltonian cycle if and only ifG has a vertex
cover of sizek. We begin by including a set ofk initially disconnected vertices
X = {x1,x2, . . . ,xk} to H. This set of vertices will serve as a “cover-choosing”
component, for they will serve to identify which nodes ofG should be included
in a vertex cover. In addition, for each edgee = (v,w) in G we create a “cover-
enforcer” subgraphHe in H. This subgraphHe has 12 vertices and 14 edges as
shown in Figure 13.10b.

Six of the vertices in the cover-enforcerHe for e= (v,w) correspond tov and
the other six correspond tow. Moreover, we label two vertices in cover-enforcerHe

corresponding tov asve,top andve,bot, and we label two vertices inHe corresponding
to w aswe,top andwe,bot. These are the only vertices inHe that will be connected to
any other vertices inH outside ofHe.
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(a) (c)(b)

Figure 13.11: The three possible ways that a Hamiltonian cycle can visit the edges
in a cover-enforcerHe.

Thus, a Hamiltonian cycle can visit the nodes ofHe in only one of three possible
ways, as shown in Figure 13.11.

We join the important vertices in each cover-enforcerHe to other vertices inH
in two ways, one that corresponds to the cover-choosing component and one that
corresponds to the cover-enforcing component. For the cover-choosing component,
we add an edge from each vertex inX to every vertexve,top and every vertexve,bot.
That is, we add 2knedges toH, wheren is the number of vertices inG.

For the cover-enforcing component, we consider each vertexv in G in turn. For
each suchv, let {e1,e2, . . . ,ed(v)} be a listing of the edges ofG that are incident
uponv. We use this listing to create edges inH by joining vei ,bot in Hei to vei+1,top

in Hei+1, for i = 1,2, . . . ,d−1. (See Figure 13.12.) We refer to theHei components
joined in this way as belonging to thecovering threadfor v. This completes the
construction of the graphH. Note that this computation runs in polynomial time in
the size ofG.

We claim thatG has a vertex cover of sizek if and only if H has a Hamiltonian
cycle. Suppose, first, thatG has a vertex cover of sizek. Let C = {vi1,vi2, . . . ,vik}
be such a cover. We construct a Hamiltonian cycle inH, by connecting a series of
pathsPj , where eachPj starts atxj and ends atxj+1, for j = 1,2, . . . ,k−1, except
for the last pathPk, which starts atxk and ends atx1. We form such a pathPj as
follows. Start withxj , and then visit the entire covering thread forvi j in H, returning
to xj+1 (or x1 if j = k). For each cover-enforcer subgraphHe in the covering thread
for vi j , which is visited in thisPj , we write, without loss of generality,eas(vi j ,w).
If w is not also inC, then we visit thisHe as in Figure 13.11a or Figure 13.11c (with
respect tovi j ). Instead, ifw is also inC, then we visit thisHe as in Figure 13.11b.
In this way we will visit each vertex inH exactly once, sinceC is a vertex cover for
G. Thus, this cycle we construct is in fact a Hamiltonian cycle.

Suppose, conversely, thatH has a Hamiltonian cycle. Since this cycle must
visit all the vertices inX, we break this cycle up intok paths,P1, P2, . . ., Pk, each
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ed(v)

v

e1
e2

e3

(a) (b)

v
ed(v),bot

v
ed(v),top

v
e1,top

v
e2,top

v
e3,top

v
e1,bot

v
e2,bot

v
e3,bot

Figure 13.12: Connecting the cover-enforcers. (a) A vertexv in G and its set of
incident edges{e1,e2, . . . ,ed(v)}. (b) The connections made between theHei ’s in H
for the edges incident uponv.

of which starts and ends at a vertex inX. Moreover, by the structure of the cover-
enforcer subgraphsHe and the way that we connected them, eachPj must traverse
a portion (possibly all) of a covering thread for a vertexv in G. LetC be the set of
all such vertices inG. Since the Hamiltonian cycle must include the vertices from
every cover-enforcerHe and every such subgraph must be traversed in a way that
corresponds to one (or both) ofe’s endpoints,C must be a vertex cover inG.

Therefore,G has a vertex cover of sizek if and only if H has a Hamiltonian
cycle. This gives us the following.

Theorem 13.18: HAMILTONIAN -CYCLE is NP-complete.

TSP

In the traveling salesperson problem, or language TSP, we are given an integer
parameterk and a graphG, such that each edgee in G is assigned an integer cost
c(e), and we are asked if there is a cycle inG that visits all the vertices inG
(possibly more than once) and has total cost at mostk. Showing that TSP is in
NP is as easy as guessing a sequence of vertices and then verifying that it forms
a cycle of cost at mostk in G. Showing that TSP isNP-complete is also easy, as
it contains the HAMILTONIAN -CYCLE problem as a special case. Namely, given
an instanceG of the HAMILTONIAN -CYCLE problem, we can create an instance of
TSP by assigning each edge inG the costc(e) = 1 and setting the integer parameter
k = n, wheren is the number of vertices inG. Therefore, using the restriction form
of reduction, we get the following.

Theorem 13.19: TSPis NP-complete.
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13.4 Approximation Algorithms

One way of dealing withNP-completeness for optimization problems is to use
an approximation algorithm. Such an algorithm typically runs much faster than
an algorithm that strives for an exact solution, but it is not guaranteed to find the
best solution. In this section, we study methods for constructing and analyzing
approximation algorithms for hard optimization problems.

The general situation is that we have some problem instancex, which could be
an encoding of a set of numbers, a graph, etc., as discussed above. In addition, for
the problem we are interested in solving forx, there will often be a large number of
feasiblesolutions forx, which define a setF of such feasible solutions.

We also have a cost function,c, that determines a numeric costc(S) for any
solutionS∈ F . In the general optimization problem, we are interested in finding a
solutionS in F , such that

c(S) = OPT= min{c(T):T ∈ F}.
That is, we want a solution with minimum cost. We could also formulate a maxi-
mization version of the optimization problem, as well, which would simply involve
replacing the above “min” with “max.” To keep the discussion in this section sim-
ple, however, we will typically take the view that, unless otherwise stated, our
optimization goal is a minimization.

The goal of an approximation algorithm is to come as close to the optimum
value as possible in a reasonable amount of time. As we have been doing for this
entire chapter, we take the view in this section that a reasonable amount of time is
at most polynomial time.

Ideally, we would like to provide a guarantee of how close an approximation
algorithm comes to the optimal value,OPT. We say that aδ-approximationalgo-
rithm for a particular optimization problem is an algorithm that returns a feasible
solutionS(that is,S∈ F), such that

c(S)≤ δOPT,

for a minimization problem. For a maximization problem, aδ-approximation algo-
rithm would guaranteeOPT≤ δc(S). Or, in general, we have

δ≤max{c(S)/OPT, OPT/c(S)}.
In the remainder of this section, we study problems for which we can constructδ-
approximation algorithms for various values ofδ. We begin with the ideal situation
as far as approximation factors are concerned.
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13.4.1 Polynomial-Time Approximation Schemes

There are some problems for which we can constructδ-approximation algorithms
that run in polynomial-time withδ = 1+ ε, for any fixed valueε > 0. The running
time of such a collection of algorithms depends both onn, the size of the input,
and also on the fixed valueε. We refer to such a collection of algorithms as a
polynomial-time approximation scheme, or PTAS. When we have a polynomial-
time approximation scheme for a given optimization problem, we can tune our
performance guarantee based on how much time we can afford to spend. Ideally,
the running time is polynomial in bothn and 1/ε, in which case we have afully
polynomial-time approximation scheme.

Polynomial-time approximation schemes take advantage of a property that some
hard problems possess, namely, that they are rescalable. A problem is said to be
rescalableif an instancex of the problem can be transformed into an equivalent in-
stancex′ (that is, one with the same optimal solution) by scaling the cost function,
c. For example, TSP is rescalable. Given an instanceG of TSP, we can construct
an equivalent instanceG′ by multiplying the distance between every pair of ver-
tices by a scaling factors. The traveling salesperson tour inG′ will be the same as
in G, although its cost will now be multiplied bys.

A Fully Polynomial-Time Approximation Scheme for Knapsack

To be more concrete, let us give a fully polynomial approximation scheme for the
optimization version of a well-known problem, KNAPSACK (Sections 5.1.1 and
13.3.4). In the optimization version of this problem, we are given a setSof items,
numbered 1 ton, together with a size constraint,s. Each itemi in S is given an
integer size,si , and worth,wi , and we are asked to find a subset,T, of S, such that
T maximizes the worth

w = ∑
i∈T

wi while satisfying ∑
i∈T

si ≤ s.

We desire a PTAS that produces a(1+ ε)-approximation, for any given fixed con-
stantε. That is, such an algorithm should find a subsetT ′ satisfying the size con-
straint such that if we definew′ = ∑i∈T ′ wi , then

OPT≤ (1+ ε)w′,

whereOPT is the optimal worth summation, taken over all possible subsets satis-
fying the total size constraint. To prove that this inequality holds, we will actually
prove that

w′ ≥ (1− ε/2)OPT,

for 0 < ε < 1. This will be sufficient, however, since, for any fixed 0< ε < 1,

1
1− ε/2

< 1+ ε.
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To derive a PTAS for KNAPSACK, we take advantage of the fact that this prob-
lem is rescalable. Suppose we are given a value ofε with 0 < ε < 1. Let wmax

denote the maximum worth of any item inS. Without loss of generality, we assume
that the size of each item is at mosts (for an item larger than this could not fit in
the knapsack). Thus, the item with worthwmax defines a lower bound for the opti-
mal value. That is,wmax≤ OPT. Likewise, we can define an upper bound on the
optimal solution by noting that the knapsack can at most contain alln items inS,
each of which has worth at mostwmax. Thus,OPT≤ nwmax. To take advantage of
the rescalability of KNAPSACK, we round each worth valuewi to wi

′, the nearest
smaller multiple ofM = εwmax/2n. Let us denote the rounded version ofSasS′,
and let us also useOPT′ to denote the solution for this rounded versionS′. Note
that, by simple substitution,OPT≤ 2n2M/ε. Moreover,OPT′ ≤ OPT, since we
rounded every worth value inSdown to formS′. Thus,OPT′ ≤ 2n2M/ε.

Therefore, let us turn to our solution for the rounded versionS′ of the KNAP-
SACK problem forS. Since every worth value inS′ is a multiple ofM, any achiev-
able worth of a collection of items taken fromS′ is also a multiple ofM. Moreover,
there are justN = d2n2/εe such multiples that need to be considered, because of
the upper bound onOPT′. We can use dynamic programming (Section 5.3) to con-
struct an efficient algorithm for finding the optimal worth forS′. In particular, let
us define the parameter,

s[i, j] = the size of the smallest set of items in{1,2, . . . , j} with worth iM .

The key insight to the design of a dynamic programming algorithm for solving the
rounded KNAPSACK problem is the observation that we can write

s[i, j] = min{s[i, j−1], sj +s[i− (wj
′/M), j−1]},

for i = 1,2, . . . ,N, and j = 1,2, . . . ,n. (See Figure 13.13.)

i

j - 1 j

i - (w'j /M)

+ sj

s

min

Figure 13.13: Illustration of the equation fors[i, j] used in the dynamic program for
the scaled version of KNAPSACK.
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The above equation fors[i, j] follows from the fact that itemj will either con-
tribute or not contribute to the smallest way of achieving worthiM from the items
in {1,2, . . . , j}. In addition, note that for the base case,j = 0, when no items at all
are included in the knapsack, then

s[i,0] = +∞,

for i = 1,2, . . . ,N. That is, such a size is undefined. In addition,

s[0, j] = 0,

for j = 1,2, . . . ,n, since we can always achieve worth 0 by including no items in
the knapsack. The optimal value is defined by

OPT′ = max{iM :s[i,n] ≤ s}.
This is the value that is output by our PTAS algorithm.

Analysis of the PTAS for Knapsack

We can easily convert the above description into a dynamic programming algorithm
that computesOPT′ in O(n3/ε) time. Such an algorithm gives us the value of an
optimal solution, but we can easily translate the dynamic programming algorithm
for computing the size into one for the actual set of items.

Let us consider, then, how good an approximationOPT′ is for OPT. Recall
that we reduced the worthwi of each itemi by at mostM = εwmax/2n. Thus,

OPT′ ≥OPT− εwmax/2,

since the optimal solution can contain at mostn items. SinceOPT≥ wmax, this in
turn implies that

OPT′ ≥OPT− εOPT/2 = (1− ε/2)OPT.

Thus, OPT≤ (1+ ε)OPT′, which was what we wished to prove. The running
time of our approximation algorithm isO(n3/ε). Our scheme of designing an effi-
cient algorithm for any givenε > 0 gives rise to a fully polynomial approximation
scheme, since the running time is polynomial in bothn and 1/ε. This fact gives us
the following.

Theorem 13.20: The KNAPSACK optimization problem has a fully polynomial
approximation scheme that achieves a(1+ ε)-approximation factor inO(n3/ε)
time, wheren is the number of items in theKNAPSACK instance and0 < ε < 1
is a given fixed constant.
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13.4.2 A 2-Approximation for Vertex-Cover

It is not always possible to design a polynomial-time approximation scheme for a
hard problem, let alone a fully polynomial-time approximation scheme. In such
cases, we would still like good approximations, of course, but we will have to
settle for an approximation factor that is not arbitrarily close to 1, as we had in
the previous subsection. In this subsection, we describe how we can achieve a
2-approximation algorithm for a well-knownNP-complete problem, the VERTEX-
COVER problem (Section 13.3.2). In the optimization version of this problem, we
are given a graphG and we are asked to produce the smallest setC that is a vertex
cover forG, that is, such that every edge inG is incident on some vertex inC.

Our approximation algorithm is based on the greedy method, and is rather sim-
ple. It involves picking an edge in the graph, adding both its endpoints to the cover,
and then deleting this edge and its incident edges from the graph. The algorithm
repeats this process until no edges are left. We give the details for this approach in
Algorithm 13.14.

Algorithm VertexCoverApprox(G):
Input: A graphG
Output: A small vertex coverC for G

C←∅
while G still has edgesdo

select an edgee= (v,w) of G
add verticesv andw toC
for each edgef incident tov or w do

removef from G
return C

Algorithm 13.14: A 2-approximation algorithm for VERTEX-COVER.

We leave the details of how to implement this algorithm inO(n+ m) time
as a simple exercise (R-13.18). Let us consider, then, why this algorithm is a 2-
approximation. First, observe that each edgee= (v,w) selected by the algorithm,
and used to addv andw toC, must be covered in any vertex cover. That is, any ver-
tex cover forG must containv or w (possibly both). The approximation algorithm
adds bothv andw to C in such a case. When the approximation algorithm com-
pletes, there are no uncovered edges left inG, for we remove all the edges covered
by the verticesv andw when we add them toC. Thus,C forms a vertex cover of
G. Moreover, the size ofC is at most twice that of an optimal vertex cover forG,
since, for every two vertices we add toC, one of these vertices must belong to the
optimal cover. Therefore, we have the following.

Theorem 13.21: Given a graph withnvertices andmedges, the optimization ver-
sion of VERTEX-COVER has a2-approximation algorithm takingO(n+m) time.
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13.4.3 A 2-Approximation for a Special Case of TSP

In the optimization version of the traveling salesperson problem, or TSP, we are
given a weighted graphG, such that each edgee in G has an integer weightc(e),
and we are asked to find a minimum-weight cycle inG that visits all vertices inG.
In this section we describe a simple 2-approximation algorithm for a special case
of the TSP optimization problem.

The Triangle Inequality

Consider an instance of TSP such that the edge weights satisfy thetriangle in-
equality. That is, for any three edges(u,v), (v,w), and(u,w) in G, we have

c((u,v))+c((v,w)) ≥ c((u,w)),

Also, suppose that every pair of vertices inG is connected by an edge, that is,G
is a complete graph. These properties, which hold for any distance metric, imply
that the optimal tour ofG will visit each vertex exactly once; hence, let us consider
only Hamiltonian cycles as possible solutions of TSP.

The Approximation Algorithm

Our approximation algorithm takes advantage of the above properties ofG to design
a very simple TSP approximation algorithm, which has just three steps. In the first
step we construct a minimum-spanning tree,M, of G (Section 7.3). In the second
step we construct an Euler-tour traversal,E, of M, that is, a traversal ofM that
starts and ends at the same vertex and traverses each edge ofM exactly once in
each direction (Section 2.3.3). In the third step we construct a tourT from E by
marching through the edges ofE, but each time we have two edges(u,v) and(v,w)
in E, such thatv has already been visited, we replace these two edges by the edge
(u,w) and continue. In essence, we are constructingT as a a preorder traversal of
M. This three-step algorithm clearly runs in polynomial-time. (See Figure 13.15.)

(a) (b) (c) (d)

Figure 13.15: Example run of the approximation algorithm for TSP for a graph
satisfying the triangle inequality: (a) a setSof points in the plane, with Euclidean
distance defining the costs of the edges (not shown); (b) the minimum-spanning
tree,M, for S, (c) an Euler tour,E, of M; (d) the approximate TSP tour,T.
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Analysis of the TSP Approximation Algorithm

The analysis of why this algorithm achieves an approximation factor of 2 is also
simple. Let us extend our notation so thatc(H) denotes the total weight of the
edges in a subgraphH of G. Let T ′ be the optimal tour for the graphG. If we
delete any edge fromT ′ we get a path, which is, of course, also a spanning tree.
Thus,

c(M)≤ c(T ′).

We can also easily relate the cost ofE to that ofM, as

c(E) = 2c(M),

since the Euler tourE visits each edge ofM exactly once in each direction. Finally,
note that, by the triangle inequality, when we construct our tourT, each time we
replace two edges(u,v) and(v,w) with the edge(u,w), we do not increase the cost
of the tour. That is,

c(T)≤ c(E).

Therefore, we have

c(T)≤ 2c(T ′).

(See Figure 13.16.)

Euler tour E of MST MOutput tour T Optimal tour T '
(twice the cost of M) (at least the cost of MST M)(at most the cost of E)

Figure 13.16: Illustrating the proof that MST-based algorithm is a 2-approximation
for the TSP optimization problem.

We may summarize this discussion as follows.

Theorem 13.22: If a weighted graphG is complete and has edge weights satis-
fying the triangle inequality, then there is a2-approximation algorithm for theTSP
optimization problem forG that runs in polynomial time.

This theorem depends heavily on the fact that the cost function on the graphG
satisfies the triangle inequality. In fact, without this assumption, no constant-factor
approximation algorithm for the optimization version of TSP exists that runs in
polynomial time, unlessP = NP. (See Exercise C-13.14.)
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13.4.4 A Logarithmic Approximation for Set-Cover

There are some cases when achieving even a constant-factor approximation in poly-
nomial time is difficult. In this section, we study one of the best known of such
problems, the SET-COVER problem (Section 13.3.3). In the optimization version
of this problem, we are given a collection of setsS1,S2, . . . ,Sm, whose union is a
universeU of sizen, and we are asked to find the smallest integerk, such that there
is a subcollection ofk setsSi1,Si2, . . . ,Sik with

U =
m[

i=1

Si =
k[

j=1

Si j .

Although it is difficult to find a constant-factor approximation algorithm that runs in
polynomial time for this problem, we can design an efficient algorithm that has an
approximation factor ofO(logn). As with several other approximation algorithms
for hard problems, this algorithm is based on the greedy method (Section 5.1).

A Greedy Approach

Our algorithm selects setsSi j one at a time, each time selecting the set that has the
most uncovered elements. When every element inU is covered, we are done. We
give a simple pseudo-code description in Algorithm 13.17.

Algorithm SetCoverApprox(S):
Input: A collectionSof setsS1,S2, . . . ,Sm whose union isU
Output: A small set coverC for S

C←∅ {The set cover we are building}
E←∅ {The set of covered elements fromU}
while E 6= U do

select a setSi that has the maximum number of uncovered elements
addSi toC
E← E∪Si

ReturnC.

Algorithm 13.17: An approximation algorithm for SET-COVER.

This algorithm runs in polynomial time. (See Exercise R-13.19.)

Analyzing the Greedy Set-Cover Algorithm

To analyze the approximation factor of the above greedy SET-COVER algorithm,
we will use an amortization argument based on a charging scheme (Section 1.5).
Namely, each time our approximation algorithm selects a setSj we will charge the
elements ofSj for its selection.



626 Chapter 13. NP-Completeness

Specifically, consider the moment in our algorithm when a setSj is added to
C, and letk be the number of previously uncovered elements inSj . We must pay
a total charge of 1 to add this set toC, so we charge each previously uncovered
elementi of Sj a charge of

c(i) = 1/k.

Thus, the total size of our cover is equal to the total charges made by our algorithm.
That is,

|C|= ∑
i∈U

c(i).

