
Weighted Graphs 1

Weighted Graphs

CB

A

E

D

F

0

328

5 8

48

7 1

2 5

2

3 9

Weighted Graphs 2

Outline and Reading
Weighted graphs (§7.1)
Dijkstra’s algorithm (§7.1.1)
The Bellman-Ford algorithm (§7.1.2)
Shortest paths in dags (§7.1.3)
All-pairs shortest paths (§7.2.1)
Shortest Path via Matrix Multiplication (§7.2.2) – No
slide on this section- too mathematical for slides!
Minimum Spanning Trees (§7.3)
The Prim-Jarnik Algorithm (§7.3.2)
Kruskal's Algorithm (§7.3.1)
Baruvka's Algorithm (§7.3.3)

Weighted Graphs 3

Weighted Graphs
In a weighted graph, each edge has an associated numerical
value, called the weight of the edge
Edge weights may represent, distances, costs, etc.
Example:
 In a flight route graph, the weight of an edge represents the

distance in miles between the endpoint airports

ORD PVD

MIA
DFW

SFO

LAX

LGA
HNL

Weighted Graphs 4

Shortest Path Problem
Given a weighted graph and two vertices u and v, we want to
find a path of minimum total weight between u and v.
 Length of a path is the sum of the weights of its edges.

Example:
 Shortest path between Providence and Honolulu

Applications
 Internet packet routing
 Flight reservations
 Driving directions

ORD PVD

MIA
DFW

SFO

LAX

LGA
HNL

Weighted Graphs 5

Shortest Path Properties
Property 1:

A subpath of a shortest path is itself a shortest path
Property 2:

There is a tree of shortest paths from a start vertex to all the other
vertices

Example:
Tree of shortest paths from Providence

ORD PVD

MIA
DFW

SFO

LAX

LGA
HNL

Weighted Graphs 6

Dijkstra’s Algorithm
The distance of a vertex
v from a vertex s is the
length of a shortest path
between s and v
Dijkstra’s algorithm
computes the distances
of all the vertices from a
given start vertex s
Assumptions:
 the graph is connected
 the edges are

undirected
 the edge weights are

nonnegative

We grow a “cloud” of vertices,
beginning with s and eventually
covering all the vertices
We store with each vertex v a
label d(v) representing the
distance of v from s in the
subgraph consisting of the cloud
and its adjacent vertices
At each step
 We add to the cloud the vertex

u outside the cloud with the
smallest distance label, d(u)

 We update the labels of the
vertices adjacent to u

Weighted Graphs 7

Edge Relaxation
Consider an edge e = (u,z)
such that
 u is the vertex most recently

added to the cloud
 z is not in the cloud

The relaxation of edge e
updates distance d(z) as
follows:
d(z) ← min{d(z),d(u) + weight(e)}

d(z) = 75
d(u) = 50

zs
u

d(z) = 60
d(u) = 50

zs
u

e

e

Weighted Graphs 8

Example

CB

A

E

D

F

0

428

∞ ∞

48

7 1

2 5

2

3 9

CB

A

E

D

F

0

328

5 11

48

7 1

2 5

2

3 9

CB

A

E

D

F

0

328

5 8

48

7 1

2 5

2

3 9

CB

A

E

D

F

0

327

5 8

48

7 1

2 5

2

3 9

Weighted Graphs 9

Example (cont.)

CB

A

E

D

F

0

327

5 8

48

7 1

2 5

2

3 9

CB

A

E

D

F

0

327

5 8

48

7 1

2 5

2

3 9

Weighted Graphs 10

Dijkstra’s Algorithm
A priority queue stores
the vertices outside the
cloud
 Key: distance
 Element: vertex

Locator-based methods
 insert(k,e) returns a

locator
 replaceKey(l,k) changes

the key of an item
We store two labels
with each vertex:
 Distance (d(v) label)
 locator in priority

queue

Algorithm DijkstraDistances(G, s)
Q ← new heap-based priority queue
for all v ∈ G.vertices()

if v = s
setDistance(v, 0)

else
setDistance(v, ∞)

l ← Q.insert(getDistance(v), v)
setLocator(v,l)

while ¬Q.isEmpty()
u ← Q.removeMin()
for all e ∈ G.incidentEdges(u)

{ relax edge e }
z ← G.opposite(u,e)
r ← getDistance(u) + weight(e)
if r < getDistance(z)

setDistance(z,r)
Q.replaceKey(getLocator(z),r)

Weighted Graphs 11

Analysis
Graph operations
 Method incidentEdges is called once for each vertex

Label operations
 We set/get the distance and locator labels of vertex z O(deg(z)) times
 Setting/getting a label takes O(1) time

