Fundamental Techniques

Outline and Reading

The Greedy Method Technique (§5.1)

- Fractional Knapsack Problem (§5.1.1)
- Task Scheduling (§5.1.2)

Divide-and-conquer paradigm (§5.2)

- Recurrence Equations (§5.2.1)
- Integer Multiplication (§5.2.2)
- Optional: Matrix Multiplication (§5.2.3)
- Dynamic Programming (§5.3)
 - Matrix Chain-Product (§5.3.1)
 - The General Technique (§5.3.2)
 - 0-1 Knapsack Problem (§5.3.3)

The Greedy Method Technique

- The greedy method is a general algorithm design paradigm, built on the following elements:
 - configurations: different choices, collections, or values to find
 - objective function: a score assigned to configurations, which we want to either maximize or minimize
- It works best when applied to problems with the greedy-choice property:
 - a globally-optimal solution can always be found by a series of local improvements from a starting configuration.

Making Change

- Problem: A dollar amount to reach and a collection of coin amounts to use to get there.
- Configuration: A dollar amount yet to return to a customer plus the coins already returned
- Objective function: Minimize number of coins returned.
- Greedy solution: Always return the largest coin you can
- Example 1: Coins are valued \$.32, \$.08, \$.01
 - Has the greedy-choice property, since no amount over \$.32 can be made with a minimum number of coins by omitting a \$.32 coin (similarly for amounts over \$.08, but under \$.32).
- Example 2: Coins are valued \$.30, \$.20, \$.05, \$.01
 - Does not have greedy-choice property, since \$.40 is best made with two \$.20's, but the greedy solution will pick three coins (which ones?)

The Fractional Knapsack Problem

- Given: A set S of n items, with each item i having
 - b_i a positive benefit
 - w_i a positive weight
- Goal: Choose items with maximum total benefit but with weight at most W.
- If we are allowed to take fractional amounts, then this is the fractional knapsack problem.
 - In this case, we let x_i denote the amount we take of item i
 - Objective: maximize

$$\sum_{i\in S} b_i(x_i / w_i)$$

Constraint:

Chapter 5: Techniques

 $\sum x_i \leq W$

 $i \in S$

Example

Given: A set S of n items, with each item i having

- b_i a positive benefit
- w_i a positive weight

Goal: Choose items with maximum total benefit but with weight at most W.

The Fractional Knapsack

Algorithm

- Greedy choice: Keep taking item with highest value (benefit to weight ratio)
 - Since

$$\sum_{i=1}^{\infty} b_i (x_i / w_i) = \sum_{i=1}^{\infty} (b_i / w_i) x_i$$

■ Run time: O(n log n^h.^s See P. 260

Knapsack satisfies Greedy-Choice Property:

- there is an item i with higher value than a chosen item j (i.e., vi>vj) but x_i<w_i and x_j>0 If we substitute some i with j, we get a better solution
- How much of i: y=min{w_i-x_i, x_j}. Thus we can replace y of item j with an equal amount of item I, which is the greedy choice property.

Algorithm *fractionalKnapsack(S, W)*

Input: set *S* of items w/ benefit b_i and weight w_i ; max. weight *W* **Output:** amount x_i of each item *i* to maximize benefit with weight at most *W*

for each item i in S

$$x_i \leftarrow 0$$

 $v_i \leftarrow b_i / w_i$ {value}

 $w \leftarrow 0$ {total weight}

while w < W

remove item i with highest v_i

$$x_i \leftarrow \min\{w_i, W - w\}$$

 $w \leftarrow w + \min\{w_i, W - w\}$

Task Scheduling

Given: a set T of n tasks, each having:

- A start time, s_i
- A finish time, f_i (where s_i < f_i)

Goal: Perform all the tasks using a minimum number of "machines." Note only one task per machine at atime.

