
Chapter 4 1

Merge Sort
7  2  9  4  → 2  4  7  9

7  2  → 2  7 9  4  → 4  9

7 → 7 2 → 2 9 → 9 4 → 4
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Outline and Reading
Divide-and-conquer paradigm, MergeSort (§4.1)
Sets (§4.2);Generic Merging and set operations 
(§4.2.1)
 Note: Sections 4.2.2 and 4.2.3 are Optional

Quick-sort (§4.3)
Analysis of quick-sort ((§4.3.1)
A Lower Bound on Comparison-based Sorting (§4.4)
QuickSort and Radix Sort (§4.5)
In-place quick-sort (§4.8)
Comparison of Sorting Algorithm (§4.6)
Selection (§4.7)
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Divide-and-Conquer
Divide-and conquer is a 
general algorithm design 
paradigm:
 Divide: divide the input data 

S in two disjoint subsets S1
and S2

 Recur: solve the 
subproblems associated 
with S1 and S2

 Conquer: combine the 
solutions for S1 and S2 into a 
solution for S

The base case for the 
recursion are subproblems of 
size 0 or 1

Merge-sort is a sorting 
algorithm based on the 
divide-and-conquer 
paradigm 
Like heap-sort
 It uses a comparator
 It has O(n log n) running 

time
Unlike heap-sort
 It does not use an 

auxiliary priority queue
 It accesses data in a 

sequential manner 
(suitable to sort data on a 
disk)
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Merge-Sort
Merge-sort on an input 
sequence S with n
elements consists of 
three steps:
 Divide: partition S into 

two sequences S1 and S2
of about n/2 elements 
each

 Recur: recursively sort S1
and S2

 Conquer: merge S1 and 
S2 into a unique sorted 
sequence

Algorithm mergeSort(S, C)
Input sequence S with n

elements, comparator C
Output sequence S sorted

according to C
if S.size() > 1

(S1, S2) ← partition(S, n/2) 
mergeSort(S1, C)
mergeSort(S2, C)
S ← merge(S1, S2)
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Merging Two Sorted Sequences
The conquer step of 
merge-sort consists 
of merging two 
sorted sequences A 
and B into a sorted 
sequence S 
containing the union 
of the elements of A 
and B
Merging two sorted 
sequences, each 
with n/2 elements 
and implemented by 
means of a doubly 
linked list, takes 
O(n) time

Algorithm merge(A, B)
Input sequences A and B with

n/2 elements each 
Output sorted sequence of A ∪ B

S ← empty sequence
while ¬A.isEmpty()  ∧ ¬B.isEmpty()

if A.first().element() < B.first().element()
S.insertLast(A.remove(A.first()))

else
S.insertLast(B.remove(B.first()))

while ¬A.isEmpty()
S.insertLast(A.remove(A.first()))

while ¬B.isEmpty()
S.insertLast(B.remove(B.first()))

return S
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Merge-Sort Tree
An execution of merge-sort is depicted by a binary tree
 each node represents a recursive call of merge-sort and stores

 unsorted sequence before the execution and its partition
 sorted sequence at the end of the execution

 the root is the initial call 
 the leaves are calls on subsequences of size 0 or 1

7  2  9  4  → 2  4  7  9

7  2  → 2  7 9  4  → 4  9

7 → 7 2 → 2 9 → 9 4 → 4
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Execution Example
Partition

7  2  9  4  → 2  4  7  9 3  8  6  1  → 1  3  8  6

7  2  → 2  7 9  4  → 4  9 3  8  → 3  8 6  1  → 1  6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7  2  9  4  3  8  6  1 → 1  2  3  4  6  7  8  9
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Execution Example (cont.)
Recursive call, partition

7  2  9  4 → 2  4  7  9 3  8  6  1  → 1  3  8  6

7  2  → 2  7 9  4  → 4  9 3  8  → 3  8 6  1  → 1  6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7  2  9  4  3  8  6  1 → 1  2  3  4  6  7  8  9
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Execution Example (cont.)
Recursive call, partition

7  2  9  4 → 2  4  7  9 3  8  6  1  → 1  3  8  6

7  2 → 2  7 9  4  → 4  9 3  8  → 3  8 6  1  → 1  6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7  2  9  4  3  8  6  1 → 1  2  3  4  6  7  8  9
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Execution Example (cont.)
Recursive call, base case

