
Chapter 4 1

Merge Sort
7 2  9 4 → 2 4 7 9

7  2 → 2 7 9  4 → 4 9

7 → 7 2 → 2 9 → 9 4 → 4

Chapter 4 2

Outline and Reading
Divide-and-conquer paradigm, MergeSort (§4.1)
Sets (§4.2);Generic Merging and set operations
(§4.2.1)
 Note: Sections 4.2.2 and 4.2.3 are Optional

Quick-sort (§4.3)
Analysis of quick-sort ((§4.3.1)
A Lower Bound on Comparison-based Sorting (§4.4)
QuickSort and Radix Sort (§4.5)
In-place quick-sort (§4.8)
Comparison of Sorting Algorithm (§4.6)
Selection (§4.7)

Chapter 4 3

Divide-and-Conquer
Divide-and conquer is a
general algorithm design
paradigm:
 Divide: divide the input data

S in two disjoint subsets S1
and S2

 Recur: solve the
subproblems associated
with S1 and S2

 Conquer: combine the
solutions for S1 and S2 into a
solution for S

The base case for the
recursion are subproblems of
size 0 or 1

Merge-sort is a sorting
algorithm based on the
divide-and-conquer
paradigm
Like heap-sort
 It uses a comparator
 It has O(n log n) running

time
Unlike heap-sort
 It does not use an

auxiliary priority queue
 It accesses data in a

sequential manner
(suitable to sort data on a
disk)

Chapter 4 4

Merge-Sort
Merge-sort on an input
sequence S with n
elements consists of
three steps:
 Divide: partition S into

two sequences S1 and S2
of about n/2 elements
each

 Recur: recursively sort S1
and S2

 Conquer: merge S1 and
S2 into a unique sorted
sequence

Algorithm mergeSort(S, C)
Input sequence S with n

elements, comparator C
Output sequence S sorted

according to C
if S.size() > 1

(S1, S2) ← partition(S, n/2)
mergeSort(S1, C)
mergeSort(S2, C)
S ← merge(S1, S2)

Chapter 4 5

Merging Two Sorted Sequences
The conquer step of
merge-sort consists
of merging two
sorted sequences A
and B into a sorted
sequence S
containing the union
of the elements of A
and B
Merging two sorted
sequences, each
with n/2 elements
and implemented by
means of a doubly
linked list, takes
O(n) time

Algorithm merge(A, B)
Input sequences A and B with

n/2 elements each
Output sorted sequence of A ∪ B

S ← empty sequence
while ¬A.isEmpty() ∧ ¬B.isEmpty()

if A.first().element() < B.first().element()
S.insertLast(A.remove(A.first()))

else
S.insertLast(B.remove(B.first()))

while ¬A.isEmpty()
S.insertLast(A.remove(A.first()))

while ¬B.isEmpty()
S.insertLast(B.remove(B.first()))

return S

Chapter 4 6

Merge-Sort Tree
An execution of merge-sort is depicted by a binary tree
 each node represents a recursive call of merge-sort and stores

 unsorted sequence before the execution and its partition
 sorted sequence at the end of the execution

 the root is the initial call
 the leaves are calls on subsequences of size 0 or 1

7 2  9 4 → 2 4 7 9

7  2 → 2 7 9  4 → 4 9

7 → 7 2 → 2 9 → 9 4 → 4

Chapter 4 7

Execution Example
Partition

7 2 9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7 2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

Chapter 4 8

Execution Example (cont.)
Recursive call, partition

7 2  9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7 2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

Chapter 4 9

Execution Example (cont.)
Recursive call, partition

7 2  9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7  2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

Chapter 4 10

Execution Example (cont.)
Recursive call, base case

7 2  9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7  2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

Chapter 4 11

Execution Example (cont.)
Recursive call, base case

7 2  9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7  2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

Chapter 4 12

Execution Example (cont.)
Merge

7 2  9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7  2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

Chapter 4 13

Execution Example (cont.)
Recursive call, …, base case, merge

7 2  9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7  2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

9 → 9 4 → 4

Chapter 4 14

Execution Example (cont.)
Merge

7 2  9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7  2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

Chapter 4 15

Execution Example (cont.)
Recursive call, …, merge, merge

7 2  9 4 → 2 4 7 9 3 8 6 1 → 1 3 6 8

7  2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

Chapter 4 16

Execution Example (cont.)
Merge

7 2  9 4 → 2 4 7 9 3 8 6 1 → 1 3 6 8

7  2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

Chapter 4 17

Analysis of Merge-Sort
The height h of the merge-sort tree is O(log n)
 at each recursive call we divide in half the sequence,