Machine 3 Machine 2 Machine 1									
	I							I	I
	1	2	3	4	5	6	7	8	9

Task Scheduling Algorithm

- Greedy choice: consider tasks by their start time and use as few machines as possible with this order.
 - Run time: O(n log n). Why?
- Correctness: Suppose there is a better schedule.
 - We can use k-1 machines
 - The algorithm uses k
 - Let i be first task scheduled on machine k
 - Machine i must conflict with k-1 other tasks
 - But that means there is no non-conflicting schedule using k-1 machines

Algorithm *taskSchedule(T)*

Input: set *T* of tasks w/ start time s_i and finish time f_i

Output: non-conflicting schedule with minimum number of machines

 $m \leftarrow 0$ {no. of machines}

while T is not empty

remove task i w/ smallest s_i
if there's a machine j for i then
 schedule i on machine j

else

m ← *m* + 1

schedule i on machine m

Example

Given: a set T of n tasks, each having:

- A start time, s_i
- A finish time, f_i (where s_i < f_i)
- [1,4], [1,3], [2,5], [3,7], [4,7], [6,9], [7,8] (ordered by start)

Goal: Perform all tasks on min. number of machines

Machine 2									
Machine 1									
L			<u> </u>				<u> </u>		
			·			•			•
	1	2	3	4	5	6	7	8	9

Divide-and-Conquer

Divide-and-Conquer

- Divide-and conquer is a general algorithm design paradigm:
 - Divide: divide the input data S in two or more disjoint subsets S₁, S₂, ...
 - Recur: solve the subproblems recursively
 - Conquer: combine the solutions for S₁, S₂, ..., into a solution for S
- The base case for the recursion are subproblems of constant size
- Analysis can be done using recurrence equations

Merge-Sort Review

- Merge-sort on an input sequence S with n elements consists of three steps:
 - Divide: partition S into two sequences S₁ and S₂ of about n/2 elements each
 - Recur: recursively sort S₁ and S₂
 - Conquer: merge S₁ and S₂ into a unique sorted sequence

Algorithm *mergeSort(S, C)*

Input sequence S with n elements, comparator C Output sequence S sorted according to C if S.size() > 1 $(S_1, S_2) \leftarrow partition(S, n/2)$ mergeSort(S₁, C) mergeSort(S₂, C) $S \leftarrow merge(S_1, S_2)$

Recurrence Equation Analysis

The conquer step of merge-sort consists of merging two sorted sequences, each with n/2 elements and implemented by means of a doubly linked list, takes at most bn steps, for some constant b.
 Likewise, the basis case (n < 2) will take at b most steps.
 Therefore, if we let T(n) denote the running time of merge-sort:

$T(n) = \begin{cases} b & \text{if } n < 2\\ 2T(n/2) + bn & \text{if } n \ge 2 \end{cases}$

We can therefore analyze the running time of merge-sort by finding a closed form solution to the above equation.

That is, a solution that has **T**(**n**) only on the left-hand side.

Iterative Substitution

• In the iterative substitution, or "plug-and-chug," technique, we iteratively apply the recurrence equation to itself and see if we can find a pattern: T(n) = 2T(n/2) + bn

 $= 2(2T(n/2^2)) + b(n/2)) + bn$

$$=2^2T(n/2^2)+2bn$$

$$=2^3T(n/2^3)+3bn$$

 $=2^4T(n/2^4)+4bn$

$$= 2^i T(n/2^i) + ibn$$

= ...

Note that base, T(n)=b, case occurs when 2ⁱ=n. That is, i = log n.
 So, T(n) = bn + bn log n

Thus, T(n) is $O(n \log n)$.