7  2  9  4 → 2  4  7  9 3  8  6  1  → 1  3  8  6

7  2 → 2  7 9  4  → 4  9 3  8  → 3  8 6  1  → 1  6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7  2  9  4  3  8  6  1 → 1  2  3  4  6  7  8  9
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Execution Example (cont.)
Recursive call, base case

7  2  9  4 → 2  4  7  9 3  8  6  1  → 1  3  8  6

7  2 → 2  7 9  4  → 4  9 3  8  → 3  8 6  1  → 1  6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7  2  9  4  3  8  6  1 → 1  2  3  4  6  7  8  9
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Execution Example (cont.)
Merge

7  2  9  4 → 2  4  7  9 3  8  6  1  → 1  3  8  6

7  2 → 2  7 9  4  → 4  9 3  8  → 3  8 6  1  → 1  6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7  2  9  4  3  8  6  1 → 1  2  3  4  6  7  8  9
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Execution Example (cont.)
Recursive call, …, base case, merge

7  2  9  4 → 2  4  7  9 3  8  6  1  → 1  3  8  6

7  2 → 2  7 9  4 → 4  9 3  8  → 3  8 6  1  → 1  6

7 → 7 2 → 2 3 → 3 8 → 8 6 → 6 1 → 1

7  2  9  4  3  8  6  1 → 1  2  3  4  6  7  8  9

9 → 9 4 → 4
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Execution Example (cont.)
Merge

7  2  9  4 → 2  4  7  9 3  8  6  1  → 1  3  8  6

7  2 → 2  7 9  4 → 4  9 3  8  → 3  8 6  1  → 1  6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7  2  9  4  3  8  6  1 → 1  2  3  4  6  7  8  9
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Execution Example (cont.)
Recursive call, …, merge, merge

7  2  9  4 → 2  4  7  9 3  8  6  1 → 1  3  6  8

7  2 → 2  7 9  4 → 4  9 3  8 → 3  8 6  1 → 1  6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7  2  9  4  3  8  6  1 → 1  2  3  4  6  7  8  9
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Execution Example (cont.)
Merge

7  2  9  4 → 2  4  7  9 3  8  6  1 → 1  3  6  8

7  2 → 2  7 9  4 → 4  9 3  8 → 3  8 6  1 → 1  6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7  2  9  4  3  8  6  1 → 1  2  3  4  6  7  8  9
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Analysis of Merge-Sort
The height h of the merge-sort tree is O(log n)
 at each recursive call we divide in half the sequence, 

The overall amount or work done at the nodes of depth i is O(n)
 we partition and merge 2i sequences of size n/2i

 we make 2i+1 recursive calls
Thus, the total running time of merge-sort is O(n log n)

depth #seqs size
0 1 n

1 2 n/2

i 2i n/2i

… … …
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Sets
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Set Operations
We represent a set by the 
sorted sequence of its 
elements
By specializing the auxliliary 
methods he generic merge 
algorithm can be used to 
perform basic set operations:
 union
 intersection
 subtraction

The running time of an  
operation on sets A and B 
should be at most O(nA + nB)

Set union:
 aIsLess(a, S)

S.insertFirst(a)
 bIsLess(b, S)

S.insertLast(b)
 bothAreEqual(a, b, S)

S. insertLast(a)
Set intersection:
 aIsLess(a, S)

{ do nothing }
 bIsLess(b, S)

{ do nothing }
 bothAreEqual(a, b, S)

S. insertLast(a)
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Storing a Set in a List
We can implement a set with a list
Elements are stored sorted according to some 
canonical ordering
The space used is O(n)

∅List

Nodes storing set elements in order

Set elements
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Generic Merging
Generalized merge 
of two sorted lists
A and B
Template method 
genericMerge
Auxiliary methods
 aIsLess
 bIsLess
 bothAreEqual

Runs in O(nA + nB)
time provided the 
auxiliary methods 
run in O(1) time

Algorithm genericMerge(A, B)
S ← empty sequence
while ¬A.isEmpty()  ∧ ¬B.isEmpty()

a ← A.first().element();  b ← B.first().element()
if a < b

aIsLess(a, S);  A.remove(A.first())
else if b < a

bIsLess(b, S);  B.remove(B.first())
else { b = a }

bothAreEqual(a, b, S)
A.remove(A.first());  B.remove(B.first())

while ¬A.isEmpty()
aIsLess(a, S);  A.remove(A.first())

while ¬B.isEmpty()
bIsLess(b, S);  B.remove(B.first())

return S
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Using Generic Merge 
for Set Operations