The overall amount or work done at the nodes of depth i is O(n)
 we partition and merge 2i sequences of size n/2i

 we make 2i+1 recursive calls
Thus, the total running time of merge-sort is O(n log n)

depth #seqs size
0 1 n

1 2 n/2

i 2i n/2i

… … …

Chapter 4 18

Sets

Chapter 4 19

Set Operations
We represent a set by the
sorted sequence of its
elements
By specializing the auxliliary
methods he generic merge
algorithm can be used to
perform basic set operations:
 union
 intersection
 subtraction

The running time of an
operation on sets A and B
should be at most O(nA + nB)

Set union:
 aIsLess(a, S)

S.insertFirst(a)
 bIsLess(b, S)

S.insertLast(b)
 bothAreEqual(a, b, S)

S. insertLast(a)
Set intersection:
 aIsLess(a, S)

{ do nothing }
 bIsLess(b, S)

{ do nothing }
 bothAreEqual(a, b, S)

S. insertLast(a)

Chapter 4 20

Storing a Set in a List
We can implement a set with a list
Elements are stored sorted according to some
canonical ordering
The space used is O(n)

∅List

Nodes storing set elements in order

Set elements

Chapter 4 21

Generic Merging
Generalized merge
of two sorted lists
A and B
Template method
genericMerge
Auxiliary methods
 aIsLess
 bIsLess
 bothAreEqual

Runs in O(nA + nB)
time provided the
auxiliary methods
run in O(1) time

Algorithm genericMerge(A, B)
S ← empty sequence
while ¬A.isEmpty() ∧ ¬B.isEmpty()

a ← A.first().element(); b ← B.first().element()
if a < b

aIsLess(a, S); A.remove(A.first())
else if b < a

bIsLess(b, S); B.remove(B.first())
else { b = a }

bothAreEqual(a, b, S)
A.remove(A.first()); B.remove(B.first())

while ¬A.isEmpty()
aIsLess(a, S); A.remove(A.first())

while ¬B.isEmpty()
bIsLess(b, S); B.remove(B.first())

return S

Chapter 4 22

Using Generic Merge
for Set Operations

Any of the set operations can be
implemented using a generic merge
For example:
 For intersection: only copy elements that

are duplicated in both list
 For union: copy every element from both

lists except for the duplicates
All methods run in linear time.

Chapter 4 23

Quick-Sort
7 4 9 6 2 → 2 4 6 7 9

4 2 → 2 4 7 9 → 7 9

2 → 2 9 → 9

Chapter 4 24

Quick-Sort
Quick-sort is a randomized
sorting algorithm based
on the divide-and-conquer
paradigm:
 Divide: pick a random

element x (called pivot) and
partition S into
 L elements less than x
 E elements equal x
 G elements greater than x

 Recur: sort L and G
 Conquer: join L, E and G

x

x

L GE

x

Chapter 4 25

Partition
We partition an input
sequence as follows:
 We remove, in turn, each

element y from S and
 We insert y into L, E or G,

depending on the result of
the comparison with the
pivot x

Each insertion and removal
is at the beginning or at the
end of a sequence, and
hence takes O(1) time
Thus, the partition step of
quick-sort takes O(n) time

Algorithm partition(S, p)
Input sequence S, position p of pivot
Output subsequences L, E, G of the

elements of S less than, equal to,
or greater than the pivot, resp.

L, E, G ← empty sequences
x ← S.remove(p)
while ¬S.isEmpty()

y ← S.remove(S.first())
if y < x

L.insertLast(y)
else if y = x

E.insertLast(y)
else { y > x }

G.insertLast(y)
return L, E, G

Chapter 4 26

Quick-Sort Tree
An execution of quick-sort is depicted by a binary tree
 Each node represents a recursive call of quick-sort and stores

 Unsorted sequence before the execution and its pivot
 Sorted sequence at the end of the execution

 The root is the initial call
 The leaves are calls on subsequences of size 0 or 1

