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Fundamental Techniques
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Outline and Reading

The Greedy Method Technique (§5.1)
 Fractional Knapsack Problem (§5.1.1)
 Task Scheduling (§5.1.2)

Divide-and-conquer paradigm (§5.2)
 Recurrence Equations (§5.2.1)
 Integer Multiplication (§5.2.2) 
 Optional: Matrix Multiplication (§5.2.3) 

Dynamic Programming (§5.3) 
 Matrix Chain-Product (§5.3.1)
 The General Technique (§5.3.2)
 0-1 Knapsack Problem (§5.3.3)
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The Greedy Method 
Technique

The greedy method is a general algorithm 
design paradigm, built on the following 
elements:
 configurations: different choices, collections, or 

values to find
 objective function: a score assigned to 

configurations, which we want to either maximize or 
minimize

It works best when applied to problems with the 
greedy-choice property: 
 a globally-optimal solution can always be found by a 

series of local improvements from a starting 
configuration.
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Making Change
Problem: A dollar amount to reach and a collection of 
coin amounts to use to get there.
Configuration: A dollar amount yet to return to a 
customer plus the coins already returned
Objective function: Minimize number of coins returned.
Greedy solution: Always return the largest coin you can
Example 1: Coins are valued $.32, $.08, $.01
 Has the greedy-choice property, since no amount over $.32 can 

be made with a minimum number of coins by omitting a $.32 
coin (similarly for amounts over $.08, but under $.32).

Example 2: Coins are valued $.30, $.20, $.05, $.01
 Does not have greedy-choice property, since $.40 is best made 

with two $.20’s, but the greedy solution will pick three coins 
(which ones?)
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The Fractional Knapsack 
Problem

Given: A set S of n items, with each item i having
 bi - a positive benefit
 wi - a positive weight

Goal: Choose items with maximum total benefit but with 
weight at most W.
If we are allowed to take fractional amounts, then this is 
the fractional knapsack problem.
 In this case, we let xi denote the amount we take of item i

 Objective: maximize

 Constraint:
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Example
Given: A set S of n items, with each item i having
 bi - a positive benefit
 wi - a positive weight

Goal: Choose items with maximum total benefit but with 
weight at most W.

Weight:
Benefit:

1 2 3 4 5

4 ml 8 ml 2 ml 6 ml 1 ml
$12 $32 $40 $30 $50

Items:

Value: 3
($ per ml)

4 20 5 50
10 ml

Solution:
• 1 ml of 5
• 2 ml of 3
• 6 ml of 4
• 1 ml of 2

“knapsack”
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The Fractional Knapsack 
Algorithm

Greedy choice: Keep taking item 
with highest value (benefit to 
weight ratio)
 Since 

 Run time: O(n log n). See P. 260
Knapsack satisfies Greedy-Choice 
Property:
 there is an item i with higher 

value than a chosen item j (i.e., 
vi>vj) but xi<wi and xj>0 If we 
substitute some i with j, we get a 
better solution

 How much of i: y=min{wi-xi, xj}. 
Thus we can replace y of item j 
with an equal amount of item I, 
which is the greedy choice 
property. 

Algorithm fractionalKnapsack(S, W)
Input: set S of items w/ benefit bi

and weight wi; max. weight W
Output: amount xi of each item i 

to maximize benefit with 
weight at most W

for each item i in S
xi ← 0
vi ← bi  / wi {value}

w ← 0 {total weight}
while w < W 

remove item i with highest vi
xi ← min{wi , W − w}
w ← w + min{wi , W − w}
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Task Scheduling
Given: a set T of n tasks, each having:
 A start time, si
 A finish time, fi (where si < fi)

Goal: Perform all the tasks using a minimum number of 
“machines.” Note only one task per machine at atime.

1 98765432

Machine 1

Machine 3
Machine 2
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Task Scheduling 
Algorithm

Greedy choice: consider tasks 
by their start time and use as 
few machines as possible with 
this order.
 Run time: O(n log n). Why?

