€

Fundamental Technigues

Chapter 5: Techniques

N

Outline and Reading

The Greedy Method Technique (85.1)
» Fractional Knapsack Problem (85.1.1)

m Task Scheduling (85.1.2)
Divide-and-conquer paradigm (85.2)

= Recurrence Equations (85.2.1)

= Integer Multiplication (85.2.2)

= Optional: Matrix Multiplication (85.2.3)
Dynamic Programming (85.3)

= Matrix Chain-Product (85.3.1)

= The General Technique (85.3.2)

s 0-1 Knapsack Problem (85.3.3)

Chapter 5: Techniques

The Greedy Method 4

Technique é’?@

The greedy method is a general algorithm
design paradigm, built on the following
elements:

s configurations: different choices, collections, or
values to find

s Objective function: a score assigned to
configurations, which we want to either maximize or
minimize

It works best when applied to problems with the
greedy-choice property:

= a globally-optimal solution can always be found by a
series of local improvements from a starting
configuration.

N

Chapter 5: Techniques 3

Making Change

N

Problem: A dollar amount to reach and a collection of
coin amounts to use to get there.

Configuration: A dollar amount yet to return to a
customer plus the coins already returned

Objective function: Minimize number of coins returned.
Greedy solution: Always return the largest coin you can

Example 1: Coins are valued $.32, $.08, $.01

= Has the greedy-choice property, since no amount over $.32 can
be made with a minimum number of coins by omitting a $.32
coin (similarly for amounts over $.08, but under $.32).

Example 2: Coins are valued $.30, $.20, $.05, $.01

= Does not have greedy-choice property, since $.40 is best made
with two $.20’s, but the greedy solution will pick three coins
(which ones?)

Chapter 5: Techniques 4

The Fractional Knapsack ggﬁ
Problem *fww

f\

I3

@ Given: A set S of n items, with each item | havmg
= b, - a positive benefit
= W, - a positive weight
Goal: Choose items with maximum total benefit but with
weight at most W.
If we are allowed to take fractional amounts, then this is
the fractional knapsack problem.
= In this case, we let x; denote the amount we take of item |

= Objective: maximize Zbi (X /w,)
1€S

= Constraint: ZX <W

Chapter 5: Techniques 5

7 /

2
—a/
Example ﬁ@@

N

Given: A set S of n items, with each item i having
= D, - a positive benefit
= W, - a positive weight
Goal: Choose items with maximum total benefit but with
weight at most W.

==& “knapsack”
— = Solutliofn:
: = - el mlofb5
ltems: E E e 2 mlof3
_ e 6 mlof4
Weight: 4ml 8ml 2ml 6ml 1ml e 1 ml of 2
Benefit: $12 $32 $40 $30 $50 10 mi
Value: 3 4 20 5 50
($ per ml)

Chapter 5: Techniques 6

The Fractional Knapsack m

_Algorithm

4@ Greedy choice: Keep taking item
with highest value (benefit to
weight ratio)

= Since
D0 /w) = (b /w)x,
= Run tifié: O(n log Ny’ See P. 260

Knapsack satisfies Greedy-Choice
Property:

= there is an item i with higher
value than a chosen item j (i.e.,
vi>vj) but x;<w;and x>0 If we
substitute some i with j, we get a
better solution

= How much of it y=min{w-X;, x;}.
Thus we can replace y of item’]
with an equal amount of item |,
which is the greedy choice

property.

¢4

Algorithm fractionalKnapsack(S, W)

Input: set S of items w/ benefit b;
and weight w;; max. weight W

Output: amount x; of each item |
to maximize benefit with
weight at most W

foreachitemiin S

X; <0

V; <~ b; /'w; {value}
W<« 0 {total weight}
while w < W

remove item i with highest v;
X; <= min{w; , W —w}
W<« w + min{w; , W —w}

Chapter 5: Techniques 7

Task Scheduling

Given: a set T of n tasks, each having:
= A start time, s
= A finish time, f, (where s; < f)

Goal: Perform all the tasks using a minimum number of
“machines.” Note only one task per machine at atime.

N

Machine 3 ... [I [|
Machine 2 |1 I I
Machine 1 |1 [S OSIN U o

Chapter 5: Techniques 8

N

Task Scheduling
Algorithm

Greedy choice: consider tasks
by their start time and use as
few machines as possible with
this order.

