
Graphs 1

Chapter 6: Graphs
ORD

DFW

SFO

LAX

Graphs 2

Outline and Reading
Graphs (§6.1)
Data Structures for Graphs (§6.2)
Graph Traversal (§6.3)
Directed Graph (§6.4)

Graphs 3

6.1 Graph
A graph is a pair (V, E), where
 V is a set of nodes, called vertices
 E is a collection of pairs of vertices, called edges
 Vertices and edges are positions and store elements

Example:
 A vertex represents an airport and stores the three-letter airport code
 An edge represents a flight route between two airports and stores the

mileage of the route

ORD PVD

MIA
DFW

SFO

LAX

LGA
HNL

Graphs 4

Edge Types
Directed edge
 ordered pair of vertices (u,v)
 first vertex u is the origin
 second vertex v is the destination
 e.g., a flight

Undirected edge
 unordered pair of vertices (u,v)
 e.g., a flight route

Directed graph
 all the edges are directed
 e.g., flight network

Undirected graph
 all the edges are undirected
 e.g., route network

ORD PVDflight
AA 1206

ORD PVD849
miles

Graphs 5

John

DavidPaul

brown.edu

cox.net

cs.brown.edu

att.net
qwest.net

math.brown.edu

cslab1bcslab1a

Applications
Electronic circuits
 Printed circuit board
 Integrated circuit

Transportation networks
 Highway network
 Flight network

Computer networks
 Local area network
 Internet
 Web

Databases
 Entity-relationship diagram

Graphs 6

Terminology
End vertices (or endpoints) of
an edge
 U and V are the endpoints of a

Edges incident on a vertex
 a, d, and b are incident on V

Adjacent vertices
 U and V are adjacent

Degree of a vertex
 X has degree 5

Parallel edges
 h and i are parallel edges

Self-loop
 j is a self-loop

XU

V

W

Z

Y

a

c

b

e
d

f

g

h

i

j

Graphs 7

P1

Terminology (cont.)
Path
 sequence of alternating

vertices and edges
 begins with a vertex
 ends with a vertex
 each edge is preceded and

followed by its endpoints
Simple path
 path such that all its vertices

and edges are distinct
Examples
 P1=(V,b,X,h,Z) is a simple path
 P2=(U,c,W,e,X,g,Y,f,W,d,V) is a

path that is not simple

XU

V

W

Z

Y

a

c

b

e

d

f

g

hP2

Graphs 8

Terminology (cont.)
Cycle
 circular sequence of alternating

vertices and edges
 each edge is preceded and

followed by its endpoints
Simple cycle
 cycle such that all its vertices

and edges are distinct
Examples
 C1=(V,b,X,g,Y,f,W,c,U,a,↵) is a

simple cycle
 C2=(U,c,W,e,X,g,Y,f,W,d,V,a,↵)

is a cycle that is not simple

C1

XU

V

W

Z

Y

a

c

b

e

d

f

g

hC2

Graphs 9

Properties
Notation

n number of vertices
m number of edges

deg(v) degree of vertex v

Property 1
Σv deg(v) = 2m
Proof: each edge is

counted twice
Property 2

In an undirected graph
with no self-loops and
no multiple edges
m ≤ n (n − 1)/2

Proof: each vertex has
degree at most (n − 1)

Example
 n = 4
 m = 6
 deg(v) = 3

Graphs 10

Subgraphs
A subgraph S of a graph
G is a graph such that
 The vertices of S are a

subset of the vertices of G
 The edges of S are a

subset of the edges of G
A spanning subgraph of G
is a subgraph that
contains all the vertices
of G

Subgraph

Spanning subgraph

Graphs 11

Connectivity
A graph is
connected if there is
a path between
every pair of
vertices
A connected
component of a
graph G is a
maximal connected
subgraph of G

Connected graph

Non connected graph with two
connected components

Graphs 12

Trees and Forests
A (free) tree is an
undirected graph T such
that
 T is connected
 T has no cycles
This definition of tree is

different from the one of
a rooted tree

A forest is an undirected
graph without cycles
The connected
components of a forest
are trees

Tree

Forest

Graphs 13

Spanning Trees and Forests
A spanning tree of a
connected graph is a
spanning subgraph that is
a tree
A spanning tree is not
unique unless the graph is
a tree
Spanning trees have
applications to the design
of communication
networks
A spanning forest of a
graph is a spanning
subgraph that is a forest

