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Ordered Dictionaries

Keys are assumed to come from a total 
order.
New operations: 
 closestKeyBefore(k)
 closestElemBefore(k)
 closestKeyAfter(k)
 closestElemAfter(k)
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Binary Search (§3.1.1)
Binary search performs operation findElement(k) on a dictionary 
implemented by means of an array-based sequence, sorted by key
 at each step, the number of candidate items is halved
 terminates after O(log n) steps

Example: findElement(7)

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19
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Lookup Table (§3.1.1)

A lookup table is a dictionary implemented by means of a sorted 
sequence
 We store the items of the dictionary in an array-based sequence, 

sorted by key
 We use an external comparator for the keys

Performance:
 findElement takes O(log n) time, using binary search
 insertItem takes O(n) time since in the worst case we have to shift 

n/2 items to make room for the new item
 removeElement take O(n) time since in the worst case we have to 

shift n/2 items to compact the items after the removal
The lookup table is effective only for dictionaries of small size or 
for dictionaries on which searches are the most common 
operations, while insertions and removals are rarely performed 
(e.g., credit card authorizations)
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Binary Search 
Tree (§3.1.2)
A binary search tree is a 
binary tree storing keys 
(or key-element pairs) 
at its internal nodes and 
satisfying the following 
property:
 Let u, v, and w be three 

nodes such that u is in 
the left subtree of v and 
w is in the right subtree 
of v. We have 
key(u) ≤ key(v) ≤ key(w)

External nodes do not 
store items

An inorder traversal of a 
binary search trees 
visits the keys in 
increasing order
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Search (§3.1.3)
To search for a key k, 
we trace a downward 
path starting at the root
The next node visited 
depends on the 
outcome of the 
comparison of k with 
the key of the current 
node
If we reach a leaf, the 
key is not found and we 
return NO_SUCH_KEY
Example: 
findElement(4)

Algorithm findElement(k, v)
if T.isExternal (v)

return NO_SUCH_KEY
if k < key(v)

return findElement(k, T.leftChild(v))
else if k = key(v)

return element(v)
else { k > key(v) }

return findElement(k, T.rightChild(v))
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Insertion (§3.1.4)
To perform operation 
insertItem(k, o), we search 
for key k
Assume k is not already in 
the tree, and let let w be 
the leaf reached by the 
search
We insert k at node w and 
expand w into an internal 
node
Example: insert 5
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Deletion (§3.1.5)
To perform operation 
removeElement(k), we 
search for key k
Assume key k is in the tree, 
and let let v be the node 
storing k
If node v has a leaf child w, 
we remove v and w from the 
tree with operation 
removeAboveExternal(w)
Example: remove 4
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Deletion (cont.)
We consider the case where 
the key k to be removed is 
stored at a node v whose 
children are both internal
 we find the internal node w 

that follows v in an inorder 
traversal

 we copy key(w) into node v
 we remove node w and its 

left child z (which must be a 
leaf) by means of operation 
removeAboveExternal(z)

Example: remove 3
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Performance (§3.1.6)
Consider a dictionary 
with n items 
implemented by means 
of a binary search tree 
of height h
 the space used is O(n)
 methods findElement , 

insertItem and 
removeElement take 
O(h) time

The height h is O(n) in 
the worst case and 
O(log n) in the best 
case
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AVL Trees
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AVL Tree Definition

AVL trees are 
balanced.
An AVL Tree is a 
binary search tree
such that for every 
internal node v of T, 
the heights of the 
children of v can 
differ by at most 1.

88

44

17 78

32 50

48 62
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1
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3

1

1

An example of an AVL tree where the 
heights are shown next to the nodes:
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Height of an AVL Tree
Fact: The height of an AVL tree storing n keys is O(log n).
Proof: Let us bound n(h): the minimum number of internal 
nodes of an AVL tree of height h.
We easily see that n(1) = 1 and n(2) = 2
For n > 2, an AVL tree of height h contains the root node, 
one AVL subtree of height n-1 and another of height n-2.
That is, n(h) = 1 + n(h-1) + n(h-2)
Knowing n(h-1) > n(h-2), we get n(h) > 2n(h-2). So
n(h) > 2n(h-2), n(h) > 4n(h-4), n(h) > 8n(n-6), … (by induction),
n(h) > 2in(h-2i). Now let i=(floor of h/2) -1 Then
we get: n(h) > 2 h/2-1