= Run time: O(n log n). Why?

Correctness: Suppose there is a
better schedule.

m We can use k-1 machines
= The algorithm uses k

m Let 1 be first task scheduled
on machine k

= Machine | must conflict with
k-1 other tasks

= But that means there is no
non-conflicting schedule
using k-1 machines

Algorithm taskSchedule(T)

Input: set T of tasks w/ start time s;
and finish time f;

Output: non-conflicting schedule
with minimum number of machines

m«0 {no. of machines}
while T is not empty
remove task i w/ smallest s;
if there’s a machine j for i then
schedule i on machine |
else
m«—m+1
schedule i on machine m

Chapter 5: Techniques 9

N

Example

Given: a set T of n tasks, each having:

= A start time, s
= A finish time, f, (where s; < f)
= [1,4], [1,3], [2,3]. [3.7], [4.7]. [6,9], [7,8] (ordered by start)

Goal: Perform all tasks on min. number of machines

Machine 3
Machine 2
Machine 1

Chapter 5: Techniques 10

€

Divide-and-Conquer

[72|94—>2479]

/\

[7|;—-<7] [9|4-—>49]
57 (57 (59 (1o

/
(N

Chapter 5: Techniques 11

Divide-and-Conquer

N

" # Divide-and conquer is a
general algorithm design
paradigm:

= Divide: divide the input data S in

two or more disjoint subsets S,,
S,, ...

2

m Recur: solve the subproblems
recursively

s Conquer: combine the solutions
for S;, S,, ..., into a solution for S
The base case for the
recursion are subproblems of
constant size

Analysis can be done using

recurrence equations
Chapter 5: Techniques

12

N

Merge-sort on an input
sequence S with n
elements consists of
three steps:

= Divide: partition S into
two sequences S; and S,
of about n/2 elements
each

= Recur: recursively sort S,
and S,

= Conquer: merge S, and
S, into a unique sorted
sequence

Merge-Sort Review

Algorithm mergeSort(S, C)

Input sequence S with n
elements, comparator C

Output sequence S sorted
according to C

if S.size() > 1
(S;, S,) < partition(S, n/2)
mergeSort(S,, C)
mergeSort(S,, C)
S < merge(S,, S,)

Chapter 5: Techniques 13

N

Recurrence Equation
Analysis

The conquer step of merge-sort consists of merging two sorted
sequences, each with n/2 elements and implemented by means of
a doubly linked list, takes at most bn steps, for some constant b.

Likewise, the basis case (n < 2) will take at b most steps.
#® Therefore, if we let T(n) denote the running time of merge-sort:

(b if n<2
2T(n/2)+bn 1fn=2

We can therefore analyze the running time of merge-sort by
finding a closed form solution to the above equation.

= That is, a solution that has T(n) only on the left-hand side.

T(n) =+

Chapter 5: Techniques 14

N

[terative Substitution

In the iterative substitution, or “plug-and-chug,” technique, we
iteratively apply the recurrence equation to itself and see if we can
find a pattern: ~ T(n)=2T(n/2) +bn

= 2(2T(n/2%))+b(n/2)) +bn
=2°T(n/2%)+2bn

— 2°T(n/2%) + 3bn
=2°T(n/2%) +4bn

=2'T(n/2") +ibn

Note that base, T(n)=b, case occurs when 2'=n. That is, i = log n.

¢ So, T(n)=bn+bnlogn

#® Thus, T(n) is O(n log n).
Chapter 5: Techniques 15

N

The Recursion Tree

Draw the recursion tree for the recurrence relation and look for a

pattern:
b ifn<2
T(n)= .
2T(n/2)+bn ifn>2

depth T's size Hme
0 1 n [] bn
1 2 n2) [) bo
[] bn

i 21 n/2!

) O
ANANEE2AN
OO O OO oo

Total time = bn + bn log n

(last level plus all previous levels)

Chapter 5: Techniques 16

Guess-and-Test Method

N

In the guess-and-test method, we guess a closed form solution
and then try to prove it is true by induction:

b ifn<2
T(n)= .
2T(n/2)+bnlogn ifn>2

Guess: T(n) <cn log n.