Graph

Spanning tree

Graphs 14

Main Methods of the Graph ADT
Vertices and edges
 are positions
 store elements

Accessor methods
 aVertex()
 incidentEdges(v)
 endVertices(e)
 isDirected(e)
 origin(e)
 destination(e)
 opposite(v, e)
 areAdjacent(v, w)

Update methods
 insertVertex(o)
 insertEdge(v, w, o)
 insertDirectedEdge(v, w, o)
 removeVertex(v)
 removeEdge(e)

Generic methods
 numVertices()
 numEdges()
 vertices()
 edges()

Graphs 15

6.2 Data Structure for Graphs

Graphs 16

Edge List Structure
Vertex object
 element
 reference to position in

vertex sequence
Edge object
 element
 origin vertex object
 destination vertex object
 reference to position in

edge sequence
Vertex sequence
 sequence of vertex

objects
Edge sequence
 sequence of edge objects

v

u

w

a c
b

a

z
d

u v w z

b c d

Graphs 17

Adjacency List Structure
Edge list structure
Incidence sequence
for each vertex
 sequence of

references to edge
objects of incident
edges

Augmented edge
objects
 references to

associated
positions in
incidence
sequences of end
vertices

u
v

w
a b

a

u v w

b

Graphs 18

Adjacency Matrix Structure
Edge list structure
Augmented vertex
objects
 Integer key (index)

associated with vertex
2D adjacency array
 Reference to edge

object for adjacent
vertices

 Null for non
nonadjacent vertices

The “old fashioned”
version just has 0 for
no edge and 1 for edge

u
v

w
a b

0 1 2
0 ∅ ∅

1 ∅

2 ∅ ∅a

u v w0 1 2

b

Graphs 19

Asymptotic Performance
n vertices, m edges
no parallel edges
no self-loops
Bounds are “big-Oh”

Edge
List

Adjacency
List

Adjacency
Matrix

Space n + m n + m n2

incidentEdges(v) m deg(v) n
areAdjacent (v, w) m min(deg(v), deg(w)) 1
insertVertex(o) 1 1 n2

insertEdge(v, w, o) 1 1 1
removeVertex(v) m deg(v) n2

removeEdge(e) 1 1 1

Graphs 20

6.3 Graph Traversal

Graphs 21

6.3.1 Depth-First Search
Depth-first search (DFS)
is a general technique
for traversing a graph
A DFS traversal of a
graph G
 Visits all the vertices and

edges of G
 Determines whether G is

connected
 Computes the connected

components of G
 Computes a spanning

forest of G

DFS on a graph with n
vertices and m edges
takes O(n + m) time
DFS can be further
extended to solve other
graph problems
 Find and report a path

between two given
vertices

 Find a cycle in the graph
Depth-first search is to
graphs what Euler tour
is to binary trees

Graphs 22

DFS Algorithm
The algorithm uses a mechanism
for setting and getting “labels” of
vertices and edges

Algorithm DFS(G, v)
Input graph G and a start vertex v of G
Output labeling of the edges of G

in the connected component of v
as discovery edges and back edges

setLabel(v, VISITED)
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← G.opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
DFS(G, w)

else
setLabel(e, BACK)

Algorithm DFS(G)
Input graph G
Output labeling of the edges of G

as discovery edges and
back edges

for all u ∈ G.vertices()
setLabel(u, UNEXPLORED)

for all e ∈ G.edges()
setLabel(e, UNEXPLORED)

for all v ∈ G.vertices()
if getLabel(v) = UNEXPLORED

DFS(G, v)

Graphs 23

Example

DB

A

C

E

DB

A

C

E

DB

A

C

E

discovery edge
back edge

A visited vertex
A unexplored vertex

unexplored edge

Graphs 24

Example (cont.)

