
Chapter 5: Techniques 1

Fundamental Techniques

Chapter 5: Techniques 2

Outline and Reading

The Greedy Method Technique (§5.1)
 Fractional Knapsack Problem (§5.1.1)
 Task Scheduling (§5.1.2)

Divide-and-conquer paradigm (§5.2)
 Recurrence Equations (§5.2.1)
 Integer Multiplication (§5.2.2)
 Optional: Matrix Multiplication (§5.2.3)

Dynamic Programming (§5.3)
 Matrix Chain-Product (§5.3.1)
 The General Technique (§5.3.2)
 0-1 Knapsack Problem (§5.3.3)

Chapter 5: Techniques 3

The Greedy Method
Technique

The greedy method is a general algorithm
design paradigm, built on the following
elements:
 configurations: different choices, collections, or

values to find
 objective function: a score assigned to

configurations, which we want to either maximize or
minimize

It works best when applied to problems with the
greedy-choice property:
 a globally-optimal solution can always be found by a

series of local improvements from a starting
configuration.

Chapter 5: Techniques 4

Making Change
Problem: A dollar amount to reach and a collection of
coin amounts to use to get there.
Configuration: A dollar amount yet to return to a
customer plus the coins already returned
Objective function: Minimize number of coins returned.
Greedy solution: Always return the largest coin you can
Example 1: Coins are valued $.32, $.08, $.01
 Has the greedy-choice property, since no amount over $.32 can

be made with a minimum number of coins by omitting a $.32
coin (similarly for amounts over $.08, but under $.32).

Example 2: Coins are valued $.30, $.20, $.05, $.01
 Does not have greedy-choice property, since $.40 is best made

with two $.20’s, but the greedy solution will pick three coins
(which ones?)

Chapter 5: Techniques 5

The Fractional Knapsack
Problem

Given: A set S of n items, with each item i having
 bi - a positive benefit
 wi - a positive weight

Goal: Choose items with maximum total benefit but with
weight at most W.
If we are allowed to take fractional amounts, then this is
the fractional knapsack problem.
 In this case, we let xi denote the amount we take of item i

 Objective: maximize

 Constraint:

∑
∈Si

iii wxb)/(

∑
∈

≤
Si

i Wx

Chapter 5: Techniques 6

Example
Given: A set S of n items, with each item i having
 bi - a positive benefit
 wi - a positive weight

Goal: Choose items with maximum total benefit but with
weight at most W.

Weight:
Benefit:

1 2 3 4 5

4 ml 8 ml 2 ml 6 ml 1 ml
$12 $32 $40 $30 $50

Items:

Value: 3
($ per ml)

4 20 5 50
10 ml

Solution:
• 1 ml of 5
• 2 ml of 3
• 6 ml of 4
• 1 ml of 2

“knapsack”

Chapter 5: Techniques 7

The Fractional Knapsack
Algorithm

Greedy choice: Keep taking item
with highest value (benefit to
weight ratio)
 Since

 Run time: O(n log n). See P. 260
Knapsack satisfies Greedy-Choice
Property:
 there is an item i with higher

value than a chosen item j (i.e.,
vi>vj) but xi<wi and xj>0 If we
substitute some i with j, we get a
better solution

 How much of i: y=min{wi-xi, xj}.
Thus we can replace y of item j
with an equal amount of item I,
which is the greedy choice
property.

Algorithm fractionalKnapsack(S, W)
Input: set S of items w/ benefit bi

and weight wi; max. weight W
Output: amount xi of each item i

to maximize benefit with
weight at most W

for each item i in S
xi ← 0
vi ← bi / wi {value}

w ← 0 {total weight}
while w < W

remove item i with highest vi
xi ← min{wi , W − w}
w ← w + min{wi , W − w}

∑∑
∈∈

=
Si

iii
Si

iii xwbwxb)/()/(

Chapter 5: Techniques 8

Task Scheduling
Given: a set T of n tasks, each having:
 A start time, si
 A finish time, fi (where si < fi)

Goal: Perform all the tasks using a minimum number of
“machines.” Note only one task per machine at atime.

1 98765432

Machine 1

Machine 3
Machine 2

Chapter 5: Techniques 9

Task Scheduling
Algorithm

Greedy choice: consider tasks
by their start time and use as
few machines as possible with
this order.
 Run time: O(n log n). Why?

