
10/16/2015 3:33 PM Skip Lists 1

Skip Lists
+∞−∞

S0

S1

S2

S3

+∞−∞ 10 362315

+∞−∞ 15

+∞−∞ 2315

10/16/2015 3:33 PM Skip Lists 2

Outline and Reading
What is a skip list (§3.5)
Operations
 Search (§3.5.1)
 Insertion (§3.5.2)
 Deletion (§3.5.2)

Implementation
Analysis (§3.5.3)
 Space usage
 Search and update times

Comparison of dictionary implementations

10/16/2015 3:33 PM Skip Lists 3

What is a Skip List
A skip list for a set S of distinct (key, element) items is a series of
lists S0, S1 , … , Sh such that
 Each list Si contains the special keys +∞ and −∞
 List S0 contains the keys of S in nondecreasing order
 Each list is a subsequence of the previous one, i.e.,

S0 ⊇ S1 ⊇ … ⊇ Sh
 List Sh contains only the two special keys

We show how to use a skip list to implement the dictionary ADT

56 64 78 +∞31 34 44−∞ 12 23 26

+∞−∞

+∞31−∞

64 +∞31 34−∞ 23

S0

S1

S2

S3

10/16/2015 3:33 PM Skip Lists 4

Search
We search for a key x in a a skip list as follows:
 We start at the first position of the top list
 At the current position p, we compare x with y ← key(after(p))

x = y: we return element(after(p))
x > y: we “scan forward”
x < y: we “drop down”

 If we try to drop down past the bottom list, we return NO_SUCH_KEY
Example: search for 78

+∞−∞

S0

S1

S2

S3

+∞31−∞

64 +∞31 34−∞ 23

56 64 78 +∞31 34 44−∞ 12 23 26

10/16/2015 3:33 PM Skip Lists 5

Randomized Algorithms
A randomized algorithm
performs coin tosses (i.e.,
uses random bits) to control
its execution
It contains statements of the
type

b ← random()
if b = 0

do A …
else { b = 1}

do B …
Its running time depends on
the outcomes of the coin
tosses

We analyze the expected
running time of a
randomized algorithm under
the following assumptions
 the coins are unbiased, and
 the coin tosses are

independent
The worst-case running time
of a randomized algorithm is
often large but has very low
probability (e.g., it occurs
when all the coin tosses give
“heads”)
We use a randomized
algorithm to insert items into
a skip list

10/16/2015 3:33 PM Skip Lists 6

To insert an item (x, o) into a skip list, we use a randomized
algorithm:
 We repeatedly toss a coin until we get tails, and we denote with i

the number of times the coin came up heads
 If i ≥ h, we add to the skip list new lists Sh+1, … , Si +1, each

containing only the two special keys
 We search for x in the skip list and find the positions p0, p1 , …, pi

of the items with largest key less than x in each list S0, S1, … , Si
 For j ← 0, …, i, we insert item (x, o) into list Sj after position pj

Example: insert key 15, with i = 2

Insertion

+∞−∞ 10 36

+∞−∞

23

23 +∞−∞

S0

S1

S2

+∞−∞

S0

S1

S2

S3

+∞−∞ 10 362315

+∞−∞ 15

+∞−∞ 2315
p0

p1

p2

10/16/2015 3:33 PM Skip Lists 7

Deletion
To remove an item with key x from a skip list, we proceed as
follows:
 We search for x in the skip list and find the positions p0, p1 , …, pi

of the items with key x, where position pj is in list Sj

 We remove positions p0, p1 , …, pi from the lists S0, S1, … , Si

 We remove all but one list containing only the two special keys
Example: remove key 34

−∞ +∞4512

−∞ +∞

23

23−∞ +∞

S0

S1

S2

−∞ +∞

S0

S1

S2

S3

−∞ +∞4512 23 34

−∞ +∞34

−∞ +∞23 34
p0

p1

p2

10/16/2015 3:33 PM Skip Lists 8

Implementation
We can implement a skip list
with quad-nodes
A quad-node stores:
 item
 link to the node before
 link to the node after
 link to the node below
 link to the node after

Also, we define special keys
PLUS_INF and MINUS_INF,
and we modify the key
comparator to handle them

x

quad-node

10/16/2015 3:33 PM Skip Lists 9

Space Usage
The space used by a skip list
depends on the random bits
used by each invocation of the
insertion algorithm
We use the following two basic
probabilistic facts:
Fact 1: The probability of getting i

consecutive heads when
flipping a coin is 1/2i

Fact 2: If each of n items is
present in a set with
probability p, the expected size
of the set is np

Consider a skip list with n
items
 By Fact 1, we insert an item

in list Si with probability 1/2i

 By Fact 2, the expected size
of list Si is n/2i

The expected number of
nodes used by the skip list is

nnn h

i
i

h

i
i 2

2
1

2 00
<= ∑∑

==

Thus, the expected space
usage of a skip list with n
items is O(n)

10/16/2015 3:33 PM Skip Lists 10

Height
The running time of the
search an insertion
algorithms is affected by the
height h of the skip list
We show that with high
probability, a skip list with n
items has height O(log n)
We use the following
additional probabilistic fact:
Fact 3: If each of n events has

probability p, the probability
that at least one event
occurs is at most np

Consider a skip list with n
items
 By Fact 1, we insert an item in

list Si with probability 1/2i

 By Fact 3, the probability that
list Si has at least one item is
at most n/2i

By picking i = 3log n, we have
that the probability that S3log n
has at least one item is
at most

n/23log n = n/n3 = 1/n2

Thus a skip list with n items
has height at most 3log n with
probability at least 1 − 1/n2

10/16/2015 3:33 PM Skip Lists 11

Search and Update Times
The search time in a skip list
is proportional to
 the number of drop-down

steps, plus
 the number of scan-forward

steps
The drop-down steps are
bounded by the height of the
skip list and thus are O(log n)
with high probability
To analyze the scan-forward
steps, we use yet another
probabilistic fact:
Fact 4: The expected number of

coin tosses required in order
to get tails is 2

When we scan forward in a
list, the destination key does
not belong to a higher list
 A scan-forward step is

associated with a former coin
toss that gave tails

By Fact 4, in each list the
expected number of scan-
forward steps is 2
Thus, the expected number of
scan-forward steps is O(log n)
We conclude that a search in a
skip list takes O(log n)
expected time
The analysis of insertion and
deletion gives similar results

10/16/2015 3:33 PM Skip Lists 12

Implementing a Dictionary
Comparison of efficient dictionary
implementationsSearch Insert Delete Notes

Hash
Table

1
expected

1
expected

1
expected

no ordered dictionary
methods
simple to implement

Skip List log n
high prob.

log n
high prob.

log n
high prob.

randomized insertion
simple to implement

(2,4)
Tree

log n
worst-case

log n
worst-case

log n
worst-case

complex to implement

10/16/2015 3:33 PM Skip Lists 13

Summary
A skip list is a data
structure for dictionaries
that uses a randomized
insertion algorithm
In a skip list with n
items
 The expected space used

is O(n)
 The expected search,

insertion and deletion
time is O(log n)

Using a more complex
probabilistic analysis,
one can show that
these performance
bounds also hold with
high probability
Skip lists are fast and
simple to implement in
practice

	Skip Lists
	Outline and Reading
	What is a Skip List
	Search
	Randomized Algorithms
	Insertion
	Deletion
	Implementation
	Space Usage
	Height
	Search and Update Times
	Implementing a Dictionary
	Summary