T(n)=2T(n/2)+bnlogn
=2(c(n/2)log(n/2)) +bnlogn
=cn(logn—1log?2)+bnlogn
=cnlogn—-cn+bnlogn

Wrong: we cannot make this last line be less than cn log n

Chapter 5: Techniques 17

Guess-and-Test Method,
Part 2

N

Recall the recurrence equation:

b ifn<2
T(n)= .
2T(n/2)+bnlogn ifn>2

#® Guess #2: T(n) < cn log? n.
T(n)=2T(n/2)+bnlogn

=2(c(n/2)log?(n/2))+bnlogn
=cn(logn—1og2)* +bnlogn

=cnlog®n—2cnlogn+cn+bnlogn
<cnlog®n
m ifc>Dh.
So, T(n) is O(n log? n).
In general, to use this method, you need to have a good guess
and you need to be good at induction proofs.

Chapter 5: Techniques 18

Master Method

N

Many divide-and-conquer recurrence equations have
the form:

T(n) - C If n<d
(n)_{aT(n/b)+f(n) if n>d

The Master Theorem:
1. if f(n)isO(n"%***), then T (n) is ®(n'"*%?)

2. if f(n)is ®(n"®?log* n), then T (n) is ®(n"*%** log*“*' n)
3. if f(n)is Q(n"®***), then T (n) is O(f (n)),
provided af (n/b) < df (n) forsome o <1.

Chapter 5: Techniques 19

Master Method, Example 1 4

N

" The form: T(n) = ¢ ifn<d
aT(n/b)+ f(n) ifn>d

The Master Theorem:
1. if f(n)isO(n"***), then T (n)is ®(n'*?)
2. if f(n)is®(n"**log* n), then T (n) is ®(n"%* log"** n)
3. if f(n)is Q(n"***), then T (n) is O(f (n)),
provided af (n/b) < of (n) forsome o < 1.

Example:
T(n)=4T(n/2)+n

Solution: log,a=2, so case 1 says T(n) is ©(n?).

Chapter 5: Techniques 20

Master Method, Example 2 @

N

aT(n/b)+ f(n) ifn>d
The Master Theorem:
1. if f(n)isO(n"®**), then T (n) is ®(n"%*?)
2. if f(n)is ®(n"**log* n), then T (n) is ®(n"** log“** n)
3. if f(n)is Q(n"%***), then T(n) is O(f (n)),

provided af (n/b) < of (n) forsome o <1.
Example:

T(n)=2T(n/2)+nlogn

Solution: log,a=1, so case 2 says T(n) is® (n log? n).

The form: T(n)={ C If n<d

Chapter 5: Techniques 21

Master Method, Example 3

N

" The form: T(n) = ¢ ifn<d
aT(n/b)+ f(n) ifn>d

The Master Theorem:
1. if f(n)isO(n"***), then T (n)is ®(n'*?)
2. if f(n)is®(n"**log* n), then T (n) is ®(n"%* log"** n)
3. if f(n)is Q(n"***), then T (n) is O(f (n)),
provided af (n/b) < of (n) forsome o < 1.
Example:

T(n)=T(n/3)+nlogn

Solution: log,a=0, so case 3 says T(n) is ©(n log n).

Chapter 5: Techniques 22

Master Method, Example 4 9

N

" The form: T(n) = ¢ ifn<d
aT(n/b)+ f(n) ifn>d

The Master Theorem:
1. if f(n)isO(n"***), then T (n)is ®(n'*?)
2. if f(n)is®(n"**log* n), then T (n) is ®(n"%* log"** n)
3. if f(n)is Q(n"***), then T (n) is O(f (n)),
provided af (n/b) < of (n) forsome o < 1.
Example:

T(n)=8T(n/2)+n’

Solution: log,a=3, so case 1 says T(n) is O(n3).

Chapter 5: Techniques 23

Master Method, Example 5

N

" The form: T(n) = ¢ ifn<d
aT(n/b)+ f(n) ifn>d

The Master Theorem:
1. if f(n)isO(n"***), then T (n)is ®(n'*?)
2. if f(n)is®(n"**log* n), then T (n) is ®(n"%* log"** n)
3. if f(n)is Q(n"***), then T (n) is O(f (n)),
provided af (n/b) < of (n) forsome o < 1.
Example:

T(N)=9T(n/3)+n°

Solution: log,a=2, so case 3 says T(n) is ©O(n3).