7 4 9 6 2 → 2 4 6 7 9

4 2 → 2 4 7 9 → 7 9

2 → 2 9 → 9

Chapter 4 27

Execution Example
Pivot selection

7 2 9 4 → 2 4 7 9

2 → 2

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

3 8 6 1 → 1 3 8 6

3 → 3 8 → 89 4 → 4 9

9 → 9 4 → 4

Chapter 4 28

Execution Example (cont.)
Partition, recursive call, pivot selection

2 4 3 1 → 2 4 7 9

9 4 → 4 9

9 → 9 4 → 4

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

3 8 6 1 → 1 3 8 6

3 → 3 8 → 82 → 2

Chapter 4 29

Execution Example (cont.)
Partition, recursive call, base case

2 4 3 1 →→ 2 4 7

1 → 1 9 4 → 4 9

9 → 9 4 → 4

7 2 9 4 3 7 6 1 → → 1 2 3 4 6 7 8 9

3 8 6 1 → 1 3 8 6

3 → 3 8 → 8

Chapter 4 30

Execution Example (cont.)
Recursive call, pivot selection

7 9 7 1 → 1 3 8 6

8 → 8

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

2 4 3 1 → 1 2 3 4

1 → 1 4 3 → 3 4

9 → 9 4 → 4

9 → 9

Chapter 4 31

Execution Example (cont.)
Partition, …, recursive call, base case

7 9 7 1 → 1 3 8 6

8 → 8

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

2 4 3 1 → 1 2 3 4

1 → 1 4 3 → 3 4

9 → 9 4 → 4

9 → 9

Chapter 4 32

Execution Example (cont.)
Join, join

7 9 7 → 17 7 9

8 → 8

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 7 9

2 4 3 1 → 1 2 3 4

1 → 1 4 3 → 3 4

9 → 9 4 → 4

9 → 9

Chapter 4 33

Worst-case Running Time
The worst case for quick-sort occurs when the pivot is the unique
minimum or maximum element
One of L and G has size n − 1 and the other has size 0
The running time is proportional to the sum

n + (n − 1) + … + 2 + 1
Thus, the worst-case running time of quick-sort is O(n2)

depth time

0 n

1 n − 1

… …

n − 1 1

Chapter 4 34

Expected Running Time
Consider a recursive call of quick-sort on a sequence of size s
 Good call: the sizes of L and G are each less than 3s/4
 Bad call: one of L and G has size greater than 3s/4

A call is good with probability 1/2
 1/2 of the possible pivots cause good calls:

7 9 7 1 → 1

7 2 9 4 3 7 6 1 9

2 4 3 1 7 2 9 4 3 7 61

7 2 9 4 3 7 6 1

Good call Bad call

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Good pivotsBad pivots Bad pivots

Chapter 4 35

Expected Running Time, Part 2
Probabilistic Fact: The expected number of coin tosses required in
order to get k heads is 2k
For a node of depth i, we expect
 i/2 ancestors are good calls
 The size of the input sequence for the current call is at most (3/4)i/2n

s(r)

s(a) s(b)

s(c) s(d) s(f)s(e)

time per levelexpected height

O(log n)

O(n)

O(n)

O(n)

total expected time: O(n log n)

Therefore, we have
 For a node of depth 2log4/3n,

the expected input size is one
 The expected height of the

quick-sort tree is O(log n)
The amount or work done at the
nodes of the same depth is O(n)
Thus, the expected running time
of quick-sort is O(n log n)

Chapter 4 36

In-Place Quick-Sort
Quick-sort can be implemented
to run in-place
In the partition step, we use
replace operations to rearrange
the elements of the input
sequence such that
 the elements less than the

pivot have rank less than h
 the elements equal to the pivot

have rank between h and k
 the elements greater than the

pivot have rank greater than k
The recursive calls consider
 elements with rank less than h
 elements with rank greater

than k

Algorithm inPlaceQuickSort(S, l, r)
Input sequence S, ranks l and r
Output sequence S with the

elements of rank between l and r
rearranged in increasing order

if l ≥ r
return

i ← a random integer between l and r
x ← S.elemAtRank(i)
(h, k) ← inPlacePartition(x)
inPlaceQuickSort(S, l, h − 1)
inPlaceQuickSort(S, k + 1, r)

Chapter 4 37

In-Place Partitioning
Perform the partition using two indices to split S into L
and E U G (a similar method can split E U G into E and G).