DB

A

C

E

DB

A

C

E

DB

A

C

E

DB

A

C

E

Graphs 25

DFS and Maze Traversal
The DFS algorithm is
similar to a classic
strategy for exploring
a maze
 We mark each

intersection, corner
and dead end (vertex)
visited

 We mark each corridor
(edge) traversed

 We keep track of the
path back to the
entrance (start vertex)
by means of a rope
(recursion stack)

Graphs 26

Properties of DFS
Property 1

DFS(G, v) visits all the
vertices and edges in
the connected
component of v

Property 2
The discovery edges
labeled by DFS(G, v)
form a spanning tree of
the connected
component of v

DB

A

C

E

Graphs 27

Analysis of DFS
Setting/getting a vertex/edge label takes O(1) time
Each vertex is labeled twice
 once as UNEXPLORED
 once as VISITED

Each edge is labeled twice
 once as UNEXPLORED
 once as DISCOVERY or BACK

Method incidentEdges is called once for each vertex
DFS runs in O(n + m) time provided the graph is
represented by the adjacency list structure
 Recall that Σv deg(v) = 2m

Graphs 28

Path Finding
We can specialize the DFS
algorithm to find a path
between two given
vertices u and z using the
template method pattern
We call DFS(G, u) with u
as the start vertex
We use a stack S to keep
track of the path between
the start vertex and the
current vertex
As soon as destination
vertex z is encountered,
we return the path as the
contents of the stack

Algorithm pathDFS(G, v, z)
setLabel(v, VISITED)
S.push(v)
if v = z

return S.elements()
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v, e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
S.push(e)
pathDFS(G, w, z)
S.pop() { e gets popped }

else
setLabel(e, BACK)

S.pop() { v gets popped }

Graphs 29

Cycle Finding
We can specialize the
DFS algorithm to find a
simple cycle using the
template method pattern
We use a stack S to keep
track of the path
between the start vertex
and the current vertex
As soon as a back edge
(v, w) is encountered,
we return the cycle as
the portion of the stack
from the top to vertex w

Algorithm cycleDFS(G, v, z)
setLabel(v, VISITED)
S.push(v)
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v,e)
S.push(e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
pathDFS(G, w, z)
S.pop()

else
C ← new empty stack
repeat

o ← S.pop()
C.push(o)

until o = w
return C.elements()

S.pop()

Graphs 30

6.3.2 Biconnectivity

SEA PVD

MIASNA

ORD
FCO

Graphs 31

Separation Edges and Vertices
Definitions
 Let G be a connected graph
 A separation edge of G is an edge whose removal disconnects G
 A separation vertex of G is a vertex whose removal disconnects G

Applications
 Separation edges and vertices represent single points of failure in a

network and are critical to the operation of the network
Example
 DFW, LGA and LAX are separation vertices
 (DFW,LAX) is a separation edge

ORD PVD

MIADFW

SFO

LAX

LGA

HNL

Graphs 32

Biconnected Graph
Equivalent definitions of a biconnected graph G
 Graph G has no separation edges and no separation vertices
 For any two vertices u and v of G, there are two disjoint

simple paths between u and v (i.e., two simple paths
between u and v that share no other vertices or edges)

 For any two vertices u and v of G, there is a simple cycle
containing u and v

Example
ORD

PVD

MIADFW

SFO

LAX

LGA
HNL

Graphs 33

Biconnected Components
Biconnected component of a graph G
 A maximal biconnected subgraph of G, or
 A subgraph consisting of a separation edge of G and its end vertices

Interaction of biconnected components
 An edge belongs to exactly one biconnected component
 A nonseparation vertex belongs to exactly one biconnected component
 A separation vertex belongs to two or more biconnected components

Example of a graph with four biconnected components

ORD PVD

MIADFW

SFO

LAX

LGA

HNL
RDU

Graphs 34

Equivalence Classes
Given a set S, a relation R on S is a set of ordered pairs of
elements of S, i.e., R is a subset of S×S
An equivalence relation R on S satisfies the following properties
Reflexive: (x,x) ∈ R
Symmetric: (x,y) ∈ R ⇒ (y,x) ∈ R
Transitive: (x,y) ∈ R ∧ (y,z) ∈ R ⇒ (x,z) ∈ R

An equivalence relation R on S induces a partition of the
elements of S into equivalence classes
Example (connectivity relation among the vertices of a graph):
 Let V be the set of vertices of a graph G
 Define the relation

C = {(v,w) ∈ V×V such that G has a path from v to w}
 Relation C is an equivalence relation
 The equivalence classes of relation C are the vertices in each

connected component of graph G

Graphs 35

Link Relation
Edges e and f of connected
graph G are linked if
 e = f, or
 G has a simple cycle

containing e and f
Theorem:

The link relation on the
edges of a graph is an
equivalence relation
Proof Sketch:
 The reflexive and

symmetric properties
follow from the definition

 For the transitive
property, consider two
simple cycles sharing an
edge

a
b

g

c
j

d
e

f

i

Equivalence classes of linked edges:
{a} {b, c, d, e, f} {g, i, j}

a
b

g

c
j

d
e

f

i

Graphs 36

Link Components
The link components of a connected graph G are the equivalence
classes of edges with respect to the link relation
A biconnected component of G is the subgraph of G induced by an
equivalence class of linked edges
A separation edge is a single-element equivalence class of linked
edges
A separation vertex has incident edges in at least two distinct
equivalence classes of linked edge

ORD PVD

MIADFW

SFO

LAX

LGA

HNL
RDU

Graphs 37

Auxiliary Graph
Auxiliary graph B for a connected
graph G
 Associated with a DFS traversal

of G
 The vertices of B are the edges

of G
 For each back edge e of G, B has

edges (e,f1), (e,f2) , …, (e,fk),
where f1, f2, …, fk are the
discovery edges of G that form a
simple cycle with e

 Its connected components
correspond to the the link
components of G

a

b
g

c

j
d

e

f

i

Auxiliary graph B

DFS on graph G

a

d

b

c

e
h i

jf

h

g

i

Graphs 38

Auxiliary Graph (cont.)
In the worst case, the number of edges of the
auxiliary graph is proportional to nm

Auxiliary graph BDFS on graph G

Graphs 39

Proxy Graph
Algorithm proxyGraph(G)

Input connected graph G
Output proxy graph F for G
F ← empty graph
DFS(G, s) { s is any vertex of G}
for all discovery edges e of G

F.insertVertex(e)
setLabel(e, UNLINKED)

for all vertices v of G in DFS visit order
for all back edges e = (u,v)

F.insertVertex(e)
repeat

f ← discovery edge with dest. u
F.insertEdge(e,f,∅)
if f getLabel(f) = UNLINKED

setLabel(f, LINKED)
u ← origin of edge f

else
u ← v { ends the loop }

until u = v
return F

a

b
g

c

j
d

e

f

i

Proxy graph F

DFS on graph G

a

d

b

c

e
h i

jf

h

g

i

Graphs 40

Proxy Graph (cont.)
Proxy graph F for a connected
graph G
 Spanning forest of the auxiliary

graph B
 Has m vertices and O(m) edges
 Can be constructed in O(n + m)

time
 Its connected components (trees)

correspond to the the link
components of G

Given a graph G with n vertices
and m edges, we can compute the
following in O(n + m) time
 The biconnected components of G
 The separation vertices of G
 The separation edges of G

a

b
g

c

j
d

e

f

i

Proxy graph F

DFS on graph G

a

d

b

c

e
h i

jf

h

g

i

Graphs 41

6.3.3 Breadth-First Search

CB

A

E

D

L0

L1

F
L2

Graphs 42

Breadth-First Search
Breadth-first search
(BFS) is a general
technique for traversing
a graph
A BFS traversal of a
graph G
 Visits all the vertices and

edges of G
 Determines whether G is

connected
 Computes the connected

components of G
 Computes a spanning

forest of G

BFS on a graph with n
vertices and m edges
takes O(n + m) time
BFS can be further
extended to solve other
graph problems
 Find and report a path

with the minimum
number of edges
between two given
vertices

 Find a simple cycle, if
there is one

Graphs 43

BFS Algorithm
The algorithm uses a
mechanism for setting and
getting “labels” of vertices
and edges

Algorithm BFS(G, s)
L0 ← new empty sequence
L0.insertLast(s)
setLabel(s, VISITED)
i ← 0
while ¬Li.isEmpty()

Li +1 ← new empty sequence
for all v ∈ Li.elements()

for all e ∈ G.incidentEdges(v)
if getLabel(e) = UNEXPLORED

w ← opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
setLabel(w, VISITED)
Li +1.insertLast(w)

else
setLabel(e, CROSS)

i ← i +1

Algorithm BFS(G)
Input graph G
Output labeling of the edges

and partition of the
vertices of G

for all u ∈ G.vertices()
setLabel(u, UNEXPLORED)

for all e ∈ G.edges()
setLabel(e, UNEXPLORED)

for all v ∈ G.vertices()
if getLabel(v) = UNEXPLORED

BFS(G, v)

Graphs 44

Example

CB

A

E

D

discovery edge
cross edge

A visited vertex
A unexplored vertex

unexplored edge

L0

L1

F

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F

Graphs 45

Example (cont.)