To prove an approximation bound, we will consider the charges made to the
elements in each subsetSj that belongs to an optimal cover,C ′. So, suppose that
Sj belongs toC ′. Let us writeSj = {x1,x2, . . . ,xnj} so thatSj ’s elements are listed
in the order in which they are covered by our algorithm (we break ties arbitrarily).
Now, consider the iteration in whichx1 is first covered. At that moment,Sj has not
yet been selected; hence, whichever set is selected must have at leastnj uncovered
elements. Thus,x1 is charged at most 1/nj . So let us consider, then, the moment
our algorithm charges an elementxl of Sj . In the worst case, we will have not
yet chosenSj (indeed, our algorithm may never choose thisSj ). Whichever set is
chosen in this iteration has, in the worst case, at leastnj− l +1 uncovered elements;
hence,xl is charged at most 1/(nj − l +1). Therefore, the total amount charged to
all the elements ofSj is at most

nj

∑
l=1

1
nl − l +1

=
nj

∑
l=1

1
l
,

which is the familiar Harmonic number,Hni . It is well known (for example, see
the Appendix) thatHnj is O(lognj). Let c(Sj ) denote the total charges given to all
the elements of a setSj that belongs to the optimal coverC ′. Our charging scheme
implies thatc(Sj ) is O(lognj). Thus, summing over the sets ofC ′, we obtain

∑
Sj∈C′

c(Sj ) ≤ ∑
Sj∈C′

blognj

≤ b|C ′| logn,

for some constantb≥ 1. But, sinceC ′ is a set cover,

∑
i∈U

c(i) ≤ ∑
Sj∈C′

c(Sj)

Therefore,

|C| ≤ b|C ′| logn.

This fact gives us the following result.

Theorem 13.23: The optimization version of theSET-COVER problem has an
O(logn)-approximation polynomial-time algorithm for finding a cover of a collec-
tion of sets whose union is a universe of sizen.
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13.5 Backtracking and Branch-and-Bound

In the above sections, we showed many problems to beNP-complete. Thus, unless
P = NP, which the vast majority of computer scientists believes is not true, it is
impossible to solve any of these problems in polynomial time. Nevertheless, many
of these problems arise in real-life applications where solutions to them need to be
found, even if finding these solutions may take a long time. Thus, in this section,
we address techniques for dealing withNP-completeness that have shown much
promise in practice. These techniques allow us to design algorithms that can find
solutions to hard problems, often in a reasonable amount of time. In this section,
we study the methods ofbacktrackingandbranch-and-bound.

13.5.1 Backtracking

The backtracking design pattern is a way to build an algorithm for some hard prob-
lemL. Such an algorithm searches through a large, possibly even exponential-size,
set of possibilities in a systematic way. The search strategy is typically optimized
to avoid symmetries in problem instances forL and to traverse the search space so
as to find an “easy” solution forL if such a solution exists.

Thebacktrackingtechnique takes advantage of the inherent structure that many
NP-complete problems possess. Recall that acceptance for an instancex in a prob-
lem in NP can be verified in polynomial time given a polynomial-sized certificate.
Oftentimes, this certificate consists of a set of “choices,” such as the values assigned
to a collection of Boolean variables, a subset of vertices in a graph to include in a
special set, or a set of objects to include in a knapsack. Likewise, the verification
for a certificate often involves a simple test of whether or not the certificate demon-
strates a successful configuration forx, such as satisfying a formula, covering all
the edges in a graph, or conforming to certain performance criteria. In such cases,
we can use thebacktrackingalgorithm, given in Algorithm 13.18, to systematically
search for a solution to our problem, if such a problem exists.

The backtracking algorithm traverses through possible “search paths” to locate
solutions or “dead ends.” The configuration at the end of such a path consists of
a pair (x,y), wherex is the remaining subproblem to be solved andy is the set
of choices that have been made to get to this subproblem from the original prob-
lem instance. Initially, we give the backtracking algorithm the pair(x,∅), where
x is our original problem instance. Anytime the backtracking algorithm discovers
that a configuration(x,y) cannot lead to a valid solution no matter how additional
choices are made, then it cuts off all future searches from this configuration and
“backtracks” to another configuration. In fact, this approach gives the backtracking
algorithm its name.



628 Chapter 13. NP-Completeness

Algorithm Backtrack(x):
Input: A problem instancex for a hard problem
Output: A solution forx or “no solution” if none exists

F ←{(x,∅)}. {F is the “frontier” set of subproblem configurations}
while F 6= ∅ do

select fromF the most “promising” configuration(x,y)
expand(x,y) by making a small set of additional choices
let (x1,y1), (x2,y2), . . ., (xk,yk) be the set of new configurations.
for each new configuration(xi ,yi) do

perform a simple consistency check on(xi ,yi)
if the check returns “solution found”then

return the solution derived from(xi ,yi)
if the check returns “dead end”then

discard the configuration(xi ,yi) {Backtrack}
else

F ← F ∪{(xi ,yi)} {(xi ,yi) starts a promising search path}
return “no solution”

Algorithm 13.18: The template for a backtracking algorithm.

Filling in the Details

In order to turn the backtracking strategy into an actual algorithm, we need only fill
in the following details:

1. Define a way of selecting the most “promising” candidate configuration from
the frontier setF.

2. Specify the way of expanding a configuration(x,y) into subproblem config-
urations. This expansion process should, in principle, be able to generate all
feasible configurations, starting from the initial configuration,(x,∅).

3. Describe how to perform a simple consistency check for a configuration(x,y)
that returns “solution found,” “dead end,” or “continue.”

If F is a stack, then we get a depth-first search of the configuration space. In
fact, in this case we could even use recursion to implementF automatically as
a stack. Alternatively, ifF is a queue, then we get a breadth-first search of the
configuration space. We can also imagine other data structures to implementF,
but as long as we have an intuitive notion of how to select the most “promising”
configuration fromF with each iteration, then we have a backtracking algorithm.

So as to make this approach more concrete, let us work through an application
of the backtracking technique to the CNF-SAT problem.
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A Backtracking Algorithm for CNF-Sat

Recall that in the CNF-SAT problem we are given a Boolean formulaSin conjunc-
tive normal form (CNF) and are asked ifS is satisfiable. To design a backtracking
algorithm for CNF-SAT, we will systematically make tentative assignments to the
variables inS and see if such assignments makeS evaluate immediately to 1 or
0, or yield a new formulaS′ for which we could continue making tentative value
assignments. Thus, a configuration in our algorithm will consist of a pair(S′,y),
whereS′ is a Boolean formula in CNF, andy is an assignment of values to Boolean
variables not inS′ such that making these assignments inS results in the formula
S′.

To formulate our backtracking algorithm, then, we need to give the details of
each of the three components to the backtracking algorithm. Given a frontierF of
configurations, we make our most “promising” choice, which is the subformulaS′
with the smallest clause. Such a formula is the most constrained of all the formulas
in F; hence, we would expect it to hit a dead end most quickly if that is indeed its
destiny.

Let us consider, then, how to generate subproblems from a subformulaS′. We
do this by locating a smallest clauseC in S′, and picking a variablexi that appears
in C. We then create two new subproblems that are associated with our assigning
xi = 1 andxi = 0 respectively.

Finally, we must say how to processS′ to perform a consistency check for an
assignment of a variablexi in S′. We begin this processing by reducing any clauses
containingxi based on the assigned 0 or 1 value ofxi (depending on the choice
we made). If this reduction results in a new clause with a single literal,xj or xj ,
we also perform the appropriate value assignment toxj to make this single-literal
clause satisfied. We then process the resulting formula to propagate the assigned
value ofxj . If this new assignment in turn results in a new single-literal clause,
we repeat this process until we have no more single-literal clauses. If at any point
we discover a contradiction (that is, clausesxi andxi , or an empty clause), then
we return “dead end.” If we reduce the subformulaS′ all the way to the constant 1,
then we return “solution found,” along with all the variable assignments we made to
reach this point. Otherwise, we derive a new subformula,S′′, such that each clause
has at least two literals, along with the value assignments that lead from the original
formula S to S′′. We call this operation thereduceoperation for propagating an
assignment of value toxi in S′.

Fitting all of these pieces into the template for the backtracking algorithm re-
sults in an algorithm that solves the CNF-SAT problem in about as fast a time as
we can expect. In general, the worst-case running time for this algorithm is still
exponential, but the backtracking can often speed things up. Indeed, if every clause
in the given formula has at most two literals, then this algorithm runs in polynomial
time. (See Exercise C-13.4.)
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Java Example: A Backtracking Solution for Subset-Sum

To be even more concrete, let us consider a Java backtracking solution for theNP-
hard SUBSET-SUM problem. Recall from Section 13.3.4 that in the SUBSET-SUM

problem we are given a setS of n integers and an integerk, and we are asked if
there is a subset of integers inS that sum tok.

To make the decision easier for determining whether a configuration is a dead
end or not, let us assume that the integers inSare given in nondecreasing order as
S= {a0,a1, . . . ,an−1}. Given this choice, we then define the three main compo-
nents of our backtracking algorithm as follows:

1. For our way of selecting the most “promising” candidate configuration, we
make a choice common in many backtracking algorithms. Namely, we will
use recursion to perform a depth-first search of the configuration space. Thus,
our method stack will automatically keep track of unexplored configurations
for us.

2. For our procedure for specifying the way of expanding a configuration(x,y)
into subproblem configurations, let us simply “march” down the sequence of
integers inS in order. Thus, having a configuration that has already consid-
ered the subsetSi = {a0, . . . ,ai}, we simply need to generate the two possible
configurations determined by whether we useai+1 or not.

3. The final major component of our backtracking algorithm is a way to perform
a consistency check that returns “solution found,” “dead end,” or “continue.”
To aid in this test, we will again use the fact that the integers inSare sorted.
Suppose we have already considered integers in the subsetSi = {a0, . . . ,ai}
and are now consideringai+1. There is a simple two-fold consistency test we
can perform at this point. Letki denote the sum of the elements inSi that
we have tentatively chosen to belong to our selection, and let the sum of the
remaining integers be

ri+1 =
n−1

∑
j=i+1

aj .

The first part of our test is to confirm that

k≥ ki +ai+1.

If this condition fails, then we are “overshooting”k. Moreover, sinceS is
sorted, anyaj with j > i + 1 will also overshootk; hence, we are at a dead
end in this case. For the second part of our test, we confirm that

k≤ ki + ri+1.

If this condition fails, then we are “undershooting”k, and there is no hope
for us to reachk with the remaining set of integers inS; hence, we are also
at a dead end in this case. If both tests succeed, then we considerai+1 and
proceed.

We give the Java code for this method in Code Fragment 13.19.
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/**
* Method to find a subset of an array of integers summing to k, assuming:
* - the array a is sorted in nondecreasing order,
* - we have already considered the elements up to index i,
* - the ones we have chosen add up to sum,
* - the set that are left sum to reamin.
* The function returns “true” and prints the subset if it is found.
* Should be first called as findSubset(a,k,-1,0,t), where t is total.
*/

public static boolean findSubset(int[ ] a, int k, int i, int sum, int remain) {
/* Test conditions for expanding this configuration */
if (i+1 >= a.length) return false; // safety check that integers remain
if (sum + remain < k) return false; // we’re undershooting k
int next = a[i+1]; // the next candidate integer
if (sum + next > k) return false; // we’re overshooting k
if (sum + next == k) { // we’ve found a solution!

System.out.print(k + "=" + next); // begin printing solution
return true;
}

if (findSubset(a, k, i+1, sum+next, remain−next)) {
System.out.print("+" + next); // solution includes a[i+1]
return true;
}

else // backtracking - solution doesn’t include a[i+1]
return findSubset(a, k, i+1, sum, remain);

}

Code Fragment 13.19:A Java implementation of a backtracking algorithm for the
SUBSET-SUM problem.

Note that we have defined the searching method,findSubset, recursively, and
we use that recursion both for the backtracking and also for printing a solution
when it is found. Also note that each recursive call takesO(1) time, since an array
is passed as a reference to the base address. Thus, the worst-case running time of
this method isO(2n), wheren is the number of integers we are considering. We
hope, of course, that for typical problem instances the backtracking will avoid this
worst case, either by quickly finding a solution or by using the conditions for dead
ends to prune away many useless configurations.

There is a minor improvement we can make to thefindSubset method if we
can faithfully trust that it is always called correctly. Namely, we can drop the
safety test for integers that are left to be considered. For, if there are no more
integers to consider, thenremain = 0. Thus,sum + remain < k, since we would
have terminated this path of searching for a solution earlier had we overshotk
or hit k exactly. Still, although we could, in theory, drop this test for remaining
integers, we keep this test in our code for safety reasons, just in case someone calls
our method incorrectly.
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13.5.2 Branch-and-Bound

The backtracking algorithm is effective for decision problems, but it is not designed
for optimization problems, where, in addition to having some feasibility condition
be satisfied for a certificatey associated with an instancex, we also have a cost
function f (x) that we wish to minimize or maximize (without loss of generality, let
us assume the cost function should be minimized). Nevertheless, we can extend the
backtracking algorithm to work for such optimization problems, and in so doing
derive the algorithmic design pattern known asbranch-and-bound.

The branch-and-bound design pattern, given in Algorithm 13.20, has all the el-
ements of backtracking, except that rather than simply stopping the entire search
process any time a solution is found, we continue processing until the best solution
is found. In addition, the algorithm has a scoring mechanism to always choose
the most promising configuration to explore in each iteration. Because of this ap-
proach, branch-and-bound is sometimes called abest-first searchstrategy.

Algorithm Branch-and-Bound(x):
Input: A problem instancex for a hard optimization (minimization) problem
Output: An optimal solution forx or “no solution” if none exists

F ←{(x,∅)} {Frontier set of subproblem configurations}
b← (+∞,∅) {Cost and configuration of current best solution}
while F 6= ∅ do

select fromF the most “promising” configuration(x,y)
expand(x,y), yielding new configurations(x1,y1), . . ., (xk,yk)
for each new configuration(xi ,yi) do

perform a simple consistency check on(xi ,yi)
if the check returns “solution found”then

if the costc of the solution for(xi ,yi) beatsb then
b← (c,(xi ,yi))

else
discard the configuration(xi ,yi)

if the check returns “dead end”then
discard the configuration(xi ,yi) {Backtrack}

else
if lb(xi ,yi) is less than the cost ofb then

F ← F ∪{(xi ,yi)} {(xi ,yi) starts a promising search path}
else

discard the configuration(xi ,yi) {A “bound” prune}
return b

Algorithm 13.20: The template for a branch-and-bound algorithm. This algorithm
assumes the existence of a function,lb(xi ,yi), that returns a lower bound on the
cost of any solution derived from the configuration(xi ,yi).
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To provide for the optimization criterion of always selecting the “most promis-
ing” configuration, we extend the three assumptions for a backtracking algorithm
to add one more condition:

• For any configuration(x,y), we assume we have a function,lb(x,y), that
returns a lower bound on the cost of any solution that is derived from this
configuration.

The only strict requirement forlb(x,y), then, is that it must be less than or equal
to the cost of any derived solution. But, as should be clear from the branch-and-
bound description, if this lower bound is more accurate, the algorithm’s efficiency
improves.

A Branch-and-Bound Algorithm for TSP

To make the branch-and-bound approach more concrete, let us consider how it can
be applied to solve the optimization version of the traveling salesperson (TSP)
problem. In the optimization version of this problem, we are given a graphG with
a cost functionc(e) defined for each edgee in G, and we wish to find the smallest
total-cost tour that visits every vertex inG, returning back to its starting vertex.

We can design an algorithm for TSP by computing for each edgee= (v,w), the
minimum-cost path that begins atv and ends atw while visiting all other vertices
in G along the way. To find such a path, we apply the branch-and-bound technique.
We generate the path fromv to w in G−{e} by augmenting a current path by one
vertex in each loop of the branch-and-bound algorithm.

• After we have built a partial pathP, starting, say, atv, we only consider
augmentingP with vertices in not inP.

• We can classify a partial pathP as a “dead end” if the vertices not inP are
disconnected inG−{e}.

• To define the lower bound function,lb, we can use the total cost of the edges
in P plusc(e). This will certainly be a lower bound for any tour that will be
built from eandP.

In addition, after we have run the algorithm to completion for one edgee in G, we
can use the best path found so far over all tested edges, rather than restarting the
current best solutionb at +∞. The running time of the resulting algorithm will
still be exponential in the worst-case, but it will avoid a considerable amount of
unnecessary computation in practice. The TSP problem is of considerable interest,
as it has many applications, so such a solution could be of use in practice if the
number of vertices in the input graph is not too high. In addition, there are a number
of other heuristics that can be added to the search for an optimal TSP tour, but these
are beyond the scope of this book.
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Java Example: A Branch-and-Bound Solution for Knapsack

To be even more concrete, let us describe a Java implementation of a branch-and-
bound solution to the KNAPSACK problem. In the optimization version of this
problem, we are given a setSof items, numbered 0 ton−1. Each itemi is given
an integer size,si , and worth,wi. We are also given an integer parameter,size, and
asked for a subset,T, of Ssuch that∑i∈T si ≤ sizeand the total worth of items in
T, worth= ∑i∈T wi , is maximized.

Let us begin by borrowing some ideas from the greedy algorithm for solving
the fractional KNAPSACK problem (Section 5.1.1). Namely, let us assume that the
items inSare sorted in nonincreasing order bywi/si values. We will process them
in this order, so that we are considering items by decreasing gain, starting with the
element with maximum gain, that is, the item with maximum worth for its size.
Our configuration, then, will be defined by a subsetSi of the firsti items inSbased
on this order. So the indices of the items inSi are in the range 0 toi−1 (and let us
defineS0 to be the empty configuration having index−1).

We begin by placing the configuration forS0 into a priority queue,P. Then,
in each iteration of the branch-and-bound algorithm, we select the most promising
configurationc in P. If i is the index of the last item considered forc, then we
expandc into two new configurations, one that includes itemi + 1 and one that
excludes it. Note that every configuration that satisfies the size constraint is a valid
solution to the KNAPSACK problem. Thus, if either of the two new configurations
is valid and better than the best solution found so far, we update our current best to
be the better of the two, and continue the loop.

In order to select configurations that are most promising, of course, we need
a way of scoring configurations by their potential value. Since in the KNAPSACK

problem we are interested in maximizing a worth, rather than minimizing a cost,
we score configurations by computing an upper bound on their potential worth.
Specifically, given a configurationc, which has considered items with indices 0
to i, we compute an upper bound forc by starting with the total worthwc for c
and see how much more worth we can add toc if we were to augmentc with a
solution to a fractional KNAPSACK problem taken from the remaining items inS.
Recalling that the items inSare sorted by nonincreasingwi/si values, letk be the
largest index such that∑k

j=i+1 sj ≤ size− sc, wheresc is the size of all the items
already in configurationc. The items indexedi + 1 to k are the best remaining
items that completely fit in the knapsack. To compute our upper bound forc, then,
we consider adding all these elements toc plus as much of itemk+ 1 (if it exists)
as will fit. Namely, our upper bound forc is defined as follows:

upper(c) = wc +
k

∑
j=i+1

wj +

(
size−sc−

k

∑
j=i+1

sj

)
wk+1

sk+1
.

