Chapter 8: Network Flow

Network Flow

Outline and Reading

- Flow Networks
 - Flow (§8.1.1)
 - Cut (§8.1.2)
- Maximum flow
 - Augmenting Path (§8.2.1)
 - Maximum Flow and Minimum Cut (§8.2.1)
 - Ford-Fulkerson's Algorithm (§8.2.2-8.2.3)
- Sections §8.2.4-8.5 on Matching and Minimum Flow are optional.

Flow Network

A flow network (or just network) N consists of

- A weighted digraph G with nonnegative integer edge weights, where the weight of an edge e is called the capacity c(e) of e
- Two distinguished vertices, s and t of G, called the source and sink, respectively, such that s has no incoming edges and t has no outgoing edges.

Example:

Flow

• A flow f for a network N is is an assignment of an integer value f(e)to each edge *e* that satisfies the following properties: Capacity Rule: For each edge e_1 , $0 \le f(e) \le c(e)$ Conservation Rule: For each vertex $v \neq s, t$ $\sum f(e) = \sum f(e)$ $e \in E^+(v)$ $e \in E^{-}(v)$ where $E^{-}(v)$ and $E^{+}(v)$ are the incoming and outgoing edges of v, resp. The value of a flow f, denoted |f|, is the total flow from the source, which is the same as the total flow into the sink • Example: 1/32/61/1 3/7 3/3 S W 2/94/51/13/5

2/2

U

Maximum Flow

- A flow for a network N is said to be maximum if its value is the largest of all flows for N
- The maximum flow problem consists of finding a maximum flow for a given network N
- Applications
 - Hydraulic systems
 - Electrical circuits
 - Traffic movements
 - Freight transportation

U

3/3

1/1

2/6

3/5

4/6

3/5

S

3/3

U

1/1

10/16/2015 3:40 PM

Network Flow

4/5

1/3

3/3

3/7

2/9

3/7

2/9

4/5

1/1

W

2/2

1/1

W

2/2

Flow of value 8 = 2 + 3 + 3 = 1 + 3 + 4

Cut

- ♦ A cut of a network *N* with source *s* and sink *t* is a partition $\chi = (V_s, V_t)$ of the vertices of *N* such that $s \in V_s$ and $t \in V_t$
 - Forward edge of cut χ : origin in V_s and destination in V_t
 - Backward edge of cut *x*: origin in *V_t* and destination in *V_s*
- Flow $f(\chi)$ across a cut χ : total flow of forward edges minus total flow of backward edges
- Capacity $c(\chi)$ of a cut χ : total capacity of forward edges
- Example:
 - $c(\chi) = 24$
 - $f(\chi) = 8$

4/5

5

3

1/3

3/7

2/9

2

2/2

6

5

X

2/6

3/5

U

3/3

U

1/1

S

Flow and Cut

Lemma:

The flow $f(\chi)$ across any cut χ is equal to the flow value |f|

Lemma:

The flow $f(\chi)$ across a cut χ is less than or equal to the capacity $c(\chi)$ of the cut

Theorem:

The value of any flow is less than or equal to the capacity of any cut, i.e., for any flow f and any cut χ , we have $|f| \leq c(\chi)$

Augmenting Path

- Consider a flow f for a network N
- Let e be an edge from u to v:
 - Residual capacity of *e* from *u* to *v*: $\Delta_f(u, v) = c(e) - f(e)$
 - Residual capacity of e from v to u: $\Delta_f(v, u) = f(e)$
- Let π be a path from s to t
 - The residual capacity $\Delta_f(\pi)$ of π is the smallest of the residual capacities of the edges of π in the direction from s to t

• A path π from *s* to *t* is an augmenting path if $\Delta_f(\pi) > 0$

 $\Delta_f(s, u) = 3$ $\Delta_f(u, w) = 1$ $\Delta_f(w, v) = 1$ $\Delta_f(v, t) = 2$ $\Delta_f(v, t) = 1$ |f| = 7

Flow Augmentation

Lemma:

Let π be an augmenting path for flow f in network N. There exists a flow f' for N of value $|f'| = |f| + \Delta_f(\pi)$

Proof:

We compute flow f' by modifying the flow on the edges of π

 $f'(e) = f(e) + \Delta_f(\pi)$

 $f'(e) = f(e) - \Delta_f(\pi)$

• Forward edge:

Backward edge:

10/16/2015 3:40 PM

Network Flow

S

Ford-Fulkerson's Algorithm

- Initially, f(e) = 0 for each edge e
- Repeatedly
 - Search for an augmenting path π
 - Augment by Δ_f(π) the flow along the edges of π
- A specialization of DFS (or BFS) searches for an augmenting path
 - An edge *e* is traversed from *u* to *v* provided

 $\Delta_f(u, v) > 0$

Algorithm *FordFulkersonMaxFlow(N)* for all $e \in G.edges()$ *setFlow*(*e*, 0) while G has an augmenting path π { compute residual capacity Δ of π } $\Lambda \leftarrow \infty$ for all edges $e \in \pi$ { compute residual capacity δ of e } if *e* is a forward edge of π $\delta \leftarrow getCapacity(e) - getFlow(e)$ else { *e* is a backward edge } $\delta \leftarrow getFlow(e)$ if $\delta < \Delta$ $\Delta \leftarrow \delta$ augment flow along π } for all edges $e \in \pi$ if *e* is a forward edge of π $setFlow(e, getFlow(e) + \Delta)$ else { *e* is a backward edge } setFlow(e, getFlow(e) $- \Delta$)

Max-Flow and Min-Cut

- Termination of Ford-Fulkerson's algorithm
 - There is no augmenting path from s to t with respect to the current flow f

Define

- V_s set of vertices reachable from s by augmenting paths
- V_t set of remaining vertices
- Cut $\chi = (V_s, V_t)$ has capacity $c(\chi) = |f|$
 - Forward edge: f(e) = c(e)
 - Backward edge: f(e) = 0
- Thus, flow *f* has maximum value and cut χ has minimum capacity

Theorem:

The value of a maximum flow is equal to the capacity of a minimum cut

10/16/2015 3:40 PM

Network Flow

Analysis

- In the worst case, Ford-Fulkerson's algorithm performs |f*| flow augmentations, where f* is a maximum flow
- Example
 - The augmenting paths found alternate between π_1 and π_2
 - The algorithm performs 100 augmentations
- Finding an augmenting path and augmenting the flow takes O(n + m) time
- The running time of Ford-Fulkerson's algorithm is $O(|f^*|(n+m))$

10/16/2015 3:40 PM

Network Flow