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Outline and Reading
Graphs (§6.1)
Data Structures for Graphs (§6.2)
Graph Traversal (§6.3)
Directed Graph (§6.4)
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6.1 Graph
A graph is a pair (V, E), where
 V is a set of nodes, called vertices
 E is a collection of pairs of vertices, called edges
 Vertices and edges are positions and store elements

Example:
 A vertex represents an airport and stores the three-letter airport code
 An edge represents a flight route between two airports and stores the 

mileage of the route
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Edge Types
Directed edge
 ordered pair of vertices (u,v)
 first vertex u is the origin
 second vertex v is the destination
 e.g., a flight

Undirected edge
 unordered pair of vertices (u,v)
 e.g., a flight route

Directed graph
 all the edges are directed
 e.g., flight network

Undirected graph
 all the edges are undirected
 e.g., route network

ORD PVDflight
AA 1206

ORD PVD849
miles
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John

DavidPaul
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Applications
Electronic circuits
 Printed circuit board
 Integrated circuit

Transportation networks
 Highway network
 Flight network

Computer networks
 Local area network
 Internet
 Web

Databases
 Entity-relationship diagram
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Terminology
End vertices (or endpoints) of 
an edge
 U and V are the endpoints of a

Edges incident on a vertex
 a, d, and b are incident on V

Adjacent vertices
 U and V are adjacent

Degree of a vertex
 X has degree 5 

Parallel edges
 h and i are parallel edges

Self-loop
 j is a self-loop
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P1

Terminology (cont.)
Path
 sequence of alternating 

vertices and edges 
 begins with a vertex
 ends with a vertex
 each edge is preceded and 

followed by its endpoints
Simple path
 path such that all its vertices 

and edges are distinct
Examples
 P1=(V,b,X,h,Z) is a simple path
 P2=(U,c,W,e,X,g,Y,f,W,d,V) is a 

path that is not simple
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Terminology (cont.)
Cycle
 circular sequence of alternating 

vertices and edges 
 each edge is preceded and 

followed by its endpoints
Simple cycle
 cycle such that all its vertices 

and edges are distinct
Examples
 C1=(V,b,X,g,Y,f,W,c,U,a,↵) is a 

simple cycle
 C2=(U,c,W,e,X,g,Y,f,W,d,V,a,↵)

is a cycle that is not simple

C1

XU
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Properties
Notation

n number of vertices
m number of edges

deg(v) degree of vertex v

Property 1
Σv deg(v) = 2m
Proof: each edge is 

counted twice
Property 2

In an undirected graph 
with no self-loops and 
no multiple edges
m ≤ n (n − 1)/2

Proof: each vertex has 
degree at most (n − 1)

Example
 n = 4
 m = 6
 deg(v) = 3
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Subgraphs
A subgraph S of a graph 
G is a graph such that 
 The vertices of S are a 

subset of the vertices of G
 The edges of S are a 

subset of the edges of G
A spanning subgraph of G 
is a subgraph that 
contains all the vertices 
of G

Subgraph

Spanning subgraph
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Connectivity
A graph is 
connected if there is 
a path between 
every pair of 
vertices
A connected 
component of a 
graph G is a 
maximal connected 
subgraph of G

Connected graph

Non connected graph with two 
connected components
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Trees and Forests
A (free) tree is an 
undirected graph T such 
that
 T is connected
 T has no cycles
This definition of tree is 

different from the one of 
a rooted tree

A forest is an undirected 
graph without cycles
The connected 
components of a forest 
are trees

Tree

Forest
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Spanning Trees and Forests
A spanning tree of a 
connected graph is a 
spanning subgraph that is 
a tree
A spanning tree is not 
unique unless the graph is 
a tree
Spanning trees have 
applications to the design 
of communication 
networks
A spanning forest of a 
graph is a spanning 
subgraph that is a forest

Graph

Spanning tree
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Main Methods of the Graph ADT
Vertices and edges
 are positions
 store elements

Accessor methods
 aVertex()
 incidentEdges(v)
 endVertices(e)
 isDirected(e)
 origin(e)
 destination(e)
 opposite(v, e)
 areAdjacent(v, w)

Update methods
 insertVertex(o)
 insertEdge(v, w, o)
 insertDirectedEdge(v, w, o)
 removeVertex(v)
 removeEdge(e)