Priority queue operations
 Each vertex is inserted once into and removed once from the priority

queue, where each insertion or removal takes O(log n) time
 The key of a vertex in the priority queue is modified at most deg(w)

times, where each key change takes O(log n) time
Dijkstra’s algorithm runs in O((n + m) log n) time provided the
graph is represented by the adjacency list structure
 Recall that Σv deg(v) = 2m

The running time can also be expressed as O(m log n) since the
graph is connected

Weighted Graphs 12

Extension
Using the template
method pattern, we
can extend Dijkstra’s
algorithm to return a
tree of shortest paths
from the start vertex
to all other vertices
We store with each
vertex a third label:
 parent edge in the

shortest path tree
In the edge relaxation
step, we update the
parent label

Algorithm DijkstraShortestPathsTree(G, s)

…

for all v ∈ G.vertices()
…
setParent(v, ∅)
…

for all e ∈ G.incidentEdges(u)
{ relax edge e }
z ← G.opposite(u,e)
r ← getDistance(u) + weight(e)
if r < getDistance(z)

setDistance(z,r)
setParent(z,e)
Q.replaceKey(getLocator(z),r)

Weighted Graphs 13

Why Dijkstra’s Algorithm
Works

Dijkstra’s algorithm is based on the greedy
method. It adds vertices by increasing distance.

CB

A

E

D

F

0

327

5 8

48

7 1

2 5

2

3 9

 Suppose it didn’t find all shortest
distances. Let F be the first wrong
vertex the algorithm processed.

 When the previous node, D, on the
true shortest path was considered,
its distance was correct.

 But the edge (D,F) was relaxed at
that time!

 Thus, so long as d(F)>d(D), F’s
distance cannot be wrong. That is,
there is no wrong vertex.

Weighted Graphs 14

Why It Doesn’t Work for
Negative-Weight Edges

 If a node with a negative
incident edge were to be added
late to the cloud, it could mess
up distances for vertices already
in the cloud.

CB

A

E

D

F

0

457

5 9

48

7 1

2 5

6

0 -8

Dijkstra’s algorithm is based on the greedy
method. It adds vertices by increasing distance.

C’s true distance is 1, but
it is already in the cloud

with d(C)=5!

Weighted Graphs 15

Bellman-Ford Algorithm
Works even with negative-
weight edges
Must assume directed
edges (for otherwise we
would have negative-
weight cycles)
Iteration i finds all shortest
paths that use i edges.
Running time: O(nm).
Can be extended to detect
a negative-weight cycle if it
exists
 How?

Algorithm BellmanFord(G, s)
for all v ∈ G.vertices()

if v = s
setDistance(v, 0)

else
setDistance(v, ∞)

for i ← 1 to n-1 do
for each e ∈ G.edges()

{ relax edge e }
u ← G.origin(e)
z ← G.opposite(u,e)
r ← getDistance(u) + weight(e)
if r < getDistance(z)

setDistance(z,r)

Weighted Graphs 16

∞

-2

Bellman-Ford Example

∞∞

0

∞

∞

∞

48

7 1

-2 5

-2

3 9

∞

0

∞

∞

∞

48

7 1

-2 5
3 9

Nodes are labeled with their d(v) values

-2

-28

0

4

∞

48

7 1

-2 5
3 9

∞

8 -2 4

-15

6
1

9

-25

0

1

-1

9

48

7 1

-2 5

-2

3 9
4

Weighted Graphs 17

DAG-based Algorithm

Works even with
negative-weight edges
Uses topological order
Doesn’t use any fancy
data structures
Is much faster than
Dijkstra’s algorithm
Running time: O(n+m).

Algorithm DagDistances(G, s)
for all v ∈ G.vertices()

if v = s
setDistance(v, 0)

else
setDistance(v, ∞)

Perform a topological sort of the vertices
for u ← 1 to n do {in topological order}

for each e ∈ G.outEdges(u)
{ relax edge e }
z ← G.opposite(u,e)
r ← getDistance(u) + weight(e)
if r < getDistance(z)

setDistance(z,r)

Weighted Graphs 18

∞

-2

DAG Example

∞∞

0

∞

∞

∞

48

7 1

-5 5

-2

3 9

∞

0

∞

∞

∞

48

7 1

-5 5
3 9

Nodes are labeled with their d(v) values

-2

-28

0

4

∞

48

7 1

-5 5
3 9

∞

-2 4

-1

1 7

-25

0

1

-1

7

48

7 1

-5 5

-2

3 9
4

1

1

2 43

6 5

1

2 43

6 5

8

1

2 43

6 5

1

2 43

6 5

5

0

(two steps)

Weighted Graphs 19

All-Pairs Shortest Paths
Find the distance
between every pair of
vertices in a weighted
directed graph G.
We can make n calls to
Dijkstra’s algorithm (if no
negative edges), which
takes O(nmlog n) time.
Likewise, n calls to
Bellman-Ford would take
O(n2m) time.
We can achieve O(n3)
time using dynamic
programming (similar to
the Floyd-Warshall
algorithm).