Chapter 5: Techniques 24

Master Method, Example 6

N

" The form: T(n) = ¢ ifn<d
aT(n/b)+ f(n) ifn>d

The Master Theorem:
1. if f(n)isO(n"***), then T (n)is ®(n'*?)
2. if f(n)is®(n"**log* n), then T (n) is ®(n"%* log"** n)
3. if f(n)is Q(n"***), then T (n) is O(f (n)),
provided af (n/b) < of (n) forsome o < 1.
Example:

T (n) =T (n / 2) +1 (binary search)

Solution: log,a=0, so case 2 says T(n) is ©(log n).

Chapter 5: Techniques 25

Master Method, Example 7 4

N

" The form: T(n) = ¢ ifn<d
aT(n/b)+ f(n) ifn>d

The Master Theorem:
1. if f(n)isO(n"***), then T (n)is ®(n'*?)
2. if f(n)is®(n"**log* n), then T (n) is ®(n"%* log"** n)
3. if f(n)is Q(n"***), then T (n) is O(f (n)),
provided af (n/b) < of (n) forsome o < 1.
Example:

T(n)=2T(n/2)+logn (heap construction)

Solution: log,a=1, so case 1 says T(n) is ©(n).

Chapter 5: Techniques 26

Iterative “Proof” of the

Master Theorem

Using iterative substitution, let us see if we can find a pattern:
T(n)=aT(n/b)+ f(n)

=a(aT(n/b?))+ f(n/b))+bn
—a?T(n/b?)+af (n/b)+ f (n)
=a’T(n/b*)+a’f(n/b*)+af (n/b)+ f(n)

N

(log, n)-1

=a"%"T (1) + Za‘f(n/b‘)

(log, n)-1

=n"%*T (1) + Za‘f(n/b‘)

We then distinguish the three cases as
= The first term is dominant
s Each part of the summation is equally dominant

= The summation is a geometric series (See Page 270)
Chapter 5: Techniques 27

Integer Multiplication

N

Algorithm: Multiply two n-bit integers | and J.
= Divide step: Split I and J into high-order and low-order bits

| =1,2"+1,
J=J,2""+],
= We can then define 1*J by multiplying the parts and adding:
|- % -2 2M 8)2 (3 282)
=1,3,2"+1.3,2"+1,3,2"* +1,J,

= S0, T(n) = 4T(n/2) + n, which implies T(n) is 8(n?).
= But that is no better than the algorithm we learned in grade
school.

Chapter 5: Techniques 28

An Improved Integer

N

Multiplication Algorithm

Algorithm: Multiply two n-bit integers | and J.

= Divide step: Split I and J into high-order and low-order bits
| =1.2"%+1,

J=1J,2"2+,

= Observe that there is a different way to multiply parts:

1 *J=1.J.2"+[(1, - 1,))(J, = J,)+ 1. J, + I,J,]an2 +1,J,
=1.J.2"+[(1,J, - 1,3, - 1., +1,J)+1.J, + I|J,]2”/2 +1,J,
=1,3,2"+(1.3,+1,3,)2"* +1,J,

s S0, T(n) = 3T(n/2) + n, which implies T(n) is ©(n'°9,3), by
the Master Theorem.

= Thus, T(n) is ©(nt-58%),
Chapter 5: Techniques 29

€

Chapter 5: Techniques

30

N

J@ Dynamic Programming is a general ‘
algorithm design paradigm.

f
= Rather than give the general structure, let p A iy
us first give a motivating example: B
= Matrix Chain-Products
Review: Matrix Multiplication. e/
= C=A*B
m AisdxeandBise xf o
= O(d-e-f) time r s ~
e A C N
Cli, j1=Y Ali,k]*B[k, j] 7 i
k=0 - . .
f

Chapter 5: Techniques

Matrix Chain-Products “=*# 2 o

N

" # Matrix Chain-Product:
s Compute A=A, A *..*A 1
= Ai 1S di X di+1
= Problem: How to parenthesize?
Example
m Bis 3 x 100
m Cis100 x5
m Dis5 x5
s (B*C)*D takes 1500 + 75 = 1575 ops
s B*(C*D) takes 1500 + 2500 = 4000 ops

Chapter 5: Techniques

32

Enumeration Approach

N

" Matrix Chain-Product Alg.:
= Try all possible ways to parenthesize
A=ATALT A [
= Calculate number of ops for each one
= Pick the one that is best

Running time:

= The number of parenthesizations is equal
to the number of binary trees with n nodes

= This Is exponentiall!

m It is called the Catalan number, and 1t is
almost 4",

= This is a terrible algorithm!