Repeat until j and k cross:
 Scan j to the right until finding an element > x.
 Scan k to the left until finding an element < x.
 Swap elements at indices j and k

3 2 5 1 0 7 3 5 9 2 7 9 8 9 7 6 9

j k
(pivot = 6)

3 2 5 1 0 7 3 5 9 2 7 9 8 9 7 6 9

j k

Chapter 4 38

Execution Example (cont.)
Recursive call, …, base case, join

3 8 6 1 → 1 3 8 6

3 → 3 8 → 8

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

2 4 3 1 → 1 2 3 4

1 → 1 4 3 → 3 4

9 → 9 4 → 4

Chapter 4 39

A Lower Bound on Comparison-
based Sorting (§4.4)

Chapter 4 40

Comparison-Based
Sorting

Many sorting algorithms are comparison based.
 They sort by making comparisons between pairs of objects
 Examples: bubble-sort, selection-sort, insertion-sort, heap-sort,

merge-sort, quick-sort, ...
Let us therefore derive a lower bound on the running
time of any algorithm that uses comparisons to sort n
elements, x1, x2, …, xn.

Is xi < xj?

yes

no

Chapter 4 41

Counting Comparisons
Let us just count comparisons then.
Each possible run of the algorithm corresponds
to a root-to-leaf path in a decision tree

xi < xj ?

xa < xb ?

xm < xo ? xp < xq ?xe < xf ? xk < xl ?

xc < xd ?

Chapter 4 42

Decision Tree Height
The height of this decision tree is a lower bound on the running time
Every possible input permutation must lead to a separate leaf
output.
 If not, some input …4…5… would have same output ordering as

…5…4…, which would be wrong.
Since there are n!=1*2*…*n leaves, the height is at least log (n!)minimum height (time)

log (n!)

xi < xj ?

xa < xb ?

xm < xo ? xp < xq ?xe < xf ? xk < xl ?

xc < xd ?

n!

Chapter 4 43

The Lower Bound
Any comparison-based sorting algorithms takes at
least log (n!) time
Therefore, any such algorithm takes time at least

That is, any comparison-based sorting algorithm must
run in Ω(n log n) time.

).2/(log)2/(
2

log)!(log
2

nnnn
n

=





≥

Chapter 4 44

Bucket-Sort and Radix-Sort

0 1 2 3 4 5 6 7 8 9
B

1, c 7, d 7, g3, b3, a 7, e

∅ ∅ ∅ ∅ ∅ ∅ ∅

Chapter 4 45

Bucket-Sort (§ 4.5.1)
Let be S be a sequence of n
(key, element) items with keys
in the range [0, N − 1]
Bucket-sort uses the keys as
indices into an auxiliary array B
of sequences (buckets)
Phase 1: Empty sequence S by

moving each item (k, o) into its
bucket B[k]

Phase 2: For i = 0, …, N − 1, move
the items of bucket B[i] to the
end of sequence S

Analysis:
 Phase 1 takes O(n) time
 Phase 2 takes O(n + N) time

Bucket-sort takes O(n + N) time

Algorithm bucketSort(S, N)
Input sequence S of (key, element)

items with keys in the range
[0, N − 1]

Output sequence S sorted by
increasing keys

B ← array of N empty sequences
while ¬S.isEmpty()

f ← S.first()
(k, o) ← S.remove(f)
B[k].insertLast((k, o))

for i ← 0 to N − 1
while ¬B[i].isEmpty()

f ← B[i].first()
(k, o) ← B[i].remove(f)
S.insertLast((k, o))

Chapter 4 46

Example
Key range [0, 9]

7, d 1, c 3, a 7, g 3, b 7, e

1, c 3, a 3, b 7, d 7, g 7, e

Phase 1

Phase 2
0 1 2 3 4 5 6 7 8 9

B

1, c 7, d 7, g3, b3, a 7, e

∅ ∅ ∅ ∅ ∅ ∅ ∅

Chapter 4 47

Properties and Extensions
Key-type Property
 The keys are used as

indices into an array
and cannot be arbitrary
objects

 No external comparator
Stable Sort Property
 The relative order of

any two items with the
same key is preserved
after the execution of
the algorithm

Extensions
 Integer keys in the range [a, b]

 Put item (k, o) into bucket
B[k − a]

 String keys from a set D of
possible strings, where D has
constant size (e.g., names of
the 50 U.S. states)
 Sort D and compute the rank

r(k) of each string k of D in
the sorted sequence

 Put item (k, o) into bucket
B[r(k)]

Chapter 4 48

Lexicographic Order
A d-tuple is a sequence of d keys (k1, k2, …, kd), where
key ki is said to be the i-th dimension of the tuple
Example:
 The Cartesian coordinates of a point in space are a 3-tuple

The lexicographic order of two d-tuples is recursively
defined as follows

(x1, x2, …, xd) < (y1, y2, …, yd)
⇔

x1 < y1 ∨ x1 = y1 ∧ (x2, …, xd) < (y2, …, yd)

I.e., the tuples are compared by the first dimension,
then by the second dimension, etc.