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

Graphs 46

Example (cont.)

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

Graphs 47

Properties
Notation

Gs: connected component of s
Property 1

BFS(G, s) visits all the vertices and
edges of Gs

Property 2
The discovery edges labeled by
BFS(G, s) form a spanning tree Ts of
Gs

Property 3
For each vertex v in Li
 The path of Ts from s to v has i

edges
 Every path from s to v in Gs has at

least i edges

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

Graphs 48

Analysis
Setting/getting a vertex/edge label takes O(1) time
Each vertex is labeled twice
 once as UNEXPLORED
 once as VISITED

Each edge is labeled twice
 once as UNEXPLORED
 once as DISCOVERY or CROSS

Each vertex is inserted once into a sequence Li
Method incidentEdges is called once for each vertex
BFS runs in O(n + m) time provided the graph is
represented by the adjacency list structure
 Recall that Σv deg(v) = 2m

Graphs 49

Applications
Using the template method pattern, we can
specialize the BFS traversal of a graph G to
solve the following problems in O(n + m) time
 Compute the connected components of G
 Compute a spanning forest of G
 Find a simple cycle in G, or report that G is a

forest
 Given two vertices of G, find a path in G between

them with the minimum number of edges, or
report that no such path exists

Graphs 50

DFS vs. BFS

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

DFS BFS

Applications DFS BFS
Spanning forest, connected
components, paths, cycles √ √

Shortest paths √

Biconnected components √

Graphs 51

DFS vs. BFS (cont.)
Back edge (v,w)

 w is an ancestor of v in
the tree of discovery
edges

Cross edge (v,w)
 w is in the same level as

v or in the next level in
the tree of discovery
edges

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

DFS BFS

Graphs 52

6.4 Directed Graphs
JFK

BOS

MIA

ORD

LAX
DFW

SFO

Graphs 53

Outline and Reading (§6.4)
Reachability (§6.4.1)
 Directed DFS
 Strong connectivity

Transitive closure (§6.4.2)
 The Floyd-Warshall Algorithm

Directed Acyclic Graphs (DAG’s) (§6.4.4)
 Topological Sorting

Graphs 54

Digraphs

A digraph is a graph
whose edges are all
directed
 Short for “directed graph”

Applications
 one-way streets
 flights
 task scheduling A

C

E

B

D

Graphs 55

Digraph Properties

A graph G=(V,E) such that
 Each edge goes in one direction:

 Edge (a,b) goes from a to b, but not b to a.

If G is simple, m < n(n-1).
If we keep in-edges and out-edges in separate
adjacency lists, we can perform listing of of
the sets of in-edges and out-edges in time
proportional to their size.

A

C

E

B

D

Graphs 56

Digraph Application
Scheduling: edge (a,b) means task a must be
completed before b can be started

The good life

ics141ics131 ics121

ics53 ics52ics51

ics23ics22ics21

ics161

ics151

ics171

Graphs 57

Directed DFS
We can specialize the
traversal algorithms (DFS and
BFS) to digraphs by
traversing edges only along
their direction
In the directed DFS
algorithm, we have four types
of edges
 discovery edges
 back edges
 forward edges
 cross edges

A directed DFS starting at a
vertex s determines the
vertices reachable from s

A

C

E

B

D

Graphs 58

Reachability
DFS tree rooted at v: vertices reachable
from v via directed paths

A

C

E

B

D

F
A

C

E D

A

C

E

B

D

F

Graphs 59

Strong Connectivity
Each vertex can reach all other vertices

a

d

c

b

e

f

g

Graphs 60

Pick a vertex v in G.
Perform a DFS from v in G.
 If there’s a w not visited, print “no”.

Let G’ be G with edges reversed.
Perform a DFS from v in G’.
 If there’s a w not visited, print “no”.
 Else, print “yes”.

Running time: O(n+m).

Strong Connectivity
Algorithm

G:

G’:

a

d

c

b

e

f

g

a

d

c

b

e

f

g

Graphs 61

Maximal subgraphs such that each vertex can reach
all other vertices in the subgraph
Can also be done in O(n+m) time using DFS, but is
more complicated (similar to biconnectivity).