Generic methods
 numVertices()
 numEdges()
 vertices()
 edges()
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6.2 Data Structure for Graphs
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Edge List Structure
Vertex object
 element
 reference to position in 

vertex sequence
Edge object
 element
 origin vertex object
 destination vertex object
 reference to position in 

edge sequence
Vertex sequence
 sequence of vertex 

objects
Edge sequence
 sequence of edge objects

v

u

w

a c
b

a

z
d

u v w z

b c d
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Adjacency List Structure
Edge list structure
Incidence sequence 
for each vertex
 sequence of 

references to edge 
objects of incident 
edges

Augmented edge 
objects
 references to 

associated 
positions in 
incidence 
sequences of end 
vertices

u
v

w
a b

a

u v w

b
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Adjacency Matrix Structure
Edge list structure
Augmented vertex 
objects
 Integer key (index) 

associated with vertex
2D adjacency array
 Reference to edge 

object for adjacent 
vertices

 Null for non 
nonadjacent vertices

The “old fashioned” 
version just has 0 for 
no edge and 1 for edge

u
v

w
a b

0 1 2
0 ∅ ∅

1 ∅

2 ∅ ∅a

u v w0 1 2

b
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Asymptotic Performance
n vertices, m edges
no parallel edges
no self-loops
Bounds are “big-Oh”

Edge
List

Adjacency
List

Adjacency 
Matrix

Space n + m n + m n2

incidentEdges(v) m deg(v) n
areAdjacent (v, w) m min(deg(v), deg(w)) 1
insertVertex(o) 1 1 n2

insertEdge(v, w, o) 1 1 1
removeVertex(v) m deg(v) n2

removeEdge(e) 1 1 1
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6.3 Graph Traversal



Graphs 21

6.3.1 Depth-First Search
Depth-first search (DFS) 
is a general technique 
for traversing a graph
A DFS traversal of a 
graph G 
 Visits all the vertices and 

edges of G
 Determines whether G is 

connected
 Computes the connected 

components of G
 Computes a spanning 

forest of G

DFS on a graph with n
vertices and m edges 
takes O(n + m ) time
DFS can be further 
extended to solve other 
graph problems
 Find and report a path 

between two given 
vertices

 Find a cycle in the graph
Depth-first search is to 
graphs what Euler tour 
is to binary trees
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DFS Algorithm
The algorithm uses a mechanism 
for setting and getting “labels” of 
vertices and edges

Algorithm DFS(G, v)
Input graph G and a start vertex v of G
Output labeling of the edges of G

in the connected component of v
as discovery edges and back edges

setLabel(v, VISITED)
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← G.opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
DFS(G, w)

else
setLabel(e, BACK)

Algorithm DFS(G)
Input graph G
Output labeling of the edges of G

as discovery edges and
back edges

for all u ∈ G.vertices()
setLabel(u, UNEXPLORED)

for all e ∈ G.edges()
setLabel(e, UNEXPLORED)

for all v ∈ G.vertices()
if getLabel(v) = UNEXPLORED

DFS(G, v)
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Example

DB

A

C

E

DB

A

C

E

DB

A

C

E

discovery edge
back edge

A visited vertex
A unexplored vertex

unexplored edge
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Example (cont.)
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DFS and Maze Traversal 
The DFS algorithm is 
similar to a classic 
strategy for exploring 
a maze
 We mark each 

intersection, corner 
and dead end (vertex) 
visited

 We mark each corridor 
(edge ) traversed

 We keep track of the 
path back to the 
entrance (start vertex) 
by means of a rope 
(recursion stack)
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Properties of DFS
Property 1

DFS(G, v) visits all the 
vertices and edges in 
the connected 
component of v

Property 2
The discovery edges 
labeled by DFS(G, v) 
form a spanning tree of 
the connected 
component of v

DB

A

C

E
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Analysis of DFS
Setting/getting a vertex/edge label takes O(1) time
Each vertex is labeled twice 
 once as UNEXPLORED
 once as VISITED

Each edge is labeled twice
 once as UNEXPLORED
 once as DISCOVERY or BACK

Method incidentEdges is called once for each vertex
DFS runs in O(n + m) time provided the graph is 
represented by the adjacency list structure
 Recall that Σv deg(v) = 2m
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Path Finding
We can specialize the DFS 
algorithm to find a path 
between two given 
vertices u and z using the 
template method pattern
We call DFS(G, u) with u
as the start vertex
We use a stack S to keep 
track of the path between 
the start vertex and the 
current vertex
As soon as destination 
vertex z is encountered, 
we return the path as the 
contents of the stack 