If k = n−1, then assume thatwk+1/sk+1 = 0.
We give code fragments from the Java branch-and-bound solution based on this

approach in Code Fragments 13.21, 13.22, and 13.23.
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/**
* Method to find an optimal solution to KNAPSACK problem, given:
* - s, indexed array of the sizes
* - w, index array of element worth (profit)
* - indexes of s and w are sorted by w[i]/s[i] values
* - size, the total size constraint
* It returns an external-node Configuration object for optimal solution.
*/

public static Configuration solve(int[ ] s, int[ ] w, long size) {
/* Create priority queue for selecting current best configurations */
PriorityQueue p = DoublePriorityQueue();
/* Create root configuration */
Configuration root = new Configuration(s,w,size);
double upper = root.getUpperBound(); // upper bound for root
Configuration curBest = root; // the current best solution
p.insertItem(new Double(−upper), root); // add root configuration to p
/* generate new configurations until all viable solutions are found */
while (!p.isEmpty()) {

double curBound = −((Double)p.minKey()).doubleValue(); // we want max
Configuration curConfig = (Configuration) p.removeMin();
if (curConfig.getIndex() >= s.length−1) continue; // nothing to expand
/* Expand this configuration to include the next item */
Configuration child = curConfig.expandWithNext();
/* Test if new child has best valid worth seen so far */
if ((child.getWorth() > curBest.getWorth()) && (child.getSize() <= size))

curBest = child;
/* Test if new child is worth expanding further */
double newBound = child.getUpperBound();
if (newBound > curBest.getWorth())

p.insertItem( new Double(−newBound), child);
/* Expand the current configuration to exclude the next item */
child = curConfig.expandWithoutNext();
/* Test if new child is worth expanding further */
newBound = child.getUpperBound();
if (newBound > curBest.getWorth())

p.insertItem( new Double(−newBound), child);
}
return curBest;
}

Code Fragment 13.21:The engine method for the branch-and-bound solution to the
KNAPSACK problem. The classDoublePriorityQueue, which is not shown, is a pri-
ority queue specialized to hold objects withDouble keys. Note that the key values
used in the priority queue are made negative, since we are interested in maximiz-
ing worth, not minimizing cost. Also note that when we expand a configuration
without adding the next element, we don’t check if this is a better solution, since
its worth is the same as its parent.
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class Configuration {
protected int index; // index of the last element considered
protected boolean in; // true iff the last element is in the tentative sol’n
protected long worth; // total worth of all elements in this solution
protected long size; // total size of all elements in this solution
protected Configuration parent; // configuration deriving this one
protected static int[ ] s;
protected static int[ ] w;
protected static long bagSize;
/** The initial configuration - is only called for the root config. */
Configuration(int[ ] sizes, int[ ] worths, long sizeConstraint) {

/* Set static references to the constraints for all configurations */
s = sizes;
w = worths;
bagSize = sizeConstraint;
/* Set root configuration values */
index = −1;
in = false;
worth = 0L;
size = 0L;
parent = null;
}
/** Default constructor */
Configuration() { /* Assume default initial values */ }
/** Expand this configuration to one that includes next item */
public Configuration expandWithNext() {

Configuration c = new Configuration();
c.index = index + 1;
c.in = true;
c.worth = worth + w[c.index];
c.size = size + s[c.index];
c.parent = this;
return c;
}
/** Expand this configuration to one that doesn’t include next item */
public Configuration expandWithoutNext() {

Configuration c = new Configuration();
c.index = index + 1;
c.in = false;
c.worth = worth;
c.size = size;
c.parent = this;
return c;
}

Code Fragment 13.22:The Configuration class and its methods for constructing
and expanding configurations. These are used in the branch-and-bound solution to
the KNAPSACK problem. This class is continued in Code Fragment 13.23.
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/** Get this configuration’s index */
public long getIndex() {

return index;
}
/** Get this configuration’s size */
public long getSize() {

return size;
}
/** Get this configuration’s worth */
public long getWorth() {

return worth;
}
/** Get this configuration’s upper bound on future potential worth */
public double getUpperBound() {

int g; // index for greedy solution
double bound = worth; // start from current worth
long curSize=0L;
long sizeConstraint = bagSize − size;
/* Greedily add items until remaining size is overflowed */
for (g=index+1; (curSize <= sizeConstraint) && (g < s.length); g++) {

curSize += s[g];
bound += (double) w[g];
}

if (g < s.length) {
bound −= w[g]; // roll back to worth that fit
/* Add fractional component of the extra greedy item */
bound += (double) (bagSize − size)*w[g]/s[g];
}
return bound;
}
/** Print a solution from this configuration */
public void printSolution() {

Configuration c = this; // start with external-node Configuration
System.out.println("(Size,Worth) = " + c.size + "," + c.worth);
System.out.print("index-size-worth list = [");
for (; c.parent != null; c = c.parent) // march up to root

if (c.in) { // print index, size, and worth of next included item
System.out.print("(" + c.index);
System.out.print("," + s[c.index]);
System.out.print("," + w[c.index] + ")");
}

System.out.println("]");
}

Code Fragment 13.23:The support methods for theConfiguration class, of Code
Fragment 13.22, used in the branch-and-bound solution to the KNAPSACK prob-
lem. The method for computing upper bounds is particularly important.
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13.6 Exercises

Reinforcement

R-13.1 Professor Amongus has shown that a decision problemL is polynomial-time re-
ducible to anNP-complete problemM. Moreover, after 80 pages of dense math-
ematics, he has also just proven thatL can be solved in polynomial time. Has he
just proven thatP = NP? Why or why not?

R-13.2 Use a truth table to convert the Boolean formulaB= (a↔ (b+c)) into an equiv-
alent formula in CNF. Show the truth table and the intermediate DNF formula for
B.

R-13.3 Show that the problem SAT, which takes an arbitrary Boolean formulaSas input
and asks ifS is satisfiable, isNP-complete.

R-13.4 Consider the problem DNF-SAT, which takes a Boolean formulaS in disjunctive
normal form (DNF) as input and asks ifS is satisfiable. Describe a deterministic
polynomial-time algorithm for DNF-SAT.

R-13.5 Consider the problem DNF-DISSAT, which takes a Boolean formulaS in dis-
junctive normal form (DNF) as input and asks ifS is dissatisfiable, that is, there
is an assignment of Boolean values to the variables ofSso that it evaluates to 0.
Show that DNF-DISSAT is NP-complete.

R-13.6 Convert the Boolean formulaB= (x1↔ x2) ·(x3+x4x5) ·(x1x2+x3x4) into CNF.

R-13.7 Show that the CLIQUE problem is inNP.

R-13.8 Given the CNF formulaB = (x1) · (x2 +x3 +x5 +x6) · (x1 +x4) · (x3 +x5), show
the reduction ofB into an equivalent input for the 3SAT problem.

R-13.9 GivenB = (x1 +x2 +x3) · (x4 +x5 +x6) · (x1 +x4 +x5) · (x3 +x4 +x6), draw the
instance of VERTEX-COVER that is constructed by the reduction from 3SAT of
the Boolean formulaB.

R-13.10 Draw an example of a graph with 10 vertices and 15 edges that has a vertex cover
of size 2.

R-13.11 Draw an example of a graph with 10 vertices and 15 edges that has a clique of
size 6.

R-13.12 Professor Amongus has just designed an algorithm that can take any graphG
with n vertices and determine inO(nk) time whether or notG contains a clique
of sizek. Does Professor Amongus deserve the Turing Award for having just
shown thatP = NP? Why or why not?

R-13.13 Is there a subset of the numbers in{23,59,17,47,14,40,22,8} that sums to 100?
What about 130? Show your work.

R-13.14 Show that the SET-COVER problem is inNP.

R-13.15 Show that the SUBSET-SUM problem is inNP.
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R-13.16 Draw an example of a graph with 10 vertices and 20 edges that has a Hamiltonian
cycle. Also, draw an example of a graph with 10 vertices and 20 edges that does
not have a Hamiltonian cycle.

R-13.17 The Manhattan distancebetween two points(a,b) and (c,d) in the plane is
|a−c|+ |b−d|. Using Manhattan distance to define the cost between every pair
of points, find an optimal traveling salesperson tour of the following set of points:
{(1,1),(2,8),(1,5),(3,−4),(5,6),(−2,−6)}.

R-13.18 Describe in detail how to implement Algorithm 13.14 inO(n+m) time on ann-
vertex graph withmedges. You may use the traditional operation-count measure
of running time in this case.

R-13.19 Describe the details of an efficient implementation of Algorithm 13.17 and ana-
lyze its running time.

R-13.20 Give an example of a graphG with at least 10 vertices such that the greedy
2-approximation algorithm for VERTEX-COVER given above is guaranteed to
produce a suboptimal vertex cover.

R-13.21 Give a complete, weighted graphG, such that its edge weights satisfy the triangle
inequality but the MST-based approximation algorithm for TSP does not find an
optimal solution.

R-13.22 Give a pseudo-code description of the backtracking algorithm for CNF-SAT.

R-13.23 Give a recursive pseudo-code description of the backtracking algorithm, assum-
ing the search strategy should visit configurations in a depth-first fashion.

R-13.24 Give a pseudo-code description of the branch-and-bound algorithm for TSP.

R-13.25 The branch-and-bound program in Section 13.5.2, for solving the KNAPSACK

problem, uses a Boolean flag to determine when an item is included in a solution
or not. Show that this flag is redundant. That is, even if we remove this field, there
is a way (using no additional fields) to tell if an item is included in a solution or
not.

Creativity

C-13.1 Show that we can deterministically simulate in polynomial time any nondeter-
ministic algorithmA that runs in polynomial time and makes at mostO(logn)
calls to thechoose method, wheren is the size of the input toA.

C-13.2 Show that every languageL in P is polynomial-time reducible to the language
M = {5}, that is, the language that simply asks if the binary encoding of the
input is equal to 5.

C-13.3 Show how to construct a Boolean circuitC such that, if we create variables only
for the inputs ofC and then try to build a Boolean formula that is equivalent to
C, then we will create a formula exponentially larger than an encoding ofC.

Hint: Use recursion to repeat subexpressions in a way that doubles their size
each time they are used.
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C-13.4 Show that the backtracking algorithm given in Section 13.5.1 for the CNF-SAT

problem runs in polynomial time if every clause in the given Boolean formula
has at most two literals. That is, it solves 2SAT in polynomial time.

C-13.5 Consider the 2SAT version of the CNF-SAT problem, in which every clause in
the given formulaS has exactly two literals. Note that any clause of the form
(a+ b) can be thought of as two implications,(a→ b) and(b→ a). Consider
a graphG from S, such that each vertex inG is associated with a variable,x,
in S, or its negation,x. Let there be a directed edge inG from a to b for each
clause equivalent to(a→ b). Show thatS is not satisfiable if and only if there
is a variablex such that there is a path inG from x to x and a path fromx to x.
Derive from this rule a polynomial time algorithm for solving this special case of
the CNF-SAT problem. What is the running time of your algorithm?

C-13.6 Suppose an oracle has given you a magic computer,C, that when given any
Boolean formulaB in CNF will tell you in one step ifB is satisfiable or not.
Show how to useC to construct an actual assignment of satisfying Boolean val-
ues to the variables in any satisfiable formulaB. How many calls do you need to
make toC in the worst case in order to do this?

C-13.7 Define SUBGRAPH-ISOMORPHISMas the problem that takes a graphG and an-
other graphH and determines ifH is a subgraph ofG. That is, there is a mapping
from each vertexv in H to a vertexf (v) in G such that, if(v,w) is an edge in
H, then( f (v), f (w)) is an edge inG. Show that SUBGRAPH-ISOMORPHISMis
NP-complete.

C-13.8 Define INDEPENDENT-SET as the problem that takes a graphG and an integerk
and asks ifG contains an independent set of vertices of sizek. That is,G contains
a setI of vertices of sizek such that, for anyv andw in I , there is no edge(v,w)
in G. Show that INDEPENDENT-SET is NP-complete.

C-13.9 Define HYPER-COMMUNITY to be the problem that takes a collection ofn web
pages and an integerk, and determines if there arek web pages that all contain
hyperlinks to each other. Show that HYPER-COMMUNITY is NP-complete.

C-13.10 Define PARTITION as the problem that takes a setS= {s1,s2, . . . ,sn} of numbers
and asks if there is a subsetT of Ssuch that

∑
si∈T

si = ∑
si∈S−T

si .

That is, it asks if there is a partition of the numbers into two groups that sum to
the same value. Show that PARTITION is NP-complete.

C-13.11 Show that the HAMILTONIAN -CYCLE problem on directed graphs isNP-complete.

C-13.12 Show that the SUBSET-SUM problem is solvable in polynomial time if the input
is given in a unary encoding. That is, show that SUBSET-SUM is not strongly
NP-hard. What is the running time of your algorithm?

C-13.13 Show that the KNAPSACK problem is solvable in polynomial time if the input is
given in a unary encoding. That is, show that KNAPSACK is not stronglyNP-
hard. What is the running time of your algorithm?
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C-13.14 Consider the general optimization version of the TSP problem, where the un-
derlying graph need not satisfy the triangle inequality. Show that, for any fixed
valueδ≥ 1, there is no polynomial-timeδ-approximation algorithm for the gen-
eral TSP problem unlessP = NP.

Hint: Reduce HAMILTONIAN -CYCLE to this problem by defining a cost function
for a complete graphH for then-vertex input graphG so that edges ofH also in
G have cost 1 but edges ofH not in G have costδn more than 1.

C-13.15 Consider the special case of TSP where the vertices correspond to points in the
plane, with the cost defined on an edge for every pair(p,q) being the usual
Euclidean distance betweenp andq. Show that an optimal tour will not have any
pair of crossing edges.

C-13.16 Derive an efficient backtracking algorithm for the HAMILTONIAN -CYCLE prob-
lem.

C-13.17 Derive an efficient backtracking algorithm for the KNAPSACK decision problem.

C-13.18 Derive an efficient branch-and-bound algorithm for the KNAPSACK optimization
problem.

C-13.19 Derive a new lower bound function,lb, for a branch-and-bound algorithm for
solving the TSP optimization problem. Your function should always be greater
than or equal to thelb function used in Section 13.5.2, but still be a valid lower
bound function. Describe an example where yourlb is strictly greater than thelb
function used in Section 13.5.2.

Projects

P-13.1 Design and implement a backtracking algorithm for the CNF-SAT problem.
Compare the running time of your algorithm on a rich set of instances of 2SAT

and 3SAT.

P-13.2 Design and implement a branch-and-bound algorithm for the TSP problem. Use
at least two different definitions for the lower bound function,lb, and test the
effectiveness of each.

P-13.3 Possibly working in a group, design and implement a branch-and-bound algo-
rithm for the TSP problem as well as a polynomial-time approximation algorithm
for TSP. Test the efficiency and effectiveness of these two implementations for
finding traveling salesperson tours for sets of points in the plane with Euclidean
distance defining the costs between pairs.

P-13.4 Implement a backtracking algorithm for HAMILTONIAN -CYCLE. For various
values ofn, test its effectiveness for finding Hamiltonian cycles when the number
of edges is 2n, dnlogne, and 10n, and 20dn1.5e.

P-13.5 Do an empirical comparison of using dynamic programming and backtracking
for the SUBSET-SUM problem.

P-13.6 Do an empirical comparison of using dynamic programming and branch-and-
bound for the KNAPSACK problem.
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Chapter Notes

Computing models are discussed in the textbooks by Lewis and Papadimitriou [133], Sav-
age [177] and Sipser [187].

The proof sketch of the Cook-Levin Theorem (13.6) given in this chapter is an adapta-
tion of a proof sketch of Cormen, Leiserson, and Rivest [55]. Cook’s original theorem [53]
showed that CNF-SAT wasNP-complete, and Levin’s original theorem [131] was for a
tiling problem. We refer to Theorem 13.6 as the “Cook-Levin” theorem in honor of these
two seminal papers, for their proofs were along the same lines as the proof sketch given for
Theorem 13.6. Karp [113] demonstrated several more problems to beNP-complete, and
subsequently hundreds of other problems have been shown to beNP-complete. Garey and
Johnson [76] give a very nice discussion ofNP-completeness as well as a catalog of many
importantNP-complete andNP-hard problems.

The reductions given in this chapter that use local replacement and restriction are well-
known in the computer science literature; for example, see Garey and Johnson [76] or
Aho, Hopcroft, and Ullman [7]. The component design proof that VERTEX-COVER is NP-
complete is an adaptation of a proof of Garey and Johnson [76], as is the component design
proof that HAMILTONIAN -CYCLE is NP-complete, which itself is a combination of two
reductions by Karp [113]. The component design proof that SUBSET-SUM is NP-complete
is an adaptation of a proof of Cormen, Leiserson, and Rivest [55].

The discussion of backtracking and branch-and-bound is modeled after discussions
by Lewis and Papadimitriou [133] and Brassard and Bratley [38], where backtracking is
intended for decision problems and branch-and-bound is for optimization problems. Nev-
ertheless, our discussion is also influenced by Neapolitan and Naimipour [159], who alter-
natively view backtracking as a heuristic search that uses a depth-first search of a configu-
ration space and branch-and-bound as a heuristic search that uses breadth-first or best-first
search with a lower bound function to perform pruning. The technique of backtracking
itself dates to early work of Golomb and Baumert [80].

General discussions of approximation algorithms can be found in several other books,
including those by Hochbaum [97] and Papadimitriou and Steiglitz [165], as well as the
chapter by Klein and Young [116]. The PTAS for KNAPSACK is modeled after a result
of Ibarra and Kim [106], as presented by Klein and Young [116]. Papadimitriou and Stei-
glitz attribute the 2-approximation for VERTEX-COVER to Gavril and Yannakakis. The
2-approximation algorithm for the special case of TSP is due to Rosenkrantz, Stearns, and
Lewis [174]. TheO(logn)-approximation for SET-COVER, and its proof, follow from work
of Chvátal [46], Johnson [109], and Lov´asz [136].
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For the most part, we have stuck with one computational framework in this
book. This framework,which i formally known as the random-access machine (or
RAM), consists of a single processor connected to a single, potentially unboundl
memory. Moreover, we have focused primarily on the study of algorithms that ac-
cept a single input and then process that input to produce an output This framework
has served us well, and it models the majority of computations that algorithi de-
signers encounter But it nevertheless has its limitations, as there are several natura.
and well-motivated computational contexts where this framework does not apply.
We study three such frameworks in this chapter.

s
The first framework we address is for an extensipn of the memory component

of the RAM model In this framework, which is called the external memory model,
we try to more realistically model the memory hierarchy that is present in modem
computers In particular, we try to model the fact that memory is divided into fast
internal memory, which has small access time but small capacity, and slow exter-
nal memory, which has large access time but large capacity Designing efficient
algonthms with this memory hierarchy in mind requires some modifications to the
techmques we used when we assumed all memory had the same access limes In
this chapter, we examine some specific changes that should be made for searching
and sorting to make these algonthms efficient for external memory

Another important variation on the traditional RAM framework that wè con-
sider is for parallel algorithms That is, we consider algorithms that can utilize
multiple processors working in concert to solve a problem. In parallel algorithm
design, we desire solutions that improve upon known sequential algorithms by as. -
close to.a linear factor in the ñumber of processors asis pOssible. We study several.
important parallel algorithms, including algorithms for parällel arithmetic; search-
ing, and sorting, looking at ways we can exploit a parallel extension of the RAM
model that allows for multiple processors.

The final framework we examine in this chapter challenges the viewpoint that
an algorithm is just a function that maps an input to an output. In the framework
of online algorithms we consider an algorithm to be a setver that must process a
sequeñce of client requests that are processed over time. The response from one
request must be fully processed before we can examine Sd process the next. This
model is motivated by the way computers are often used on the Internet to process
computational requests from remote users. The challenge in designing algorithms
for this model is that a choice we nske on one request might make the time needed
for processing a future request much longer. To analyze the effectiveness of an
online algorithm's choices, then, we often compare its behaviorto that of an offline
algorithm that. knows the sequence of client requests in advane. Such an analysis
is known S a competitive analysis, and it fonns a natural analogue to the worst-
case time complexity we have been using throughout this book for algorithms that
map inputs to outputs..

http://www.cvisiontech.com
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14.1 ExternalMemory Algorithms
There are several computer applications that must deal with a large amount ot' dat&
Examples include the analysis of scientific data sets, the processing of financial
transactions, and the organization and maintenance of databases: (such as telephone
directories). In fact, the amount of data that must be dealt with is often tpo large to
fit entirely in the internal memory of a computer.

The Memory Hierarchy

In order to accommodate large data sets, computers have a hierarchy of different
kinds of memories, which vary in terms of their size and distance from the CPU.
Closest to the CPU are the internal registers that the CPU itself uses. Access to such
locations is very fast, but there are relatively few such locations. At the second
level in the hierarchy is the cache memory. This memory is considerably larger
than the register set of a CPU, but accessing it takes longer (and there may even
be multiple caches with progressively slower access times). At the third level in
the hierarchy is the internal memory, which is also known as main memory, core

memory, or rañdom-access memory (RAM). The internal memory is considerably
larger thân the cache memory, but also requires more time to access. Finally, at
the highest level in the hierarchy is the external memory, which usually consists of
disks, CDs, or tapes. This memory is very large, but it is also very slow. Thus, the
memory hierarchy for computers can be viewed as consisting of four levels, each
of which is larger and slower than the previous level. (See Figure 14.1.)

In most applications, however, only two levels really matterthe one that can
hold all the data items in our prQblem and the level just below that one. Bringing
data items in andout of thé higher memory that cän hold all items will typically be
thecomputational bottleneck in this case.

Internal Memory

IRegisters

CPU

Figure 14.1: The memory hierarchy.

Faster

t
Bigger
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Caches and Disks

The specific two levels that matter most depend on the size of the problem we are
trying to solve. For a problem that can fit entirely in main memory, the important
two levels are the cache memory and the internal memory. Access times for iñternal
memory can be as much as 10 to loo times longer than those for cache memory. It is
desirable, therefore, to be able to perform most memory accesses in cache memory

For a problem that does not fit entirely in main memory, on tIle other hand, the
important two levels are the internal memory and the exrnal memory. Here the
differences are even more dramatic, for access times for disks, the usual general-
purpose external-memory device, are typically as much as 100000 to 1000000
times longer. than those for internal memory.