Correctness: Suppose there is a
better schedule.
 We can use k-1 machines
 The algorithm uses k
 Let i be first task scheduled

on machine k
 Machine i must conflict with

k-1 other tasks
 But that means there is no

non-conflicting schedule
using k-1 machines

Algorithm taskSchedule(T)
Input: set T of tasks w/ start time si
and finish time fi
Output: non-conflicting schedule
with minimum number of machines
m ← 0 {no. of machines}
while T is not empty

remove task i w/ smallest si
if there’s a machine j for i then

schedule i on machine j
else

m ← m + 1
schedule i on machine m

Chapter 5: Techniques 10

Example
Given: a set T of n tasks, each having:
 A start time, si
 A finish time, fi (where si < fi)
 [1,4], [1,3], [2,5], [3,7], [4,7], [6,9], [7,8] (ordered by start)

Goal: Perform all tasks on min. number of machines

1 98765432

Machine 1

Machine 3

Machine 2

Chapter 5: Techniques 11

Divide-and-Conquer
7 2 9 4 → 2 4 7 9

7 2 → 2 7 9 4 → 4 9

7 → 7 2 → 2 9 → 9 4 → 4

Chapter 5: Techniques 12

Divide-and-Conquer
Divide-and conquer is a
general algorithm design
paradigm:
 Divide: divide the input data S in

two or more disjoint subsets S1,
S2, …

 Recur: solve the subproblems
recursively

 Conquer: combine the solutions
for S1, S2, …, into a solution for S

The base case for the
recursion are subproblems of
constant size
Analysis can be done using
recurrence equations

Chapter 5: Techniques 13

Merge-Sort Review
Merge-sort on an input
sequence S with n
elements consists of
three steps:
 Divide: partition S into

two sequences S1 and S2
of about n/2 elements
each

 Recur: recursively sort S1
and S2

 Conquer: merge S1 and
S2 into a unique sorted
sequence

Algorithm mergeSort(S, C)
Input sequence S with n

elements, comparator C
Output sequence S sorted

according to C
if S.size() > 1

(S1, S2) ← partition(S, n/2)
mergeSort(S1, C)
mergeSort(S2, C)
S ← merge(S1, S2)

Chapter 5: Techniques 14

Recurrence Equation
Analysis

The conquer step of merge-sort consists of merging two sorted
sequences, each with n/2 elements and implemented by means of
a doubly linked list, takes at most bn steps, for some constant b.
Likewise, the basis case (n < 2) will take at b most steps.
Therefore, if we let T(n) denote the running time of merge-sort:

We can therefore analyze the running time of merge-sort by
finding a closed form solution to the above equation.
 That is, a solution that has T(n) only on the left-hand side.

≥+
<

=
2if)2/(2
2if

)(
nbnnT
nb

nT

Chapter 5: Techniques 15

Iterative Substitution
In the iterative substitution, or “plug-and-chug,” technique, we
iteratively apply the recurrence equation to itself and see if we can
find a pattern:

Note that base, T(n)=b, case occurs when 2i=n. That is, i = log n.
So,

Thus, T(n) is O(n log n).

ibnnT

bnnT
bnnT
bnnT

bnnbnT
bnnTnT

ii +=

=
+=

+=

+=

++=

+=

)2/(2
...

4)2/(2
3)2/(2
2)2/(2

))2/())2/(2(2
)2/(2)(

44

33

22

2

nbnbnnT log)(+=

Chapter 5: Techniques 16

The Recursion Tree
Draw the recursion tree for the recurrence relation and look for a
pattern:

depth T’s size
0 1 n

1 2 n/2

i 2i n/2i

… … …

≥+
<

=
2if)2/(2
2if

)(
nbnnT
nb

nT

time

bn

bn

bn

…

Total time = bn + bn log n
(last level plus all previous levels)

Chapter 5: Techniques 17

Guess-and-Test Method
In the guess-and-test method, we guess a closed form solution
and then try to prove it is true by induction:

Guess: T(n) < cn log n.

Wrong: we cannot make this last line be less than cn log n

nbncnncn
nbnncn

nbnnnc
nbnnTnT

loglog
log)2log(log

log))2/log()2/((2
log)2/(2)(

+−=
+−=

+=
+=

≥+
<

=
2iflog)2/(2
2if

)(
nnbnnT
nb

nT

Chapter 5: Techniques 18

Guess-and-Test Method,
Part 2

Recall the recurrence equation:

Guess #2: T(n) < cn log2 n.

 if c > b.
So, T(n) is O(n log2 n).
In general, to use this method, you need to have a good guess
and you need to be good at induction proofs.

ncn
nbncnncnncn

nbnncn
nbnnnc

nbnnTnT

2

2

2

2

log
loglog2log

log)2log(log
log))2/(log)2/((2

log)2/(2)(

≤

++−=

+−=

+=

+=

≥+
<

=
2iflog)2/(2
2if

)(
nnbnnT
nb

nT

Chapter 5: Techniques 19

Master Method
Many divide-and-conquer recurrence equations have
the form:

The Master Theorem:

≥+
<

=
dnnfbnaT
dnc

nT
if)()/(
if

)(

.1 somefor)()/(provided
)),((is)(then),(is)(if 3.

