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Outline and Reading
What is a skip list (§3.5)
Operations
 Search (§3.5.1)
 Insertion (§3.5.2)
 Deletion (§3.5.2)

Implementation
Analysis (§3.5.3)
 Space usage
 Search and update times

Comparison of dictionary implementations
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What is a Skip List
A skip list for a set S of distinct (key, element) items is a series of 
lists S0, S1 , … , Sh such that
 Each list Si contains the special keys +∞ and −∞
 List S0 contains the keys of S in nondecreasing order 
 Each list is a subsequence of the previous one, i.e.,

S0 ⊇ S1 ⊇ … ⊇ Sh
 List Sh contains only the two special keys

We show how to use a skip list to implement the dictionary ADT
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Search
We search for a key x in a a skip list as follows:
 We start at the first position of the top list 
 At the current position p, we compare x with y ← key(after(p))

x = y: we return element(after(p))
x > y: we “scan forward” 
x < y: we “drop down”

 If we try to drop down past the bottom list, we return NO_SUCH_KEY
Example: search for 78
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Randomized Algorithms
A randomized algorithm
performs coin tosses (i.e., 
uses random bits) to control 
its execution
It contains statements of the 
type

b ← random()
if b = 0

do A …
else { b = 1}

do  B … 
Its running time depends on 
the outcomes of the coin 
tosses

We analyze the expected 
running time of a 
randomized algorithm under 
the following assumptions
 the coins are unbiased, and 
 the coin tosses are 

independent
The worst-case running time 
of a randomized algorithm is 
often large but has very low 
probability (e.g., it occurs 
when all the coin tosses give 
“heads”)
We use a randomized 
algorithm to insert items into 
a skip list
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To insert an item (x, o) into a skip list, we use a randomized 
algorithm:
 We repeatedly toss a coin until we get tails, and we denote with i 

the number of times the coin came up heads
 If i ≥ h, we add to the skip list new lists Sh+1, … , Si +1, each 

containing only the two special keys
 We search for x in the skip list and find the positions p0, p1 , …, pi 

of the items with largest key less than x in each list S0, S1, … , Si
 For j ← 0, …, i, we insert item (x, o) into list Sj after position pj

Example: insert key 15, with i = 2

Insertion
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Deletion
To remove an item with key x from a skip list, we proceed as 
follows:
 We search for x in the skip list and find the positions p0, p1 , …, pi 

of the items with key x, where position pj is in list Sj

 We remove positions p0, p1 , …, pi from the lists S0, S1, … , Si

 We remove all but one list containing only the two special keys
Example: remove key 34

−∞ +∞4512

−∞ +∞

23

23−∞ +∞

S0

S1

S2

−∞ +∞

S0

S1

S2

S3

−∞ +∞4512 23 34

−∞ +∞34

−∞ +∞23 34
p0

p1

p2



10/16/2015 3:33 PM Skip Lists 8

Implementation
We can implement a skip list 
with  quad-nodes
A quad-node stores:
 item
 link to the node before
 link to the node after
 link to the node below
 link to the node after

Also, we define special keys 
PLUS_INF and MINUS_INF, 
and we modify the key 
comparator to handle them  

x

quad-node



10/16/2015 3:33 PM Skip Lists 9

Space Usage
The space used by a skip list 
depends on the random bits 
used by each invocation of the 
insertion algorithm
We use the following two basic 
probabilistic facts:
Fact 1: The probability of getting i

consecutive heads when 
flipping a coin is 1/2i

Fact 2: If each of n items is 
present in a set with 
probability p, the expected size 
of the set is np

Consider a skip list with n
items
 By Fact 1, we insert an item 

in list Si with probability 1/2i

 By Fact 2, the expected size 
of list Si is n/2i

The expected number of 
nodes used by the skip list is
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Thus, the expected space 
usage of a skip list with n
items is O(n)
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Height
The running time of the 
search an insertion 
algorithms is affected by the 
height h of the skip list
We show that with high 
probability, a skip list with n
items has height O(log n)
We use the following 
additional probabilistic fact:
Fact 3: If each of n events has 

probability p, the probability 
that at least one event 
occurs is at most np

Consider a skip list with n
items
 By Fact 1, we insert an item in 

list Si with probability 1/2i

 By Fact 3, the probability that 
list Si has at least one item is 
at most n/2i

By picking i = 3log n, we have 
that the probability that S3log n
has at least one item is
at most

n/23log n = n/n3 = 1/n2

Thus a skip list with n items 
has height at most 3log n with 
probability at least 1 − 1/n2
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Search and Update Times
The search time in a skip list 
is proportional to
 the number of drop-down 

steps, plus
 the number of scan-forward 

steps
The drop-down steps are 
bounded by the height of the 
skip list and thus are O(log n) 
with high probability
To analyze the scan-forward 
steps, we use yet another 
probabilistic fact:
Fact 4: The expected number of 

coin tosses required in order 
to get tails is 2

When we scan forward in a 
list, the destination key does 
not belong to a higher list
 A scan-forward step is 

associated with a former coin 
toss that gave tails

By Fact 4, in each list the 
expected number of scan-
forward steps is 2
Thus, the expected number of 
scan-forward steps is  O(log n)
We conclude that a search in a 
skip list takes O(log n) 
expected time
The analysis of insertion and 
deletion gives similar results
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Implementing a Dictionary
Comparison of efficient dictionary 
implementationsSearch Insert Delete Notes

Hash 
Table

1
expected

1
expected

1
expected

no ordered dictionary 
methods
simple to implement

Skip List log n
high prob.

log n
high prob.

log n
high prob.

randomized insertion
simple to implement

(2,4) 
Tree

log n
worst-case

log n
worst-case

log n
worst-case

complex to implement
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Summary
A skip list is a data 
structure for dictionaries 
that uses a randomized 
insertion algorithm
In a skip list with n
items 
 The expected space used 

is O(n)
 The expected search, 

insertion and deletion 
time is O(log n)

Using a more complex 
probabilistic analysis, 
one can show that 
these performance 
bounds also hold with 
high probability
Skip lists are fast and 
simple to implement in 
practice
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