

Outline and Reading

What is a skip list (§3.5) Operations Search (§3.5.1) Insertion (§3.5.2) Deletion (§3.5.2) Implementation Analysis (§3.5.3) Space usage Search and update times Comparison of dictionary implementations

What is a Skip List

- A skip list for a set S of distinct (key, element) items is a series of lists S_0, S_1, \ldots, S_h such that
 - Each list S_i contains the special keys $+\infty$ and $-\infty$
 - List S₀ contains the keys of S in nondecreasing order
 - Each list is a subsequence of the previous one, i.e.,

$$S_0 \supseteq S_1 \supseteq \ldots \supseteq S_h$$

- List S_h contains only the two special keys
- We show how to use a skip list to implement the dictionary ADT

Search

- We search for a key x in a a skip list as follows:
 - We start at the first position of the top list
 - At the current position p, we compare x with $y \leftarrow key(after(p))$
 - x = y: we return element(after(p))
 - x > y: we "scan forward"
 - x < y: we "drop down"
 - If we try to drop down past the bottom list, we return *NO_SUCH_KEY*

Example: search for 78

Randomized Algorithms

- A randomized algorithm performs coin tosses (i.e., uses random bits) to control its execution
- It contains statements of the type
 - $b \leftarrow random()$
 - **if** b = 0
 - do A ...
 - **else** { **b**= 1 }
 - do B ...
- Its running time depends on the outcomes of the coin tosses

- We analyze the expected running time of a randomized algorithm under the following assumptions
 - the coins are unbiased, and
 - the coin tosses are independent
- The worst-case running time of a randomized algorithm is often large but has very low probability (e.g., it occurs when all the coin tosses give "heads")
- We use a randomized algorithm to insert items into a skip list

Insertion

- To insert an item (x, o) into a skip list, we use a randomized algorithm:
 - We repeatedly toss a coin until we get tails, and we denote with *i* the number of times the coin came up heads
 - If $i \ge h$, we add to the skip list new lists S_{h+1}, \ldots, S_{i+1} , each containing only the two special keys
 - We search for x in the skip list and find the positions p₀, p₁, ..., p_i of the items with largest key less than x in each list S₀, S₁, ..., S_i
 - For $j \leftarrow 0, ..., i$, we insert item (x, o) into list S_j after position p_j

Example: insert key 15, with i = 2

Deletion

- To remove an item with key x from a skip list, we proceed as follows:
 - We search for x in the skip list and find the positions $p_0, p_1, ..., p_i$ of the items with key x, where position p_j is in list S_j
 - We remove positions $p_0, p_1, ..., p_i$ from the lists $S_0, S_1, ..., S_i$
 - We remove all but one list containing only the two special keys
- Example: remove key 34

Implementation

- We can implement a skip list with quad-nodes
- A quad-node stores:
 - item
 - link to the node before
 - link to the node after
 - link to the node below
 - link to the node after
- Also, we define special keys PLUS_INF and MINUS_INF, and we modify the key comparator to handle them

quad-node

X

Space Usage

- The space used by a skip list depends on the random bits used by each invocation of the insertion algorithm
- We use the following two basic probabilistic facts:
 - Fact 1: The probability of getting *i* consecutive heads when flipping a coin is $1/2^i$
 - Fact 2: If each of *n* items is present in a set with probability *p*, the expected size of the set is *np*

Consider a skip list with n items

- By Fact 1, we insert an item in list S_i with probability $1/2^i$
- By Fact 2, the expected size of list S_i is n/2ⁱ
- The expected number of nodes used by the skip list is

$$\sum_{i=0}^{h} \frac{n}{2^{i}} = n \sum_{i=0}^{h} \frac{1}{2^{i}} < 2n$$

Thus, the expected space usage of a skip list with *n* items is *O*(*n*)

Height

- The running time of the search an insertion algorithms is affected by the height *h* of the skip list
- We show that with high probability, a skip list with *n* items has height *O*(log *n*)
- We use the following additional probabilistic fact:
 Fact 3: If each of *n* events has probability *p*, the probability that at least one event occurs is at most *np*

Consider a skip list with n items

- By Fact 1, we insert an item in list S_i with probability $1/2^i$
- By Fact 3, the probability that list S_i has at least one item is at most n/2ⁱ
- By picking $i = 3\log n$, we have that the probability that $S_{3\log n}$ has at least one item is at most

 $n/2^{3\log n} = n/n^3 = 1/n^2$

• Thus a skip list with *n* items has height at most $3\log n$ with probability at least $1 - 1/n^2$

Search and Update Times

- The search time in a skip list is proportional to
 - the number of drop-down steps, plus
 - the number of scan-forward steps
- The drop-down steps are bounded by the height of the skip list and thus are O(log n) with high probability
- To analyze the scan-forward steps, we use yet another probabilistic fact:
 - Fact 4: The expected number of coin tosses required in order to get tails is 2

- When we scan forward in a list, the destination key does not belong to a higher list
 - A scan-forward step is associated with a former coin toss that gave tails
- By Fact 4, in each list the expected number of scanforward steps is 2
- Thus, the expected number of scan-forward steps is O(log n)
- We conclude that a search in a skip list takes O(log n) expected time
- The analysis of insertion and deletion gives similar results

Implementing a Dictionary

Comparison of efficient dictionary

	Search	Insert	Delete	Notes
Hash Table	1 expected	1 expected	1 expected	 no ordered dictionary methods simple to implement
Skip List	log n high prob.	log n high prob.	log n high prob.	 randomized insertion simple to implement
(2,4) Tree	log n worst-case	log <i>n</i> worst-case	log n worst-case	complex to implement
10/16/2015 3:33 PM Skip Lists 12				

Summary

- A skip list is a data structure for dictionaries that uses a randomized insertion algorithm
- In a skip list with n items
 - The expected space used is O(n)
 - The expected search, insertion and deletion time is O(log n)

 Using a more complex probabilistic analysis, one can show that these performance bounds also hold with high probability

 Skip lists are fast and simple to implement in practice