To put this latter figure into perspective, imagine there is a student in Baltimore
who wants to send a request-for-money message to his parents in Chicago. If the
student. sends his parents an e-mail message, it can arrive àt their home computer
in about five seconds Think of this mode of eommunicatiön as correspondIng to
an internal-memory access by a CPU. A mode of èommunication1 corresponding to
an external-memory access that is 500000 times slower, would be for the student
to walk to Chicago and deliver his message in person, which would take about a
month if he can average 20 miles per day. Thus, we should, make as few accesses
to external memory as possible.

In this section, we discuss general strategies for hierarchical memory manage-
ment and preseñt methods for external-memory searching and sorting.

1411 Hierarchical 'Memory Management

Most algorithms are not designed with the memory hierarchy in mind, in spite of
the great variance between acèess. times for the different levels. Indeed, all of the
algorithm analyses described in this book so far have assumed that all memory ac-
cesses are equal. This assumption might seem, at first, to be a great oversightand
one we are only addressing now in the final chapterbut there are two fundâmental
-justifications for why it is actually a reasonable assumption to make.

The first justification is that it is often necessaiy to assune that all mem6ry ac-
cesses take the same amount of time, since specific device-dependent information
about memory sizes is often hard to come by. In fact, information about memory
size may be impossible to get. For example, a Java program that is designed to
run on many different computer platforms cannot be defined in terms of a specific
computer architecture configuration. We can certainly use architecture-specific in-
formation, if we have it (and we, will 'show how to explo<it such information later
in this chapter). But once we have optimized 'our software for 'a certain architec-

ture configuration, our software will no longer be device-indepéndent. Fortunately,

such optimizations. are not always necessary, primarily because of the second justi-
fication for the equal' -time, memory-access assumption.
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The second justification for the memory-access eqjiality assumption is that op-
erating system designers have developed general mechanisms that allow for most
memory accesses to be fast. Thèse mechanisms are based on two important locality-
of-reference.properties that most software possésses:

Temporal locality: If a program accesses a certain memory location, then
it is likely to access this location again in the near future. For example, it is
quite common to use the value of a counter variable in several different ex-
pressions, including one to increment the counter's value. In fact, a common
adage among computer architects is that "a program spends ninety percent
of its time in ten percent of its codé."
Spatial locality: If a program accesses a certain memory location, then it is
likely to access other locations that are-near this one. For example, a program
using an array is likely to access the locations of this array in a sequential or
near-sequential manner.

Computer scientists and engineers have performed extensive software profiling ex-
periments to justify the claim that most software possesses bòth of these kinds of
locality-of-reference. For example, a for-loop used to scan through an array will
exhibit both kinds of locality.

Caching and Blocking

Temporal and spatial localities have, in turn, given rise to two fundamental design
choices for two-level computer memory. systems (which are present in the interface
between cache memory and internal memory, and also in the interface between
internal memory and external memory).

The first design choice is called virtual memory This concept consists of pro-
viding s address space as large as the capacity of the secondary-level memory, and
of transferring into the primary-level memory, data located in the secondary level,
when they are addressed. Virtual memory does not limit the. programmer to the
constraint of the internal memory size. The concept of bringing data into primary
memory is called caching, and it is motivated by temporal locality. For, by bring-
ing data into primary mçmory, we are hoping that it will be accçssed again soon,
and we will be able to quickly respond tO all the requests for this data that come in
the near future.

The second design choice is motivated by spatial locality. Specifically, if data
stored at a secondary-level memory location i is accessed, then we bring into
primary-level memory a large block of contiguous loòations that include the lo-.
cation l (SeeFigure 14.2.). This concept is known as bloèking, and it is motivated
by the expectation that other secondary-level memory locations close to i -will soon
be acçessed. In the interface between cache memory and internal memory; such
blocks are often called cache lines, and in the interface between internal memory
and external memory, such blocks are often called pages.
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A block on disk

A block in the external memory address space

Figure 14.2: Blocks in external memory.

Incidentally, blocking for disk and CD-ROM drives is also motivated by the
properties of these hardware technologies. For a reading/arm on a disk or CD-
ROM takes a relatively long time to position itself for readingLa certain location,
but, once the arm is positioned, it can quickly read many contiguous locations,
because the medium it is reading is spinning very fast (See Figure 14 2) Even
without this motivation, however, blocking is fully justified by the spatial locality
property that most programs have.

Thus, when implemented with caching and blocking, virtual memory often al:
lows us to perceive secondary-level memory as being faster than it really is. There
is still a problem, however. Primary-level memory is much smaleíthan secondary-
level memory. Moreover, because memory systems use blo&ing, any program
of substance will likely reach a point wheré it requests data from secondary-level -
memory, but the primary memory is abeady full of blocks. In order to fulfill the
request and maintain our use of caching and blocking, we must remove some block
from primary memory to make room for a new block from secondary memory in
this case Deciding how to do this eviction bnngs up a number of interesting data
structure and algorithm design issues that we discuss in the remainder of this sec-
tion.

A Model for External Searching

The first problem we address is that öf implementing a dictionary for a large col-
lection of items that do not fit in primary memory. Recall that a dictionary stores
key-element pairs (items) subject to insertions, removals, and key-based searches.
Since one of the main applications of large dictionaries is in database systems,
we refer to the secondary-memory blocks as disk bloeks. Likewise, we refer to
the transfer of a block between secondary memory and primary memory as a dish
transfer. Even though we use this terminology, the search techniques we discuss
in this section apply also when the primary memory is the CPU cache and the sec-
ondary memory is the. main (intòrnal) memory. We use the disk-based viewpoint
because it is. coñcrete and also because it is more prevalent.

0123... 1024 2048
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14.1.2 (a,b) Trees and B-Trees

Recalling the great time difference that exists between main memory accesses and
disk accesses, the main goal of maintaining a dictionary in external memory is to
minimize the number of disk transfers needed to perform a query or u'pdate. In fact,
the difference in speed between disk and internal memory is so great that we should
be willing to perform a considerable number of internal-memory accesses if they
allow us to avoid a few disk transfers. Let us, therefore, analyze the performance
of dictionary implementations by counting the number of disk transfers each would
requite to perform the standard dictionary search and .update operations.

Let us first consider some external-memory inefficient dictionary implementa-
tions based on sequences. If the sequence representing a dictionary is implemented
as an unsorted, doubly linked list, then insert and remove can be performed with
O(I) transfers eabh, assuming we know which block holds an item to be removed.
But, in this case, searching requires (3(n) transfers in the worst case, since each link
hop we perform còuld access a different block This search time can be improved
to O(n/B) transfers (see Exercise C-14.1), where B denotes the ñumber of nodes
of the list that can fit into a block, but this is still poor performance. We could
alternately implement the sequence using a sorted array. In this case, a search per-
forms O(log2 n) transfers, via binary search, which is a nice improvement. But this
solution requires 8(n/B) transfers to implement an insert or remove operation in
the woist case, for we may have to access all blocks to move elements up or down.
Thus, séquènce dictionary implementations are not external-memory efficient.

If sequence implemebtations are inefficient, then perhaps wç should consider
the logarithmic-time, internal-memòry strategies that use balanced binary trees (for
xample, AVL trees or red-black trees) or other search structures with logarithmic

average-case query and update times (for example, skip lists or splay trees). These
methods storeS. the dictionary items at the nodes of a binary tree or of a graph. In
the worst case, each node accessed for a query or update in one of these structures
will be in a different block Thus, these methods all require 0(log2 n) transfers in
the worst case tO perform a query or update operation. This is good, but we can
do better. In particular, we can perform dictionary queries and updátes using only
Ó(logßn) = 0(iogn/logB). transfers.

A Better Approach

The main idea for improving the external-memory performance of the dictionary
implementations discussed above is that we should be willing to perform up to
0(B) internalmemory accesses to avoid a single disk transfer, where B denotes the
size of a block. The hardware and software that drives thé disk performs this many
internal-memory accesses just to bnng a block into internal memory, and this is
only a small part of the cost of a disk transfer. Thus, O(E) high-speed, internal-
memory accesses are a small price to pay to avoid atime-constiming disk transfer.

14.1. External-Memory Algorithms 649
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(a,!) Trees

To reduce the importance of the performance difference between internal-memory
acceses and external-memory accesses for searching, we can represent our dici
tionaty using a mùlti-way search tree (Chapter 3). This approach gives rise to a
generalization of the (2,4) tree data structure to a stri4ure known as the (a, b) tree

Formally, an (a, b) tree is a multi-way search tree such that. each node has be-
tween a and b children and stores between a. i and b - i items. The algorithms
for searching, inserting, and removing elements in an (a, b) tree are straightforward.
generalizations of the corresponding ones for (2,4) trees. The advantage of gen-
eralizing (2,4). trees to (a, b) trees is that a generalizéd class of trees provides a
flexible search structure, where the size of the nodes and the running time of the
various dictionary operations depends on the parameters a and b. By setting the
parameters a and b appropriately with respectS to the size of disk blocks, we can
derive a data structure that achieves good external-memoiy performance.

An (a,b) tree, where a and b are integers, such that2 <a < (b+ 1)/2, is a

multi-way search tree T with the following additional restrictions:

Size Property: Each internal node .has at least a children, unless it is the root, UilCl
has at most b children.

Depth Propefty: Al! the external nodes have the same depth.

Theorem 14.1: The height of an (a, b) tree Ñtoring n items is Q(log n/log b) and
O(logn/loga). . .

Proof: Let. T be an (a, b) tree storing n elements, and let h be the height of T.
We justify the theorem by establishing the following bounds on h

10lo(n+1)h 1l logn
+1

By the size and depth prOperties, the number n" of external nodes of T is at least
2a_1 and at most bh By Theorem 3 3, n" = n+ i Thus

2ti<n±1kh.
Taking the logarithm in base 2 of each term, we get

(h. 1)loga+ i <log(n+,1) hlogb.

I
We recall that in a multi-way search tree T, each node y of T holds a secondary

structure D(v), which is itself a dictionary (Section 3 3 1) If T is an (a,b) tree,
then D(v) stores at most b items Let f(b) denote the time for performing a search
in a D(v) dictionary The search algonthm in an (a, b) tree is exactly like the one
for multi-way search trees given in Section 3 3 1 Hence, searching in an (a, b) tree
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T with n items takes O ( ¿Ç log n). Note that if b is a constant (and thus a is also),
then the search time is O (log n), independent of the specific implementation of the
secondary structures

The main application of (a, b) trees is for dictionanes stored in external memory
(for example, on a disk or CD-ROM) Namely, to minimize disk accesses, we select
the parameters a and b so that each tree node occupies a single disk block (so that
f(b) = i if we wish to simply count block transfers). Providing the right a and b
values in this context gives rise to a data structure known as the B-tree, which we
will describe shortly. Before we describe this structure, howèver, let us discuss hOw
insertions and removals are handled in (a, b) trees.

Insertion and Removal in an (a,b) Tree

The insertion algorithm for an (a,b) tree is similar to that for a (2,4) tree. An
overflow occurs when an item is inserted into a b-node y, which becomes an ille-
gal (b + 1)-node. (Recall that a node in a multi-way tree is a d-node if it has d
children.) To remedy an overflow, we split node y by moving the median item of y
into the parent of y and replacing y with a [(b+.l)/21-node v'anda [(b+ 1)/2j
node y". We can now see the reason for requiring a (b + 1 )/2 in the definition
of an (a, b) tree. Note that as a consequence of the split, we need to build the
secondary structures D(v') and D(v").

Removing an element from an (a, b) tree is also similar to what was done for
(2,4) trees. An underfiow occurs when a key is removed from an a-node y, distinct
from the root, which causes y to become an illegal (a - 1)-node. To remedy an
underfiow, we either perform a transfer with a sibling of y that is not an a-node or
we perform a fusion of y with a sibling that isan a-node. The new node w resulting
from the fusion is a (2a - 1)-node. Here, we see another reason for requiring
a (b + 1)/2. Note that as a consequence of the fusion, we need to build the
secondary structure D(w).

Table 14.3 shows the running time of the main operations of a dictionary real-
ized by means of an (a,b) tree T

Table 14.3: Time complexity of the, main methods of a dictionaryrea1iZed by an
(a, b) tree We let f(b) denote the time to search a b-node and g(b) the time to split
or fuse a b-node. We also denote the number of elements in the dictionary with n.

The spaáe complexity is 0(n).

Method Time

findElement O f1ogn
insertitem O jj logn

removeElement O «b) lognloja

14.1. External-Memory Algorithms. 651
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The bounds in Table 14.3 are based on the following assumptions and facts:

The (a, b) tree T is represented using the data: strncturedescñbed in Sec-
tion 3.3:1, and the secondary structure of the nodes of T support search in
f(b) time, and split and fusion operations in g(b) time, for some functions
f(b) and g(b), which can be made to be 0(1) in the conjext where we are

only counting disk transfers.

The height of an (a, b) tree storing n elements is at most 0( (log n)/ (log a))

(Theorem 14.1).

A search visits 0 ((log n) / (log a)) nodes on a path between the root and an
external node, and spends f(b) time per node.

u A transfer operation takes f(b) time
A split or fusion operation takes g(b) time and builds a secondary structure
of size 0(b) for the new node(s) created.

An insertiOn or removal of an element visits 0((logn)/(ióga)) nodes ón a
path between the root and an external node, and spends g(b) time per node.

Thus, we may summarize as follows.

Theorem 14.2: An (a, b) tree implements an n-item dictionary to support per-
forming insertions and removals ip 0( (g (b) / log a) log n) time, and performing find
queries in 0((f(b)/loga)logn) time.

B-Trees

A specialized version of the (a, b) tree data structure, which is an efficient mèthod
for maintaining a dictionary in external memory, is the data structure known as
the "B-tree!' (See Figure 14.4.) A B-free of order d is simply ari (a, b) tree with
a = [d/2 and b = d.. Since we discussed the standard dictionary query and update
methods for (a, b) trees above, we restrict our discussion here to the analysis of the

external-memory performance of B-trees.

Figure 14.4: A B-tree of order 6.
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Parameterizing B-trees for External Memory

The most important observation about B-trees is that we can choose d so that the d
children references and the d - i keys stored at a node can all fit into a single disk
block. That is, we choose d so that

d 0(B).

This choice also implies thät we may assume that a and b are e(B) in the analysis of
the search and update operations on (a, b) trees. Also, recall that we are interested
primarily in the number of disk transfers needed to perform various operations.
Thus, the choice for d alsO Implies that

f(b) =

and

g(b)=c,

for some constant c 1, for each time we access a node to perform a search or an
update operation, we need only perform a single disk transfer. That is, f(b) and
g(b) are bOth 0(1). As we have already observed above, each search or update
requires thàt we examine at most O(I) nodes for each level of the tree. Therefore,
any dictionary search or update operation on a B-tree requires only

O(log[d/2 n) = O(logn/logB)
= O(logn)

disk transfers. For example, an insert operation proceeds down the B-tree to locate
the node in which to insert the new item. If the node would overflow (to have d + i
children) becausé of this addition, then this node is split into two nodes that have

[(4 _ÇL 1) /2j and [(6+ 1) /2] children, respectively. This process is then repeated
at the next level up, and will continue for at most O(log n) levels. Likewise, in
a remove operation, we remove an item from a node, and, if this results in a node
underfiow (to have [d/2 - i children), then we either move refeences from a sib-
ling node with at least [d/21 + i children or we need to perform afusion operation
of this node with its sibling (and repeat thi computation at the parent). As with the
insert operation, this will continue up the B-tree for at most O(log8 n) levels. Thus,

we have the following:

Theorem 14.3: A B-tree with n items executes O(log5n) disk transfers in a search

or update operation, where B is the number of items that can lit in one block.

The requirement that each internal node hâve at least [d/2] children implies
that each disk block used to support a B-tree is at least half full. Analytical and
experimental study of the average block usage in a B-tree is that it is closer to 67%,

which is quite good.
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14.1.3 External-Memory Sorting

In addition to data structures, such as dictionaries; that need to bé implemented in
external memóry, thére are many algorithms that mUst also operate On input Sets
that are too large to fit entirely into internal memory. In this case, the objective is to
solve the algorithmic problem using as few block4transférs as possible. The mot
classic domain for such external-memory algorithms is the sorting problem.

A Lower Bound for External-Memory Sorting

As we discussed above, there can be a big differ6nce between an algorithm's per-
formance in internal memory and its performaflce in external memory. For ex-

ample, the performance of the radix-sorting algorithm is bad 1h external memory,
yet good in internal memory. Other algorithms, uch as the merge-sort algorithm,
are reasonably good in both internal memory and external memory, however. The
number of block transfers performed by the traditional merge-sorting algorithm is
0((n/B) log2 n), where B is the size of disk blocks. While this is much better than
the 0(n) block transfers performed by an external verÈion of radix sort, it is, never-
theless, not the best that is achievable for the sorting problem. In fact, we can show
the following lower bound, whose proof is beyOnd the scope of this. book.

Theorem 14.4: Sorting n elements stored in external memory requires

Q(n log(n/B)
k\B log(M/B)

block transfers, where M is the size of the internal memory.

The ratio M/B is the number of external memory blocks that can fit into interñal
memory Thus, this theorem is saying that the best performance we can achieve for
the sorting problem is equivalent to the work of scanning through the input set
(which takes G(n/B). transfers) at least a logarithmic number of times, where the
base. of this logarithm is the number of blocks that fit into internal memory. We
will not formally justify this theorem, butwe will show: how to design an external-
memory sorting algorithm whose running time comes within .a constant factor of
this lower bound.

Multi-way Merge-Sort

An effiçient way to sort a set S of n objects in external memory amounts to a sim-
ple external-memory variation on the familiar merge-sort algorithm. The main dea
behind this vanation is to merge many recursively sorted lists at a time, thereby
reducing the number of levels of recursion Specifically, a high-level description
of this multi-way merge-sort method is to divide S into d subsets Si, S2, ..., 5d of, -

roughly equal size, recursively sort each subset S, and then simultaneously merge

L'
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all d sortèd lists into a sorted representation of S. If .we can perform the merge pro-
cess using only O(n/B) disk transfers, then, for large enough values of n, the total
number of transfers performed by this algorithm satisfies the following recurrence:

¡'(n) =d t(n/d)+cn/B,

for some constant c i We can stop the recursion when n <B, since we can
perform a single block transfer at this point, getting all of the objects into internal
memory, and then sort the set with an efficient internal-memory algorithm. Thus,
the stopping criterion for ¡'(n) is

t(n)=1 ifñ/B<1.
This imphes a closed-form solution that ¡'(n) is O((n/B) log(n/B)), which is

O((n/B)lòg(n/B)/logd).

Thus, if we can choose d to be O(M/B), then the worst-case number of block
transfers performed by this multi-way merge-sort algorithm will be within a cn-
stant fäctor of the lower bound given in Theorem 14.4. We choose

d= (1/2)M/B.

The only aspect of this algorithm left tO specify then, is how to perform the d-way
merge using only O(n/B) block transfers.

We perform the d-way merge by running a "tournament" We let T be a com-
plete binary treé with d external nodes, and we keep T entirely in internal memory.
We associate each external node i of T with a different sorted list S, We imtialize
T by reading into each external node i, the first object in S, This has the effect
of reading into internal memory the first block of each sorted list S. For each
internalnode parent y of two external nodes, we then compare the objects stored
at v's children and we associate the smaller of the two with y We then repeat this
comparison test at the next level up in T, and the next, and so on. When we reach
the root r of T, we will associate the smallest object from among all the lists with
r This completes the imtialization for the d-way merge (See Figure 14 5)

4 5 8 ii
A

Figure 14.5: A d-way merge. We show a five-way merge with B =4.

12 24 26 34 41 49 50 57 60

25. 27 40 43 44 53 56 63 74 76 80

30 39 42 65 5465

13 16 19 33 37 46 52 58 66 75

17 18 29 35 48 51 59 72 78 88
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In a general step of the d-way merge, we move the object o associated with the
root r of T into an array we are building for the merged list s': We then trace down
T, following the patino the external node ithat o came from. We then read into j
the next object in the list 5. If o was not the last element in its block, then this nèxt
object is already in iiiternal memory. Otherwise,*e read in the next block of 5 to
access this new object (if S, is now empty, associate with the node ¡ a Pseudo-object
with key + oc). We then repeat the minimum computations for each of the internal
nodes from i to the root of T This again gives us the complete tree T. We then
repeat this process of moving the object from the root of T to the merged list 5Ç
and rebuilding T until T is empty of objects. Each step in the merge takes O(logd)
time; hence, the internal time for the d-way merge is O(nlogd). The number of
transfers performed in a merge is O (n/B), since we scan each list S in. ordet once.
and we write out the merged list S' once. ThusT.we have:

Theorem 14 5 Given an array-based sequence S of n elements stored in ex-
ternal memory, we can sort S using O((n/B) log(n/B)/log(M/B)) transfers and
O(nlogn) internal CPU time, where M is the size of theinternal memory and B is
the size of a block.