Algorithm AllPair(G) {assumes vertices 1,…,n}
for all vertex pairs (i,j)

if i = j
D0[i,i] ← 0

else if (i,j) is an edge in G
D0[i,j] ← weight of edge (i,j)

else
D0[i,j] ← + ∞

for k ← 1 to n do
for i ← 1 to n do

for j ← 1 to n do
Dk[i,j] ← min{Dk-1[i,j], Dk-1[i,k]+Dk-1[k,j]}

return Dn

k

j

i

Uses only vertices
numbered 1,…,k-1 Uses only vertices

numbered 1,…,k-1

Uses only vertices numbered 1,…,k
(compute weight of this edge)

Weighted Graphs 20

Minimum Spanning Trees

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

Weighted Graphs 21

Minimum Spanning Tree
Spanning subgraph

 Subgraph of a graph G
containing all the vertices of G

Spanning tree
 Spanning subgraph that is

itself a (free) tree
Minimum spanning tree (MST)

 Spanning tree of a weighted
graph with minimum total
edge weight

Applications
 Communications networks
 Transportation networks

ORD
PIT

ATL

STL

DEN

DFW

DCA

10
1

9

8

6

3

25

7

4

Weighted Graphs 22

Cycle Property
Cycle Property:

 Let T be a minimum
spanning tree of a
weighted graph G

 Let e be an edge of G
that is not in T and C let
be the cycle formed by e
with T

 For every edge f of C,
weight(f) ≤ weight(e)

Proof:
 By contradiction
 If weight(f) > weight(e) we

can get a spanning tree
of smaller weight by
replacing e with f

8
4

2 3
6

7

7

9

8
e

C
f

8
4

2 3
6

7

7

9

8

C

e

f

Replacing f with e yields
a better spanning tree

Weighted Graphs 23

U V

Partition Property
Partition Property:

 Consider a partition of the vertices of
G into subsets U and V

 Let e be an edge of minimum weight
across the partition

 There is a minimum spanning tree of
G containing edge e

Proof:
 Let T be an MST of G
 If T does not contain e, consider the

cycle C formed by e with T and let f
be an edge of C across the partition

 By the cycle property,
weight(f) ≤ weight(e)

 Thus, weight(f) = weight(e)
 We obtain another MST by replacing

f with e

7
4

2 8
5

7

3

9

8 e

f

7
4

2 8
5

7

3

9

8 e

f

Replacing f with e yields
another MST

U V

Weighted Graphs 24

Prim-Jarnik’s Algorithm
Similar to Dijkstra’s algorithm (for a connected graph)
We pick an arbitrary vertex s and we grow the MST as a
cloud of vertices, starting from s
We store with each vertex v a label d(v) = the smallest
weight of an edge connecting v to a vertex in the cloud
At each step:
 We add to the cloud the
vertex u outside the cloud
with the smallest distance
label
 We update the labels of the
vertices adjacent to u

Weighted Graphs 25

Prim-Jarnik’s Algorithm (cont.)
A priority queue stores
the vertices outside the
cloud
 Key: distance
 Element: vertex

Locator-based methods
 insert(k,e) returns a

locator
 replaceKey(l,k) changes

the key of an item
We store three labels
with each vertex:
 Distance
 Parent edge in MST
 Locator in priority queue

Algorithm PrimJarnikMST(G)
Q ← new heap-based priority queue
s ← a vertex of G
for all v ∈ G.vertices()

if v = s
setDistance(v, 0)

else
setDistance(v, ∞)

setParent(v, ∅)
l ← Q.insert(getDistance(v), v)
setLocator(v,l)

while ¬Q.isEmpty()
u ← Q.removeMin()
for all e ∈ G.incidentEdges(u)

z ← G.opposite(u,e)
r ← weight(e)
if r < getDistance(z)

setDistance(z,r)
setParent(z,e)
Q.replaceKey(getLocator(z),r)

Weighted Graphs 26

Example
B

D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 7

2

8 ∞

∞

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 7

2

5 ∞

7

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 7

2

5 ∞

7

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 7

2

5 4

7

Weighted Graphs 27

Example (contd.)