Chapter 4 49

Lexicographic-Sort
Let Ci be the comparator
that compares two tuples by
their i-th dimension
Let stableSort(S, C) be a
stable sorting algorithm that
uses comparator C
Lexicographic-sort sorts a
sequence of d-tuples in
lexicographic order by
executing d times algorithm
stableSort, one per
dimension
Lexicographic-sort runs in
O(dT(n)) time, where T(n) is
the running time of
stableSort

Algorithm lexicographicSort(S)
Input sequence S of d-tuples
Output sequence S sorted in

lexicographic order

for i ← d downto 1
stableSort(S, Ci)

Example:
(7,4,6) (5,1,5) (2,4,6) (2, 1, 4) (3, 2, 4)

(2, 1, 4) (3, 2, 4) (5,1,5) (7,4,6) (2,4,6)

(2, 1, 4) (5,1,5) (3, 2, 4) (7,4,6) (2,4,6)

(2, 1, 4) (2,4,6) (3, 2, 4) (5,1,5) (7,4,6)

Chapter 4 50

Radix-Sort (§ 4.5.2)
Radix-sort is a
specialization of
lexicographic-sort that
uses bucket-sort as the
stable sorting algorithm
in each dimension
Radix-sort is applicable
to tuples where the
keys in each dimension i
are integers in the
range [0, N − 1]
Radix-sort runs in time
O(d(n + N))

Algorithm radixSort(S, N)
Input sequence S of d-tuples such

that (0, …, 0) ≤ (x1, …, xd) and
(x1, …, xd) ≤ (N − 1, …, N − 1)
for each tuple (x1, …, xd) in S

Output sequence S sorted in
lexicographic order

for i ← d downto 1
bucketSort(S, N)

Chapter 4 51

Radix-Sort for
Binary Numbers

Consider a sequence of n
b-bit integers

x = xb − 1 … x1x0
We represent each element
as a b-tuple of integers in
the range [0, 1] and apply
radix-sort with N = 2
This application of the
radix-sort algorithm runs in
O(bn) time
For example, we can sort a
sequence of 32-bit integers
in linear time

Algorithm binaryRadixSort(S)
Input sequence S of b-bit

integers
Output sequence S sorted
replace each element x

of S with the item (0, x)
for i ← 0 to b − 1

replace the key k of
each item (k, x) of S
with bit xi of x

bucketSort(S, 2)

Chapter 4 52

Example
Sorting a sequence of 4-bit integers

1001

0010

1101

0001

1110

0010

1110

1001

1101

0001

1001

1101

0001

0010

1110

1001

0001

0010

1101

1110

0001

0010

1001

1101

1110

Chapter 4 53

Summary of Sorting Algorithms
(§4.6)

Algorithm Time Notes

selection-sort O(n2)
slow
in-place
for small data sets (< 1K)

insertion-sort O(n2)
slow
in-place
for small data sets (< 1K)

heap-sort O(n log n)
fast
in-place
for large data sets (1K — 1M)

merge-sort O(n log n)
fast
sequential data access
for huge data sets (> 1M)

Chapter 4 54

Selection (§4.7)

Chapter 4 55

The Selection Problem
Given an integer k and n elements x1, x2, …, xn,
taken from a total order, find the k-th smallest
element in this set.
Of course, we can sort the set in O(n log n) time
and then index the k-th element.

Can we solve the selection problem faster?

7 4 9 6 2 → 2 4 6 7 9k=3

Chapter 4 56

Quick-Select
Quick-select is a randomized
selection algorithm based on
the prune-and-search
paradigm:
 Prune: pick a random element x

(called pivot) and partition S into
 L elements less than x
 E elements equal x
 G elements greater than x

 Search: depending on k, either
answer is in E, or we need to
recurse in either L or G

x

x

L GE

k < |L|

|L| < k < |L|+|E|
(done)

k > |L|+|E|
k’ = k - |L| - |E|

Chapter 4 57

Partition
We partition an input
sequence as in the quick-sort
algorithm:
 We remove, in turn, each

element y from S and
 We insert y into L, E or G,

depending on the result of
the comparison with the
pivot x

Each insertion and removal is
at the beginning or at the
end of a sequence, and
hence takes O(1) time
Thus, the partition step of
quick-select takes O(n) time

Algorithm partition(S, p)
Input sequence S, position p of pivot
Output subsequences L, E, G of the

elements of S less than, equal to,
or greater than the pivot, resp.