Strongly Connected
Components

{ a , c , g }

{ f , d , e , b }

a

d

c

b
e

f

g

Graphs 62

Transitive Closure
Given a digraph G, the
transitive closure of G is the
digraph G* such that
 G* has the same vertices

as G
 if G has a directed path

from u to v (u ≠ v), G*
has a directed edge from
u to v

The transitive closure
provides reachability
information about a digraph

B

A

D

C

E

B

A

D

C

E

G

G*

Graphs 63

Computing the
Transitive Closure

We can perform
DFS starting at
each vertex
 O(n(n+m))

If there's a way to get
from A to B and from
B to C, then there's a
way to get from A to C.

Alternatively ... Use
dynamic programming:
the Floyd-Warshall
Algorithm

Graphs 64

Floyd-Warshall
Transitive Closure

Idea #1: Number the vertices 1, 2, …, n.
Idea #2: Consider paths that use only
vertices numbered 1, 2, …, k, as
intermediate vertices:

k

j

i

Uses only vertices
numbered 1,…,k-1 Uses only vertices

numbered 1,…,k-1

Uses only vertices numbered 1,…,k
(add this edge if it’s not already in)

Graphs 65

Floyd-Warshall’s Algorithm
Floyd-Warshall’s algorithm
numbers the vertices of G as
v1 , …, vn and computes a
series of digraphs G0, …, Gn
 G0=G
 Gk has a directed edge (vi, vj)

if G has a directed path from
vi to vj with intermediate
vertices in the set {v1 , …, vk}

We have that Gn = G*
In phase k, digraph Gk is
computed from Gk − 1

Running time: O(n3),
assuming areAdjacent is O(1)
(e.g., adjacency matrix)

Algorithm FloydWarshall(G)
Input digraph G
Output transitive closure G* of G
i ← 1
for all v ∈ G.vertices()

denote v as vi
i ← i + 1

G0 ← G
for k ← 1 to n do

Gk ← Gk − 1
for i ← 1 to n (i ≠ k) do

for j ← 1 to n (j ≠ i, k) do
if Gk − 1.areAdjacent(vi, vk) ∧

Gk − 1.areAdjacent(vk, vj)
if ¬Gk.areAdjacent(vi, vj)

Gk.insertDirectedEdge(vi, vj , k)
return Gn

Graphs 66

Floyd-Warshall Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v2

v1
v3

v4

v5

v6

v7

Graphs 67

Floyd-Warshall, Iteration 1

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v2

v1
v3

v4

v5

v6

v7

Graphs 68

Floyd-Warshall, Iteration 2

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v2

v1
v3

v4

v5

v6

v7

Graphs 69

Floyd-Warshall, Iteration 3

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v2

v1
v3

v4

v5

v6

v7

Graphs 70

Floyd-Warshall, Iteration 4

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v2

v1
v3

v4

v5

v6

v7

Graphs 71

Floyd-Warshall, Iteration 5

JFK

MIA

ORD

LAX
DFW

SFO

v2

v1
v3

v4

v5

v6

v7
BOS

Graphs 72

Floyd-Warshall, Iteration 6

JFK

MIA

ORD

LAX
DFW

SFO

v2

v1
v3

v4

v5

v6

v7
BOS

Graphs 73

Floyd-Warshall, Conclusion

JFK

MIA

ORD

LAX
DFW

SFO

v2

v1
v3

v4

v5

v6

v7
BOS

Graphs 74

DAGs and Topological Ordering
A directed acyclic graph (DAG) is a
digraph that has no directed cycles
A topological ordering of a digraph
is a numbering

v1 , …, vn

of the vertices such that for every
edge (vi , vj), we have i < j
Example: in a task scheduling
digraph, a topological ordering a
task sequence that satisfies the
precedence constraints

Theorem
A digraph admits a topological
ordering if and only if it is a DAG

B

A

D

C

E

DAG G

B

A

D

C

E

Topological
ordering of G

v1

v2

v3

v4 v5

Graphs 75

write c.s. program

play

Topological Sorting
Number vertices, so that (u,v) in E implies u < v

wake up

eat

nap

study computer sci.

more c.s.

work out

sleep

dream about graphs

A typical student day1

2 3

4 5

6

7

8

9

10
11

make cookies
for professors

Graphs 76

Note: This algorithm is different than the
one in Goodrich-Tamassia

Running time: O(n + m). How…?

