
10/16/2015 3:40 PM Text Processing 1

Chapter 9: Text Processing

10/16/2015 3:40 PM Text Processing 2

Outline and Reading
Strings and Pattern Matching (§9.1)
Tries (§9.2)
Text Compression (§9.3)
Optional: Text Similarity (§9.4). No
Slides.

10/16/2015 3:40 PM Text Processing 3

Texts & Pattern Matching

1

a b a c a a b

234

a b a c a b

a b a c a b

10/16/2015 3:40 PM Text Processing 4

Strings
A string is a sequence of
characters
Examples of strings:
 Java program
 HTML document
 DNA sequence
 Digitized image

An alphabet Σ is the set of
possible characters for a
family of strings
Example of alphabets:
 ASCII
 Unicode
 {0, 1}
 {A, C, G, T}

Let P be a string of size m
 A substring P[i .. j] of P is the

subsequence of P consisting of
the characters with ranks
between i and j

 A prefix of P is a substring of
the type P[0 .. i]

 A suffix of P is a substring of
the type P[i ..m − 1]

Given strings T (text) and P
(pattern), the pattern matching
problem consists of finding a
substring of T equal to P
Applications:
 Text editors
 Search engines
 Biological research

10/16/2015 3:40 PM Text Processing 5

Brute-Force Algorithm
The brute-force pattern
matching algorithm compares
the pattern P with the text T
for each possible shift of P
relative to T, until either
 a match is found, or
 all placements of the pattern

have been tried
Brute-force pattern matching
runs in time O(nm)
Example of worst case:
 T = aaa … ah
 P = aaah
 may occur in images and

DNA sequences
 unlikely in English text

Algorithm BruteForceMatch(T, P)
Input text T of size n and pattern

P of size m
Output starting index of a

substring of T equal to P or −1
if no such substring exists

for i ← 0 to n − m
{ test shift i of the pattern }
j ← 0
while j < m ∧ T[i + j] = P[j]

j ← j + 1
if j = m

return i {match at i}
else

break while loop {mismatch}
return -1 {no match anywhere}

10/16/2015 3:40 PM Text Processing 6

Boyer-Moore Heuristics
The Boyer-Moore’s pattern matching algorithm is based on two
heuristics
Looking-glass heuristic: Compare P with a subsequence of T
moving backwards
Character-jump heuristic: When a mismatch occurs at T[i] = c
 If P contains c, shift P to align the last occurrence of c in P with T[i]
 Else, shift P to align P[0] with T[i + 1]

Example

1

a p a t t e r n m a t c h i n g a l g o r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

2

3

4

5

6

7891011

10/16/2015 3:40 PM Text Processing 7

The Boyer-Moore Algorithm
Algorithm BoyerMooreMatch(T, P, Σ)

L ← lastOccurenceFunction(P, Σ)
i ← m − 1
j ← m − 1
repeat

if T[i] = P[j]
if j = 0

return i { match at i }
else

i ← i − 1
j ← j − 1

else
{ character-jump }
l ← L[T[i]]
i ← i + m – min(j, 1 + l)
j ← m − 1

until i > n − 1
return −1 { no match }

10/16/2015 3:40 PM Text Processing 8

Example

1

a b a c a a b a d c a b a c a b a a b b

234

5

6

7

891012

a b a c a b

a b a c a b

a b a c a b

a b a c a b

a b a c a b

a b a c a b
1113

10/16/2015 3:40 PM Text Processing 9

Analysis
Boyer-Moore’s algorithm
runs in time O(nm + s)
Example of worst case:
 T = aaa … a
 P = baaa

The worst case may occur in
images and DNA sequences
but is unlikely in English text
Boyer-Moore’s algorithm is
significantly faster than the
brute-force algorithm on
English text

11

1

a a a a a a a a a

23456
b a a a a a

b a a a a a

b a a a a a

b a a a a a

7891012

131415161718

192021222324

10/16/2015 3:40 PM Text Processing 10

The KMP Algorithm - Motivation
Knuth-Morris-Pratt’s algorithm
compares the pattern to the
text in left-to-right, but shifts
the pattern more intelligently
than the brute-force algorithm.
When a mismatch occurs,
what is the most we can shift
the pattern so as to avoid
redundant comparisons?
Answer: the largest prefix of
P[0..j] that is a suffix of P[1..j]

x

j

. . a b a a b

a b a a b a

a b a a b a

No need to
repeat these
comparisons

Resume
comparing

here

10/16/2015 3:40 PM Text Processing 11

KMP Failure Function
Knuth-Morris-Pratt’s
algorithm preprocesses the
pattern to find matches of
prefixes of the pattern with
the pattern itself
The failure function F(j) is
defined as the size of the
largest prefix of P[0..j] that is
also a suffix of P[1..j]
Knuth-Morris-Pratt’s
algorithm modifies the brute-
force algorithm so that if a
mismatch occurs at P[j] ≠ T[i]
we set j ← F(j − 1)