)log(is)(then),log(is)(if 2.
)(is)(then),(is)(if 1.

log

1loglog

loglog

<≤
ΘΩ

ΘΘ

Θ

+

+

−

δδ

ε

ε

nfbnaf
nfnTnnf

nnnTnnnf
nnTnOnf

a

kaka

aa

b

bb

bb

Chapter 5: Techniques 20

Master Method, Example 1
The form:

The Master Theorem:

Example:

≥+
<

=
dnnfbnaT
dnc

nT
if)()/(
if

)(

.1 somefor)()/(provided
)),((is)(then),(is)(if 3.

)log(is)(then),log(is)(if 2.
)(is)(then),(is)(if 1.

log

1loglog

loglog

<≤
ΘΩ

ΘΘ

Θ

+

+

−

δδ

ε

ε

nfbnaf
nfnTnnf

nnnTnnnf
nnTnOnf

a

kaka

aa

b

bb

bb

nnTnT +=)2/(4)(

Solution: logba=2, so case 1 says T(n) is Θ(n2).

Chapter 5: Techniques 21

Master Method, Example 2
The form:

The Master Theorem:

Example:

≥+
<

=
dnnfbnaT
dnc

nT
if)()/(
if

)(

.1 somefor)()/(provided
)),((is)(then),(is)(if 3.

)log(is)(then),log(is)(if 2.
)(is)(then),(is)(if 1.

log

1loglog

loglog

<≤
ΘΩ

ΘΘ

Θ

+

+

−

δδ

ε

ε

nfbnaf
nfnTnnf

nnnTnnnf
nnTnOnf

a

kaka

aa

b

bb

bb

nnnTnT log)2/(2)(+=
Solution: logba=1, so case 2 says T(n) is (n log2 n).Θ

Chapter 5: Techniques 22

Master Method, Example 3
The form:

The Master Theorem:

Example:

≥+
<

=
dnnfbnaT
dnc

nT
if)()/(
if

)(

.1 somefor)()/(provided
)),((is)(then),(is)(if 3.

)log(is)(then),log(is)(if 2.
)(is)(then),(is)(if 1.

log

1loglog

loglog

<≤
ΘΩ

ΘΘ

Θ

+

+

−

δδ

ε

ε

nfbnaf
nfnTnnf

nnnTnnnf
nnTnOnf

a

kaka

aa

b

bb

bb

nnnTnT log)3/()(+=
Solution: logba=0, so case 3 says T(n) is Θ(n log n).

Chapter 5: Techniques 23

Master Method, Example 4
The form:

The Master Theorem:

Example:

≥+
<

=
dnnfbnaT
dnc

nT
if)()/(
if

)(

.1 somefor)()/(provided
)),((is)(then),(is)(if 3.

)log(is)(then),log(is)(if 2.
)(is)(then),(is)(if 1.

log

1loglog

loglog

<≤
ΘΩ

ΘΘ

Θ

+

+

−

δδ

ε

ε

nfbnaf
nfnTnnf

nnnTnnnf
nnTnOnf

a

kaka

aa

b

bb

bb

2)2/(8)(nnTnT +=
Solution: logba=3, so case 1 says T(n) is Θ(n3).

Chapter 5: Techniques 24

Master Method, Example 5
The form:

The Master Theorem:

Example:

≥+
<

=
dnnfbnaT
dnc

nT
if)()/(
if

)(

.1 somefor)()/(provided
)),((is)(then),(is)(if 3.

)log(is)(then),log(is)(if 2.
)(is)(then),(is)(if 1.

log

1loglog

loglog

<≤
ΘΩ

ΘΘ

Θ

+

+

−

δδ

ε

ε

nfbnaf
nfnTnnf

nnnTnnnf
nnTnOnf

a

kaka

aa

b

bb

bb

3)3/(9)(nnTnT +=
Solution: logba=2, so case 3 says T(n) is Θ(n3).