Correctness: Suppose there is a 
better schedule.
 We can use k-1 machines
 The algorithm uses k
 Let i be first task scheduled 

on machine k
 Machine i must conflict with 

k-1 other tasks
 But that means there is no 

non-conflicting schedule 
using k-1 machines

Algorithm taskSchedule(T)
Input: set T of tasks w/ start time si
and finish time fi
Output: non-conflicting schedule 
with minimum number of machines
m ← 0 {no. of machines}
while T is not empty

remove task i w/ smallest si
if there’s a machine j for i then

schedule i on machine j
else

m ← m + 1
schedule i on machine m
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Example
Given: a set T of n tasks, each having:
 A start time, si
 A finish time, fi (where si < fi)
 [1,4], [1,3], [2,5], [3,7], [4,7], [6,9], [7,8] (ordered by start)

Goal: Perform all tasks on min. number of machines

1 98765432

Machine 1

Machine 3

Machine 2
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Divide-and-Conquer
7  2  9  4  → 2  4  7  9

7  2  → 2  7 9  4  → 4  9

7 → 7 2 → 2 9 → 9 4 → 4
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Divide-and-Conquer
Divide-and conquer is a 
general algorithm design 
paradigm:
 Divide: divide the input data S in 

two or more disjoint subsets S1, 
S2, …

 Recur: solve the subproblems 
recursively

 Conquer: combine the solutions 
for S1, S2, …, into a solution for S

The base case for the 
recursion are subproblems of 
constant size
Analysis can be done using 
recurrence equations
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Merge-Sort Review
Merge-sort on an input 
sequence S with n
elements consists of 
three steps:
 Divide: partition S into 

two sequences S1 and S2
of about n/2 elements 
each

 Recur: recursively sort S1
and S2

 Conquer: merge S1 and 
S2 into a unique sorted 
sequence

Algorithm mergeSort(S, C)
Input sequence S with n

elements, comparator C
Output sequence S sorted

according to C
if S.size() > 1

(S1, S2) ← partition(S, n/2) 
mergeSort(S1, C)
mergeSort(S2, C)
S ← merge(S1, S2)
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Recurrence Equation 
Analysis

The conquer step of merge-sort consists of merging two sorted 
sequences, each with n/2 elements and implemented by means of 
a doubly linked list, takes at most bn steps, for some constant b.
Likewise, the basis case (n < 2) will take at b most steps.
Therefore, if we let T(n) denote the running time of merge-sort:

We can therefore analyze the running time of merge-sort by 
finding a closed form solution to the above equation.
 That is, a solution that has T(n) only on the left-hand side.
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Iterative Substitution
In the iterative substitution, or “plug-and-chug,” technique, we 
iteratively apply the recurrence equation to itself and see if we can 
find a pattern:

Note that base, T(n)=b, case occurs when 2i=n. That is, i = log n. 
So,

Thus, T(n) is O(n log n).
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The Recursion Tree
Draw the recursion tree for the recurrence relation and look for a 
pattern: 

depth T’s size
0 1 n

1 2 n/2

i 2i n/2i

… … …
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Total time = bn + bn log n
(last level plus all previous levels)
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Guess-and-Test Method
In the guess-and-test method, we guess a closed form solution 
and then try to prove it is true by induction:

Guess: T(n) < cn log n.

Wrong: we cannot make this last line be less than cn log n
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Guess-and-Test Method, 
Part 2

Recall the recurrence equation:

Guess #2: T(n) < cn log2 n.

 if c > b.
So, T(n) is O(n log2 n).
In general, to use this method, you need to have a good guess 
and you need to be good at induction proofs.
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Master Method
Many divide-and-conquer recurrence equations have 
the form:

The Master Theorem:
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Master Method, Example 1
The form:

The Master Theorem:

Example:
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Solution: logba=2, so case 1 says T(n) is Θ(n2).
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Master Method, Example 2
The form:

The Master Theorem:

Example:
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Master Method, Example 3
The form:

The Master Theorem:

Example:
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Master Method, Example 4
The form:

The Master Theorem:

Example:
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Master Method, Example 5
The form:

The Master Theorem:

Example:
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Master Method, Example 6
The form:

The Master Theorem:

Example:
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(binary search)
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Master Method, Example 7
The form:

The Master Theorem:

Example:
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Iterative “Proof” of the 
Master Theorem

Using iterative substitution, let us see if we can find a pattern:

We then distinguish the three cases as
 The first term is dominant
 Each part of the summation is equally dominant
 The summation is a geometric series (See Page 270)