The Recursion Tree

Draw the recursion tree for the recurrence relation and look for a pattern:

Total time = $bn + bn \log n$

(last level plus all previous levels)

Guess-and-Test Method

In the guess-and-test method, we guess a closed form solution and then try to prove it is true by induction:

$$T(n) = \begin{cases} b & \text{if } n < 2\\ 2T(n/2) + bn \log n & \text{if } n \ge 2 \end{cases}$$

Guess: T(n) < cn log n.</p>

 $T(n) = 2T(n/2) + bn\log n$

 $= 2(c(n/2)\log(n/2)) + bn\log n$

 $= cn(\log n - \log 2) + bn\log n$

 $= cn\log n - cn + bn\log n$

Wrong: we cannot make this last line be less than cn log n

Guess-and-Test Method, Part 2

Recall the recurrence equation: $T(n) = \begin{cases} b & \text{if } n < 2\\ 2T(n/2) + bn \log n & \text{if } n \ge 2 \end{cases}$ • Guess #2: $T(n) < cn \log^2 n$. $T(n) = 2T(n/2) + bn\log n$ $= 2(c(n/2)\log^2(n/2)) + bn\log n$ $= cn(\log n - \log 2)^2 + bn\log n$ $= cn\log^2 n - 2cn\log n + cn + bn\log n$ $\leq cn \log^2 n$ ■ if c > b. So, T(n) is O(n log² n).

In general, to use this method, you need to have a good guess and you need to be good at induction proofs.

Master Method

Many divide-and-conquer recurrence equations have the form:

$$T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$$

The Master Theorem:
1. if f(n) is O(n^{log_b a-ε}), then T(n) is Θ(n^{log_b a})
2. if f(n) is Θ(n^{log_b a} log^k n), then T(n) is Θ(n^{log_b a} log^{k+1} n)
3. if f(n) is Ω(n^{log_b a+ε}), then T(n) is Θ(f(n)),
provided af (n/b) ≤ δf(n) for some δ < 1.

The form: $T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$

- The Master Theorem:
 - 1. if f(n) is $O(n^{\log_b a \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$
 - 2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$
 - 3. if f(n) is $\Omega(n^{\log_b a + \varepsilon})$, then T(n) is $\Theta(f(n))$,
 - provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.

Example:

$$T(n) = 4T(n/2) + n$$

Solution: $\log_{b}a=2$, so case 1 says T(n) is $\Theta(n^{2})$.

The form: $T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$

- The Master Theorem:
 - 1. if f(n) is $O(n^{\log_b a \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$
 - 2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$
 - 3. if f(n) is $\Omega(n^{\log_b a+\varepsilon})$, then T(n) is $\Theta(f(n))$,

provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.

Example:

$T(n) = 2T(n/2) + n\log n$

Solution: $\log_{b}a=1$, so case 2 says T(n) is Θ (n $\log^{2} n$).

The form: $T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$

- The Master Theorem:
 - 1. if f(n) is $O(n^{\log_b a-\varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$
 - 2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$
 - 3. if f(n) is $\Omega(n^{\log_b a+\varepsilon})$, then T(n) is $\Theta(f(n))$,
 - provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.

Example:

$T(n) = T(n/3) + n\log n$

Solution: $\log_{b}a=0$, so case 3 says T(n) is $\Theta(n \log n)$.

The form: $T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$

- The Master Theorem:
 - 1. if f(n) is $O(n^{\log_b a \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$
 - 2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$
 - 3. if f(n) is $\Omega(n^{\log_b a+\varepsilon})$, then T(n) is $\Theta(f(n))$,
 - provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.

Example:

$T(n) = 8T(n/2) + n^2$

Solution: $\log_{b}a=3$, so case 1 says T(n) is $\Theta(n^{3})$.

The form: $T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$

- The Master Theorem:
 - 1. if f(n) is $O(n^{\log_b a \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$
 - 2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$
 - 3. if f(n) is $\Omega(n^{\log_b a+\varepsilon})$, then T(n) is $\Theta(f(n))$,
 - provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.

Example:

$T(n) = 9T(n/3) + n^3$

Solution: $log_b a = 2$, so case 3 says T(n) is $\Theta(n^3)$.

