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Outline and Reading
Weighted graphs (§7.1)
Dijkstra’s algorithm  (§7.1.1)
The Bellman-Ford algorithm  (§7.1.2)
Shortest paths in dags (§7.1.3)
All-pairs shortest paths  (§7.2.1)
Shortest Path via Matrix Multiplication (§7.2.2) – No 
slide on this section- too mathematical for slides!
Minimum Spanning Trees (§7.3)
The Prim-Jarnik Algorithm (§7.3.2)
Kruskal's Algorithm (§7.3.1)
Baruvka's Algorithm (§7.3.3)
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Weighted Graphs
In a weighted graph, each edge has an associated numerical 
value, called the weight of the edge
Edge weights may represent, distances, costs, etc.
Example:
 In a  flight route graph, the weight of an edge represents the 

distance in miles between the endpoint airports
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Shortest Path Problem
Given a weighted graph and two vertices u and v, we want to 
find a path of minimum total weight between u and v.
 Length of a path is the sum of the weights of its edges.

Example:
 Shortest path between Providence and Honolulu

Applications
 Internet packet routing 
 Flight reservations
 Driving directions
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Shortest Path Properties
Property 1:

A subpath of a shortest path is itself a shortest path
Property 2:

There is a tree of shortest paths from a start vertex to all the other 
vertices

Example:
Tree of shortest paths from Providence
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Dijkstra’s Algorithm
The distance of a vertex 
v from a vertex s is the 
length of a shortest path 
between s and v
Dijkstra’s algorithm 
computes the distances 
of all the vertices from a 
given start vertex s
Assumptions:
 the graph is connected
 the edges are 

undirected
 the edge weights are 

nonnegative

We grow a “cloud” of vertices, 
beginning with s and eventually 
covering all the vertices
We store with each vertex v a 
label d(v) representing the 
distance of v from s in the 
subgraph consisting of the cloud 
and its adjacent vertices
At each step
 We add to the cloud the vertex 

u outside the cloud with the 
smallest distance label, d(u)

 We update the labels of the 
vertices adjacent to u
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Edge Relaxation
Consider an edge e = (u,z)
such that
 u is the vertex most recently 

added to the cloud
 z is not in the cloud

The relaxation of edge e 
updates distance d(z) as 
follows:
d(z) ← min{d(z),d(u) + weight(e)}

d(z) = 75
d(u) = 50

zs
u

d(z) = 60
d(u) = 50

zs
u

e

e
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Example (cont.)
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Dijkstra’s Algorithm
A priority queue stores 
the vertices outside the 
cloud
 Key: distance
 Element: vertex

Locator-based methods
 insert(k,e) returns a 

locator 
 replaceKey(l,k) changes 

the key of an item
We store two labels 
with each vertex:
 Distance (d(v) label)
 locator in priority 

queue

Algorithm DijkstraDistances(G, s)
Q ← new heap-based priority queue
for all v ∈ G.vertices()

if v = s
setDistance(v, 0)

else
setDistance(v, ∞)

l ← Q.insert(getDistance(v), v)
setLocator(v,l)

while ¬Q.isEmpty()
u ← Q.removeMin()
for all e ∈ G.incidentEdges(u)

{ relax edge e }
z ← G.opposite(u,e)
r ← getDistance(u) + weight(e)
if r < getDistance(z)

setDistance(z,r)
Q.replaceKey(getLocator(z),r)
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Analysis
Graph operations
 Method incidentEdges is called once for each vertex

Label operations
 We set/get the distance and locator labels of vertex z O(deg(z)) times
 Setting/getting a label takes O(1) time

Priority queue operations
 Each vertex is inserted once into and removed once from the priority 

queue, where each insertion or removal takes O(log n) time
 The key of a vertex in the priority queue is modified at most deg(w) 

times, where each key change takes O(log n) time 
Dijkstra’s algorithm runs in O((n + m) log n) time provided the 
graph is represented by the adjacency list structure
 Recall that Σv deg(v) = 2m

The running time can also be expressed as O(m log n) since the 
graph is connected
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Extension
Using the template 
method pattern, we 
can extend Dijkstra’s 
algorithm to return a 
tree of shortest paths 
from the start vertex 
to all other vertices
We store with each 
vertex a third label:
 parent edge in the 

shortest path tree
In the edge relaxation 
step, we update the 
parent label

Algorithm DijkstraShortestPathsTree(G, s)

…

for all v ∈ G.vertices()
…
setParent(v, ∅)
…

for all e ∈ G.incidentEdges(u)
{ relax edge e }
z ← G.opposite(u,e)
r ← getDistance(u) + weight(e)
if r < getDistance(z)

setDistance(z,r)
setParent(z,e)
Q.replaceKey(getLocator(z),r)
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Why Dijkstra’s Algorithm 
Works

Dijkstra’s algorithm is based on the greedy 
method. It adds vertices by increasing distance.
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 Suppose it didn’t find all shortest 
distances. Let F be the first wrong 
vertex the algorithm processed.