Any of the set operations can be 
implemented using a generic merge
For example:
 For intersection: only copy elements that 

are duplicated in both list
 For union: copy every element from both 

lists except for the duplicates
All methods run in linear time.
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Quick-Sort
7  4  9  6 2  → 2  4  6 7  9

4 2  → 2  4 7 9  → 7 9

2 → 2 9 → 9
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Quick-Sort
Quick-sort is a randomized 
sorting algorithm based 
on the divide-and-conquer 
paradigm:
 Divide: pick a random 

element x (called pivot) and 
partition S into 
 L elements less than x
 E elements equal x
 G elements greater than x

 Recur: sort L and G
 Conquer: join L, E and G

x

x

L GE

x



Chapter 4 25

Partition
We partition an input 
sequence as follows:
 We remove, in turn, each 

element y from S and 
 We insert y into L, E or G,

depending on the result of 
the comparison with the 
pivot x

Each insertion and removal 
is at the beginning or at the 
end of a sequence, and 
hence takes O(1) time
Thus, the partition step of 
quick-sort takes O(n) time

Algorithm partition(S, p)
Input sequence S, position p of pivot 
Output subsequences L, E, G of the 

elements of S less than, equal to,
or greater than the pivot, resp.

L, E, G ← empty sequences
x ← S.remove(p)
while ¬S.isEmpty()

y ← S.remove(S.first())
if y < x

L.insertLast(y)
else if y = x

E.insertLast(y)
else { y > x }

G.insertLast(y)
return L, E, G
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Quick-Sort Tree
An execution of quick-sort is depicted by a binary tree
 Each node represents a recursive call of quick-sort and stores

 Unsorted sequence before the execution and its pivot
 Sorted sequence at the end of the execution

 The root is the initial call 
 The leaves are calls on subsequences of size 0 or 1

7  4  9  6 2  → 2  4  6 7  9

4 2  → 2  4 7 9  → 7 9

2 → 2 9 → 9



Chapter 4 27

Execution Example
Pivot selection

7  2  9  4  → 2  4  7  9

2 → 2

7  2  9  4 3  7  6 1 → 1  2  3  4  6  7  8  9

3  8  6  1  → 1  3  8  6

3 → 3 8 → 89  4  → 4  9

9 → 9 4 → 4
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Execution Example (cont.)
Partition, recursive call, pivot selection

2 4  3  1 → 2  4  7  9

9  4  → 4  9

9 → 9 4 → 4

7  2  9  4  3  7  6 1 → 1  2  3  4  6  7  8  9

3  8  6  1  → 1  3  8  6

3 → 3 8 → 82 → 2
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Execution Example (cont.)
Partition, recursive call, base case

2 4  3  1 →→ 2  4  7  

1 → 1 9  4  → 4  9

9 → 9 4 → 4

7  2  9  4 3  7  6 1 → → 1  2  3  4  6  7  8  9

3  8  6  1  → 1  3  8  6

3 → 3 8 → 8
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Execution Example (cont.)
Recursive call, pivot selection

7  9  7 1  → 1  3  8  6

8 → 8

7  2  9  4 3  7  6 1 → 1  2  3  4  6  7  8  9

2 4  3  1 → 1  2 3  4

1 → 1 4  3 → 3 4

9 → 9 4 → 4

9 → 9
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Execution Example (cont.)
Partition, …, recursive call, base case

7  9  7 1  → 1  3  8  6

8 → 8

7  2  9  4 3  7  6 1 → 1  2  3  4  6  7  8  9

2 4  3  1 → 1  2 3  4

1 → 1 4  3 → 3 4

9 → 9 4 → 4

9 → 9
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Execution Example (cont.)
Join, join

7 9  7 → 17 7 9

8 → 8

7  2  9  4  3  7  6 1  → 1  2  3  4  6 7  7  9

2 4  3  1 → 1  2 3  4

1 → 1 4  3 → 3 4

9 → 9 4 → 4

9 → 9
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Worst-case Running Time
The worst case for quick-sort occurs when the pivot is the unique 
minimum or maximum element
One of L and G has size n − 1 and the other has size 0
The running time is proportional to the sum

n + (n − 1) + … + 2 + 1
Thus, the worst-case running time of quick-sort is O(n2)

depth time

0 n

1 n − 1

… …

n − 1 1
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Expected Running Time
Consider a recursive call of quick-sort on a sequence of size s
 Good call: the sizes of L and G are each less than 3s/4
 Bad call: one of L and G has size greater than 3s/4

A call is good with probability 1/2
 1/2 of the possible pivots cause good calls:

7  9  7 1  → 1

7  2  9  4 3  7  6 1 9

2  4  3  1 7 2 9 4 3 7 61

7  2 9  4 3  7  6  1

Good call Bad call

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Good pivotsBad pivots Bad pivots
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Expected Running Time, Part 2
Probabilistic Fact: The expected number of coin tosses required in 
order to get k heads is 2k
For a node of depth i, we expect
 i/2 ancestors are good calls
 The size of the input sequence for the current call is at most (3/4)i/2n

s(r)

s(a) s(b)

s(c) s(d) s(f)s(e)

time per levelexpected height

O(log n)

O(n)

O(n)

O(n)

total expected time: O(n log n)

Therefore, we have
 For a node of depth 2log4/3n, 

the expected input size is one
 The expected height of the 

quick-sort tree is O(log n)
The amount or work done at the 
nodes of the same depth is O(n)
Thus, the expected running time 
of quick-sort is O(n log n)
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In-Place Quick-Sort
Quick-sort can be implemented 
to run in-place
In the partition step, we use 
replace operations to rearrange 
the elements of the input 
sequence such that
 the elements less than the 

pivot have rank less than h
 the elements equal to the pivot 

have rank between h and k
 the elements greater than the 

pivot have rank greater than k
The recursive calls consider
 elements with rank less than h
 elements with rank greater 

than k

Algorithm inPlaceQuickSort(S, l, r)
Input sequence S, ranks l and r
Output sequence S with the

elements of rank between l and r
rearranged in increasing order

if l ≥ r
return

i ← a random integer between l and r
x ← S.elemAtRank(i)
(h, k) ← inPlacePartition(x)
inPlaceQuickSort(S, l, h − 1)
inPlaceQuickSort(S, k + 1, r)
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In-Place Partitioning
Perform the partition using two indices to split S into L 
and E U G (a similar method can split E U G into E and G).

Repeat until j and k cross:
 Scan j to the right until finding an element > x.
 Scan k to the left until finding an element < x.
 Swap elements at indices j and k

3  2  5  1  0  7  3  5  9  2  7  9  8  9  7  6 9

j k
(pivot = 6)

3  2  5  1  0  7  3  5  9  2  7  9  8  9  7  6 9

j k
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Execution Example (cont.)
Recursive call, …, base case, join

3  8  6  1  → 1  3  8  6

3 → 3 8 → 8

7  2  9  4 3  7  6 1 → 1  2  3  4  6  7  8  9

2 4  3  1 → 1  2 3  4

1 → 1 4  3 → 3 4

9 → 9 4 → 4
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A Lower Bound on Comparison-
based Sorting (§4.4)



Chapter 4 40

Comparison-Based 
Sorting

Many sorting algorithms are comparison based.
 They sort by making comparisons between pairs of objects
 Examples: bubble-sort, selection-sort, insertion-sort, heap-sort, 

merge-sort, quick-sort, ...
Let us therefore derive a lower bound on the running 
time of any algorithm that uses comparisons to sort n 
elements, x1, x2, …, xn.

Is xi < xj?

yes

no
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Counting Comparisons
Let us just count comparisons then.
Each possible run of the algorithm corresponds 
to a root-to-leaf path in a decision tree

xi < xj ?

xa < xb ?

xm < xo ? xp < xq ?xe < xf ? xk < xl ?

xc < xd ?
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Decision Tree Height
The height of this decision tree is a lower bound on the running time
Every possible input permutation must lead to a separate leaf 
output.  
 If not, some input …4…5… would have same output ordering as 

…5…4…, which would be wrong.
Since there are n!=1*2*…*n leaves, the height is at least log (n!)minimum height (time)

log (n!)

xi < xj ?

xa < xb ?

xm < xo ? xp < xq ?xe < xf ? xk < xl ?

xc < xd ?

n!
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The Lower Bound
Any comparison-based sorting algorithms takes at 
least log (n!) time
Therefore, any such algorithm takes time at least

That is, any comparison-based sorting algorithm must 
run in Ω(n log n) time.