Achieving "Near" Machine Independence

Using B-trees and external sorting algorithms can produce significant reductions in
the number of block transfers. The most important piece of information that made
such reductions possible was knowing the value of B, the size of a disk block (or
cache line). This information is, of course, machine-dependent,, but it is one of the
few truly machine-dependent pieces of information that are needed, with one of the
others being the ability to store keys continuously in arrays

From our descnption of B-trees and external sorting, we might think that we
also require low-level access to the external-memory device dnver, but this is not
strictly needed in order to achieve the claimed results to within a constant factor
In particular, in addition to knowing the block size, the only other thing we need to
know is that large arrays of keys are partitioned into blocks of continuous cells Thi'
allows us to implement the "blocks" in B-trees and our external-memory sorting
algorithm as separate B-sized arrays, which we call pseudo-blocks: If arrays are
allocated to blocks in the natural way, any such pseudo-block will be allocated to
at most two real blocks. Thus, even if we are relying où the operating system to
perform block replacement (for example, using FIFO, LRU, or the Marker policy
discussed later in Section 14 3), we can be sure that accessing any pseudo-block
takes at most two, that is, 0(1), real block transfers By using pseudo-blocks then,
instead of real blocks, we can implement the dictionary ADT to achieve search and
update operations that use only O(Iog n) block transfers We can, therefore, design
xternal-memory data structures and algorithms without taking complete control of

the memory hierarchy from the operating system.
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14.2 Parallel Algorithms
In this section we discuss parallel algorithms and some fundamental parallel algo-ritlm-iic techniques, including simple parallel divide-and-conquer, sequential sub-sets, Brent's theorem, recursive doubling and parallel prefix, and parallel mergingand sorting. All of these techniques have proven useful for designing a host of effi-
cient parallel algorithms. We conclude the section by giving an application of someof these techniques to the problem of finding the diameter of a convex polygon.

14.2.1 Parallel Models of Computation
Extending the RAM model to allow for multiple processors gives rise to a parallel
model known as the Parallel RAM, or PRAM. This is the synchronous parallelmodel in which all processors share a common memory. Because of its conceptualsimplicity, this model seems to be a model which almost all parallel computersemulate in one way or another. The PRAM model is also well suited for discoveringthe inherent parallelism that may be present in a problem Finally, the PRAM model
seems ideally suited for finding general paradigms which an be used to develop
efficient parallel algdrithms.

Parallel Efficiency

In the sequential setting, we say that an algorithm is "good" if it has a running time
that is at most O(n') for some constant k, that is, it runs in polynomial time As ad-
dressed in Chapter 13, a problem is considered "tractable" if there is a polynomial-
lime algorithm that solves it. The corresponding ntion in the parallel setting is to
say that an algorithm is good ìf its running time is O(log"t n) using o(Ñk2) proces-sors, where k1 and k2 are constants, that is, it runs in polylog time using a poly-
nomial number of processors. Analogously, in the language of complexity theory,
one says. that a pioblem belongs to the class NC if there is an algorithm solving it
which is good in this señse.

In the sequential setting, once it is known that a problem can be solved in poly-
nomial time, the goal shifts to finding an algorithm that solves the problem as fast as
possible. Likewise, in the parallel setting, once it is known that a problem is in NC,
the goal shifts to finding an algorithm that solves the problem and minimizes the
product T(n) * P(n) (in the asymptotic sense), where T(n) is. the time complexity
of the algorithm and P(n) is the number of prOcessors used by the algorithm That
is, if Seq(n) denotes the sequential running time to solve a certain problem, then
we want T(n) * P(n) to be as close to Seq(n), in the asymptotic sense, asossible.
This goal is motiyated from the fact that a single processor can simulate the com-
putations ofP{n) processors by performing a step of each in a round-robin fashion.
(See Section 2.1.2.)

14.2. Parallel Algorithms
657

http://www.cvisiontech.com


Chaptér 14; Algorithmic Frameworks

We say that a parallel algorithm is optimal if its T(n) * P(n) product matches the

sequential lower bound for the problem it solves. Technically, this definition allows

a sequential algorithm (with P(n) = 1) to al*o be an optimal parallel algorithm. So,

given that T(n)* P(n) is.close to Seq(n) for some problem, the secondary goal is to
minimize T(n), the running time The motivation fàr these twô goals is that any ex-

isting machine, with say k processors (a constant), can simulate an algonthm that is

efficient in this sense to get the maximum amount of speedup. The k processors can

simulate òach time step of the P(n) processors in FP(n)/kl time, by having each of

the k processors perform the work of IP(n)/kl processOrs. This approach results in

an algorithm that runs in O (T (n)P(n) ¡k + T (n)) time. In addition, any lower bound
for the sequential running time necessary to solve a certain problem immediately
becomes a lower bound for the product T(n) * P(n) (because a sequential machiñe

can simulate a PRAM algorithm with these bounds in O(T(n) * P(n)) time).

Versions of the PRAM Model

There are basically three different versions of the PRAM model, each diffenng
from the other in how it resolves memory conflicts (Recall that in all PRAM
models the processors operate synchronously) The most restnctive version is the
Exclusive-Read, Exclusive-Write (or EREW) PRAM, in which no simultaneous
reads or simultaneous writes are allowed. If we allow more than one processor to
simultaneously read from the same memory cell, but still réstrict concurrent writes,

then we get the Concurrent-Read, Exclusive-Write (or CREW) PRAM. Finally, ii
we allow more than one processor to simultaneously write, to the same memory cell,
then we get the most' powerful model, the Concurrent-Read, ConcunentWrite (or
CRCW) PRAM The method of resolving wnte conflicts vanes, but the two most
common methods are based on defining the model based on one of the following
rules:

Restrict all processors writing to the same location to be writing the same
value.
When k> i processors are writing. simultaneously to the same location, allow
exactly one of these processors to succeed (arbitrarily).

As ari example of a CRCW PRAM algorithm, suppose we are given a Boolean
array A and asked to compute the common OR of all the bits in A. We can initialize
the output bito to O, and assign a processor.to each bit in A. Then, we can have each
proòessor assigned to a bit that is i to write the value i to o. This simple algorithm

allows usio compute the OR ofn bits in 0(1) time using, n processors in the ÇRCW
PRAM model (using either of the above rules.to resolve write conflicts).

This simple' example shows the power of the CRCW PRAM model, but this
model is considered unrealistic .by many researchers. Thus, all of the other algo-
rithms described in this section will be for the CREW PRAM and EREW PRAM
mädels.
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The parallel divide-and-conquer technique is the exact analogue of the classic se-
quential divide-and-conquer technique. The approach is as follows. Given sorne
problem, we divide the tirobieni into a small number of subproblems, similar in
structure to the original problem, but smaller in size, and then solve each subprob-
lem recursively in parallel. In order to have an efficient algorithm, we must then
be able to merge the subproblern solutions quickly in parallel, once the parallel
recursive call returns.

As an easy example of using this technique, consider the problem of comput-
ing the sum of n integers (the same technique works for any associative operation).
Let us assùme that the input is an array containing the n integers, and is already
resident in memory. For simplicity, let us also assume that n is a power of two.
Divide the array into two subarrays comprising n/2 integérs each, and find the sum
of the integers in each subarray recursively in parallel. After the parallel recur-
sive call returns, we can compute the sum of all n integers by adding the sums
computed from each subarray. Since this can be done in 0(1) time, the time com-
plexity T(n) satisfies the recurrence equation T(n) = T(n/2) + c, which implies
that T(n) = O(logn). The number of processors P(n) needed for this computation
can be èxpressed in the recurrence equation P(n) = max{2P(n/2), i }, which has
solution P(n) 0(n). Note that the T(n) *P(n) product in this case is .0(nlogn),
which is off by a factor of logn from optimal. In the next subsection we dispuss
twó methods which can be used to reduce the number of processors so that the
T(n) *P(n) product is optimal, that is, 0(n).

.14.2.3 Sequential Subsets and Brent's Theorem

The sequential subsets technique nd Brent's theorem both involve constructing
an efficient parallel algonthm from existing algonthms, which may not be very ef-
ficient themselves. We begin our discussion with the sequential subsets téchnique.
The main idea behind, this technique is to perform a limited amount of sequential
preprocessing on small subsets of the problem to be solved, and then apply a par-
allel algòrithm to finish solving the problem. In some instances, there may also
be some sequential post-procéssing that needs to be done on each subset after the
pârallel algorithm completes. We illustrate how this technique could be applied tó
the n-integer summation problem. First, we could divide thé array.into n/log n sub-
arrays of logn elements each, and, assigningone processor to each subarray, sum
the elements of each sequentially. Then, we could apply the parallel. divideTand

conquer procedUre described in the previous subseçtion to sum the n/log n partial
sums just computed. The preprocessing step would run in 0(logn) time using
O (n/log n) processors, as would the parallel divide-and-conquer step. Thus, this

would result in an optimal T(n) * P(n) product of 0(n) for computing the sum of n

integerS.
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Brent's Theorem

Brent's theorem is also a techniquekor reducing the number of processors needed
to solve a particular problem. if an algorithm is designed so that a large number of
processors are idle during much of the computation, then Brent's theorem may be
of use. This theorem is summarized as follows.

Theorem .14.6: Any synchronous parallel algorithm that runs in T time steps and
consists oía tptal of N operätions can be simulated by P processors in time that is

0([N/Pj +T)..

Proof: (Sketch) Let N be the number of operations performed at step i in the par-
allel algorithm. The P processors can simulate step i of the algorithm in O( [Ni/Pl)
time. Thus, the total running time is O([N/PJ + T), since

T T

X(LNi/PJ+1)
iEl i=1

< [N/Pj+T.

There are two qualifications we must make to Brent's th orem before we cah
apply it in the PRAM model, however. First, we must be ablelo compute N1 at the
beginning of step i in O( [N1/P]) time using P processors. That is, we must know
how many operations are actually to be performed in stepi. And, second, we must
know exactly how to assign each processor to its job. That is, we must be able
to direct each processor to the O( [Ne] ¡P) operations it is to perform in simulating
step i.

As an example of an application of Brent's theorem, consider the summa-
tion problem again. Recall the divide-and-conquer sunmrntion algorithm presented
aboye. Although the algorithm ran in 0(iogn) time and used 0(n) processors,, it.
only performed 0(n) total operations. Thus, by applying Brent's theorem we have
an alternate method for solving this problem in O(logn) time 'using O(n/Ïogn)
processors. The qualifications to Brent's theorem are easily solved in this case,
since the number of operations performed in step i is exactly half the number per-
formed in step i - 1. More specifically, we will take [log n] time simulating the
first step (when all n processors are active), [log f121 time simulatiñg the second
step, [logn/4] time for the third, and so on. This clearly sums to 0(logn), giving
us an alternative method for sunmñng n integers in 0(logn) time using 0(n/logn)
processors.
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14.2.4 Recursive Doubling

Recursive doubling is a technique that can be thought of as being a complément
of the divide-and-conquer paradigmwhereas divide-and-conquer is a top-down
technique, recursive doubling is a bottom-up. technique. The main idea is that we
start with small subsets, and iteratively combine them in pairs until we have solved.
the whole problem We descnbe the recursive doubling technique with an example
list ranking. In the list ranking problem we are given a linked list represented as In
array of pointers resident in memory, and are asked tó compute the distance froth
the tail of each element in the list. We discuss here the classic parallel algorithm
for this problem. The main idea is to assign' a processor to each-ölement in the
list, and at each time step set each element's pointer to the pointer of its successor.
With each iteration, the distance that each element has .looked ahead" is doubled,
hence, in at most 0 (log n) iterations, each. element will be pointing at the tail. More
specifically, let p(v) denote the pointer from y, and let tail denote the node which
is the tail of the list. Also store a label r(v) with each node y, which is initially 1
for all nodes except the tail (whose r label is O). This label will éventually store
the rank of y in the list. In each time step one performs the following opeation for
each ñode y in parallel (see Figure 14.6):

if p(v) tail then
r(v) r(p(v)) ±r(v); { the ranking step } -.

p(v) p(p(v)); { the "doubling" step}.
Thus, we have the following:

Theorem 14.7: We can find, for each node vin an n-node list L, the distance from
y to the tail in 0(logn) time using 0(n) processors in the CREWPRAM.model.

Note that the above T(n) * P(n) product is a logn factor from optimal.

2

Figure 13.6: Recursive doubling applied to the iI5t ranking problem.

7 6 5. 4 3 2 i o
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Parallel Prefix

There is a related problem, the parallel ¡?éflx probltm, which can also be solvéd
by recursive doubling We are given a hst A = (ai, a2, , a,) of integers, and wish
to compute all the prefix sums sk F a1. Using the recursive doubling technique
we can easily do this in 0(logn time using 0(n) processors (see Figure 14 7) The

'method is basically the same, as that given aboyé for list ranking.

NNNNN

Figure 14.7: Reöursive doubling applied to the parallel prefix problem.

Unlike the list ranking problem, we can easily make. a fairly straightforward
application of the sequential subÑets technique to the parallel prefix problem. In.
this case, we can reduce the number of processors to 0(n/logn) and sfili achieve
an 0(logn) running time, giving us an optimal T(n) * P(n) product. The method
for doing this is the following. Divide the array A into n/log n subarrays of size.
log n each and compute the sum of eaôh subarray sequentially using a single pro-.
cessor. Then proceed with the prefix computation just as before, using these partial
sums'as the elements After completing the .prçfix computation on these elements,
we simply "baóktráck" through each of the n/log n subarrays,. one procéssor per
subarray, to compute all the paítial sums (See Figure 14 8)

The parallel prefix problem anses as a subproblem in a number of other list
manipulation problems We illustrate this with two examples.
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Figure 14.8: Sé4uential sUbsets applied to the parallel prefix problem.

First, cönsider the following array compression problem: given an n-element
array A in which each element is flagged as being either "marked" or "unmarked'
construct an array B listing the marked elements of A in order as they appear in
A (thàt is, B is th6 marked subsequence of A). The method is to associate a value
of i with each marked elément and a value of O with each unmarked élement.
By performing a 'parallel prefix computation, we cali determine the rank in the
compressed list B .for each marked element in A. lit is then an easy operation to
write each marked element in A to its appropriate position in B This can clearly be
done in 0(logn) time. using 0(n) processors.

Second, consider the array splitting problem: given an array A consisting of
n integers, decompose A into subarrays A1, A2, , Am, such that each A7 cons1sts
of repetitions of the same integer, which differs from the integer repeated in A1...1
and the one repeated in Ai (that is, k E A1 implies k Ø Ai_1 and k Ø A1) This
can be done by associating a value .of i with each element in A and performing the
combining step of the parallel prefix algorithm for each element as long as all the
preceding elements are identical. This will give us the rank of each element a in
its subarray; We could then perform another parallel prefix operation to determine
which subarray, A7, a belongs to (that is, determining the value of z)

Z 2 .3 7 8 9 1011 12.13.. 14 1516

1,2 567 >29 1OliE2i3i4i5zìj1

1 .2 v3 y4 y7 89 viO'c-ii i2yi3 l4vi5yi6
i Li LÍ i Li Li 'i iLi Li. l'Li I Li Li
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14.2.5 Parallel Merging and Sorting

Merging two sorted lists or sorting n numbers arç computations that are easy to
perform efficiently in the sequential model but. noñtrivial to perform efficiently in
parallel. There has been .a considerable amount of work done on these two prob-
lems, with. the most efficient merging algoñthm being able to merge two spIted
lists in O(log n) time using n/ log n processors. The most efficient sortin(algo-
rithm can sort n numbers in O(logn) time using n processors. Moreover, some of
these algorithms can even be made to run in the EREW RM model in these same
asymptotic bounds.

Unfortunately, the most efficient parallel merging and sorting algorithms are
too involved to describé in detail here. Let us instead describe a simple method for
merging two sorted nelement ljsts A and B

f distinct elements in O(logn) time
using n processors in the CREW PRAM model. For any element x, define the rank
of x in A or B as the number of elements in that list that are less than or equal to x.
Our algorithm finds the rank in B of each item in A and the rank in A of each item in
B. In particular, we assign a processor to each item in A and B, and.perform a binary /
search to find where that item would go in the other list This takes O(logn) time,
since all the binary searches are performed in parallel. Once a processor, which is.
assigned to an item x in A U B, knows x's rank i in A and its rank fin B, then that
processor can immediately write x to the location i + f in the output merged array.
Thus, we can merge A and B in O(logn) time using n processors. H

Once we know how to quickly merge two sorted lists in parallel, we can use this
as a subroutine in a parallel version of the merge sort algorithm. Specifically, to sort
a set S, we divide S into two sets 51 and 52 of equal size and recursively sort each in
parallel. Once we have s1 and s2 sorted, then we use the parallel merging algorithm
to merge them into one sorted list The total number of processors needed is n, since
we assign to each subproblem a number of processors equal to its size Likewise,
the running time T (n) of the algorithm is characterized by the recurrence equation,
T (n) = T (n/2) + b log n, for some constant b, which implies T (n) is O(log2 n).
Thus, we have the following:

Theorem 14.8: Given a setS of n items, we can sort S in O(log2n) time using n
processors in the CREW PRAM model.

Note that the aboye algorithm is an example of the simple parallel divide-and-
conquer pattern. We explQre in Exercise C-14.23 how to merge two s.orted arrays
in O (log n) time using O (n/log n) proóessors, which yields a work-optimal parallel
sorting algorithm. As mentioned above, we can actually sort n items in O(lögn)
time using n prodessors in the EREW PRAM niodel by using a more sophisticated
algorithm. Although we. do not describe this algorithm here, we know this fact is
useful for building other efficient parallel algorithms We give an example of sudh
an application in the next subsection, applying merging and sorting (and some of
the other techniques presented aboye).to a geometric problem.
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14.2.6 Finding the Diametér of a Convex Polygdñ

Consider th following problem: given a convex polygon P, find the farthest pair of
points on P. This is the same as computing the diameter of P, that is, the distance
between a farthest pair of points on P. It is easy to see that for any P there is
a farthest pair of points which are both vertices of P. Thus, we can easily solve
this problem in O (log n) time using 0(n2) processors (using the simple divide-änd-
conquer technique to compute the maximum distance between all 0(n2) pairs of
vertices). We can do much better than this, however, by taking advantage of some of
the geometric structure present in the problem and by using some ôf the techniques
presented above. h this section, we present an algorithm DIAMETER to solve the
diameter-finding problem in 0(log n) time using 0(n/ log n) processors, which is
optimal,

Note, that any farthest pair of points p an4 q must be antipodal vertices of P.
Points p and q are antipodal if there are two parallel lines Li and L2 tangent to
the polygon P such that L1 contains p and L2 contains q. This clearly restricts the
number of pairs one must consider from O(n2.) to 0(n), but there is still a problem
with how we enumerate all the antipodal pairs of vertices efficiently in parallel The
cyclic ordering of the vertices around P detennines a direction for each edge.

Treating each edge as a vector, translate this set of edge vectors to the origin.
Any line through the origin of this vector diagram intersects twO sectors which'
correspond 'to antipodal vertices. (See Figure 14.9.)

Figure 14.9: Treating edges as vectors, translate these edges to the origin. Note that
vertices in the polygon (a) correspond to sectors in the vector diagram (h).

(a) (b)

http://www.cvisiontech.com


666. Chapter 14. Algorithmic Frameworj

Since we wish to find all antipodal vertices in 0 (log n) time, we. cannot use the
method of rotating a line containing the origin through the set of vectors. Neither
can we assign a processor to each region (corresponding to some vertex y) and then
enumerate all other vertices which are antipodal tov..by binary searches, for there
can be 0(n) such vertices for any y, and, besides-; we only have 0(n/ log n) proces-
sors at our disposal Instead, we divide the set of vectors into two sets, divided by
the x-axis, rotate all the vectors below the x-axis by 1.8Ú°, and use a parallel merg-
ing procedure to enumerate all antipodal vertices. Then, by taking a maximum over
the 0(n) pairs we find a farthest pair of vertices in P. (See Algorithm 14.10.)

Algorithm DIAMETER(P):
Input: A convex polygon P = (vi, y2, ... , v4.
Output: Two farthest points, p and q, in P.
1. Using the cyclic ordering of the vertices of P as determining a direction on

each edge, and treating edges as vectors, translate the set of edge vectors to
the origin.