Taking logarithms: h < 2log n(h) +2
Thus the height of an AVL tree is O(log n)

3

4 n(1)

n(2)
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Insertion in an AVL Tree
Insertion is as in a binary search tree
Always done by expanding an external node.
Example: 44

17 78

32 50 88

48 62

54
w

b=x

a=y

c=z

44

17 78

32 50 88

48 62

before insertion after insertion
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Trinode Restructuring
let (a,b,c) be an inorder listing of x, y, z
perform the rotations needed to make b the topmost node of 
the three

b=y

a=z

c=x
T0

T1

T2 T3

b=y

a=z c=x

T0 T1 T2 T3

c=y

b=x

a=z

T0

T1 T2

T3 b=x

c=ya=z

T0 T1 T2 T3

case 1: single rotation
(a left rotation about a)

case 2: double rotation
(a right rotation about c, 
then a left rotation about a)

(other two cases 
are symmetrical)
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Insertion Example, continued
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Restructuring 
(as Single Rotations)

Single Rotations:

T0
T1

T2

T3

c = x
b = y

a = z

T0 T1 T2

T3

c = x
b = y

a = z
single rotation

T3
T2

T1

T0

a = x
b = y

c = z

T3T2T1

T0

a = x
b = y

c = z
single rotation
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Restructuring 
(as Double Rotations)

double rotations:

double rotationa = z

b = x
c = y

T0
T2

T1

T3 T0

T2
T3T1

a = z
b = x

c = y

double rotationc = z

b = x
a = y

T0
T2

T1

T3 T0

T2
T3 T1

c = z
b = x

a = y
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Removal in an AVL Tree
Removal begins as in a binary search tree, which 
means the node removed will become an empty 
external node. Its parent, w, may cause an imbalance.
Example: 

44

17

7832 50

8848

62

54

44

17

7850

8848

62

54

before deletion of 32 after deletion
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Rebalancing after a Removal
Let z be the first unbalanced node encountered while travelling 
up the tree from w. Also, let y be the child of z with the larger 
height, and let x be the child of y with the larger height.
We perform restructure(x) to restore balance at z.
As this restructuring may upset the balance of another node 
higher in the tree, we must continue checking for balance until 
the root of T is reached

44

17

7850

8848

62

54

w

c=x

b=y

a=z

44

17

78

50 88

48

62

54
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Running Times for 
AVL Trees

a single restructure is O(1)
 using a linked-structure binary tree

find is O(log n)
 height of tree is O(log n), no restructures needed

insert is O(log n)
 initial find is O(log n)
 Restructuring up the tree, maintaining heights is O(log n)

remove is O(log n)
 initial find is O(log n)
 Restructuring up the tree, maintaining heights is O(log n)
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Bouned-Depth Search Trees

9

10  142  5  7
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Outline and Reading
Bounded-Depth Search Trees
Multi-way search tree (§3.3.1)
 Definition
 Search

(2,4) tree (§3.3.2)
 Definition
 Search
 Insertion
 Deletion
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Multi-Way Search Tree
A multi-way search tree is an ordered tree such that 
 Each internal node has at least two children and stores  d −1 

key-element items (ki, oi), where d is the number of children 
 For a node with children v1 v2 … vd storing  keys k1 k2 … kd−1

 keys in the subtree of v1 are less than k1
 keys in the subtree of vi are between ki−1 and ki (i = 2, …, d − 1)
 keys in the subtree of vd are greater than kd−1

 The leaves store no items and serve as placeholders
11    24

2   6   8 15

30

27    32
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Multi-Way Inorder Traversal
We can extend the notion of inorder traversal from binary trees 
to multi-way search trees
Namely, we visit item (ki, oi) of node v between the recursive 
traversals of the subtrees of v rooted at children vi and vi + 1
An inorder traversal of a multi-way search tree visits the keys in 
increasing order

11    24

2   6   8 15

30

27    32

1 3 5 7 9 11 13 19

15 17

2 4 6 14 18

8 12

10

16
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Multi-Way Searching
Similar to search in a binary search tree
A each internal node with children v1 v2 … vd and keys k1 k2 … kd−1
 k = ki (i = 1, …, d − 1): the search terminates successfully
 k < k1: we continue the search in child v1
 ki−1 < k < ki (i = 2, …, d − 1): we continue the search in child vi
 k > kd−1: we continue the search in child vd