The form: $T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$

- The Master Theorem:
 - 1. if f(n) is $O(n^{\log_b a \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$
 - 2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$
 - 3. if f(n) is $\Omega(n^{\log_b a+\varepsilon})$, then T(n) is $\Theta(f(n))$,
 - provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.

Example:

T(n) = T(n/2) + 1 (binary search)

Solution: $\log_{b}a=0$, so case 2 says T(n) is $\Theta(\log n)$.

The form: $T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$

- The Master Theorem:
 - 1. if f(n) is $O(n^{\log_b a-\varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$
 - 2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$
 - 3. if f(n) is $\Omega(n^{\log_b a+\varepsilon})$, then T(n) is $\Theta(f(n))$,
 - provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.

 $T(n) = 2T(n/2) + \log n$ (heap construction)

Solution: $\log_{b}a=1$, so case 1 says T(n) is $\Theta(n)$.

Iterative "Proof" of the Master Theorem

• Using iterative substitution, let us see if we can find a pattern: T(n) = aT(n/b) + f(n)

 $= a(aT(n/b^2)) + f(n/b)) + bn$

 $=a^{2}T(n/b^{2})+af(n/b)+f(n)$

 $= a^{3}T(n/b^{3}) + a^{2}f(n/b^{2}) + af(n/b) + f(n)$

$$= a^{\log_b n} T(1) + \sum_{i=0}^{(\log_b n)-1} a^i f(n/b^i)$$

$$= n^{\log_b a} T(1) + \sum_{i=0}^{(\log_b n) - 1} a^i f(n/b^i)$$

We then distinguish the three cases as

= . . .

- The first term is dominant
- Each part of the summation is equally dominant
- The summation is a geometric series (See Page 270)

Chapter 5: Techniques

9[°] x 1

Integer Multiplication

- Algorithm: Multiply two n-bit integers I and J.
 Divide step: Split I and J into high-order and low-order bits
 $I = I_h 2^{n/2} + I_l$ $J = J_h 2^{n/2} + J_l$
 - We can then define I*J by multiplying the parts and adding:

$$I * J = (I_h 2^{n/2} + I_l) * (J_h 2^{n/2} + J_l)$$

$$= I_{h}J_{h}2^{n} + I_{h}J_{l}2^{n/2} + I_{l}J_{h}2^{n/2} + I_{l}J_{h}$$

- So, T(n) = 4T(n/2) + n, which implies T(n) is $\theta(n^2)$.
- But that is no better than the algorithm we learned in grade school.

An Improved Integer Multiplication Algorithm

9 <u>x 1</u>

Algorithm: Multiply two n-bit integers I and J. Divide step: Split I and J into high-order and low-order bits $I = I_{\mu} 2^{n/2} + I_{\mu}$ $J = J_{h} 2^{n/2} + J_{I}$ Observe that there is a different way to multiply parts: $I * J = I_h J_h 2^n + [(I_h - I_I)(J_I - J_h) + I_h J_h + I_I J_I] 2^{n/2} + I_I J_I$ $= I_{h}J_{h}2^{n} + [(I_{h}J_{I} - I_{I}J_{I} - I_{h}J_{h} + I_{I}J_{h}) + I_{h}J_{h} + I_{I}J_{I}]2^{n/2} + I_{I}J_{I}$ $= I_{\mu}J_{\mu}2^{n} + (I_{\mu}J_{\mu} + I_{\mu}J_{\mu})2^{n/2} + I_{\mu}J_{\mu}$ • So, T(n) = 3T(n/2) + n, which implies T(n) is $\Theta(n^{\log_2 3})$, by the Master Theorem.

Thus, T(n) is Θ(n^{1.585}).