2 Tag the vectors in the vector diagram that are above the x-axis "red" and the
vectors below the x-axis "blue."

3. Rotate each blue vector by an angle of 180°.
{The red vectors and blue. vectors are now similarly, ordered by angle. }

4 Use a fast parallel merging algorithm to merge these two sorted lists.
for each vector y do

Use the sorted list to compute the two vectors òf opposite c br that
precede y and succeed t&in the merged list,
Identify each such pair (a, b) as an antipodal pair.

Find the maximum of all the distances between àntipodal vertices to find a
farthest pair of vertices in P.

Algorithm 1.4.10: Algorithm for finding two farthest points iii a convex polygon P.

Theorem 14.9: Algorithm DIAMETER correctly finds a farthest pair of points in
an n- vertex convex polygon P in 0(log n) time using O (n/log n) processors in the
CREWPRAM model..

P!oof: The correctness of the algorithm DIAMETER follows from the fact that in
rotating the vectors below the x-axis by 180° all sectors which were opposit before
(that is, both intersected by the same line through the origin) are now overlapping.
We turn to the complexity bounds. Note .that Steps 1, 2, 3, and 5 could be solved
in 0(1) time if we were using 0(n) processors, since we are doing 0(1) work for
each of 0(n) objects in each of these steps. Thus we can perform each of these
steps in 0(logn) time using 0(n/ log n) processors. We have already observed
that Steps 4 and 6 can be done in O(log n) time using O (n/log n) processors (see
Exercise C-14.23). .
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An online algorithm responds to a sequence of service re4uests; each an associated
cost. For example, a web page replacement policy maintains pages in a ache,
subject to a sequence of access requests, with the cost of a web page request being
zero if the page is in the cache and one if the page is outside the cadhe. In an
online setting, the algorithm must completely finish responding to a service request
before it can receive the next request in the sequence. If an algorithm is given the
entire sequence of service requests in advance, it is said to be an offline algorithm.
To analyze an online algorithm we often employ a competitive analysis, where
we compare a particular online algorithm A to an optimal offline algorithm, OPT.
Given a particular sequence P = (Pi ,P2, . .. , p,) of service requests, let cost (A, P)
denote the cost of A on P and let cost(OPT, P) denote the cost of the optimal
algorithm on P. Thé algorithmA is said to be c-competitive for P if

cost (A ,P) <c.cost(OPT,P)+b,

for some constant b O. IfA is c-cdmpetitive for every sequence P, then we simply
say that A Is c-competitive, and we call c the còmpetitive ratio of A. 1fb = O, then
we say that the algorithm A has a strict competitive ratio of c.

The Renter's Dilemma

A well-known online:problem, best explained with a story, is thé renter's dilemma.
Alice has decided to try out a music streaming service to listen to some songs by
The Streamin' Meemees. Each time Alice streams a song, it costs her x dollars to
"rent" the song, as her softwaré does not allow for replays without paying again.
Suppose it costs y dollars to buy all the songs on The Streamin' Meemees new
album. Let us say, for the säke of the story, that y is 10 times larger than x, that is,
y = i Ox. The dilemma for Alice is to decide if and when she should buy the album
instead of streaming songs one at a time. For èxample, itT she buys before streaming
any songs and then decides she doesn't like any, then she has spent 10 times more
than she should. But if she streams many times and nèver buys the album, then she
will spend potentially evenmore than lO times more than she should. In fact, if
she streams songs n times, then this strategy of always "renting" will cause her to
spend n/10 times as many dollars as ¿he should. That is, a strategy of buying the
first time has a worst-case competitive ratio of 10 and the always-rent strategy has
a worst-case competitive ratio of n/ 10. Neither of these choices is good.

Fortunately, Alice has a strategy with a competitive ratio of 2 Namely, she can
rent for 10 times and then buy the album. The worst-case scenario is that she never
listens to the album she just bought. So, she has spent lOx +y = 2ydollars, when
she should have spent y; hence, this strategy has a competitive ratio o 2. In fact,
no mauer how much bigger y is than x, if Alice first rents for y/x times, and then
buys, she will have a competitive ratio of 2:

14.3. Online Algorithms
667:
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14.3.1 Caching Algorithms .

There are several web applications that must deal ith revisiting information pre-
sented inwëb pages. These revisits have been shown to exhibit localities of refer-

ence; both in time and in space. To exploit these localities of reference, it is often

advantageous to store copies of web pages in a cache memory, so these pages can

be quickly retrieved when requested again. In particular, suppose we have a cache

memory that has in "slots" that can contain web pages. We assume that a web page

can be placed in any slot of the cache This is known as afully associative cache.

As a browser executes, it requests different web pages. Each time the browser

requests such a web page i, the browser determines (using a quick test) if i is
unchanged and currently contained in the cache. If i is contained in the cache, then

the brbwset satisfies the request using the cached copy. If i is not in the cache,
however, the page fori is requested over, the Internet and transferred into the cache.

If one of the m slots in the cache is available, then the browser assigns ito one of

the empty slots. But if all the ni cells of the cache are occupied, then the computer

must detenmne which previously viewed web page to evict before bringing in i

to take its place. There are, of course, many different policies that can be used to

determine the page to evict. Some of the better-known pâge replácement policies

'include the following (see Figure 14.11):

First-in, First-out (FlEO): Evict the page that has been. in the cache the'
longest,that is, the page that was transferred to the cache furthest in the past.

Least recently used (LR1J): Evict the page whose last request occurred fur-

thest in the past.

In addition, we can consider a simple and purely random strategy:

Random: Choose a page at random to evict from the, cache.

The Random strategy is one of th easiest policies to implement, for it only
requires a random or pseudo-random number generator. The overhead involved in

implementing this policy is an O(I) additional amount of work per page replace-

ment. Moreover, there is no additional overhead for each page request, other than to

determine whether a page request is in' the cache or not. Still, this policy makes no

attempt to take advantage of any temporal or spatial localities that a user's browsing

exhibits.
'The FIFO strategy is quite simple to implement, as it only requires a queue

Q to store referencés to the pages in the cache. Pages are enqueued in Q when

they are referenced by a browser, and then are brought into the cache. When a

page needs to be evicted, the computer simply performs a dequeue operation on Q

to determiné which page to' evict. Thus, this policy also requires O(I) additional

work per page replacement.' Also, the FIFO policy incurs no, additional overhead

for page requests. Moreoverïit tries to take some advantage of temporal locality.
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Random policy:

FIFO policy:

New block Old block (chosen at random)

Old block (present longest)

insert time: 8:00am 7:48am 9:05am 7:10am 7:30am 10:10am 8:45am

LRU policy:

New block Old block (least recentl9 used)

itì ÌAikT t
last used: 725am 8:12am 9:22am 6:50am 8:20am 10:02am 9:50am

Figure 14.11: The Random, FIFO, and LRU page replacement policies.

The LRU strategy goes a step further than the FIFO strategy, which assumes
that the page that has been in the cache the longest among all those present is
the least likely to be requested in the near future. For the LRU strategy explicitly
takes advantage of temporal locality as much as possible, by always evicting the
page that was least-recently used. From a policy point of view, this is an excellent
approach, but it is costly from an implementation point of view; That is, its way
of optimizing temporaland spatial'locality is fairly 'öostly. Implementing the LRU
strategy requires the use of a priority queue Q that supports searching for existing
pages, for example, using special pointers or "locators" If Q is implemented with
a sorted sequence based on a linked list, then the overhead for each page request
and page replacement is 0(1). Whenever we insert a page in Q or update its kèy,
the page is assigned the highest key in Q and is placed at the end of the list, which
can also be done, in 0(1) time. Even though the LRU strategy has çdnstant-time
overhead, using the above implementation, the constant factors involved, in terms
of the additional tme overhead and the extra spacé for the priority queue Q, make
this policy less attractive from a practical point of view. . .

Since these different page replacement policies have different trade-offs be-
tween implementation difficulty and the degree to which they seem to take advan-
tage of localities, it is natural for us to ask for some kind of comparative analysis
of these methods to see which one, if any, is the best.

fi1»q
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A Worst-Case Competitive Analysis of FIFO and LRLJ

From a worst-case point of view, the FF0 and LRU strategies have fairly unattrac-
tive competitiye behavioit For example, suppose we have a cache containing rn.
pages, and consider the FIFO and LRU methods performing page replacement for a
program that has a loop that repeatedly requests rn + i pages in a cyclic order. Both
the PiFO and LRU policies perform badly on such a sequence of page requests,
because they perform a page replacement. on every page requçst. Thus, from a
worst-case point of view, these policies are almost the worst we can imaginethey
require a page replacement on every page request.

This worst-case analysis is a little too pessimistic, however, for it focuses ou
each protocol's behavior for one bad sequence of page requests. An ideal analysis
would be to compare these methods over all possible page-request sequences. Of
course, this is impossible to do exhaustively, but there have been a great number of
experimental simulations done on page-request sequences derived from real pro-
grams. The experiments have focused primarily on the Random, FIFO, and LRU
policies. Based on these experimental comparisons, the ordering of policies, from
best to worst, is as follows: (1) LRU, (2) FIFO, and (3) Random. In fact, LRU is,
significantly better than the others on typical request sequences, but it still has poor
performance in the worst case, as the following theorem shows.

Theorem 14.10: The FlEO and LRU page replacement policies for a cache with
rn'pages have competitive rado at least m.

Proof: We observed above that there is a sequence P = (pl ,P2, , pj) of web
page requests causing PIFO and LRU to perform a page replacement with each
requestthe loop of rn + i requests. We compare this performance with that of
the optimal offline algorithm, OPT, which, in the case of the page replacement
problem, is to evict from the, cache the page that is requested the furthest into the
future. This strategy cañ only beimplemented, of course, ïn the offline case, when
we are given the entire sequence P in advance, unless .the algorithm is "prophetic."
When applied to the loop sequence, the OPT policy will perform a page replace-
ment once eváry rn requests (for it eviöts the most recently referenced page each
time, as this one is referenced furthest in the future). Thus, both PIFO and LRU are
c-èompetitive on this sequence P, where

n
=rn.

n/rn

Observe that if. any portion P' = (pù Pj+ i,... ,
p4 of P makes requests to ni dif-

ferent pages (with Pi-1 and/or P1+1 not being one of them), then ,even the optimal
algorithm must evict one page. In addition, the most number of pages the FIFO and

LRU policies evict for such a portion P' is rn, each time evicting a page that was
referenced prior to p. Therefore, PIF O and LRU have a competitive ratio of rn, and
this is the best possible competitive ratio for these strategies in the worst case. I
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The Randomized Marker Algorithm

Even though the deterministic FIFO and LRU policies can have poor worst-case
competitive ratios compared to the "prophetic" optimal algorithm, we can sliow
that a randomized policy that attempts to simulate LRU has a good competitive
ratio. Specifically, let us study the competitive ratio of a randomized strategy that
tries to emulate the LRU policy. From a strategic viewpoint, this policy, which is
known as the Marker strategy, emulates the best aspects of the deterministic LRU
policy, while using randomization to avoid the worst-case situations that are bad
for the LRU strategy. The policy for Marker is as follows:

Marker: Associate, with each page in the cache, a Boolean variable "marked,"
which is initially set to "false" for every page in the cache. If a browser re-
quests a page that is already in the cache, that page's marked variable is set
to "true." Otherwise, if a browser requests a page that is not in the cache, a
random page whose marked variable is "false" is evicted and replaced with
the new page, whose marked variable is immediately set to "true?' If ali the
pages in the cache have marked variables set to "true," then all of them are
reset to "false?' (See Figure 14.12.)

Competitive Analysis for a Randomized Online Algorithm

Armed. with the above policy definition, we would now like to perform .a compet-
itive analysis of the Marker strategy. Before we can do this analysis, however, we
must first define what we mean by the competitive ratio of a rañdomized online
algorithm. Since a randomized algorithm A, like the Marker policy, can have many
different possible runs, depending upon the random choices it makes, we define
such an algorithm to be c-competitive for a sequenée of requests Pif

E(cost(A,P)) <c cost(OPT,P) + b,
for some constant -b O, where E (cost (A,P)) denotes the expected cost of algo-.
nthm A on the sequence P (with this expectation taken over all possible random
choices for the, algorithm A). If A is c-competitive for every sequence P, then we
simply say that A is c-competitive, and we call c the cómpetifive ratio for A.

Marker policy:

New block

marked: Isf n

Old block (unmarked)

Figuré 14.12: The Marker page replacement policy.
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Theorem 14.11: The Marker page policy for a cache with ni pages has competi-

tiveratio2logm.

Proof: Let P = (pi , P2 , . . . , p,) be a sufficiently long sequence ofpage requests.

The Marker policy implicitly partitions the requests in P into rounds Each round
begins with all the pages in the cache having "false" marked labels, and a round
ends when all the pages in the cache have "taie" marked labels (with the next
request begmmuig the next round, since the policy then resets each such label to
"false") Consider the zth round in P, and call a page requested in round z fresh if

it is not iñ the Marker policy's cache at the beginning of round i. Also, we refer
to a page in the Marker's cache that has a false marked label stale; Thus, at the
beginning of a round i, all the pages in the Marker policy's cache are stale. Let 'n
denoté the number of fresh pages referenced in the ith round, and let b denote the
number of pages. that are in the cache for the OPT algorithm at the beginning of
round i and are not in the cache for the Marker policy at this time Since the Marker
policy has to perform a page replacement for each of the m requests, algorithm
OPT must perform at least m - b page replacements in round i. (See Figure 14.13.)

In addition, since each of the pages in the Marker policy's cache at the end of
round i are requested in round i, algorithm OPT must perform at least b+i page.
replacements in ròund i. Thus, the algorithm OPT must perform at least

max{m,b,b1+i}
m,b1+b,+i

page replacements in round i. Summing over all k rounds in P then, we see that
algorithm OPT must perform at least the following number of page replacements:

L=nit1+1 =(bk+ibi)/2+m,

Next, let us consider the expected number of page replacements performed by

the Marker policy.
We have already observed that the Marker policy has to perform at least m,

page replacements in round i it may actually perform more than this, however, if

it evicts stale pages that are then requested later in the round Thus, the expected
number of page replacements performed by the Marker policy is m + n, where ñ
is the expected number of stale pages that are referenced in round i after having
been evicted from the cache. The value n is equal to the sum, over all stale pages
réferénced in round i, of the probability that these pages are outside of the cache

when referenced At the point in round i when a stale page y is referenced, the
probability that y is out of the èache is at most f/g, where f is the number of fresh
pages referenced before page y and g is the number of stale pages that have not
yet been referenced. This is because each reference to. a fresh page evicts some
unmarked stale page at random The cost to the Marker policy will be highest then,
if all m1 requests to fresh pages are made before any requests to stale pages. So,
assuming this worstcase viewpoint, the expected number of evicted stale pages
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'n fresh blocks to be referenced in round i

Marker's cache:

J
b1 blocks not in Marker's cache blocks also in Marker's cache

Figure 14.13: The state of Marker's cache and OPT's cache at the beginning of
round i.

referenced in round i can be bounded as follows:
in1 in1 rn1fli + .+ +in m-1 m-2

<
1=1]

since there Ère in m references to stale pages in round i. Noting that this summa-
tion is known as the mth harmonic number, which is denotedHm, we have

ni<mjHm.

Thus, the expected number of page replacements perfonned by the Marker policy
is at most

k kU=(Hrn+i)(Hm+1)mi
i=1 i=i

Therefore, the competitive ratio for the Marker policy is at most

U (Hm+1)iÍni
L - (1/2)_1m

2(Hm+l)

Using an approximation for Hm, namely that Hm login, thé cömpetitive ratio for
the Marker policy is at most 2logm. s

Thus, the competitive analysis shows that the Marker policy is fairly efficient.

E EE E Emarked:
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14.3.2H Auction Strategies '"
In this section, we show how to apply the competitive analysis to some simple
algorithmic problems dealing with Web auctions The general setting is that we
have a single object, like an àntique, work of art, pr piece of jewelry, that has an
integer value between i and B dollars, that we wish to sell at a Web auction At
this particular auction, we must provide an algorithm A in advance that will accept
bids one-at-a-time, in an online, fashion, such that A will accept or reject the current
bid before it is shown the next (if there is a next bid, of course) Our goal is to
maximiie the amount that A will accept for ouy precious object.

Competitive Analysis for a Maximization, Problem

Since we wish to maximize a benefit instead òf minimizing 'a cost 'in this prób-
lem, we ñeed to slightly redefine what we meañ by a c-competitive algorithm In
particular, we say that a maximization algorithm is c-competitive if

cost (A ,P) cost(OPT,P)/c+b,
for some constant b O. As wfth the minimization case, if b = O, then we say the
maximization algorithm is strictly c-competitive. (,, '

If we don't knowhow many bids to accept, however, then a deterministic algo-,
rithm hasn't much choice but to.accept the first bid; since it might be the only one.

'But, for the sake of the competitive analysis, if we compare this strategy against an
Sversary that knows the bids to expect, then we must have'a competitive ratio that
is B This poor competitive ratio is due to the fact that P1 = (i, B) and P2 = (1)
are both valid bid sequences Since we don't know whether to expect P or P2, we
must take the i dollar bid as soon as we see it, whereas. án acWersary knowing' thé
sequenbe is Pi will wait for the bid of B dollars. If we know the number, n, of bids:
to expect, héwéver, we can do better.

Theorem 14.12: If the number of bids,, n, is known, then there is a deterministic
algorithm for the auctioning problem with a competítiye ratio thalis O(v').

Proof: The algorithm to achieveT this competitive ratio Is quite simple: accept 'the
first bid over Lv"ii. If no sch bid materializes, then acèept the last bid. To. analyze
the competitive ratio, there are two.casés. .

Suppose no bid'over [/j is given. Let mbe themaximum bid given. Then,
in the worst case we mEy accept a bid for 1 dollar while the offline algorithm
accepts the bid for m. Thus, we achieve a competitive ratio of m < [v'j.

. Suppose a bid over [/j is given. Let m be the maximum bid given. Then, in.
the worst case we may accept .a bid for Lv"i + i while the offline algorithm
accepts the bid for m. Thus, we achieve, a competitive ratio of in/( [s/j + 1)...
This value is, of course, less' than
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This competitive ratio is admittedly not very good, but it is, nevertheless, the
best possible for a deterministic algorithm.

Theorem 14.13: lIthe number of bids, n, is known, then no dèterministic algo-.
rithm for the auctioning problem can have a competitive ratio better than

Proof: . Let A be a deterministic algorithm for the auctioning problem, and let
b Consider the behavior of A on the sequence P = (b, B), which is given
online. There are twp cases.

If A accepts b, then the adversary clearly can achieve the bid of B; hence, the
competitive ratio is Q(/) in this case.
Suppose A does not accept b in P. Since A is online, at the point it rejects
the bid b it cannot distinguish if it is given the sequence P or the sequence
Q = (b, 1) instead. Thus, we can consider A's behavior on Q. Since A doesn't
know the next bid it will receive at the point it must decide on b, then A will
be forced to accept the bid i in this case. Thus, in this case, A's competitive
ratio is b, which is Q(/).

R

Thus; a deterministic algorithm cannot achieve a very good competitive ratio
for the auctioning problem.

Randomized Thresholding

Let us consider using a randomized algorithm for the auctioning problem. In this
case, we can achieve ,a much improved competitivç ratio,. even when the algórithm
does not know the number of bids to expect in advance, by using a randomized
thresholding technique. The ìdet is as follows.

The algorithm A picks an integer i at random from the set {O, 1,2,... , logB}
and accepts the first bid itreceiveÑ that is greater than or equal to 2!. As the follow-
ing theOrem shows, this randomized thresholding algorithm achieves à competitive
ratioofO(logfi). .

Theorem 14.14: The randomized thresholding algorithm achieves a competitive
ratio that is 0(10gB).

Proof: Let P be a given sequence of bids and let in be the largest bid in P.
Then the òffline algorithm achieves a bid of in. Recall that the competitive ratio
of a randomized algorithm is based on its expected cost, which, in the case of
the auctioning problem, should be viewed as a "benefit" since we are trying to
maximize the accepted bid The expected value of the bid accepted by A is at least
m/ (1 + log B), since A will accept in with probability i / (1 + log'B). Therefore, the
competitive ratio for A is at most i + logB

In the next subsection, we show how the competitive analysis, can be applied to
data structure design. .

http://www.cvisiontech.com


14.3.3 Competitive Search Trees

In this subsection, we present a simple adaptive tree-based dictionary structure that
is balanced and competitive. Our approach is based on à potential energy parameter
stored at each node iù the tre. As updates and queries are performed, the potential
energies of tree nodes are increased or decreased. Whenever the potential energy
of a node reaches a threshold level, we rebuild the subtree rooted at that node. We
show that, in spite of its simplicity, such a scheme is competitive.