L, E, G ← empty sequences
x ← S.remove(p)
while ¬S.isEmpty()

y ← S.remove(S.first())
if y < x

L.insertLast(y)
else if y = x

E.insertLast(y)
else { y > x }

G.insertLast(y)
return L, E, G

Chapter 4 58

Quick-Select Visualization
An execution of quick-select can be visualized by a
recursion path
 Each node represents a recursive call of quick-select, and

stores k and the remaining sequence

k=5, S=(7 4 9 3 2 6 5 1 8)

5

k=2, S=(7 4 9 6 5 8)

k=2, S=(7 4 6 5)

k=1, S=(7 6 5)

Chapter 4 59

Expected Running Time
Consider a recursive call of quick-select on a sequence of size s
 Good call: the sizes of L and G are each less than 3s/4
 Bad call: one of L and G has size greater than 3s/4

A call is good with probability 1/2
 1/2 of the possible pivots cause good calls:

7 9 7 1 → 1

7 2 9 4 3 7 6 1 9

2 4 3 1 7 2 9 4 3 7 61

7 2 9 4 3 7 6 1

Good call Bad call

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Good pivotsBad pivots Bad pivots

Chapter 4 60

Expected Running Time,
Part 2

Probabilistic Fact #1: The expected number of coin tosses required in
order to get one head is two
Probabilistic Fact #2: Expectation is a linear function:
 E(X + Y) = E(X) + E(Y)
 E(cX) = cE(X)

Let T(n) denote the expected running time of quick-select.
By Fact #2,
 T(n) < T(3n/4) + bn*(expected # of calls before a good call)

By Fact #1,
 T(n) < T(3n/4) + 2bn

That is, T(n) is a geometric series:
 T(n) < 2bn + 2b(3/4)n + 2b(3/4)2n + 2b(3/4)3n + …

So T(n) is O(n).
We can solve the selection problem in O(n) expected
time.

Chapter 4 61

Deterministic Selection
We can do selection in O(n) worst-case time.
Main idea: recursively use the selection algorithm
itself to find a good pivot for quick-select:
 Divide S into n/5 sets of 5 each
 Find a median in each set
 Recursively find the median of the “baby”

medians.

See Exercise C-4.24 for details of analysis.

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

Min size
for L

Min size
for G

	Merge Sort
	Outline and Reading
	Divide-and-Conquer
	Merge-Sort
	Merging Two Sorted Sequences
	Merge-Sort Tree
	Execution Example
	Execution Example (cont.)
	Execution Example (cont.)
	Execution Example (cont.)
	Execution Example (cont.)
	Execution Example (cont.)
	Execution Example (cont.)
	Execution Example (cont.)
	Execution Example (cont.)
	Execution Example (cont.)
	Analysis of Merge-Sort
	Sets
	Set Operations
	Storing a Set in a List
	Generic Merging
	Using Generic Merge for Set Operations
	Quick-Sort
	Quick-Sort
	Partition
	Quick-Sort Tree
	Execution Example
	Execution Example (cont.)
	Execution Example (cont.)
	Execution Example (cont.)
	Execution Example (cont.)
	Execution Example (cont.)
	Worst-case Running Time
	Expected Running Time
	Expected Running Time, Part 2
	In-Place Quick-Sort
	In-Place Partitioning
	Execution Example (cont.)
	A Lower Bound on Comparison-based Sorting (§4.4)
	Comparison-Based Sorting
	Counting Comparisons
	Decision Tree Height
	The Lower Bound
	Bucket-Sort and Radix-Sort
	Bucket-Sort (§ 4.5.1)
	Example
	Properties and Extensions
	Lexicographic Order
	Lexicographic-Sort
	Radix-Sort (§ 4.5.2)
	Radix-Sort for Binary Numbers
	Example
	Summary of Sorting Algorithms (§4.6)
	Selection (§4.7)
	The Selection Problem
	Quick-Select
	Partition
	Quick-Select Visualization
	Expected Running Time
	Expected Running Time, Part 2
	Deterministic Selection