).2/(log)2/(
2

log)!(log
2

nnnn
n

=





≥
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Bucket-Sort and Radix-Sort

0 1 2 3 4 5 6 7 8 9
B

1, c 7, d 7, g3, b3, a 7, e

∅ ∅ ∅ ∅ ∅ ∅ ∅
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Bucket-Sort (§ 4.5.1)
Let be S be a sequence of n
(key, element) items with keys 
in the range [0, N − 1]
Bucket-sort uses the keys as 
indices into an auxiliary array B
of sequences (buckets)
Phase 1: Empty sequence S by 

moving each item (k, o) into its 
bucket B[k]

Phase 2: For i = 0, …, N − 1, move 
the items of bucket B[i] to the 
end of  sequence S

Analysis:
 Phase 1 takes O(n) time
 Phase 2 takes O(n + N) time

Bucket-sort takes O(n + N) time 

Algorithm bucketSort(S, N)
Input sequence S of (key, element)

items with keys in the range
[0, N − 1]

Output sequence S sorted by
increasing keys

B ← array of N empty sequences
while ¬S.isEmpty()

f ← S.first()
(k, o) ← S.remove(f)
B[k].insertLast((k, o))

for i ← 0 to N − 1
while ¬B[i].isEmpty()

f ← B[i].first()
(k, o) ← B[i].remove(f)
S.insertLast((k, o))
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Example
Key range [0, 9]

7, d 1, c 3, a 7, g 3, b 7, e

1, c 3, a 3, b 7, d 7, g 7, e

Phase 1

Phase 2
0 1 2 3 4 5 6 7 8 9

B

1, c 7, d 7, g3, b3, a 7, e

∅ ∅ ∅ ∅ ∅ ∅ ∅
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Properties and Extensions
Key-type Property
 The keys are used as 

indices into an array 
and cannot be arbitrary 
objects

 No external comparator
Stable Sort Property
 The relative order of 

any two items with the 
same key is preserved 
after the execution of 
the algorithm

Extensions
 Integer keys in the range [a, b]

 Put item (k, o) into bucket
B[k − a]

 String keys from a set D of 
possible strings, where D has 
constant size (e.g., names of 
the 50 U.S. states)
 Sort D and compute the rank 

r(k) of each string k of D in 
the sorted sequence 

 Put item (k, o) into bucket 
B[r(k)]
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Lexicographic Order
A d-tuple is a sequence of d keys (k1, k2, …, kd), where 
key ki is said to be the i-th dimension of the tuple
Example:
 The Cartesian coordinates of a point in space are a 3-tuple

The lexicographic order of two d-tuples is recursively 
defined as follows

(x1, x2, …, xd) < (y1, y2, …, yd)
⇔

x1 < y1  ∨ x1 = y1 ∧ (x2, …, xd) < (y2, …, yd)

I.e., the tuples are compared by the first dimension, 
then by the second dimension, etc.
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Lexicographic-Sort
Let Ci be the comparator 
that compares two tuples by 
their i-th dimension
Let stableSort(S, C) be a 
stable sorting algorithm that 
uses comparator C
Lexicographic-sort sorts a 
sequence of d-tuples in 
lexicographic order by 
executing d times algorithm 
stableSort, one per 
dimension
Lexicographic-sort runs in 
O(dT(n)) time, where T(n) is 
the running time of 
stableSort 

Algorithm lexicographicSort(S)
Input sequence S of  d-tuples
Output sequence S sorted in

lexicographic order

for i ← d downto 1
stableSort(S, Ci)

Example:
(7,4,6) (5,1,5) (2,4,6) (2, 1, 4) (3, 2, 4)

(2, 1, 4) (3, 2, 4) (5,1,5) (7,4,6) (2,4,6)

(2, 1, 4) (5,1,5) (3, 2, 4) (7,4,6) (2,4,6)

(2, 1, 4) (2,4,6) (3, 2, 4) (5,1,5) (7,4,6)
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Radix-Sort (§ 4.5.2)
Radix-sort is a 
specialization of 
lexicographic-sort that 
uses bucket-sort as the 
stable sorting algorithm 
in each dimension
Radix-sort is applicable 
to tuples where the 
keys in each dimension i 
are integers in the 
range [0, N − 1]
Radix-sort runs in time 
O(d( n + N))

Algorithm radixSort(S, N)
Input sequence S of  d-tuples such

that (0, …, 0) ≤ (x1, …, xd) and
(x1, …, xd) ≤ (N − 1, …, N − 1)
for each tuple (x1, …, xd) in S

Output sequence S sorted in
lexicographic order

for i ← d downto 1
bucketSort(S, N)
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Radix-Sort for 
Binary Numbers

Consider a sequence of n
b-bit integers 

x = xb − 1 … x1x0
We represent each element 
as a b-tuple of integers in 
the range [0, 1] and apply 
radix-sort with N = 2
This application of the 
radix-sort algorithm runs in 
O(bn) time 
For example, we can sort a 
sequence of 32-bit integers 
in linear time