Reaching an external node terminates the search unsuccessfully
Example: search for 30

11    24

2   6   8 15

30

27    32
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(2,4) Tree
A (2,4) tree (also called 2-4 tree or 2-3-4 tree) is a multi-way 
search with the following properties
 Node-Size Property: every internal node has at most four children
 Depth Property: all the external nodes have the same depth

Depending on the number of children, an internal node of a 
(2,4) tree is called a 2-node, 3-node or 4-node

10   15   24

2   8 12 27    3218
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Height of a (2,4) Tree
Theorem: A (2,4) tree storing n items has height O(log n)
Proof:
 Let h be the height of a (2,4) tree with n items
 Since there are at least 2i items at depth i = 0, … , h − 1 and no 

items at depth h, we have
n ≥ 1 + 2 + 4 + … + 2h−1 = 2h − 1

 Thus, h ≤ log (n + 1)
Searching in a (2,4) tree with n items takes O(log n) time

1

2

2h−1

0

items
0

1

h−1

h

depth
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Insertion
We insert a new item (k, o) at the parent v of the leaf reached by 
searching for k
 We preserve the depth property but 
 We may cause an overflow (i.e., node v may become a 5-node)

Example: inserting key 30 causes an overflow

27   32   35

10   15   24

2   8 12 18

10   15   24

2   8 12 27   30 32   3518

v

v
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Overflow and Split
We handle an overflow at a 5-node v with a split operation:
 let v1 … v5 be the children of v and  k1 … k4 be the keys of v
 node v is replaced nodes v' and v"

 v' is a 3-node with keys k1 k2 and children v1 v2 v3

 v" is a 2-node with key k4 and children v4 v5

 key k3 is inserted into the parent u of v (a new root may be created)
The overflow may propagate to the parent node u

15   24

12 27  30  32 3518
v

u

v1 v2 v3 v4 v5

15 24  32

12 27  3018
v'

u

v1 v2 v3 v4 v5

35
v"
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Analysis of Insertion
Algorithm insertItem(k, o)

1. We search for key k to locate the 
insertion node v

2. We add the new item (k, o) at node v

3. while overflow(v)
if isRoot(v)

create a new empty root above v
v ← split(v)

Let T be a (2,4) tree 
with n items
 Tree T has O(log n) 

height
 Step 1 takes O(log n)

time because we visit 
O(log n) nodes

 Step 2 takes O(1) time
 Step 3 takes O(log n)

time because each split 
takes O(1) time and we 
perform O(log n) splits

Thus, an insertion in a 
(2,4) tree takes O(log n)
time
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Deletion
We reduce deletion of an item to the case where the item is at the 
node with leaf children
Otherwise, we replace the item with its inorder successor (or, 
equivalently, with its inorder predecessor) and delete the latter item
Example: to delete key 24, we replace it with 27 (inorder successor)

27   32   35

10   15   24

2   8 12 18

32   35

10   15   27

2   8 12 18
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Underflow and Fusion
Deleting an item from a node v may cause an underflow, where 
node v becomes a 1-node with one child and no keys
To handle an underflow at node v with parent u, we consider two 
cases
Case 1: the adjacent siblings of v are 2-nodes
 Fusion operation: we merge v with an adjacent sibling w and move an 

item from u to the merged node v'
 After a fusion, the underflow may propagate to the parent u

9  14

2  5  7 10

u

v
9

10  14

u

v'w
2  5  7
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Underflow and Transfer
To handle an underflow at node v with parent u, we consider 
two cases
Case 2: an adjacent sibling w of v is a 3-node or a 4-node
 Transfer operation:

1.  we move a child of w to v
2.  we move an item from u to v
3.  we move an item from w to u

 After a transfer, no underflow occurs

4  9

6  82

u

vw
4  8

62 9

u

vw
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Analysis of Deletion
Let T be a (2,4) tree with n items
 Tree T has O(log n) height

In a deletion operation
 We visit O(log n) nodes to locate the node from 

which to delete the item
 We handle an underflow with a series of O(log n)

fusions, followed by at most one transfer
 Each fusion and transfer takes O(1) time

Thus, deleting an item from a (2,4) tree takes 
O(log n) time
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