Algorithm for Topological Sorting

Method TopologicalSort(G)
H ← G // Temporary copy of G
n ← G.numVertices()
while H is not empty do

Let v be a vertex with no outgoing edges
Label v ← n
n ← n - 1
Remove v from H

Graphs 77

Topological Sorting
Algorithm using DFS

Simulate the algorithm by using
depth-first search

O(n+m) time.

Algorithm topologicalDFS(G, v)
Input graph G and a start vertex v of G
Output labeling of the vertices of G

in the connected component of v
setLabel(v, VISITED)
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
topologicalDFS(G, w)

else
{e is a forward or cross edge}

Label v with topological number n
n ← n - 1

Algorithm topologicalDFS(G)
Input dag G
Output topological ordering of G

n ← G.numVertices()
for all u ∈ G.vertices()

setLabel(u, UNEXPLORED)
for all e ∈ G.edges()

setLabel(e, UNEXPLORED)
for all v ∈ G.vertices()

if getLabel(v) = UNEXPLORED
topologicalDFS(G, v)

Graphs 78

Topological Sorting Example

Graphs 79

Topological Sorting Example

9

Graphs 80

Topological Sorting Example

8

9

Graphs 81

Topological Sorting Example

7
8

9

Graphs 82

Topological Sorting Example

7
8

6

9

Graphs 83

Topological Sorting Example

7
8

56

9

Graphs 84

Topological Sorting Example

7

4

8

56

9

Graphs 85

Topological Sorting Example

7

4

8

56

3

9

Graphs 86

Topological Sorting Example
2

7

4

8

56

3

9

Graphs 87

Topological Sorting Example
2

7

4

8

56

1

3

9

	Chapter 6: Graphs
	Outline and Reading
	6.1 Graph
	Edge Types
	Applications
	Terminology
	Terminology (cont.)
	Terminology (cont.)
	Properties
	Subgraphs
	Connectivity
	Trees and Forests
	Spanning Trees and Forests
	Main Methods of the Graph ADT
	6.2 Data Structure for Graphs
	Edge List Structure
	Adjacency List Structure
	Adjacency Matrix Structure
	Asymptotic Performance
	6.3 Graph Traversal�
	6.3.1 Depth-First Search
	DFS Algorithm
	Example
	Example (cont.)
	DFS and Maze Traversal
	Properties of DFS
	Analysis of DFS
	Path Finding
	Cycle Finding
	6.3.2 Biconnectivity
	Separation Edges and Vertices
	Biconnected Graph
	Biconnected Components
	Equivalence Classes
	Link Relation
	Link Components
	Auxiliary Graph
	Auxiliary Graph (cont.)
	Proxy Graph
	Proxy Graph (cont.)
	6.3.3 Breadth-First Search
	Breadth-First Search
	BFS Algorithm
	Example
	Example (cont.)
	Example (cont.)
	Properties
	Analysis
	Applications
	DFS vs. BFS
	DFS vs. BFS (cont.)
	6.4 Directed Graphs
	Outline and Reading (§6.4)
	Digraphs
	Digraph Properties
	Digraph Application
	Directed DFS
	Reachability
	Strong Connectivity
	Strong Connectivity Algorithm
	Strongly Connected Components
	Transitive Closure
	Computing the Transitive Closure
	Floyd-Warshall Transitive Closure
	Floyd-Warshall’s Algorithm
	Floyd-Warshall Example
	Floyd-Warshall, Iteration 1
	Floyd-Warshall, Iteration 2
	Floyd-Warshall, Iteration 3
	Floyd-Warshall, Iteration 4
	Floyd-Warshall, Iteration 5
	Floyd-Warshall, Iteration 6
	Floyd-Warshall, Conclusion
	DAGs and Topological Ordering
	Topological Sorting
	Algorithm for Topological Sorting
	Topological Sorting Algorithm using DFS
	Topological Sorting Example
	Topological Sorting Example
	Topological Sorting Example
	Topological Sorting Example
	Topological Sorting Example
	Topological Sorting Example
	Topological Sorting Example
	Topological Sorting Example
	Topological Sorting Example
	Topological Sorting Example