Algorithm pathDFS(G, v, z)
setLabel(v, VISITED)
S.push(v)
if  v = z

return S.elements()
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v, e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
S.push(e)
pathDFS(G, w, z)
S.pop() { e gets popped }

else
setLabel(e, BACK)

S.pop() { v gets popped }



Graphs 29

Cycle Finding
We can specialize the 
DFS algorithm to find a 
simple cycle using the 
template method pattern
We use a stack S to keep 
track of the path 
between the start vertex 
and the current vertex
As soon as a back edge 
(v, w) is encountered, 
we return the cycle as 
the portion of the stack 
from the top to vertex w

Algorithm cycleDFS(G, v, z)
setLabel(v, VISITED)
S.push(v)
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v,e)
S.push(e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
pathDFS(G, w, z)
S.pop()

else
C ← new empty stack
repeat

o ← S.pop()
C.push(o)

until o = w
return C.elements()

S.pop()
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6.3.2 Biconnectivity

SEA PVD

MIASNA

ORD
FCO
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Separation Edges and Vertices
Definitions
 Let G be a connected graph
 A separation edge of G is an edge whose removal disconnects G 
 A separation vertex of G is a vertex whose removal disconnects G 

Applications
 Separation edges and vertices represent single points of failure in a 

network and are critical to the operation of the network
Example
 DFW, LGA and LAX are separation vertices
 (DFW,LAX) is a separation edge

ORD PVD

MIADFW

SFO

LAX

LGA

HNL
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Biconnected Graph
Equivalent definitions of a biconnected graph G
 Graph G has no separation edges and no separation vertices
 For any two vertices u and v of G, there are two disjoint 

simple paths between u and v (i.e., two simple paths 
between u and v that  share no other vertices or edges)

 For any two vertices u and v of G, there is a simple cycle 
containing u and v

Example
ORD

PVD

MIADFW

SFO

LAX

LGA
HNL
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Biconnected Components
Biconnected component of a graph G
 A maximal biconnected subgraph of G, or
 A subgraph consisting of a separation edge of G and its end vertices

Interaction of biconnected components
 An edge belongs to exactly one biconnected component
 A nonseparation vertex belongs to exactly one biconnected component
 A separation vertex belongs to two or more biconnected components

Example of a graph with four biconnected components

ORD PVD

MIADFW

SFO

LAX

LGA

HNL
RDU
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Equivalence Classes
Given a set S, a relation R on S is a set of ordered pairs of 
elements of S, i.e., R is a subset of S×S
An equivalence relation R on S satisfies the following properties
Reflexive: (x,x) ∈ R
Symmetric: (x,y) ∈ R ⇒ (y,x) ∈ R
Transitive: (x,y) ∈ R ∧ (y,z) ∈ R ⇒ (x,z) ∈ R

An equivalence relation R on S induces a partition of the 
elements of S into equivalence classes
Example (connectivity relation among the vertices of a graph):
 Let V be the set of vertices of a graph G
 Define the relation

C = {(v,w) ∈ V×V such that G has a path from v to w}
 Relation C is an equivalence relation
 The equivalence classes of relation C are the vertices in each 

connected component of graph G
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Link Relation
Edges e and f of connected 
graph G are linked if
 e = f, or
 G has a simple cycle 

containing e and f
Theorem:

The link relation on the 
edges of a graph is an 
equivalence relation
Proof Sketch:
 The reflexive and 

symmetric properties 
follow from the definition

 For the transitive 
property, consider two 
simple cycles sharing an 
edge

a
b

g

c
j

d
e

f

i

Equivalence classes of linked edges:
{a}  {b, c, d, e, f}  {g, i, j}

a
b

g

c
j

d
e

f

i
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Link Components
The link components of a connected graph G are the equivalence 
classes of edges with respect to the link relation
A biconnected component of G is the subgraph of G induced by an 
equivalence class of linked edges
A separation edge is a single-element equivalence class of linked 
edges
A separation vertex has incident edges in at least two distinct 
equivalence classes of linked edge

ORD PVD

MIADFW

SFO

LAX

LGA

HNL
RDU
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Auxiliary Graph
Auxiliary graph B for a connected 
graph G
 Associated with a DFS traversal 

of G
 The vertices of B are the edges 

of G
 For each back edge e of G, B has 

edges (e,f1), (e,f2) , …, (e,fk),
where f1, f2, …, fk are the 
discovery edges of G that form a 
simple cycle with e