Chapter 5: Techniques 33

N

N
{%

Greedy Approach

ldea #1: repeatedly select the product that
uses (up) the most operations.

Counter-example:
m AiIs10 x5

m Bis5x 10
m Cisl0 x5
m Dis5 %10

s Greedy idea #1 gives (A*B)*(C*D), which takes
500+1000+500 = 2000 ops

s A*((B*C)*D) takes 500+250+250 = 1000 ops

Chapter 5: Techniques 34

N
{%

Another Greedy Approach

N

ldea #2: repeatedly select the product that uses
the fewest operations.

Counter-example:
= Ais 101 x 11
m Bisll x9
= Cis9 x 100
= Dis 100 x 99

s Greedy idea #2 gives A*((B*C)*D)), which takes
109989+9900+108900=228789 ops

s (A*B)*(C*D) takes 9999+89991+89100=189090 ops

The greedy approach is not giving us the
optimal value.

Chapter 5: Techniques 35

“Recursive” Approach

N
\

Define subproblems:
= Find the best parenthesization of A*A;;*...*A,.

= Let N;; denote the minimum number of operatlons done by this
subproblem

= The optimal solution for the whole problem is N ;.

Subproblem optimality: The optimal solution can be
defined in terms of optimal subproblems

= There has to be a final multiplication (root of the expression
tree) for the optimal solution.

= Say, the final multiply is at index i: (Ay*...*A)* (A *...*A,.1)-
= Then the optimal solution N, , , is the sum of two optimal
subproblems, Ny ; and N, .., plus the time for the last multiply.

= If the global optimum did not have these optimal
subproblems, we could define an even better “optimal”
solution.

Chapter 5: Techniques 36

Characterizing Equation

N

The global optimal has to be defined in terms of
optimal subproblems, depending on where the final
multiply is at.

Let us consider all possible places for that final multiply:
Recall that A is a d; x d;,, dimensional matrix.
So, a characterizing equation for N;; is the following:

N, =min{N;, +N,,, . +dd.d. .}

b k<

¢ Note that N;;=0.

Note that subproblems are not independent—the
subproblems overlap.

Chapter 5: Techniques 37

N

Dynamic Programming

The bottom-up
construction fills in the
N array by diagonals

® N;; gets values from
previous entries in i-th

row and j-th column

Filling in each entry in
the N table takes O(n)
time.

Total run time: O(n3)
Getting actual

parenthesization can be

done by remembering
“K” for each N entry

N.

Algorithm Visualization

ij= ITKU}{N.k + Ny +did,,d; .}

NJO 1 2 i j .. n-1
0 [
1 N
answer
i |
] -

n-1

Chapter 5: Techniques

38

Dynamic Programming

Algorithm

N

%

Since
subproblems
overlap, we don’t
use recursion.

Instead, we
construct optimal
subproblems
“bottom-up.”

N;;'s are easy, soO
start with them
Then do
problems of
“length™-2,3;+
subproblems,
and so on.
Running time:
O(n?d)

Algorithm matrixChain(S):
Input: sequence S of n matrices to be multiplied

Output: number of operations in an optimal
parenthesization of S

fori<1ton—-1do
N;; <0

forb<«1ton-1do
{ b =] —11isthe length of the problem }
fori< Oton—-b-1do

J«<i+Db
Njj ¢ +o0
fork<«itoj—1do
N;; <= min{N;;, Nj\ + Nyopj + didy,y dig }

return N, 4

Chapter 5: Techniques 39

The General Dynamic
Programming Technique

N

Applies to a problem that at first seems to
require a lot of time (possibly exponential),
provided we have:

s Simple subproblems: the subproblems can be

defined in terms of a few variables, such as |, k, |,
m, and so on.

s Subproblem optimality: the global optimum value
can be defined in terms of optimal subproblems

s Subproblem overlap: the subproblems are not
Independent, but instead they overlap (hence,
should be constructed bottom-up).

Chapter 5: Techniques 40

/

The 0/1 Knapsack Problem ff(ww

il

N
\

(I

Given: A set S of n items, with each item i having
= W, - a positive weight
= b, - a positive benefit
Goal: Choose items with maximum total benefit but with
weight at most W.