 When the previous node, D, on the 
true shortest path was considered, 
its distance was correct.

 But the edge (D,F) was relaxed at 
that time!

 Thus, so long as d(F)>d(D), F’s 
distance cannot be wrong.  That is, 
there is no wrong vertex.
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Why It Doesn’t Work for 
Negative-Weight Edges

 If a node with a negative 
incident edge were to be added 
late to the cloud, it could mess 
up distances for vertices already 
in the cloud. 
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Dijkstra’s algorithm is based on the greedy 
method. It adds vertices by increasing distance.

C’s true distance is 1, but 
it is already in the cloud 

with d(C)=5!
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Bellman-Ford Algorithm
Works even with negative-
weight edges
Must assume directed 
edges (for otherwise we 
would have negative-
weight cycles)
Iteration i finds all shortest 
paths that use i edges.
Running time: O(nm).
Can be extended to detect 
a negative-weight cycle if it 
exists 
 How?

Algorithm BellmanFord(G, s)
for all v ∈ G.vertices()

if v = s
setDistance(v, 0)

else
setDistance(v, ∞)

for i ← 1 to n-1 do
for each e ∈ G.edges()

{ relax edge e }
u ← G.origin(e)
z ← G.opposite(u,e)
r ← getDistance(u) + weight(e)
if r < getDistance(z)

setDistance(z,r)
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DAG-based Algorithm

Works even with 
negative-weight edges
Uses topological order
Doesn’t use any fancy 
data structures
Is much faster than 
Dijkstra’s algorithm
Running time: O(n+m).

Algorithm DagDistances(G, s)
for all v ∈ G.vertices()

if v = s
setDistance(v, 0)

else
setDistance(v, ∞)

Perform a topological sort of the vertices
for u ← 1 to n do    {in topological order}

for each e ∈ G.outEdges(u)
{ relax edge e }
z ← G.opposite(u,e)
r ← getDistance(u) + weight(e)
if r < getDistance(z)

setDistance(z,r)
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All-Pairs Shortest Paths
Find the distance 
between every pair of 
vertices in a weighted 
directed graph G.
We can make n calls to 
Dijkstra’s algorithm (if no 
negative edges), which 
takes O(nmlog n) time.
Likewise, n calls to 
Bellman-Ford would take 
O(n2m) time.
We can achieve O(n3) 
time using dynamic 
programming (similar to 
the Floyd-Warshall 
algorithm).

Algorithm AllPair(G) {assumes vertices 1,…,n}
for all vertex pairs (i,j) 

if i = j
D0[i,i] ← 0

else if (i,j) is an edge in G
D0[i,j] ← weight of edge (i,j)

else
D0[i,j] ← + ∞

for k ← 1 to n do    
for i ← 1 to n do    

for j ← 1 to n do    
Dk[i,j] ← min{Dk-1[i,j], Dk-1[i,k]+Dk-1[k,j]}

return Dn

k

j

i

Uses only vertices
numbered 1,…,k-1 Uses only vertices

numbered 1,…,k-1

Uses only vertices numbered 1,…,k
(compute weight of this edge)
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Minimum Spanning Trees
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Minimum Spanning Tree
Spanning subgraph

 Subgraph of a graph G
containing all the vertices of G

Spanning tree
 Spanning subgraph that is 

itself a (free) tree
Minimum spanning tree (MST)

 Spanning tree of a weighted 
graph with minimum total 
edge weight

Applications
 Communications networks
 Transportation networks
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Cycle Property
Cycle Property:

 Let T be a minimum 
spanning tree of a 
weighted graph G

 Let e be an edge of G
that is not in T and C let 
be the cycle formed by e
with T

 For every edge f of C,
weight(f) ≤ weight(e)

Proof:
 By contradiction
 If weight(f) > weight(e) we 

can get a spanning tree 
of smaller weight by 
replacing e with f
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Replacing f with e yields
a better spanning tree 
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U V

Partition Property
Partition Property:

 Consider a partition of the vertices of 
G into subsets U and V

 Let e be an edge of minimum weight 
across the partition

 There is a minimum spanning tree of 
G containing edge e

Proof:
 Let T be an MST of G
 If T does not contain e, consider the 

cycle C formed by e with T and let  f
be an edge of C across the partition

 By the cycle property,
weight(f) ≤ weight(e)