Chapter 5: Techniques 25

Master Method, Example 6
The form:

The Master Theorem:

Example:

≥+
<

=
dnnfbnaT
dnc

nT
if)()/(
if

)(

.1 somefor)()/(provided
)),((is)(then),(is)(if 3.

)log(is)(then),log(is)(if 2.
)(is)(then),(is)(if 1.

log

1loglog

loglog

<≤
ΘΩ

ΘΘ

Θ

+

+

−

δδ

ε

ε

nfbnaf
nfnTnnf

nnnTnnnf
nnTnOnf

a

kaka

aa

b

bb

bb

1)2/()(+= nTnT
Solution: logba=0, so case 2 says T(n) is Θ(log n).

(binary search)

Chapter 5: Techniques 26

Master Method, Example 7
The form:

The Master Theorem:

Example:

≥+
<

=
dnnfbnaT
dnc

nT
if)()/(
if

)(

.1 somefor)()/(provided
)),((is)(then),(is)(if 3.

)log(is)(then),log(is)(if 2.
)(is)(then),(is)(if 1.

log

1loglog

loglog

<≤
ΘΩ

ΘΘ

Θ

+

+

−

δδ

ε

ε

nfbnaf
nfnTnnf

nnnTnnnf
nnTnOnf

a

kaka

aa

b

bb

bb

nnTnT log)2/(2)(+=
Solution: logba=1, so case 1 says T(n) is Θ(n).

(heap construction)

Chapter 5: Techniques 27

Iterative “Proof” of the
Master Theorem

Using iterative substitution, let us see if we can find a pattern:

We then distinguish the three cases as
 The first term is dominant
 Each part of the summation is equally dominant
 The summation is a geometric series (See Page 270)

∑

∑
−

=

−

=

+=

+=

=
+++=

++=

++=

+=

1)(log

0

log

1)(log

0

log

2233

22

2

)/()1(

)/()1(

. . .
)()/()/()/(

)()/()/(
))/())/((

)()/()(

n

i

iia

n

i

iin

b
b

b
b

bnfaTn

bnfaTa

nfbnafbnfabnTa
nfbnafbnTa
bnbnfbnaTa

nfbnaTnT

Chapter 5: Techniques 28

Integer Multiplication
Algorithm: Multiply two n-bit integers I and J.
 Divide step: Split I and J into high-order and low-order bits

 We can then define I*J by multiplying the parts and adding:

 So, T(n) = 4T(n/2) + n, which implies T(n) is θ(n2).
 But that is no better than the algorithm we learned in grade

school.

l
n

h

l
n

h

JJJ
III
+=

+=
2/

2/

2
2

ll
n

hl
n

lh
n

hh

l
n

hl
n

h

JIJIJIJI
JJIIJI

+++=

++=
2/2/

2/2/

222
)2(*)2(*

Chapter 5: Techniques 29

An Improved Integer
Multiplication Algorithm

Algorithm: Multiply two n-bit integers I and J.
 Divide step: Split I and J into high-order and low-order bits

 Observe that there is a different way to multiply parts:

 So, T(n) = 3T(n/2) + n, which implies T(n) is Θ(nlog
2
3), by

the Master Theorem.
 Thus, T(n) is Θ(n1.585).

l
n

h

l
n

h

JJJ
III
+=

+=
2/

2/

2
2

ll
n

hllh
n

hh

ll
n

llhhhlhhlllh
n

hh

ll
n

llhhhllh
n

hh

JIJIJIJI
JIJIJIJIJIJIJIJI

JIJIJIJJIIJIJI

+++=

++++−−+=

+++−−+=

2/

2/

2/

2)(2
2])[(2

2]))([(2*

Chapter 5: Techniques 30

Dynamic Programming

Chapter 5: Techniques 31

Matrix Chain-Products
Dynamic Programming is a general
algorithm design paradigm.
 Rather than give the general structure, let

us first give a motivating example:
 Matrix Chain-Products

Review: Matrix Multiplication.
 C = A*B
 A is d × e and B is e × f

 O(d⋅e⋅f) time
A C

B

d d

f

e

f

e

i

j

i,j∑
−

=

=
1

0
],[*],[],[

e

k
jkBkiAjiC

Chapter 5: Techniques 32

Matrix Chain-Products
Matrix Chain-Product:
 Compute A=A0*A1*…*An-1
 Ai is di × di+1
 Problem: How to parenthesize?