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 3

2

5 4

7

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 3

2

5 4

7

Weighted Graphs 28

Analysis
Graph operations
 Method incidentEdges is called once for each vertex

Label operations
 We set/get the distance, parent and locator labels of vertex z O(deg(z))

times
 Setting/getting a label takes O(1) time

Priority queue operations
 Each vertex is inserted once into and removed once from the priority

queue, where each insertion or removal takes O(log n) time
 The key of a vertex w in the priority queue is modified at most deg(w)

times, where each key change takes O(log n) time
Prim-Jarnik’s algorithm runs in O((n + m) log n) time provided the
graph is represented by the adjacency list structure
 Recall that Σv deg(v) = 2m

The running time is O(m log n) since the graph is connected

Weighted Graphs 29

Kruskal’s Algorithm
A priority queue stores
the edges outside the
cloud
 Key: weight
 Element: edge

At the end of the
algorithm
 We are left with one

cloud that encompasses
the MST

 A tree T which is our
MST

Algorithm KruskalMST(G)
for each vertex V in G do

define a Cloud(v) of  {v}
let Q be a priority queue.
Insert all edges into Q using their
weights as the key
T ∅
while T has fewer than n-1 edges do

edge e = Q.removeMin()
Let u, v be the endpoints of e
if Cloud(v) ≠ Cloud(u) then

Add edge e to T
Merge Cloud(v) and Cloud(u)

return T

Weighted Graphs 30

Data Structure for
Kruskal Algortihm

The algorithm maintains a forest of trees
An edge is accepted it if connects distinct trees
We need a data structure that maintains a partition,
i.e., a collection of disjoint sets, with the operations:
-find(u): return the set storing u
-union(u,v): replace the sets storing u and v with
their union

Weighted Graphs 31

Representation of a
Partition

Each set is stored in a sequence
Each element has a reference back to the set
 operation find(u) takes O(1) time, and returns the set of

which u is a member.
 in operation union(u,v), we move the elements of the

smaller set to the sequence of the larger set and update
their references

 the time for operation union(u,v) is min(nu,nv), where nu
and nv are the sizes of the sets storing u and v

Whenever an element is processed, it goes into a
set of size at least double, hence each element is
processed at most log n times

Weighted Graphs 32

Partition-Based
Implementation

A partition-based version of Kruskal’s Algorithm
performs cloud merges as unions and tests as finds.

Algorithm Kruskal(G):
Input: A weighted graph G.
Output: An MST T for G.

Let P be a partition of the vertices of G, where each vertex forms a separate set.
Let Q be a priority queue storing the edges of G, sorted by their weights
Let T be an initially-empty tree
while Q is not empty do

(u,v) ← Q.removeMinElement()
if P.find(u) != P.find(v) then

Add (u,v) to T
P.union(u,v)

return T

Running time:
O((n+m)log n)

Weighted Graphs 33

Kruskal
Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Weighted Graphs 34

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Example

Weighted Graphs 35

Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Weighted Graphs 36

Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Weighted Graphs 37

Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Weighted Graphs 38

Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Weighted Graphs 39

Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Weighted Graphs 40

Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Weighted Graphs 41

Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Weighted Graphs 42

Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Weighted Graphs 43

Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Weighted Graphs 44

Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Weighted Graphs 45

Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Weighted Graphs 46

Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Weighted Graphs 47

Baruvka’s Algorithm
Like Kruskal’s Algorithm, Baruvka’s algorithm grows many
“clouds” at once.

Each iteration of the while-loop halves the number of connected
compontents in T.
 The running time is O(m log n).

Algorithm BaruvkaMST(G)
T V {just the vertices of G}

while T has fewer than n-1 edges do
for each connected component C in T do

Let edge e be the smallest-weight edge from C to another component in T.
if e is not already in T then

Add edge e to T
return T

Weighted Graphs 48

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846
621

802

1464

1235

337

Baruvka
Example

Weighted Graphs 49

Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846
621

802

1464

1235

337

Weighted Graphs 50

Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846
621

802

1464

1235

337

	Weighted Graphs
	Outline and Reading
	Weighted Graphs
	Shortest Path Problem
	Shortest Path Properties
	Dijkstra’s Algorithm
	Edge Relaxation
	Example
	Example (cont.)
	Dijkstra’s Algorithm
	Analysis
	Extension
	Why Dijkstra’s Algorithm Works
	Why It Doesn’t Work for Negative-Weight Edges
	Bellman-Ford Algorithm
	Bellman-Ford Example
	DAG-based Algorithm
	DAG Example
	All-Pairs Shortest Paths
	Minimum Spanning Trees
	Minimum Spanning Tree
	Cycle Property
	Partition Property
	Prim-Jarnik’s Algorithm
	Prim-Jarnik’s Algorithm (cont.)
	Example
	Example (contd.)
	Analysis
	Slide Number 29
	Data Structure for Kruskal Algortihm
	Representation of a Partition
	Partition-Based Implementation
	Kruskal Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Baruvka’s Algorithm
	Baruvka Example
	Example
	Example