If we are not allowed to take fractional amounts, then
this is the 0/1 knapsack problem.
= In this case, we let T denote the set of items we take

= Objective: maximize Zb'
ieT

= Constraint: ZWi <W

ieT

Chapter 5: Techniques 41

Example

N
\

weight at most W.

ltems: [

Weight: 4in 2in 2in 6in 2in

Benefit: $20 $3 $6

$25 $80

Chapter 5: Techniques

/

f\

Given: A set S of n items, with each item i having
= D, - a positive “benefit”
= W, - a positive “weight”

Goal: Choose items with maximum total benefit but with

“knapsack”

box of width 9 in

Solution:

e item 5 ($80, 2 in)

e item 3 ($6, 2in)

e item 1 ($20, 4in)
42

http://loki.cs.brown.edu:8081/webae/images/cover-large.jpg
http://loki.cs.brown.edu:8081/webae/images/cover-large.jpg

A 0/1 Knapsack Algorithm,

First Attempt

K S,: Set of items numbered 1 to k.

Define B[k] = best selection from S,.

Problem: does not have subproblem optimality:

s Consider set S={(3,2),(5,4),(8,5),(4,3),(10,9)} of
(benefit, weight) pairs and total weight W = 20

32 3 : 43
Best for 84: (3.2)] (5.4 (8.5 |«

)

320 54 (8.3)

Best for S.: |

B 20

Chapter 5: Techniques

i

£

£
I

43

N

A 0/1 Knapsack Algorithm, ﬁfzﬁ\

|

3 :

NESS t@

Second Attempt s
S,. Set of items numbered 1 to k.

Define B[k,w] to be the best selection from S, with
weight at most w

Good news: this does have subproblem optimality.

N

B[k —1, W] Ifw, >w

B[k’W]:{maX{B[k—l,W], B[k—l,W_Wk]+bk} else

|.e., the best subset of S, with weight at most w is
either
= the best subset of S, ; with weight at most w or
= the best subset of S, ; with weight at most w-w, plus item k

Chapter 5: Techniques 44

N

{ B[k —1,w] if w, >w
B[k, w] =
max{B[k —1,w], B[k -, w—-w,]+Db,} else
Algorithm 01Knapsack(S, W):
Recall the definition of Input: set S of n items with benefit b,
Blk,w] and weight w;; maximum weight W
Since B[k,w] is defined in Output: benefit of best subset of S with
terms of B[k—1,*], we can weight at most W
use two arrays of instead of let A and B be arrays of length W + 1
a matrix for w < 0 to W do
Running time: O(nW). B[w] « 0
Not a polynomial-time for k<« 1tondo
algorithm since W may be copy array B into array A
large for w <~ w, to W do
@ This is a pseudo-polynomial If Alw-w,] + b > Alw] then

0/1 Knapsack Algorithm

time algorithm

RSl

7
i

Blw] « Alw—w,] + b,
return B[W]

Chapter 5: Techniques 45

	Fundamental Techniques
	Outline and Reading
	The Greedy Method Technique
	Making Change
	The Fractional Knapsack Problem
	Example
	The Fractional Knapsack Algorithm
	Task Scheduling
	Task Scheduling Algorithm
	Example
	Divide-and-Conquer
	Divide-and-Conquer
	Merge-Sort Review
	Recurrence Equation Analysis
	Iterative Substitution
	The Recursion Tree
	Guess-and-Test Method
	Guess-and-Test Method, Part 2
	Master Method
	Master Method, Example 1
	Master Method, Example 2
	Master Method, Example 3
	Master Method, Example 4
	Master Method, Example 5
	Master Method, Example 6
	Master Method, Example 7
	Iterative “Proof” of the Master Theorem
	Integer Multiplication
	An Improved Integer Multiplication Algorithm
	Dynamic Programming
	Matrix Chain-Products
	Matrix Chain-Products
	Enumeration Approach
	Greedy Approach
	Another Greedy Approach
	“Recursive” Approach
	Characterizing Equation
	Slide Number 38
	Dynamic Programming Algorithm
	The General Dynamic Programming Technique
	The 0/1 Knapsack Problem
	Example
	A 0/1 Knapsack Algorithm, First Attempt
	A 0/1 Knapsack Algorithm, Second Attempt
	0/1 Knapsack Algorithm