 Its connected components 
correspond to the  the link 
components of G

a

b
g

c

j
d

e

f

i

Auxiliary graph B

DFS on graph G

a

d

b

c

e
h i

jf

h

g

i
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Auxiliary Graph (cont.)
In the worst case, the number of edges of the 
auxiliary graph is proportional to nm

Auxiliary graph BDFS on graph G
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Proxy Graph
Algorithm proxyGraph(G)

Input connected graph G
Output proxy graph F for G
F ← empty graph
DFS(G, s) { s is any vertex of G}
for all discovery edges e of G

F.insertVertex(e)
setLabel(e, UNLINKED)

for all vertices v of G in DFS visit order
for all back edges e = (u,v) 

F.insertVertex(e)
repeat

f ← discovery edge with dest. u
F.insertEdge(e,f,∅) 
if  f getLabel(f) = UNLINKED

setLabel(f, LINKED)
u ← origin of edge f

else
u ← v { ends the loop }

until u = v
return F

a

b
g

c

j
d

e

f

i

Proxy graph F

DFS on graph G

a

d

b

c

e
h i

jf

h

g

i
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Proxy Graph (cont.)
Proxy graph F for a connected 
graph G
 Spanning forest of the auxiliary 

graph B
 Has m vertices and O(m) edges
 Can be constructed in O(n + m)

time
 Its connected components (trees) 

correspond to the  the link 
components of G

Given a graph G with n vertices 
and m edges, we can compute the 
following in O(n + m) time
 The biconnected components of G
 The separation vertices of G
 The separation edges of G

a

b
g

c

j
d

e

f

i

Proxy graph F

DFS on graph G
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d

b

c

e
h i

jf

h

g

i
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6.3.3 Breadth-First Search

CB

A

E

D

L0

L1

F
L2



Graphs 42

Breadth-First Search
Breadth-first search 
(BFS) is a general 
technique for traversing 
a graph
A BFS traversal of a 
graph G 
 Visits all the vertices and 

edges of G
 Determines whether G is 

connected
 Computes the connected 

components of G
 Computes a spanning 

forest of G

BFS on a graph with n
vertices and m edges 
takes O(n + m ) time
BFS can be further 
extended to solve other 
graph problems
 Find and report a path 

with the minimum 
number of edges 
between two given 
vertices 

 Find a simple cycle, if 
there is one
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BFS Algorithm
The algorithm uses a 
mechanism for setting and 
getting “labels” of vertices 
and edges

Algorithm BFS(G, s)
L0 ← new empty sequence
L0.insertLast(s)
setLabel(s, VISITED)
i ← 0
while ¬Li.isEmpty()

Li +1 ← new empty sequence
for all v ∈ Li.elements() 

for all e ∈ G.incidentEdges(v)
if getLabel(e) = UNEXPLORED

w ← opposite(v,e)
if  getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
setLabel(w, VISITED)
Li +1.insertLast(w)

else
setLabel(e, CROSS)

i ← i +1

Algorithm BFS(G)
Input graph G
Output labeling of the edges 

and partition of the 
vertices  of G 

for all u ∈ G.vertices()
setLabel(u, UNEXPLORED)

for all e ∈ G.edges()
setLabel(e, UNEXPLORED)

for all v ∈ G.vertices()
if getLabel(v) = UNEXPLORED

BFS(G, v)
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Example

CB

A

E

D

discovery edge
cross edge

A visited vertex
A unexplored vertex

unexplored edge
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Example (cont.)
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Example (cont.)

CB
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L1

F
L2

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2



Graphs 47

Properties
Notation

Gs: connected component of s
Property 1

BFS(G, s) visits all the vertices and 
edges of Gs

Property 2
The discovery edges labeled by 
BFS(G, s) form a spanning tree Ts of 
Gs

Property 3
For each vertex v in Li
 The path of  Ts from s to v has i

edges 
 Every path from s to v in Gs has at 

least i edges

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F
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Analysis
Setting/getting a vertex/edge label takes O(1) time
Each vertex is labeled twice 
 once as UNEXPLORED
 once as VISITED