Example
 B is 3 × 100
 C is 100 × 5
 D is 5 × 5
 (B*C)*D takes 1500 + 75 = 1575 ops
 B*(C*D) takes 1500 + 2500 = 4000 ops

Chapter 5: Techniques 33

Enumeration Approach
Matrix Chain-Product Alg.:
 Try all possible ways to parenthesize

A=A0*A1*…*An-1
 Calculate number of ops for each one
 Pick the one that is best

Running time:
 The number of parenthesizations is equal

to the number of binary trees with n nodes
 This is exponential!
 It is called the Catalan number, and it is

almost 4n.
 This is a terrible algorithm!

Chapter 5: Techniques 34

Greedy Approach
Idea #1: repeatedly select the product that
uses (up) the most operations.
Counter-example:
 A is 10 × 5
 B is 5 × 10
 C is 10 × 5
 D is 5 × 10
 Greedy idea #1 gives (A*B)*(C*D), which takes

500+1000+500 = 2000 ops
 A*((B*C)*D) takes 500+250+250 = 1000 ops

Chapter 5: Techniques 35

Another Greedy Approach
Idea #2: repeatedly select the product that uses
the fewest operations.
Counter-example:
 A is 101 × 11
 B is 11 × 9
 C is 9 × 100
 D is 100 × 99
 Greedy idea #2 gives A*((B*C)*D)), which takes

109989+9900+108900=228789 ops
 (A*B)*(C*D) takes 9999+89991+89100=189090 ops

The greedy approach is not giving us the
optimal value.

Chapter 5: Techniques 36

“Recursive” Approach
Define subproblems:
 Find the best parenthesization of Ai*Ai+1*…*Aj.
 Let Ni,j denote the minimum number of operations done by this

subproblem.
 The optimal solution for the whole problem is N0,n-1.

Subproblem optimality: The optimal solution can be
defined in terms of optimal subproblems
 There has to be a final multiplication (root of the expression

tree) for the optimal solution.
 Say, the final multiply is at index i: (A0*…*Ai)*(Ai+1*…*An-1).
 Then the optimal solution N0,n-1 is the sum of two optimal

subproblems, N0,i and Ni+1,n-1 plus the time for the last multiply.
 If the global optimum did not have these optimal

subproblems, we could define an even better “optimal”
solution.

Chapter 5: Techniques 37

Characterizing Equation
The global optimal has to be defined in terms of
optimal subproblems, depending on where the final
multiply is at.
Let us consider all possible places for that final multiply:
 Recall that Ai is a di × di+1 dimensional matrix.
 So, a characterizing equation for Ni,j is the following:

Note that Ni,i=0.
Note that subproblems are not independent–the
subproblems overlap.

This image cannot currently be displayed.This image cannot currently be displayed.

}{min 11,1,, +++<≤
++= jkijkkijkiji dddNNN

Chapter 5: Techniques 38

answer

N 0 1

0
1

2 …

n-1

…

n-1j

i

Dynamic Programming
Algorithm Visualization

The bottom-up
construction fills in the
N array by diagonals
Ni,j gets values from
previous entries in i-th
row and j-th column
Filling in each entry in
the N table takes O(n)
time.
Total run time: O(n3)
Getting actual
parenthesization can be
done by remembering
“k” for each N entry

}{min 11,1,, +++<≤
++= jkijkkijkiji dddNNN

i

j

Chapter 5: Techniques 39

Dynamic Programming
Algorithm

Since
subproblems
overlap, we don’t
use recursion.
Instead, we
construct optimal
subproblems
“bottom-up.”
Ni,i’s are easy, so
start with them
Then do
problems of
“length” 2,3,…
subproblems,
and so on.
Running time:
O(n3)

Algorithm matrixChain(S):
Input: sequence S of n matrices to be multiplied
Output: number of operations in an optimal

parenthesization of S
for i ← 1 to n − 1 do

Ni,i ← 0
for b ← 1 to n − 1 do

{ b = j − i is the length of the problem }
for i ← 0 to n − b − 1 do

j ← i + b
Ni,j ← +∞
for k ← i to j − 1 do

Ni,j ← min{Ni,j, Ni,k + Nk+1,j + di dk+1 dj+1}
return N0,n−1

Chapter 5: Techniques 40

The General Dynamic
Programming Technique

Applies to a problem that at first seems to
require a lot of time (possibly exponential),
provided we have:
 Simple subproblems: the subproblems can be

defined in terms of a few variables, such as j, k, l,
m, and so on.