Energy-Balanced Binary Search Trees

Recall that a dictionary holds pairs of ordered keys and elements, subject to update
and query operations. A common way of implementing the dictionary ADT is
to use a balanced binary search tree, which maintains balance by local rotation
operations. Typically, such rotations are fast, but if the tree has auxiliary structurés,
rotations are often slow We describe a simple tree structure that achieves balance
without rotations, by using a potential energy parameter stored at each nOde and
partial rebuilding. Our approach does not use any explicit balancing rules. Instead,
it uses potential labels on the nodes, which allow it to bé adaptive, competitive, and
arguably simpler than previous approaches.

An energy-balanced tree is a binary search tree T in which each node vstores
an element e such that all elements in v's left subtree are less than or equal to e
and all elements in v's right subtree are greater than or equal to e. Each nodç-v in
T maintarns a parameter n, which is the number of elements stored in the subtree
rooted at y (including v). More importantly, each node y in T also maintains à po-
tential energy parameter, p. Insertions and removals are handled asAn standard
(unbalanced) binary search trees, with one small modification. Every time we per-
form an update operation, which traverses a pathfrom the root of T to some node w
in.]", we increment Pv by i for each node y in this path. If there is no node y in this
path such that Pv flvI2, then we are done. Otherwise, let y be the highest node in
T such that p, > ny/2. We rebuild the subtree rooted at y as a complete binary tree,
and we zero out the potential fields of each node in this subtree (including y itself).
This is the entire algorithm for performing updates.

This simple strategy immediately implies the following.

Theorem 14 15 The worst-case height of the energy-balanced tree is O(logn),
and the amortized time for performing updates in such a tree is O(logn).

Proof: It is enough to show that n <nv/4, for any node y with sibling w. So
suppose not. Then, since the last rebalance ät y and w's parent, z, (when the size of y
and w's subtrees were equal) the number of removals in w's subtree plus the number
of insertions in v's subtree must have been at least 3n/4. That is, Pz 31z74. At
this point iii time, z = n + n <5iz/4. Hence, ïz 3ny,/4> (3/5)n But this
cannot occur, since we would have rebuilt the subtree at z as soon as Pz > n/2.

676 Chapter 14. Algorithmic Frameworks
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The aboye fact immediately implies that the height of the search tree T is
O(logn), hence, the worst-case time for any search is O(logn) Moreover, each
time a rebuilding computation is performed to rebuild the subtree robted at a node
V, Pv n/2. That is, Pv is O(n4. Since it takes O(nv) time to rebuild the subtree
rooted at y, this fact implies that we can charge the Pv previous operations that de-
posited "energy" 4t the node y for this rebuilding computätion. Since the depth of
the energy balanced tree is O(logn) and any update operation will deposit energy
in a root-to-leaf path, this fact in turn implies that each update operatidn will be
charged at most O(logn) limes for rebuilding computations. Thus, the amortized
lime needed to perform update operations in an energy-balanced search free is also
O(logn).

Biased Energy-Balanced Search Trees

Our potential energy approach can be further extended to adapt a dictiònary to
biased chstnbutions of accesses and updates We augment the tree T in this case
so that each node V storés an access count, a, which counts the number of times
that the :elernent stored at y has been accessed Each time a ñode is accesséd in a
search we inciement its access count. We also now increment, the potential energy
parameter of each node on the path from V to the root We keep the insertion
algorithm the same, but now, whenever we remove a node y, we increment the
potential energy of each node on the path from y to the root by av. Let Av denote
the cumulative access counts for all nodes in the subtree rooted at V in T. We do
a rebuilding step any time the potential energy of a node rises to be more than a
quarter of its access value, that is, when Pv Av/4. In this adapted binary search
tree, we rebuild the subtree: so that nodes are nearly balanced 1y their acçess counts,
that is, we try to balance children by their Av values Specifically, there is a linear-
lime treé-building algorithm (see Exercise C-3.25) that can guarantee that for any
node y with parent z, A 3Av/2. For any nonroot node V, we use Av to denote the
size of the subtree rooted at V plus the weight of the item stored at V'S parent z (so

= Av ±A, where w denotes. v's sibling).

Lemma 14.16: For any nodev with sib1ingw,Â Av/8.

Proof: Suppose, for the sake of proving a contradiction, that A <Av/8. Then,
since the last rebalance at y and w's parent, z, (when A' A/2, where A' andA
denote the old values of A and Av respectively) the total weight of removals in
w's subtree plus the number of insertions and accesses in v's subtree, plus accesses
ending at v's parent, must have been at least 3Av/8. That is, Pz 3Av/8. At this
point in time, A = A ±Av <9Av/8. Hence, Pz 3Av/8 > A/3. But this cannot
occur, since we would have rebuilt the subtree at z as soon as ¡'z > Az/4. U
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- The implication of the above fact is that an element having current access fre-
quency a is stored at a node at depth O (logA¡a) in the search tree, where A is

. the
current. total access frequency of all nodes in the trèe, as the following theorem
shows. This lehima immediately implies the following.

Theorem 14.17:. An.el ement having current access frequency a is stored at depth
O(logA/a), where A is the current total access frequency of all nOdes.

Proof: By the previous lemma, the total access count for the subtree root at a
node y is at least a constant factor larger than the total access counts for v's children:
Thus, the depth of any node y in the tree is at most O(logA/a)

.

Before we analyze our biased energy-balanced tree, we first establish the fol-.
lowing technical lemma. This lemma is used to analyze the time needed to procèss
the operations in a subsequence S, of the entire operation sequence S, formed by
all operations that access or update the element at given node y;

Lemma 14.18 Let A, denote the total access counts of all ¡iodes present in the
dynamic biased energy-balanced tree (for S) after we perform the ith operation in
S.Then

logA/i

is

O(,nlogÂ/m),

whère m S I and Â is the total access counts for all elements referenced iii S.

Proof: Let us assume for the sake of analysis that in is a power of 2, that is, that
in = 2", for some k. Note that

A Arn A rn A rn Alog- log-
= (,n) ()

rn Â rn

log+,log mlog+log.
Thus, to establish the lemma we need only bound the the last term above (the
summation term). Note that

rn 2k 2k 2k
,log = 1bog7 1log2[10gj =1k logzj

< XJ2"1=2"1<2.2"=2m
j=1 j=1
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The 'above lemma is needed to relate the access counts seen so far in a sequence

of updates and accesses to the, access counts for the entire sequence. An orácle,

whibh we call the biased-free oracle, knowing the sequence in advance could con-

struct a static tree based on known access counts, so that the running time for each

access or update at a tiode y is O(1ogA/â), where â-s, denotes the total access count

for the element at node y.

Theorem 14.19: The energy-balanced search tree achieves amortized performance

for update operations at each node y that is O(logÂ/â), which is within a constant

factor of the performance achievable 'by the biased-tree oracle.

Proof: Let S be a sequence of n dictionary operations and let T be thé static tree

built 'by the biased-tree oracle. Consider a subsequence S of S formed by all oper-

ations that access or update the element at a given node y. Let A denote the total

access counts of all nodes present in the dynamic adaptable energy-balane4 tree

(for S)' after we perform the ith operation in S. Note. that the amortized running

time for performing the ith operation in S using the energy-balanced tree is pro-

portional to the future. depth of y in thç energy-balanced tree, which will be at most

O(logA/i). Thus, the amortized time required for our performing all operations in

SV is proportional to at most

logAt/i,

whereas the total time required of the implementation of the biaed-tree oracle is

proportional to
mlogÂ/â = mlogÂ/m,

where m = 1S1. However, by Lemma 14.18
m

logA/i

is
O(mlogÂ/m),

which implies that the time performance of the energy-balanced appro,ach on S is

at most a constant factor more than the time performance achievable by the biased-

tree oracle. Therefore, a similar claim holds for the processing of all of S. u

Thus, in spite of their simplicity, biased energy-balanced search trees are effi-

cient and competitive. '
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R- 14.5 Show each leve! of recursion in performing a four-way, external-memory merge-
sort of thé sequence given in the previous exercise.

R-14.6 Consider the generalization of the renter's dilemma where Alice can buy or rent
her skis separate from her boOts. Say that renting skis costs a dollars, whereas
buying skis costs b dollars. Likewise, say that renting boots costs c dollars,
whereas buying boots costs b dollars. Describe a 2-competitive online algorithm
for Alice to try to minimize the costs for going skiing subjéct to the uncertainty
of her not knowing how many times she wil! continue to go skiing in the future.

R-i 4.7 Consider an initially empty memory cache consisting of four pages: How many
page misses does the LRU algorithm incur on the fdliowing page request se-
quence: (2,3,4,1,2,5,1,3,5,4,1,2,3)?

R- !4.8 Consider an initially empty memory cache consisting of four pages. How manyj'
page misses does the FIFO algorithm incur on the following page request seL
quence: (2,3,4,!,2,5,1,3,5,4,1,2,3)?

R-14.9 Consider an initially empty memory cache consisting of four pages. How many
page misses does the marker algorithm incur on the following page request se-
quence: (2,3,4,!,2,5,1,3,5,4,1,2,3)? Show therandom choices your algo-
rithm madè.

R-14.10 Consider an initially empty memory cache consisting df four pages. Construct
a sequence of memory requests that would cause the marker algorithm to go
through four rounds.

R-14.!! Show how a recursive-doubling parallel algorithm wou!d compute the parallel
prefixes of thé sequence (i,4,20,12,7,15,32,l0,9, !8, !1,45,22,50,516).

Creativity
C- 1.4.! Show how to implement a dictionary in external memory, usiñg an unordered

sequence so. that updates require only O(!) transfers and updates require O(n/B)
transfers in the worst case, where n is the number of elements. and.B is the nuniber
of list nodes that can fit into a disk b!ock.

14.4 Exercises

Reinforcement

R-14.! Describe, in detail, the insertion and removal algorithms for an (a, b) tree.

R-14.2 Suppose T is a multi-way tree in which each interna! node has at !east five\and at
most eight chi1dren Forwhat values of a and b is T a valid (a, b) tree?

R-14.3 For what values of d is th,e tree T of the previous exercise an orderd B-tree?

R-14.4 Draw the order-7 B-tree resulting from inserting the following keys (in this order)
into an initially empty tree T:

(4,40,23,50, 11,34,62,78,66,22,9o,59,25;72,o4,77,39, 12).
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C-14.2 Change the rules that define red-black trees so that each red-black tree T has a
corresponding (4,8) tree, and vice versa.

C-14.3 Describe a modified version of the B-tree insertion algorithm so that each time
we create an overflow bècause of a split of a node y, weredistribute keys among
all of v's siblings such that each sibling holds roughly the same number of keys
(possibly cascading the split up to the parent of ii). What is the minimum fraction
of each block that will always be filled using this scheme?

C-14.4 Another possible external-memory dictionary implementation is to use a skip
list, but to collect consecutive groups of 0(B) nodes, in individual blocks, on
any level in the skip list. In particular, we define an order-d B-skip list to be
such a representation of a skip-list structure, where each block contains at least
[d/2] list nodes and at most d list nodes: Let us also choose d in this case
to be the maximum number of list nodes from a level of a skip list that can
fit into one block. Describe how we should modify the skip-list insertion and
removal algorithms for a B-skip list so that the expected height of the structure is
O(logn/logB).

C-i.4.5 Suppose that instead of having the node-search function f(d) = lin an order-d
B-tree T, we instead have f(d) = logd. What does the asymptotic running time
of performing a search in T now become?

C-14.6 Describe how to use a B-tree to implement the queue ADT só that the total num-
ber of disk transfers needed to process a sequence of n enqueue and dequeue
operations is 0(n/B).

C-14.7 Describe how to use a B-tree to implement the partition (union-find) ADT (from
Section 4.2.2) so that the union and find operations each use at most 0(logn/ 10gB)
disk transfers.

C-14.8 Suppose we are given a sequence S of n elements with integer keys such that
some elements in S are colored "blue" and some elements in S are colored "red?'
In addition, say that a red element e pairs with a blue element f if they have the
same key value. Describe an effiòient external-memory algorithm for finding all
the red-blue pairs in S How many disk transfers does your algorithm perform7

C-1i4.9 Consider the page cabhing problem where the memory cache can hold rn pages,
and we are given a sequence P of n requests taken from a pool of rn + 1 possible
pages Describe the optimal strategy for the offline algorithm and show that it
causes at most rn-en/rn page misses intotal, starting from an empty cache.

C-14 10 Consider the page caching strategy based on the least frequently used (LFU)
rule, where the page in the cache that has been accessed the least often is the one
that is evicted when a new page, is equested. If there are ties, LFU eyiçts the
least frequently used page that has been in the cache the longest. Show thatthere
is a sequence P of n requests that causes LFU to miss Q(n) timès for a cache of
in pages,whereas the optimal algorithm will miss only rn times

C-14.11 Show that LRU is rn-competitive for any sequence of n page requests; where rn
is the size of the memory cache.

C-14.12 Show that FIFO is rn-competitive for any sequénce of n page requests, where rn
is the size of the memory cache.
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Projects

P-14. I Write a class that implements all the methods of a diciionary given in Section 23
by means of an(a,b) tree, where a and b are integer constants.

P 1,2 Implement the B-tree data structure, assumitlgthat the Nòck size is 1,000 and
that keys arc integers. Test the number of "disk transfers" needed to process a
sequence of dictionary operations.

Chapter 14. Algorithmic Frameworks

C- 14 13 What is the expected number of block replacements performed by the Random
policy on a cache of size m, for an access sequence of length n, that iteratively
accesses m + i blocks in a cyclic fashion (assuming n is much larger than in)?

C-14.14 Show that the Marker algorithm is H competitive when the size of the cache is
in and thère are m + I possible pages that can be accessed, where in denotes the
mth Harmonic number.

C-14. 15 Show baw to merge two sorted n-element arrays A and B of distinct elements in
O(lag4 timé using O(n/ log n) processors in the CREW PRAM model.

C- 14.16 Show how an EREW PRAM E with p processors can simulate any CREW
PRAM C with p processors so that each parallel step ¿on C can be simulated
in O(logp) time on E.

C- 14. 17 Describe a parallel algorithn for multiplying two n x n matrices in 0(log2 n) time
using n3 processors.

C-14.18 Describe a parallel igorithrn for the CRCW PRAM model that computes the
AND of n bits in 0(1-) time using n processors

C 14.19 Describe a parallel algorithm for the CRCW PRAM model that computes the
maximum of n numbers in 0(1) time using 0(n2) processors.

C-1 4.20* Describe a Parallel algorithm for the CRCW PRAM model that compUtes the
maximum of n numbers in 0(loglogn) timQ using 0(n) processors.

Hint: Apply parallel divide-and-conquer--*lìere you first divide the set of num-
bers into /i groups of size /i each.

C-i 4.21 Describe a parallel algorithm for the CREW PRAM that can sort a sequence S
of n integers in the range [1, c], for some constant c> 1, in 0(log n) time using
0(n/logn) processors.

C-14.22 Describe a parallel algorithm for the CREW PRAM that computes in 0(lögn)
time with n processors the convex hull of a set of n points in the plane (see
Chapter 12) that are stored in an array in sorted order by their x-coordinates (you
may assume points have distinct x-coordinates).

C-14.23 Let A and B be two sorted arrays of .n integers each. Describe a method for
merging ¿land B into a single sorted array C in Q(logn) time using 0(n/logn)
processors in the CREW! PRAM. ! I

Hint: Start outby assigning a procçssor to every logn -thcell in A (respectively,
B) and performing a binary search for this itñuinthe other array
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Chapter Notes

Chapter Notes
Knuth [1 1?] has very nice discussions about exiernal-memory sorting and searching, and
Uliman {203] discüsses external memorystructures for database systems. The reader in-
terested in the study of the architecture of hierarchical memory systems is referred to the

book chaptér by Burger et al. [43] or the book by Hennessy and Patterson [93]. The hand-
book by Gonnet and Baeza-Yates [81] compares the performance of a number of different
sorting algorithms, many df which are external-memory algorithms. B-trees were invented

by Bayer and McCreight [24] and Comer [51] provides a very nice overview of this data

structure. The books by Mehlhorn [148] and Samet ¡1176] also have nice discussions bout

B-trees and their variants. Aggarwal and Vitter [5] study the I/O complexity of sorting

and related problems, establishing upper and lower bounds, including the lower bound for

sorting given in this chapter. Goodrich et al. [87] study the 110 complexity of several
computational geometry problems. The reader interested in further study of 110-efficient
algorithms is encouragèd to examine the survey paper of Viner [206].

For a good general introduction to parallel algorithm design, please see the books by

JáJá [107], Reif [172], Leight6n [13011, and AU and Lyons [11]. For discussions of more

recent developments in parallel algorithm design, please see the chapters by Atallah and

Chen [16] and Goodrich [84]. Brent [39] presented the design pattern for what we call
"Brent's Theorem" in 1976. Kruskal et al. [126] study the parallel prefix problem: and

its applications, and Cole and Vishkin [50] study this and the list ranking problem in de-

tail. in [186] Shiloach and Vishkin give an algorithm for merging two sorted lists which

runs in O(logn) time using 0(n/ log n) processors in the CREW PRAM model, which is

clearly optimal. In [204] Valiant shows that 0(loglogn) time is possible when using 0(n)

processors, when only comparisons are counted. In [34] Borodin and Hoperoft show that

Valiant's algorithm can in fact be implemented in the CREW PRAM model, still running in

0(loglogn) time and using 0(n) processors. In [10] Ajtai, Kornlós, and Szemerédi show

that one can sort n numbers in optimal O(logn) time using 0(n) processors in the EREW

PRAM model. Unfortunately, their result is largely of theoretic interest, because the con-

stant involved in the time complexity is very large. Cole [48] has given an elegant 0(logn)

time sorting algorithm for the EREW PRAM model using 0(n) processors in which the

constants involved are reasonable, however; The parallel algorithm for finding the diame

ter of a convex polygon is a parallel adaptation of an algorithm of Shamos [185].
- The reader interested in further study. of the competitive analysis of other online algo-

rithms is referred to the book by Borodin and El-Yaniv [33] or the paper by Koutsoupias and

Papadimitriou [124]. The marker caching algorithm and the onlineauctioning algorithms

are discussed in the book by Borodin and El-Yaniv; the discussion of the marker algorithm

givpn above is modeled after a similar discussion in the book by. Motwani and Ragha-

van [157]. The discussion of competitive 3earch trees is based on a paperby Goodrich [8511.

Overmars [161] introduces the concept of partial rebuilding for keeping data structures bal-

anced. Exercises C-14.11 and C-14.12 come from Sleator and Tarjan [188].
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Append ix

A Useful Mathematical Facts

In this appendix, we give several useful mathematical facts. We begin with some
combinatorial definitions and facts.

Logarithms and Exponents
r

The logarithm function is definedas

loga=c if

The following identities hold for logarithms and exponents:

logac=loga+logc
logs a/c = logs a - log c
logd=cloga
log,a= (loga)/logb

5 log,b

(ba)c=bac
babc=ba+c
be/fr =b''.

In addition, we have the following:

Theorem A.1: ffa>O,b.> O,and'c>a+b, then
loga±logb 2logc-2.

The natural logarithm function lnx loge x, where e = 2.71828. . ., is the value
of the following progression:

1 1 1

In addition,

xx2x3

ln(1±x)=Y---}-----F....
There are a number of useful inequalitiçs relating to these functions (which

derive from these definitions).
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Theorem A.2: lix> i,
1x <ln(1+x) <x.

Theorem &3: ForO<x<1,

1+xe lx
Theorem A.4: For any two positive real numbers x and n,

/ x\'t ¡(1+) <?<(l+-\ nl \ n

Integer Functions and Relations

The "floor" and "ceiling" functions are defined respectively as follows:

[xj = the largest integer less than or equal to x.

1x1 = the sthallest integer greater than or equal to x.

The modulo operator is defined for integers a O and b > O as

amodb=a [jb.
The factorial function is defined as

n!=123 .....(í-1)n.
The binomial coefficient is

which is equal to the number of different combinations we can define by choosing

k different items from a collection- of n items (where the order does not matter).

The name "binomial coefficient" derives from the binomial expansion:

(a+b)t' = ï
We also have the following relationships.

Theorem A.5: If O k < n' then
(flk (n <nk
".1cl k)k!

Theorem A.6 (Stirling's Approximation):

n! =i/2tnQ) (l+j_±a(n);

where E(n) is oìj/fl2)

Appendix A. Useful Mathematical Facts

( -k)!'
n'\ n!

k) =
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The Fibonacci progression is a numeric progression such That F0 =0; F1 = 1,and Fn=Fi+Fn 2forn>2
Theorem A.7: If Fn is defined by the Pibonacci progression, then F is e(gn)
where g = (1 + ß)/2 is the so-called golden ratio..

Summations

There are a number of useful facts about summations.

Theorem 4.8: Factoring summations:

t0) =af(i),
provided a does not depend upon i.