Algorithm binaryRadixSort(S)
Input sequence S of b-bit

integers 
Output sequence S sorted
replace each element x

of S with the item (0, x)
for i ← 0 to b − 1

replace the key k of 
each item (k, x) of S
with bit xi of x

bucketSort(S, 2)
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Example
Sorting a sequence of 4-bit integers

1001

0010

1101

0001

1110

0010

1110

1001

1101

0001

1001

1101

0001

0010

1110

1001

0001

0010

1101

1110

0001

0010

1001

1101

1110
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Summary of Sorting Algorithms 
(§4.6) 

Algorithm Time Notes

selection-sort O(n2)
slow
in-place
for small data sets (< 1K)

insertion-sort O(n2)
slow
in-place
for small data sets (< 1K)

heap-sort O(n log n)
fast
in-place
for large data sets (1K — 1M)

merge-sort O(n log n)
fast
sequential data access
for huge data sets (> 1M)



Chapter 4 54

Selection (§4.7)
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The Selection Problem
Given an integer k and n elements x1, x2, …, xn, 
taken from a total order, find the k-th smallest 
element in this set.
Of course, we can sort the set in O(n log n) time 
and then index the k-th element.

Can we solve the selection problem faster?

7  4  9  6 2  → 2  4  6 7  9k=3
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Quick-Select 
Quick-select is a randomized
selection algorithm based on 
the prune-and-search 
paradigm:
 Prune: pick a random element x

(called pivot) and partition S into 
 L elements less than x
 E elements equal x
 G elements greater than x

 Search: depending on k, either 
answer is in E, or we need to 
recurse in either L or G

x

x

L GE

k < |L|

|L| < k < |L|+|E|
(done)

k > |L|+|E|
k’ = k - |L| - |E|
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Partition
We partition an input 
sequence as in the quick-sort 
algorithm:
 We remove, in turn, each 

element y from S and 
 We insert y into L, E or G,

depending on the result of 
the comparison with the 
pivot x

Each insertion and removal is 
at the beginning or at the 
end of a sequence, and 
hence takes O(1) time
Thus, the partition step of 
quick-select takes O(n) time

Algorithm partition(S, p)
Input sequence S, position p of pivot 
Output subsequences L, E, G of the 

elements of S less than, equal to,
or greater than the pivot, resp.

L, E, G ← empty sequences
x ← S.remove(p)
while ¬S.isEmpty()

y ← S.remove(S.first())
if y < x

L.insertLast(y)
else if y = x

E.insertLast(y)
else { y > x }

G.insertLast(y)
return L, E, G
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Quick-Select Visualization
An execution of quick-select can be visualized by a 
recursion path
 Each node represents a recursive call of quick-select, and 

stores k and the remaining sequence

k=5, S=(7  4  9  3 2  6  5  1  8)

5

k=2, S=(7  4  9  6  5  8)

k=2, S=(7  4 6  5)

k=1, S=(7  6  5)
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Expected Running Time
Consider a recursive call of quick-select on a sequence of size s
 Good call: the sizes of L and G are each less than 3s/4
 Bad call: one of L and G has size greater than 3s/4

A call is good with probability 1/2
 1/2 of the possible pivots cause good calls:

7  9  7 1  → 1

7  2  9  4 3  7  6 1 9

2  4  3  1 7 2 9 4 3 7 61

7  2 9  4 3  7  6  1

Good call Bad call

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Good pivotsBad pivots Bad pivots
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Expected Running Time, 
Part 2

Probabilistic Fact #1: The expected number of coin tosses required in 
order to get one head is two
Probabilistic Fact #2: Expectation is a linear function:
 E(X + Y ) = E(X ) + E(Y )
 E(cX ) = cE(X )

Let T(n) denote the expected running time of quick-select.
By Fact #2,
 T(n) < T(3n/4) + bn*(expected # of calls before a good call)

By Fact #1,
 T(n) < T(3n/4) + 2bn

That is, T(n) is a geometric series:
 T(n) < 2bn + 2b(3/4)n + 2b(3/4)2n + 2b(3/4)3n + …

So T(n) is O(n).
We can solve the selection problem in O(n) expected 
time.
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Deterministic Selection 
We can do selection in O(n) worst-case time.
Main idea: recursively use the selection algorithm 
itself to find a good pivot for quick-select:
 Divide S into n/5 sets of 5 each
 Find a median in each set
 Recursively find the median of the “baby” 

medians. 

See Exercise C-4.24 for details of analysis.
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