Each edge is labeled twice
 once as UNEXPLORED
 once as DISCOVERY or CROSS

Each vertex is inserted once into a sequence Li
Method incidentEdges is called once for each vertex
BFS runs in O(n + m) time provided the graph is 
represented by the adjacency list structure
 Recall that Σv deg(v) = 2m
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Applications
Using the template method pattern, we can 
specialize the BFS traversal of a graph G to 
solve the following problems in O(n + m) time
 Compute the connected components of G
 Compute a spanning forest of G
 Find a simple cycle in G, or report that G is a 

forest
 Given two vertices of G, find a path in G between 

them with the minimum number of edges, or 
report that no such path exists
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DFS vs. BFS

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

DFS BFS

Applications DFS BFS
Spanning forest, connected 
components, paths, cycles √ √

Shortest paths √

Biconnected components √
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DFS vs. BFS (cont.)
Back edge (v,w)

 w is an ancestor of v in 
the tree of discovery 
edges

Cross edge (v,w)
 w is in the same level as 

v or in the next level in 
the tree of discovery 
edges

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

DFS BFS
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6.4 Directed Graphs
JFK

BOS

MIA

ORD

LAX
DFW

SFO
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Outline and Reading (§6.4)
Reachability (§6.4.1)
 Directed DFS
 Strong connectivity

Transitive closure (§6.4.2)
 The Floyd-Warshall Algorithm

Directed Acyclic Graphs (DAG’s) (§6.4.4)
 Topological Sorting
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Digraphs

A digraph is a graph 
whose edges are all 
directed
 Short for “directed graph”

Applications
 one-way streets
 flights
 task scheduling A

C

E

B

D
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Digraph Properties

A graph G=(V,E) such that
 Each edge goes in one direction:

 Edge (a,b) goes from a to b, but not b to a.

If G is simple, m < n(n-1).
If we keep in-edges and out-edges in separate 
adjacency lists, we can perform listing of of 
the sets of in-edges and out-edges in time 
proportional to their size.

A

C

E

B

D
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Digraph Application
Scheduling: edge (a,b) means task a must be 
completed before b can be started

The good life

ics141ics131 ics121

ics53 ics52ics51

ics23ics22ics21

ics161

ics151

ics171
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Directed DFS
We can specialize the 
traversal algorithms (DFS and 
BFS) to digraphs by 
traversing edges only along 
their direction
In the directed DFS 
algorithm, we have four types 
of edges
 discovery edges
 back edges
 forward edges
 cross edges

A directed DFS starting at a 
vertex s determines the 
vertices reachable from s

A

C

E

B

D
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Reachability
DFS tree rooted at v: vertices reachable 
from v via directed paths

A

C

E

B

D

F
A

C

E D

A

C

E

B

D

F
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Strong Connectivity
Each vertex can reach all other vertices

a

d

c

b

e

f

g
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Pick a vertex v in G.
Perform a DFS from v in G.
 If there’s a w not visited, print “no”.

Let G’ be G with edges reversed.
Perform a DFS from v in G’.
 If there’s a w not visited, print “no”.
 Else, print “yes”.

Running time: O(n+m).

Strong Connectivity 
Algorithm

G:

G’:

a

d

c

b

e

f

g

a

d

c

b

e

f

g
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Maximal subgraphs such that each vertex can reach 
all other vertices in the subgraph
Can also be done in O(n+m) time using DFS, but is 
more complicated (similar to biconnectivity).

Strongly Connected 
Components

{ a , c , g }

{ f , d , e , b }

a

d

c

b
e

f

g
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Transitive Closure
Given a digraph G, the 
transitive closure of G is the 
digraph G* such that
 G* has the same vertices 

as G
 if G has a directed path 

from u to v (u ≠ v), G*
has a directed edge from 
u to v

The transitive closure 
provides reachability 
information about a digraph

B

A

D

C

E

B

A

D

C

E

G

G*
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Computing the 
Transitive Closure

We can perform 
DFS starting at 
each vertex
 O(n(n+m))

If there's a way to get  
from A to B and from        
B to C, then there's a        
way to get from A to C.