j 0 1 2 3 4 5

P[j] a b a a b a
F(j) 0 0 1 1 2 3

x

j

. . a b a a b

a b a a b a

F(j − 1)

a b a a b a

10/16/2015 3:40 PM Text Processing 12

The KMP Algorithm
The failure function can be
represented by an array and
can be computed in O(m) time
At each iteration of the while-
loop, either
 i increases by one, or
 the shift amount i − j

increases by at least one
(observe that F(j − 1) < j)

Hence, there are no more
than 2n iterations of the
while-loop
Thus, KMP’s algorithm runs in
optimal time O(m + n)

Algorithm KMPMatch(T, P)
F ← failureFunction(P)
i ← 0
j ← 0
while i < n

if T[i] = P[j]
if j = m − 1

return i − j { match }
else

i ← i + 1
j ← j + 1

else
if j > 0

j ← F[j − 1]
else

i ← i + 1
return −1 { no match }

10/16/2015 3:40 PM Text Processing 13

Computing the Failure
Function

The failure function can be
represented by an array and
can be computed in O(m) time
The construction is similar to
the KMP algorithm itself
At each iteration of the while-
loop, either
 i increases by one, or
 the shift amount i − j

increases by at least one
(observe that F(j − 1) < j)

Hence, there are no more
than 2m iterations of the
while-loop

Algorithm failureFunction(P)
F[0] ← 0
i ← 1
j ← 0
while i < m

if P[i] = P[j]
{we have matched j + 1 chars}
F[i] ← j + 1
i ← i + 1
j ← j + 1

else if j > 0 then
{use failure function to shift P}
j ← F[j − 1]

else
F[i] ← 0 { no match }
i ← i + 1

10/16/2015 3:40 PM Text Processing 14

Example

1

a b a c a a b a c a b a c a b a a b b

7

8

19181715

a b a c a b

1614

13

2 3 4 5 6

9
a b a c a b

a b a c a b

a b a c a b

a b a c a b

10 11 12

c

j 0 1 2 3 4 5

P[j] a b a c a b
F(j) 0 0 1 0 1 2

10/16/2015 3:40 PM Text Processing 15

Tries

e nimize

nimize ze

zei mi

mize nimize ze

10/16/2015 3:40 PM Text Processing 16

Preprocessing Strings
Preprocessing the pattern speeds up pattern matching
queries
 After preprocessing the pattern, KMP’s algorithm performs

pattern matching in time proportional to the text size
If the text is large, immutable and searched for often
(e.g., works by Shakespeare), we may want to
preprocess the text instead of the pattern
A trie is a compact data structure for representing a
set of strings, such as all the words in a text
 A tries supports pattern matching queries in time

proportional to the pattern size

10/16/2015 3:40 PM Text Processing 17

Standard Trie (1)
The standard trie for a set of strings S is an ordered tree such that:
 Each node but the root is labeled with a character
 The children of a node are alphabetically ordered
 The paths from the external nodes to the root yield the strings of S

Example: standard trie for the set of strings
S = { bear, bell, bid, bull, buy, sell, stock, stop }

a

e

b

r

l

l

s

u

l

l

y

e t

l

l

o

c

k

p

i

d

10/16/2015 3:40 PM Text Processing 18

Standard Trie (2)
A standard trie uses O(n) space and supports
searches, insertions and deletions in time O(dm),
where:
n total size of the strings in S
m size of the string parameter of the operation
d size of the alphabet

a

e

b

r

l

l

s

u

l

l

y

e t

l

l

o

c

k

p

i

d

10/16/2015 3:40 PM Text Processing 19

Word Matching with a Trie
We insert the
words of the
text into a
trie
Each leaf
stores the
occurrences
of the
associated
word in the
text

s e e b e a r ? s e l l s t o c k !

s e e b u l l ? b u y s t o c k !

b i d s t o c k !

a

a

h e t h e b e l l ? s t o p !

b i d s t o c k !