Dynamic Programming

Matrix Chain-Products

Dynamic Programming is a general algorithm design paradigm. Rather than give the general structure, let us first give a motivating example: Matrix Chain-Products Review: Matrix Multiplication. e $\bullet C = A * B$ • A is $d \times e$ and B is $e \times f$ • $O(d \cdot e \cdot f)$ time C

$$C[i, j] = \sum_{k=0}^{e-1} A[i, k] * B[k, j] \quad d$$

i,j

Matrix Chain-Products

Matrix Chain-Product:

- Compute $A = A_0^* A_1^* \dots^* A_{n-1}$
- A_i is $d_i \times d_{i+1}$
- Problem: How to parenthesize?
- Example
 - B is 3 × 100
 - C is 100 × 5
 - D is 5 × 5
 - (B*C)*D takes 1500 + 75 = 1575 ops
 B*(C*D) takes 1500 + 2500 = 4000 ops

Enumeration Approach

Matrix Chain-Product Alg.:

- Try all possible ways to parenthesize A=A₀*A₁*...*A_{n-1}
- Calculate number of ops for each one
- Pick the one that is best

Running time:

- The number of parenthesizations is equal to the number of binary trees with n nodes
- This is exponential!
- It is called the Catalan number, and it is almost 4ⁿ.
- This is a terrible algorithm!

Greedy Approach

Idea #1: repeatedly select the product that uses (up) the most operations.

- Counter-example:
 - A is 10 × 5
 - B is 5 × 10
 - C is 10 × 5
 - D is 5 × 10
 - Greedy idea #1 gives (A*B)*(C*D), which takes 500+1000+500 = 2000 ops
 - A*((B*C)*D) takes 500+250+250 = 1000 ops

Another Greedy Approach

Idea #2: repeatedly select the product that uses the fewest operations.

- Counter-example:
 - A is 101 × 11
 - B is 11 × 9
 - C is 9 × 100
 - D is 100 × 99
 - Greedy idea #2 gives A*((B*C)*D)), which takes 109989+9900+108900=228789 ops
 - (A*B)*(C*D) takes 9999+89991+89100=189090 ops

The greedy approach is not giving us the optimal value.
Chapter 5: Techniques

"Recursive" Approach

Define subproblems:

- Find the best parenthesization of A_i*A_{i+1}*...*A_j.
- Let N_{i,j} denote the minimum number of operations done by this subproblem.
- The optimal solution for the whole problem is N_{0,n-1}.

Subproblem optimality: The optimal solution can be defined in terms of optimal subproblems

- There has to be a final multiplication (root of the expression tree) for the optimal solution.
- Say, the final multiply is at index i: $(A_0^*...^*A_i)^*(A_{i+1}^*...^*A_{n-1})$.
- Then the optimal solution N_{0,n-1} is the sum of two optimal subproblems, N_{0,i} and N_{i+1,n-1} plus the time for the last multiply.

If the global optimum did not have these optimal subproblems, we could define an even better "optimal" solution.

Characterizing Equation

- The global optimal has to be defined in terms of optimal subproblems, depending on where the final multiply is at.
- Let us consider all possible places for that final multiply:
 - Recall that A_i is a $d_i \times d_{i+1}$ dimensional matrix.
 - So, a characterizing equation for N_{i,j} is the following:

$$N_{i,j} = \min_{i \le k < j} \{N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1}\}$$

• Note that $N_{i,i}=0$.

Note that subproblems are not independent-the subproblems overlap.

Dynamic Programming Algorithm Visualization

The bottom-up $N_{i,j} = \min_{i \le k < j} \{ N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1} \}$ construction fills in the N array by diagonals 0 1 2 i n-1 ... N_{i,i} gets values from previous entries in i-th row and j-th column . . . answer Filling in each entry in the N table takes O(n) time. ◆ Total run time: O(n³) Getting actual parenthesization can be done by remembering n-1 "k" for each N entry

Dynamic Programming Algorithm

 Since subproblems overlap, we don't use recursion.

 Instead, we construct optimal subproblems "bottom-up."