∑

∑
−

=

−

=

+=

+=

=
+++=

++=

++=

+=

1)(log

0

log

1)(log

0

log

2233

22

2

)/()1(

)/()1(

. . .
)()/()/()/(

)()/()/(
))/())/((

)()/()(

n

i

iia

n

i

iin

b
b

b
b

bnfaTn

bnfaTa

nfbnafbnfabnTa
nfbnafbnTa
bnbnfbnaTa

nfbnaTnT



Chapter 5: Techniques 28

Integer Multiplication
Algorithm: Multiply two n-bit integers I and J.
 Divide step: Split I and J into high-order and low-order bits

 We can then define I*J by multiplying the parts and adding:

 So, T(n) = 4T(n/2) + n, which implies T(n) is θ(n2).
 But that is no better than the algorithm we learned in grade 

school.
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An Improved Integer 
Multiplication Algorithm

Algorithm: Multiply two n-bit integers I and J.
 Divide step: Split I and J into high-order and low-order bits

 Observe that there is a different way to multiply parts:

 So, T(n) = 3T(n/2) + n, which implies T(n) is Θ(nlog
2
3), by 

the Master Theorem.
 Thus, T(n) is Θ(n1.585).
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Dynamic Programming
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Matrix Chain-Products
Dynamic Programming is a general 
algorithm design paradigm.
 Rather than give the general structure, let 

us first give a motivating example:
 Matrix Chain-Products

Review: Matrix Multiplication.
 C = A*B
 A is d × e and B is e × f

 O(d⋅e⋅f ) time
A C

B
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Matrix Chain-Products
Matrix Chain-Product:
 Compute A=A0*A1*…*An-1
 Ai is di × di+1
 Problem: How to parenthesize?

Example
 B is 3 × 100
 C is 100 × 5
 D is 5 × 5
 (B*C)*D takes 1500 + 75 = 1575 ops
 B*(C*D) takes 1500 + 2500 = 4000 ops
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Enumeration Approach
Matrix Chain-Product Alg.:
 Try all possible ways to parenthesize 

A=A0*A1*…*An-1
 Calculate number of ops for each one
 Pick the one that is best

Running time:
 The number of parenthesizations is equal 

to the number of binary trees with n nodes
 This is exponential!
 It is called the Catalan number, and it is 

almost 4n.
 This is a terrible algorithm!
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Greedy Approach
Idea #1: repeatedly select the product that 
uses (up) the most operations.
Counter-example: 
 A is 10 × 5
 B is 5 × 10
 C is 10 × 5
 D is 5 × 10
 Greedy idea #1 gives (A*B)*(C*D), which takes 

500+1000+500 = 2000 ops
 A*((B*C)*D) takes 500+250+250 = 1000 ops
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Another Greedy Approach
Idea #2: repeatedly select the product that uses 
the fewest operations.
Counter-example: 
 A is 101 × 11
 B is 11 × 9
 C is 9 × 100
 D is 100 × 99
 Greedy idea #2 gives A*((B*C)*D)), which takes 

109989+9900+108900=228789 ops
 (A*B)*(C*D) takes 9999+89991+89100=189090 ops

The greedy approach is not giving us the 
optimal value.
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“Recursive” Approach
Define subproblems:
 Find the best parenthesization of Ai*Ai+1*…*Aj.
 Let Ni,j denote the minimum number of operations done by this 

subproblem.
 The optimal solution for the whole problem is N0,n-1.

Subproblem optimality: The optimal solution can be 
defined in terms of optimal subproblems
 There has to be a final multiplication (root of the expression 

tree) for the optimal solution.  
 Say, the final multiply is at index i: (A0*…*Ai)*(Ai+1*…*An-1).
 Then the optimal solution N0,n-1 is the sum of two optimal 

subproblems, N0,i and Ni+1,n-1 plus the time for the last multiply.
 If the global optimum did not have these optimal 

subproblems, we could define an even better “optimal” 
solution.
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Characterizing Equation
The global optimal has to be defined in terms of 
optimal subproblems, depending on where the final 
multiply is at.
Let us consider all possible places for that final multiply:
 Recall that Ai is a di × di+1 dimensional matrix.
 So, a characterizing equation for Ni,j is the following:

Note that Ni,i=0.
Note that subproblems are not independent–the 
subproblems overlap.