Theorem 4.9: Reversing the order:

n rn rn n

X Xf(i,j) = f(i,j).
i=lj=1 j=li=1:

One special form of summation is a telescoping sum:

which often arises inthe amortized analysis of a data structure or algorithm.
The following are some other facts about summations that often arise in the

analysis of data structures and algorithms.

Theorem 4.10:

n(n+l)

Theorem A.1Ï:.

2 n(n+l)(2n+l)

1=1 - 6

Theorem 4.12: If k lis an integer constant, then

n

Another common summation is the geometric sumji
for any fixed real number 0 < s
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Theorem A.13:
1_afl±1

for any real number O cc

Theorem. A.14:

1a
for any rcal numberO<a< 1. ch

There is also a combination of the two commOn forms, called the linear expo-.

nential summation, which has the following expansion:

Theorem A.15: ForO<a741,andn2,
a (n+ 1)a(fl+0 +na+2)

(1a)2

The nth harmonic number FI is defined as

Theorem A.16: If IJ is the nth harmonic number,then H is lnn±)(1).

Useful Mathematical Techniques

To determine whether a function is little-oh or little-omega of ailother, it is some-

times helpful to apply the following rule

Theorem A.17 (L'Hôpftal's Rule): If we have lim0.f(n) = +oo and we

have lim_ g(n) +oo, then .. f(n) /g(n) = lithn....f' (n)/g' (n), where.
f'(n)and g'(n) denote the derivatives of f(n) and g(n) respectively.

In denying an upper or lower bound for a summation, it is often useful to split

a summation as follows:

tf(0±f(O+ ± f(O
i=1 i=i i=j+i

Another useful technique is to bound a sum by an integrai. If f is a nonde-

creasing function, then, assuming the following terms are defined,

pb b rb+1

j f(x)dx.Ef(i)j f(x)dx.
a-1 i=a a -
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Edmonds, 284, 414
Edmonds-Karp algorithM, 393-395
Edmonds-Karp augmentations, 393
El-Yaniv,683
Elliott, 510
El Gamal cryptosystem, 479-480
Emiris, 510
encryptiOn schemes, 473
end vertices, 290
endpoints, 290
energy-balanced trees, 676-679
eqùivàlence class, 308
equivalence relation, 308
Euclid's algorithm, 455-457

binary, 457
extended, 464-465

Euler pseudo-prime, 469
Euler tour, 335,338
Euler tour traversal, 87, 137
Euler's Theorem, 461

Even, 338, 379, 414 H

event, 28
expected value, 29
exponent, 23
Extended Euclid's Algorithm, 464
external memory, 641 656, 683
external-memory algorithm, 645-656
external-memory sorting, 654-656

factorial, 686
failure function, 425
fairness, 515
Fast Fourier Transform, 488-507, 510
Fermat's Little Theorem, 459
l-tT, see Fast Fourier Trañsform
Fibonacci progression, 687
FIFO, 61, 656
first-in first-out, 61
Flajolet, 54
flip a random coin, 483
flow, sá network flow
flow network, 383
Floyd, 137
Floyd-Warshall algorithm, 320, 338
Ford, 379
Ford-Fulkerson algorithm, 3 87-395
forest, 292
forward edge; 318.
frame, 59
Fulkerson 414
fully polynomial-time approximation scheme,

619
Fundamental Theorem of Arithmetic, 453
fusion, 167, 651, 653

Gabow, 256
Galleger, 544
garbage. collection, 323-324

mark-sweep, 323
Garey, 642
Gauss, 22
Gavril, 642
GCD; see greatest common divisor
generator, 462
generic mergç algorithm, 226
geometric sum, 687
Gibbons, 338, 379, 414
gift wrapping; 518-579
Godbole, 284
Golberg, 137
golden ratio, 687
Golomb, 642
Gonnet, 137, 216,256, 683
Goodmañ, 590
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Goodrich, 590, 683
googol, 17
Gosling, 137
Graham, 54, 379, 590
Grahath scali algorithm, 580-583
grammar, 284
graph, 288-338, 340-379

abstract data type, 289-295
acyclic, 316.
bipartite,
breadth-first search, 313-316, 318-320
connected, 292, 315
data structures, 296-301

adjacency list, 299-301
adjacency matrix, 301
edge list, 296-298

dense, 321
depth-first search, 303-306, 31 8L320
digraph, 316
direàted, 289, 290, 316-327

acyclic, 325-327
/ strongly connected, 316

niethods, 293-295
mixed, 290
reachability, 31 6-31 7, 320-321
shortest paths, 320-321
simple, 291
traversal, 303-316!
undirected, 289, 290
weighted, 340-379

greatest commón divisor, 454-457
Euclid's algorithm, 455-457

greedy method, 259_262, 341, 342, 442
greedy-choice, 259, 442
group, 461
guess-and-test, 266-267
Guibas, 216
Guttag, 137

Haken, 284
HAMILTONIAN-CYCLE, 597, 615, 617, 641,

642
Harmonic number, 626
harmonic number, 88
hash code, 117, 118
hash function, 117,124-126

2-universal, 125
one-way, 481

hash table, 116-127
bucket array, 116
capacity, 116
chaining, 121
clustering, 124
collision, 116

collision resolution, 120-127
double hashing, 124
linear probing, 123
open addressing, 124
quadratic probing, 124
secondary clustering, 124
universal hashing, 125-127

hash value, 118
header, 70
heap, 99-111

bottom-up öönstruction, 109-ill
heap-oroer property, 99
heap-sort, 107-111, 218
height, 79-80
height-balance property, 152, 154, 157
Hell, 379
Hennessy, 683
hierarchical, 56
Hinrichs, 590
Hirchsberg, 284

256
Hochbaum, 642
Hoperoft, 137, 216, 256, 338, 510, 642, 683
Homer's method, 52
Homer's rule, 488
Hu, 284
Huang, 256
Huffman,.450
Huifman coding, 440-44V
Huitema, 544

Ibarra, 642
identity matrix, 492
in-degree, 290
in-place, 248, 324
incidence container, 299
incidence matrix, 612
incident, 290
incoming edges, 290
independent, 28, 30
independent set, 284
INDEPENDENT-SET, 640
index, see discrete logarithm
induction, 25-26.
morder traversal, 146, 150, 155
input size, 593
insertion-sort, 98, 218
inside node, 551
integer multiplication, 270-272
internal memory, 645
inverse shuffle, 502
inversion, 254
IP routers, 514
items, 114
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iterative substitution, 264
iterator, 74 -

Jacobi symbol, 468
JáJá, 137, 683
Jarník, 379.
Java Virtual Machine, 64, 137
JDSL, 137
Johnson, 642
Jones, 338
Josephus problem, 133

Karatsuba, 284
Karger, 379
Karp, 137, 414, 642
k-D tree, 563-564
key, 94, 114, 115, 159
key transfer 475
Kim, 642
Klein, 379, 642
KNAPSACK, 614, 619-621, 634, 639-642
knapsack problem, 259-260, 278-281
Knuth, 54, 137, 216, 256, 338, 450, 683
Komlós, 683
Kosaraju, 338
Koutsoupias, 683
Kruskal, 379, 683
Kruskal's algorithm, 362-366

L'Hôpital's Rule, 688
Landis, 216
Langston, 256
language, 594
last node, 99
last-in firstout, 57
LCS, see longest common subsequence
leader electiOn, 517-523
leavés, .75
Lecroq, 450
LEDA, 137
Lee, 590
left child, 76
left subtree, 76
left turn, 574
Legendre symbol, 467
Leighton, 683
Leiserson, 216, 338, 379, 414, 510, 642
level, 84, 313
level numbering, 90
level order traversal, 134
Levin, 642
Lewis, 642
lexicographical, .242
LIFO,57

Lindholm, 137
line, 572
linear exponential, 688
linear probing, 123
linearity of expectation, 29, 246
link components, 310
link relation, 308
link-state algorithm, 534-535
linked list

doubly linked, 70-73
linked structure, 92
Liskov, 137
list,68-72, 115

abstract data type, 69-72
list ranking, 661
literals, 605
little-oh notation, 18
little-omega notation, 18
live objects, 323
load factor, 1.22
local replacement, 603
locality-of-reference, 647
locator pattern, 112-113
log file, 115, 121
logarithm, 23, 685

natural, 685
longest commOn subsequence, 443-446
looking-glass, heuristic, 422
lookup table, 142-145
loop invariant, 27
Lovász, 642
LRU, 656
Lynch, '544
Lyons, 683

machine scheduling, 283
Magnanti, 338, 379, 414
main memory, 645.
mark-sweep algorithm, 323
Marker strategy, 671:
master method; 268-270
matching, 396
matrix chain-product, 274-277
matrix closure, 357-359
matroid theory, 284
Max-Flow, Mm-Cut Theorem, 389
maximal independent set, 338
maximum bipartite matching, 396-397
maximum flow, see, network flow
McCreight, 450, 590, 683
McDiarmid, .137
McGeoch, 54 . .

median, 245
Megiddo, 256
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Mehihorn, 216, 338, 379, 414, 590, 683
memory hierarchy, 645
memory management, 323, 646-648, 668-673
merge-sort, 219-224

multi-way, 654-656
tree, 220

merge able: heap, 215
Merzbach, 54
message-passing model, 514-516
method stack, 59-60
minimum cut, 386
minimum spanning tree,I 360-372, 528

Barûvka's algorithm, 369-372, 528-529
Kruskal's algorithm, 362-366, 372
Prim-Jarnik algorithm, 366-367, 372

minimum-cost flow, 398-405
Minotaur, 288
modular arithmetic, 62, 126, 454, 458-462,

686
modular exponentiation, 462-464
modular multiplicative iflverse, 464
modulus, 454
Moore, 450
Morris, 450
MOrrison, 450
Motwani, 216, 256, 683
Mount, 590
MST, see minimum spanning tree
multi-way search tree, 159
multi-way tree, 159-162
multicast routing, 535-540
multiplicative group, 461 -

multiplicative inverse, 458, 464
multiprogramming, 63
Munro,' 137
mutually independent, 28

Naimipour, 642
natural logarithm, 685
-Neapolitañ, 642
network flow, 382-414

augmenting cycle, 398
augmenting path, 388
backward edge, 385
bottleneck, 395
capácity rule, 383
conservation rule, 383
cut, 385-386
cut capacity, 386
edge 'capacity, 383
Edtnonds-Karp algorithm, 393-395
flow across a cut, 386
flow network, 383-385
flow value, 384

Ford-Fulkerson algorithm, 387-395
forward edge, 385
Max-Row, Mitt-Cut Theorem, 389
maximum flow problem, 384, 387
minimum cut, 386
minimum-cost flow, 398-405
residual capacity, 387
residuâl distance, '393

/ residual graph, 392
network protocol stack, 514'
networking protocol stack, 513-514

application layçr, 513
data-link layer, 513
network layer, 513
physical layer, 513.
transport layer, 513

node, 68, 75, 77, 289
ancestor, 75
balanced, 154
boundary, 551
child, 75
descendent, 75
external, 75
inside, 551
internal, 75
outside, 551
parent, 75 K
redundant, 433
root, 75
sibling, 75 -

size, 191
unbalanced, 154

nontree edge, 318, 320
NP, 595, 596
NP-completeness, 592-642
NP-hard, 600
null string, 419
number theory, 453'-471

O'Rourke, 590
object-oriented design,. 137
objective function, 259
Ofman, 284
one-time pad, 474.
one-way hash function, 481

online algorithm, 667-679
open addressing,.123, 124.
optimization problem, 278; 594.
order statistic, 245
orientation, 574,575
origin, 290
Orlin, .338, 379, 414
orthogonal segments, 565
Ottmann, 590
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out-degree, 290
outgoing edge, 290
output sensitive, 565, 579
outside node, 551
overflow, 164, 653
Overmars, 683

P, 595
Pach, 590
palindrome, 449
Pan, 510
Papadimitriou, 284, 642, 683
parallel algorithm, 657-666
parallel prefix, 662
parent, 75
PARTITION, 640
partitión, 227-234
partition tree, 561
password, 472
Patashnik, 54
path, 292

directed, 292
length, 341
simple, 292
weight, 341

path compression, 230
path length, 134
pattern matching, 419-428

Boyer-Móore algorithm, 422-425
brute force, 420-422
Knuth-Morris-Pratt algorithm, 425-428

Patterson, 683
Peleg, 544
plane sweep, 566-571, 590
point, 572
polygon, 572, 573, 576

convex, 573
edges, 573
non-intersecting, 573
simple; 573
vertices, 573

polynomial, 52
polynomial-time approximation. scheme, 619
polsinomial-time reducible, 600
position, 68, 77, 196
potential function, 37-3 8
power test, 46
PRAM model, 657

CRCW, 658
CREW, 658
EREW,658

Pratt, 450
prefix, 419
prefix averages, 31

705

prefix code, 440
prefix sum, 33
Preparata, 590
Prim, 379
Prim-Jarnik algorithm, 366-367
primality testing, 466-471

Rabin-Miller a1orithm, 470
Slovay-Strassen algorithm, 467-469

primà, 453.
prime deôomposition, 453
primitive operations, 9-12, 36
primitive root, 462
primitive root of unity, 489
priority queue, 94-113, 218

heap implementation, 100-106
sequence implementation, 96-98

priority range tree, 560-561
priOrity search tree, 556-559
probability, 28-30
probability space, 28
program counter, 60
proximity, 568
prune-and-search, 245-247
pseudo-blocks, 656
pseudo-code, 7-8
pseudo-polynpmial time, 281
pseudo-random number generators, 195
PTAS, see polynomial-time approximation sch
public-key cryptography, 472, 475-480
public-key cryptosystem, 475
Pugh, 216

quadratic probing, 124
quadratic residue, 467
quadtree, 561-562
queue, 61-64

abstract dáta type, 61
array implementation, 61-63

quick-sort, 234-238
tree, 235

Rabin-Miller algorithm, 471)
radix-sort, 242-243
Raghavan, 216, 256, 683
RAM, se random-access machine
Ramachandran, 137
random variable, 29
random-actess machine, 9, 644
randomization, 195, 196.
randomized quick-select, 245
randomized quicksort, 23.7
randómizèd thresholding, .675
rángé searching

one-dimensional, 550-552
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three-sided, 556
range tree, 549-561
range-search query, 549
rank, 142, 231.
rank groups, 232
Rao, 510
ratio test, 45
reachability, 316
recurrence equation, 12, 224, 263-270
recursion, 12, 60
recursion tree, 265.
recursive doúbling, 661
red-black tree,. 170-184, 209, 569

depth property, 170
external property, 170
internal property, 170
recoloring, 174
root property, 170

Reed, 137
reflexive.property, 94, 308
rehashing, 122
Reif, 683
relatively prime, 454, 458
relaxation, 343, 349
renter's dilemma, 667
repeated squaring, 463
rescalable, 619
residual capacity, 387
residual distance, 393
residual graph, 392
residue, 458
restriction, 603
restructure

trinode, 155
Ribeiro-Neto, 450
right child, 76
right subtree, 76
right tùrn, 574
Rivest, 216, 338, 379, 414, 476, 510, 642
Robson, 137
root, 75
root objects, 323
Rosenkrantz, 642 -
rotation, 155, 157

double, .155
single, 155

round-robin, 64
router; 530
routing

broadcast, 530-531
center-based trees, 537-538
distance vector algorithm,532-533
link-state algorithm, 534-535

multicast, 535-540
reverse path forwarding, 535-536
unicast, 532-535

RPF, see reverse path forwarding
RSA, 476
RSÁ cryptosystem, 476-478
running time, 4-6, 10-12

Samet, 590, 683
sample spâce, 28
SAT, 638
satisfying assignment, 598
Saxe, 284
scan forward, 197
Schaffer, 137
Schönhage, 284
search engine, 225,439
secondary clustering, 124
security algbrithms, 481-487
Sedgewick, 54, 1.7, 216, 510, 590
seed, 195
segment, p572, 573
segment intersection, 565-568
Seidel, 590
selection, 245-247
selection-sort, 97, 218
self-loop, 291
sentinel, 70, 115
separate chaining, 121
separation edge, 307
separation vertex, 307
sequence, 73-74

abstrct data type, 73-74
sequential subsets, 659
SET, 484
set, 225-234
SET-COVER, 610, 611,625,626,638, 642
Shamir, 476
Shamos, 590, 683
Shiloach, 683. -

Shing, Z84
shortest path, 341-359.

Bellman-Ford algOrithm, 349-35 1
Dijkstra's algorithm, 342-348, 373-376
matrix multiplicatiön, 355-359

sibling, 75
sieve algorithm, 136
sink, 382, 383
skip list, 195-202

analysis, 200-202
insertion, 198-199
'levels, 196

r,,

removal,.. 199-200
séarching, 197-198
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towers, 196
update operations, 198-200

Sleator, 216, 683
Solovay-Strassen algorithm, 467
sorting, 96, 218-224, 235-243

bucket-sort, 241-242
external-memory, 654-656
heap-sort, 107-111
in-place, 108, 248
insertion-sort, 98
lower bound, 239-240
merge-sort, 219-224
priority-queue, 96
quick-sort, 235-238
radix-sort, 242-243
selection-sort, 97
stable, 242

source, 382, 383
space usage, 4
spanning forest, 306, 315
spanning sùbgraph, 292
spanning tree, 293, 303, 305, 306, 313, 315,

316, 360
splay tree, 185-194
split, 164, 653
stable, 242
stack, 57-60

abstract data type, 57
array implementation, 57-58

start time, 261
Stearns, 642
Steiglitz, 284, 642
Steiner trees, 538-540
Stephen, 450
Stirling's Approximation, 686
STL, 137
stop words, 431, 450
Strassen, 284
Strassen's Algorithm, 272
string

abstract data type, 419-420
null, 419
pattern matching, lee pattern matching
prefix, 419
suffix, 419

strongly collision-resistant, 481
strongly connected, 316.
strongly NP-hard, 612
subgraph, 292
SUBGRAPH-ISOMORPHISM, 640
subpròblem optimality, 275, 278
subproblem overlap, 278
subsequence, 443

SUBSET-SUM, 612-614, 630, 638, 642
substring, 419
subtree, 75
suffix, 419
summation, 21, 687

geometric, 21
symmetric encryption, 473-474
symmetric property, 308
symmetric relation, 289
Szemerédi, 683

Tamassia, 137, 338, 510
Tarjan, 54, 137, 216,256, 338, 379, 414, 683
task scheduling, 261
Tel, 544
telescoping sum, 35, 687
template method pattern, 332
text compression, 440 141
Theseus, 288
thread, 63-64
timestamping, 482
topological ordering, 325-327
total order, 94
totient function, 460
tower, 198
tower-of-twos, 231
trailer, 70
transfer, 167
transitive closure, 316, 319
transitive property, 94, 308.
traveling salesman problem, 342
traveling salesperson problem, 617
treap, 590
tree, 75-137, 292

abstract data type, 77-78
binary, see binary tree
child node, 75
depth, 79-80
external node, 75
height, 79-80
internal node, 75
leve), 84
linked structure, 93
multi-way, 159-162
multidimensional, 549-564
nede, 75
ordered, 76
pärent node, 75
root node, 75

treeedge, 318, 320
tree traversal, 81-83, 86-89

Euler tour, 8 8-89:
geileric, 88-89
morder, 87
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level order, 134
postorder, 82-83, 86
preorder, 81, 86

triangle inequality, 623
triangulation, 284
trie, 429-439

compressed, 433
standard, 429

trinode restructuring, 155, 173
Tsakalidis, 216
TSP, 617,619, 623, 624, 633, 641, 642
Tukey,510 : -

two-dimensional dictionary, 549
(2,4) tree, 163-169

depth property, 163
size property, 163

Ullman, 137, 216, 256, 510, 642, 683
unary encoding, 593
underfiow, 167, 653
unicast routing 530, 532-535
union-by-size, 230
uthonfind, 227-234
universal hashing, 125-127
unordered dictionary,- 114
up-heap bubbling, 102
upper envelope, 283

Valiânt, 683
van Leeuwen, 338, 379, 414
vector, 65-67, 115, 142

abstract data type, 65
verification, 596
vertex, 289

degree, 290
in-degree, .290
outdegree, 290

vertex cover, 598
VERTEX-COVER, 599, 608--613, 615, 62Z

642
virtual memory, 647
Vishkin, 137, 683
Vismara, 590
Vitter, 54, .683 -

Voronoi diagram, 589
Vuillemin, 590

Web crawler, 303, 443
Web spider, 303, 443
Wegner, 137
Williams, 137
Wood, 13t, 590

X.509, 486

Yannakakis, 642
Yao, 590
Yap, 510
Yellin, 137
Young, 642

zig, 186, 192
zig-zag, 186, 192
zig-zig, 185, 192
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