Alternatively ... Use 
dynamic programming: 
the Floyd-Warshall 
Algorithm
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Floyd-Warshall 
Transitive Closure

Idea #1: Number the vertices 1, 2, …, n.
Idea #2: Consider paths that use only 
vertices numbered 1, 2, …, k, as 
intermediate vertices:

k

j

i

Uses only vertices
numbered 1,…,k-1 Uses only vertices

numbered 1,…,k-1

Uses only vertices numbered 1,…,k
(add this edge if it’s not already in)
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Floyd-Warshall’s Algorithm
Floyd-Warshall’s algorithm 
numbers the vertices of G as 
v1 , …, vn and computes a 
series of digraphs G0, …, Gn
 G0=G
 Gk has a directed edge (vi, vj) 

if G has a directed path from 
vi to vj with intermediate 
vertices in the set {v1 , …, vk}

We have that Gn = G*
In phase k, digraph Gk is 
computed from Gk − 1

Running time: O(n3), 
assuming areAdjacent is O(1) 
(e.g., adjacency matrix)

Algorithm FloydWarshall(G)
Input digraph G
Output transitive closure G* of G
i ← 1
for all v ∈ G.vertices()

denote v as vi
i ← i + 1

G0 ← G
for k ← 1 to n do

Gk ← Gk − 1
for i ← 1 to n (i ≠ k) do

for j ← 1 to n (j ≠ i, k) do
if Gk − 1.areAdjacent(vi, vk) ∧

Gk − 1.areAdjacent(vk, vj)
if ¬Gk.areAdjacent(vi, vj)

Gk.insertDirectedEdge(vi, vj , k)
return Gn
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Floyd-Warshall Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v2

v1
v3

v4

v5

v6

v7
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Floyd-Warshall, Iteration 1

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v2

v1
v3

v4

v5

v6

v7



Graphs 68

Floyd-Warshall, Iteration 2

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v2

v1
v3

v4

v5

v6

v7
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Floyd-Warshall, Iteration 3

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v2

v1
v3

v4

v5

v6

v7
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Floyd-Warshall, Iteration 4

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v2

v1
v3

v4

v5

v6

v7
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Floyd-Warshall, Iteration 5

JFK

MIA

ORD

LAX
DFW

SFO

v2

v1
v3

v4

v5

v6

v7
BOS
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Floyd-Warshall, Iteration 6

JFK

MIA

ORD

LAX
DFW

SFO

v2

v1
v3

v4

v5

v6

v7
BOS
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Floyd-Warshall, Conclusion

JFK

MIA

ORD

LAX
DFW

SFO

v2

v1
v3

v4

v5

v6

v7
BOS
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DAGs and Topological Ordering
A directed acyclic graph (DAG) is a 
digraph that has no directed cycles
A topological ordering of a digraph 
is a numbering 

v1 , …, vn

of the vertices such that for every 
edge (vi , vj), we have i < j
Example: in a task scheduling 
digraph, a topological ordering a 
task sequence that satisfies the 
precedence constraints

Theorem
A digraph admits a topological 
ordering if and only if it is a DAG

B

A

D

C

E

DAG G

B

A

D

C

E

Topological 
ordering of G

v1

v2

v3

v4 v5
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write c.s. program

play

Topological Sorting
Number vertices, so that (u,v) in E implies u < v

wake up

eat

nap

study computer sci.

more c.s.

work out

sleep

dream about graphs

A typical student day1

2 3

4 5

6

7

8

9

10
11

make cookies 
for professors
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Note: This algorithm is different than the 
one in Goodrich-Tamassia

Running time: O(n + m).  How…?

Algorithm for Topological Sorting

Method TopologicalSort(G)
H ← G // Temporary copy of G
n ← G.numVertices()
while H is not empty do

Let v be a vertex with no outgoing edges
Label v ← n
n ← n - 1
Remove v from H
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Topological Sorting 
Algorithm using DFS

Simulate the algorithm by using 
depth-first search

O(n+m) time.

Algorithm topologicalDFS(G, v)
Input graph G and a start vertex v of G
Output labeling of the vertices of G

in the connected component of v
setLabel(v, VISITED)
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
topologicalDFS(G, w)

else
{e is a forward or cross edge}

Label v with topological number n
n ← n - 1

Algorithm topologicalDFS(G)
Input dag G
Output topological ordering of G

n ← G.numVertices()
for all u ∈ G.vertices()

setLabel(u, UNEXPLORED)
for all e ∈ G.edges()

setLabel(e, UNEXPLORED)
for all v ∈ G.vertices()

if getLabel(v) = UNEXPLORED
topologicalDFS(G, v)
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Topological Sorting Example
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Topological Sorting Example

9
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Topological Sorting Example

8

9
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Topological Sorting Example

7
8

9
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Topological Sorting Example

7
8

6

9
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Topological Sorting Example

7
8
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9
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Topological Sorting Example
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Topological Sorting Example
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Topological Sorting Example
2

7
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8
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Topological Sorting Example
2

7

4

8

56
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