- N_{i,i}'s are easy, so start with them
- Then do problems of "length" 2,3,... subproblems, and so on.
- Running time: O(n³)

Algorithm *matrixChain(S)*:

Input: sequence S of n matrices to be multiplied Output: number of operations in an optimal parenthesization of S

for $i \leftarrow 1$ to n - 1 do

 $N_{i,i} \leftarrow \mathbf{0}$

for $b \leftarrow 1$ to n - 1 do

{ b = j - i is the length of the problem }

for $i \leftarrow 0$ to n - b - 1 do

 $j \leftarrow i + b$ $N_{i,j} \leftarrow +\infty$

for $k \leftarrow i$ to j - 1 do

 $N_{i,j} \leftarrow \min\{N_{i,j}, N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1}\}$

return $N_{0,n-1}$

The General Dynamic Programming Technique

- Applies to a problem that at first seems to require a lot of time (possibly exponential), provided we have:
 - Simple subproblems: the subproblems can be defined in terms of a few variables, such as j, k, l, m, and so on.
 - Subproblem optimality: the global optimum value can be defined in terms of optimal subproblems
 - Subproblem overlap: the subproblems are not independent, but instead they overlap (hence, should be constructed bottom-up).

The 0/1 Knapsack Problem

- Given: A set S of n items, with each item i having
 - w_i a positive weight
 - b_i a positive benefit
- Goal: Choose items with maximum total benefit but with weight at most W.
- If we are not allowed to take fractional amounts, then this is the 0/1 knapsack problem.
 - In this case, we let T denote the set of items we take

Example

Given: A set S of n items, with each item i having

- b_i a positive "benefit"
- w_i a positive "weight"

Goal: Choose items with maximum total benefit but with weight at most W.

Weight:4 in2 in2 in6 in2 inBenefit:\$20\$3\$6\$25\$80

A 0/1 Knapsack Algorithm, First Attempt

- S_k: Set of items numbered 1 to k.
- Define $B[k] = best selection from S_k$.
- Problem: does not have subproblem optimality:
 - Consider set S={(3,2),(5,4),(8,5),(4,3),(10,9)} of (benefit, weight) pairs and total weight W = 20

	Best for S ₄ :	(3,2)	(5,4)	(8,5)	(4,3)	
--	---------------------------	-------	-------	-------	-------	--

Chapter 5: Techniques

A 0/1 Knapsack Algorithm, Second Attempt

- S_k : Set of items numbered 1 to k.
- Define B[k,w] to be the best selection from S_k with weight at most w
- Good news: this does have subproblem optimality.

$$B[k,w] = \begin{cases} B[k-1,w] & \text{if } w_k > w \\ \max\{B[k-1,w], B[k-1,w-w_k] + b_k\} & \text{else} \end{cases}$$

- I.e., the best subset of S_k with weight at most w is either
 - the best subset of S_{k-1} with weight at most w or
 - the best subset of S_{k-1} with weight at most w-w_k plus item k

0/1 Knapsack Algorithm

 $B[k,w] = \begin{cases} B[k-1,w] & \text{if } w_k > w \\ \max\{B[k-1,w], B[k-1,w-w_k] + b_k\} & \text{else} \end{cases}$ Algorithm 01Knapsack(S, W): Recall the definition of **Input:** set *S* of *n* items with benefit *b*, B[k,w]and weight w_i ; maximum weight WSince B[k,w] is defined in **Output:** benefit of best subset of *S* with terms of B[k-1,*], we can weight at most W use two arrays of instead of let A and B be arrays of length W + 1a matrix for $w \leftarrow 0$ to W do Running time: O(nW). $B[w] \leftarrow 0$ for $k \leftarrow 1$ to n do Not a polynomial-time algorithm since W may be copy array **B** into array A large for $w \leftarrow w_k$ to W do if $A[w - w_k] + b_k > A[w]$ then This is a pseudo-polynomial time algorithm $B[w] \leftarrow A[w - w_k] + b_k$ return *B*[*W*]