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
a r

87 88

a

e

b

l

s

u

l

e t

e

0, 24

o

c

i

l

r

6
l

78

d

47, 58
l

30

y

36
l

12 k

17, 40,
51, 62

p

84

h

e

r

69

a

10/16/2015 3:40 PM Text Processing 20

Compressed Trie
A compressed trie has
internal nodes of degree
at least two
It is obtained from
standard trie by
compressing chains of
“redundant” nodes

e

b

ar ll

s

u

ll y

ell to

ck p

id

a

e

b

r

l

l

s

u

l

l

y

e t

l

l

o

c

k

p

i

d

10/16/2015 3:40 PM Text Processing 21

Compact Representation
Compact representation of a compressed trie for an array of strings:
 Stores at the nodes ranges of indices instead of substrings
 Uses O(s) space, where s is the number of strings in the array
 Serves as an auxiliary index structure

s e e
b e a r
s e l l
s t o c k

b u l l
b u y
b i d

h e
b e l l
s t o p

0 1 2 3 4
a rS[0] =

S[1] =

S[2] =

S[3] =

S[4] =

S[5] =

S[6] =

S[7] =

S[8] =

S[9] =

0 1 2 3 0 1 2 3

1, 1, 1

1, 0, 0 0, 0, 0

4, 1, 1

0, 2, 2

3, 1, 2

1, 2, 3 8, 2, 3

6, 1, 2

4, 2, 3 5, 2, 2 2, 2, 3 3, 3, 4 9, 3, 3

7, 0, 3

0, 1, 1

10/16/2015 3:40 PM Text Processing 22

Suffix Trie (1)
The suffix trie of a string X is the compressed trie of all the
suffixes of X

e nimize

nimize ze

zei mi

mize nimize ze

m i n i z em i
0 1 2 3 4 5 6 7

10/16/2015 3:40 PM Text Processing 23

Suffix Trie (2)
Compact representation of the suffix trie for a string X of size n
from an alphabet of size d
 Uses O(n) space
 Supports arbitrary pattern matching queries in X in O(dm) time,

where m is the size of the pattern

7, 7 2, 7

2, 7 6, 7

6, 7

4, 7 2, 7 6, 7

1, 1 0, 1

m i n i z em i
0 1 2 3 4 5 6 7

10/16/2015 3:40 PM Text Processing 24

Encoding Trie (1)
A code is a mapping of each character of an alphabet to a binary
code-word
A prefix code is a binary code such that no code-word is the prefix
of another code-word
An encoding trie represents a prefix code
 Each leaf stores a character
 The code word of a character is given by the path from the root to

the leaf storing the character (0 for a left child and 1 for a right child

a

b c

d e

00 010 011 10 11
a b c d e

10/16/2015 3:40 PM Text Processing 25

Encoding Trie (2)
Given a text string X, we want to find a prefix code for the characters
of X that yields a small encoding for X
 Frequent characters should have long code-words
 Rare characters should have short code-words

Example
 X = abracadabra
 T1 encodes X into 29 bits
 T2 encodes X into 24 bits

c

a r

d b a

c d

b r

T1 T2

10/16/2015 3:40 PM Text Processing 26

Text Compression

10/16/2015 3:40 PM Text Processing 27

Huffman’s Algorithm
Given a string X,
Huffman’s algorithm
construct a prefix
code the minimizes
the size of the
encoding of X
It runs in time
O(n + d log d), where
n is the size of X
and d is the number
of distinct characters
of X
A heap-based
priority queue is
used as an auxiliary
structure

Algorithm HuffmanEncoding(X)
Input string X of size n
Output optimal encoding trie for X
C ← distinctCharacters(X)
computeFrequencies(C, X)
Q ← new empty heap
for all c ∈ C

T ← new single-node tree storing c
Q.insert(getFrequency(c), T)

while Q.size() > 1
f1 ← Q.minKey()
T1 ← Q.removeMin()
f2 ← Q.minKey()
T2 ← Q.removeMin()
T ← join(T1, T2)
Q.insert(f1 + f2, T)

return Q.removeMin()

10/16/2015 3:40 PM Text Processing 28

Example

a b c d r
5 2 1 1 2

X = abracadabra
Frequencies

ca rdb
5 2 1 1 2

ca rdb

2

5 2 2
ca bd r

2

5

4

ca bd r

2

5

4

6

c

a

bd r

2 4

6

11

	Slide Number 1
	Outline and Reading
	Texts & Pattern Matching
	Strings
	Brute-Force Algorithm
	Boyer-Moore Heuristics
	The Boyer-Moore Algorithm
	Example
	Analysis
	The KMP Algorithm - Motivation
	KMP Failure Function
	The KMP Algorithm
	Computing the Failure Function
	Example
	Tries
	Preprocessing Strings
	Standard Trie (1)
	Standard Trie (2)
	Word Matching with a Trie
	Compressed Trie
	Compact Representation
	Suffix Trie (1)
	Suffix Trie (2)
	Encoding Trie (1)
	Encoding Trie (2)
	Text Compression
	Huffman’s Algorithm
	Example