This image cannot currently be displayed.This image cannot currently be displayed.
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answer

N 0 1

0
1

2 …

n-1

…

n-1j

i

Dynamic Programming 
Algorithm Visualization

The bottom-up 
construction fills in the 
N array by diagonals
Ni,j gets values from 
previous entries in i-th 
row and j-th column 
Filling in each entry in 
the N table takes O(n) 
time.
Total run time: O(n3)
Getting actual 
parenthesization can be 
done by remembering 
“k” for each N entry
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Dynamic Programming 
Algorithm

Since 
subproblems 
overlap, we don’t 
use recursion.
Instead, we 
construct optimal 
subproblems 
“bottom-up.” 
Ni,i’s are easy, so 
start with them
Then do 
problems of 
“length” 2,3,… 
subproblems, 
and so on.
Running time: 
O(n3)

Algorithm matrixChain(S):
Input: sequence S of n matrices to be multiplied
Output: number of operations in an optimal 

parenthesization of S
for i ← 1 to n − 1 do

Ni,i ← 0
for b ← 1 to n − 1 do  

{ b = j − i is the length of the problem }
for i ← 0 to n − b − 1 do

j ← i + b
Ni,j ← +∞
for k ← i to j − 1 do

Ni,j ← min{Ni,j, Ni,k + Nk+1,j + di dk+1 dj+1}
return N0,n−1
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The General Dynamic 
Programming Technique

Applies to a problem that at first seems to 
require a lot of time (possibly exponential), 
provided we have:
 Simple subproblems: the subproblems can be 

defined in terms of a few variables, such as j, k, l, 
m, and so on.

 Subproblem optimality: the global optimum value 
can be defined in terms of optimal subproblems

 Subproblem overlap: the subproblems are not 
independent, but instead they overlap (hence, 
should be constructed bottom-up).
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The 0/1 Knapsack Problem
Given: A set S of n items, with each item i having
 wi - a positive weight
 bi - a positive benefit

Goal: Choose items with maximum total benefit but with 
weight at most W.
If we are not allowed to take fractional amounts, then 
this is the 0/1 knapsack problem.
 In this case, we let T denote the set of items we take

 Objective: maximize

 Constraint:
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Given: A set S of n items, with each item i having
 bi - a positive “benefit”
 wi - a positive “weight”

Goal: Choose items with maximum total benefit but with 
weight at most W.

Example

Weight:
Benefit:

1 2 3 4 5

4 in 2 in 2 in 6 in 2 in
$20 $3 $6 $25 $80

Items:
box of width 9 in

Solution:
• item 5 ($80, 2 in)
• item 3 ($6, 2in)
• item 1 ($20, 4in)

“knapsack”

http://loki.cs.brown.edu:8081/webae/images/cover-large.jpg
http://loki.cs.brown.edu:8081/webae/images/cover-large.jpg
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A 0/1 Knapsack Algorithm, 
First Attempt

Sk: Set of items numbered 1 to k.
Define B[k] = best selection from Sk.
Problem: does not have subproblem optimality:
 Consider set S={(3,2),(5,4),(8,5),(4,3),(10,9)} of

(benefit, weight) pairs and total weight W = 20

Best for S4:

Best for S5:
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A 0/1 Knapsack Algorithm, 
Second Attempt

Sk: Set of items numbered 1 to k.
Define B[k,w] to be the best selection from Sk with 
weight at most w
Good news: this does have subproblem optimality.

I.e., the best subset of Sk with weight at most w is 
either 
 the best subset of Sk-1 with weight at most w or 
 the best subset of Sk-1 with weight at most w−wk plus item k
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0/1 Knapsack Algorithm

Recall the definition of 
B[k,w]
Since B[k,w] is defined in 
terms of B[k−1,*], we can 
use two arrays of instead of 
a matrix
Running time: O(nW).
Not a polynomial-time 
algorithm since W may be 
large
This is a pseudo-polynomial
time algorithm

Algorithm 01Knapsack(S, W):
Input: set S of n items with benefit bi

and weight wi; maximum weight W
Output: benefit of best subset of S with 

weight at most W
let A and B be arrays of length W + 1
for w ← 0 to W do

B[w] ← 0
for k ← 1 to n do

copy array B into array A 
for w ← wk to W do

if A[w−wk] + bk > A[w] then
B[w] ← A[w−wk] + bk

return B[W]
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