 Thus, weight(f) = weight(e)
 We obtain another MST by replacing 

f  with e
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Prim-Jarnik’s Algorithm
Similar to Dijkstra’s algorithm (for a connected graph)
We pick an arbitrary vertex s and we grow the MST as a 
cloud of vertices, starting from s
We store with each vertex v a label d(v) = the smallest 
weight of an edge connecting v to a vertex in the cloud 
At each step:
 We add to the cloud the 
vertex u outside the cloud 
with the smallest distance 
label
 We update the labels of the 
vertices adjacent to u
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Prim-Jarnik’s Algorithm (cont.)
A priority queue stores 
the vertices outside the 
cloud
 Key: distance
 Element: vertex

Locator-based methods
 insert(k,e) returns a 

locator 
 replaceKey(l,k) changes 

the key of an item
We store three labels 
with each vertex:
 Distance
 Parent edge in MST
 Locator in priority queue

Algorithm PrimJarnikMST(G)
Q ← new heap-based priority queue
s ← a vertex of G
for all v ∈ G.vertices()

if v = s
setDistance(v, 0)

else
setDistance(v, ∞)

setParent(v, ∅)
l ← Q.insert(getDistance(v), v)
setLocator(v,l)

while ¬Q.isEmpty()
u ← Q.removeMin()
for all e ∈ G.incidentEdges(u)

z ← G.opposite(u,e)
r ← weight(e)
if r < getDistance(z)

setDistance(z,r)
setParent(z,e)
Q.replaceKey(getLocator(z),r)
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Example (contd.)
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Analysis
Graph operations
 Method incidentEdges is called once for each vertex

Label operations
 We set/get the distance, parent and locator labels of vertex z O(deg(z))

times
 Setting/getting a label takes O(1) time

Priority queue operations
 Each vertex is inserted once into and removed once from the priority 

queue, where each insertion or removal takes O(log n) time
 The key of a vertex w in the priority queue is modified at most deg(w) 

times, where each key change takes O(log n) time 
Prim-Jarnik’s algorithm runs in O((n + m) log n) time provided the 
graph is represented by the adjacency list structure
 Recall that Σv deg(v) = 2m

The running time is O(m log n) since the graph is connected
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Kruskal’s Algorithm
A priority queue stores 
the edges outside the 
cloud
 Key: weight
 Element: edge

At the end of the 
algorithm
 We are left with one 

cloud that encompasses 
the MST

 A tree T which is our 
MST

Algorithm KruskalMST(G)
for each vertex V in G do

define a Cloud(v) of  {v}
let Q be a priority queue.
Insert all edges into Q using their 
weights as the key
T ∅
while T has fewer than n-1 edges do

edge e = Q.removeMin()
Let u, v be the endpoints of e
if Cloud(v) ≠ Cloud(u) then

Add edge e to T
Merge Cloud(v) and Cloud(u)

return T
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Data Structure for 
Kruskal Algortihm

The algorithm maintains a forest of trees
An edge is accepted it if connects distinct trees
We need a data structure that maintains a partition, 
i.e., a collection of disjoint sets, with the operations:
-find(u): return the set storing u
-union(u,v): replace the sets storing u and v with 
their union
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Representation of a 
Partition

Each set is stored in a sequence
Each element has a reference back to the set
 operation find(u) takes O(1) time, and returns the set of 

which u is a member.
 in operation union(u,v), we move the elements of the 

smaller set to the sequence of the larger set and update 
their references

 the time for operation union(u,v) is min(nu,nv), where nu
and nv are the sizes of the sets storing u and v

Whenever an element is processed, it goes into a 
set of size at least double, hence each element is 
processed at most log n times
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Partition-Based 
Implementation

A partition-based version of Kruskal’s Algorithm 
performs cloud merges as unions and tests as finds.

Algorithm Kruskal(G):
Input: A weighted graph G.
Output: An MST T for G.

Let P be a partition of the vertices of G, where each vertex forms a separate set.
Let Q be a priority queue storing the edges of G, sorted by their weights
Let T be an initially-empty tree
while Q is not empty do

(u,v) ← Q.removeMinElement()
if P.find(u) != P.find(v) then

Add (u,v) to T
P.union(u,v)

return T

Running time: 
O((n+m)log n)
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Kruskal 
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Baruvka’s Algorithm
Like Kruskal’s Algorithm, Baruvka’s algorithm grows many 
“clouds” at once.

Each iteration of the while-loop halves the number of connected 
compontents in T.
 The running time is O(m log n).

Algorithm BaruvkaMST(G)
T V {just the vertices of G}

while T has fewer than n-1 edges do
for each connected component C in T do

Let edge e be the smallest-weight edge from C to another component in T.
if e is not already in T then

Add edge e to T
return T
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