 Subproblem optimality: the global optimum value
can be defined in terms of optimal subproblems

 Subproblem overlap: the subproblems are not
independent, but instead they overlap (hence,
should be constructed bottom-up).

Chapter 5: Techniques 41

The 0/1 Knapsack Problem
Given: A set S of n items, with each item i having
 wi - a positive weight
 bi - a positive benefit

Goal: Choose items with maximum total benefit but with
weight at most W.
If we are not allowed to take fractional amounts, then
this is the 0/1 knapsack problem.
 In this case, we let T denote the set of items we take

 Objective: maximize

 Constraint:

∑
∈Ti

ib

∑
∈

≤
Ti

i Ww

Chapter 5: Techniques 42

Given: A set S of n items, with each item i having
 bi - a positive “benefit”
 wi - a positive “weight”

Goal: Choose items with maximum total benefit but with
weight at most W.

Example

Weight:
Benefit:

1 2 3 4 5

4 in 2 in 2 in 6 in 2 in
$20 $3 $6 $25 $80

Items:
box of width 9 in

Solution:
• item 5 ($80, 2 in)
• item 3 ($6, 2in)
• item 1 ($20, 4in)

“knapsack”

http://loki.cs.brown.edu:8081/webae/images/cover-large.jpg
http://loki.cs.brown.edu:8081/webae/images/cover-large.jpg

Chapter 5: Techniques 43

A 0/1 Knapsack Algorithm,
First Attempt

Sk: Set of items numbered 1 to k.
Define B[k] = best selection from Sk.
Problem: does not have subproblem optimality:
 Consider set S={(3,2),(5,4),(8,5),(4,3),(10,9)} of

(benefit, weight) pairs and total weight W = 20

Best for S4:

Best for S5:

Chapter 5: Techniques 44

A 0/1 Knapsack Algorithm,
Second Attempt

Sk: Set of items numbered 1 to k.
Define B[k,w] to be the best selection from Sk with
weight at most w
Good news: this does have subproblem optimality.

I.e., the best subset of Sk with weight at most w is
either
 the best subset of Sk-1 with weight at most w or
 the best subset of Sk-1 with weight at most w−wk plus item k

+−−−
>−

=
else}],1[],,1[max{

 if],1[
],[

kk

k

bwwkBwkB
wwwkB

wkB

Chapter 5: Techniques 45

0/1 Knapsack Algorithm

Recall the definition of
B[k,w]
Since B[k,w] is defined in
terms of B[k−1,*], we can
use two arrays of instead of
a matrix
Running time: O(nW).
Not a polynomial-time
algorithm since W may be
large
This is a pseudo-polynomial
time algorithm

Algorithm 01Knapsack(S, W):
Input: set S of n items with benefit bi

and weight wi; maximum weight W
Output: benefit of best subset of S with

weight at most W
let A and B be arrays of length W + 1
for w ← 0 to W do

B[w] ← 0
for k ← 1 to n do

copy array B into array A
for w ← wk to W do

if A[w−wk] + bk > A[w] then
B[w] ← A[w−wk] + bk

return B[W]

+−−−
>−

=
else}],1[],,1[max{

 if],1[
],[

kk

k

bwwkBwkB
wwwkB

wkB

	Fundamental Techniques
	Outline and Reading
	The Greedy Method Technique
	Making Change
	The Fractional Knapsack Problem
	Example
	The Fractional Knapsack Algorithm
	Task Scheduling
	Task Scheduling Algorithm
	Example
	Divide-and-Conquer
	Divide-and-Conquer
	Merge-Sort Review
	Recurrence Equation Analysis
	Iterative Substitution
	The Recursion Tree
	Guess-and-Test Method
	Guess-and-Test Method, Part 2
	Master Method
	Master Method, Example 1
	Master Method, Example 2
	Master Method, Example 3
	Master Method, Example 4
	Master Method, Example 5
	Master Method, Example 6
	Master Method, Example 7
	Iterative “Proof” of the Master Theorem
	Integer Multiplication
	An Improved Integer Multiplication Algorithm
	Dynamic Programming
	Matrix Chain-Products
	Matrix Chain-Products
	Enumeration Approach
	Greedy Approach
	Another Greedy Approach
	“Recursive” Approach
	Characterizing Equation
	Slide Number 38
	Dynamic Programming Algorithm
	The General Dynamic Programming Technique
	The 0/1 Knapsack Problem
	Example
	A 0/1 Knapsack Algorithm, First Attempt
	A 0/1 Knapsack Algorithm, Second Attempt
	0/1 Knapsack Algorithm

