
Search Trees 1

Search Trees
6

92

41 8

<

>

=

Search Trees 2

Ordered Dictionaries

Keys are assumed to come from a total
order.
New operations:
 closestKeyBefore(k)
 closestElemBefore(k)
 closestKeyAfter(k)
 closestElemAfter(k)

Search Trees 3

Binary Search (§3.1.1)
Binary search performs operation findElement(k) on a dictionary
implemented by means of an array-based sequence, sorted by key
 at each step, the number of candidate items is halved
 terminates after O(log n) steps

Example: findElement(7)

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

0

0

0

0

ml h

ml h

ml h

l=m =h

Search Trees 4

Lookup Table (§3.1.1)

A lookup table is a dictionary implemented by means of a sorted
sequence
 We store the items of the dictionary in an array-based sequence,

sorted by key
 We use an external comparator for the keys

Performance:
 findElement takes O(log n) time, using binary search
 insertItem takes O(n) time since in the worst case we have to shift

n/2 items to make room for the new item
 removeElement take O(n) time since in the worst case we have to

shift n/2 items to compact the items after the removal
The lookup table is effective only for dictionaries of small size or
for dictionaries on which searches are the most common
operations, while insertions and removals are rarely performed
(e.g., credit card authorizations)

Search Trees 5

Binary Search
Tree (§3.1.2)
A binary search tree is a
binary tree storing keys
(or key-element pairs)
at its internal nodes and
satisfying the following
property:
 Let u, v, and w be three

nodes such that u is in
the left subtree of v and
w is in the right subtree
of v. We have
key(u) ≤ key(v) ≤ key(w)

External nodes do not
store items

An inorder traversal of a
binary search trees
visits the keys in
increasing order

6

92

41 8

Search Trees 6

Search (§3.1.3)
To search for a key k,
we trace a downward
path starting at the root
The next node visited
depends on the
outcome of the
comparison of k with
the key of the current
node
If we reach a leaf, the
key is not found and we
return NO_SUCH_KEY
Example:
findElement(4)

Algorithm findElement(k, v)
if T.isExternal (v)

return NO_SUCH_KEY
if k < key(v)

return findElement(k, T.leftChild(v))
else if k = key(v)

return element(v)
else { k > key(v) }

return findElement(k, T.rightChild(v))

6

92

41 8

<

>

=

Search Trees 7

Insertion (§3.1.4)
To perform operation
insertItem(k, o), we search
for key k
Assume k is not already in
the tree, and let let w be
the leaf reached by the
search
We insert k at node w and
expand w into an internal
node
Example: insert 5

6

92

41 8

6

92

41 8

5

<

>

>

w

w

Search Trees 8

Deletion (§3.1.5)
To perform operation
removeElement(k), we
search for key k
Assume key k is in the tree,
and let let v be the node
storing k
If node v has a leaf child w,
we remove v and w from the
tree with operation
removeAboveExternal(w)
Example: remove 4

6

92

41 8

5

v
w

6

92

51 8

<

>

Search Trees 9

Deletion (cont.)
We consider the case where
the key k to be removed is
stored at a node v whose
children are both internal
 we find the internal node w

that follows v in an inorder
traversal

 we copy key(w) into node v
 we remove node w and its

left child z (which must be a
leaf) by means of operation
removeAboveExternal(z)

Example: remove 3

3

1

8

6 9

5

v

w

z

2

5

1

8

6 9

v

2

Search Trees 10

Performance (§3.1.6)
Consider a dictionary
with n items
implemented by means
of a binary search tree
of height h
 the space used is O(n)
 methods findElement ,

insertItem and
removeElement take
O(h) time

The height h is O(n) in
the worst case and
O(log n) in the best
case

Search Trees 11

AVL Trees
6

3 8

4

v

z

Search Trees 12

AVL Tree Definition

AVL trees are
balanced.
An AVL Tree is a
binary search tree
such that for every
internal node v of T,
the heights of the
children of v can
differ by at most 1.

88

44

17 78

32 50

48 62

2

4

1

1

2

3

1

1

An example of an AVL tree where the
heights are shown next to the nodes:

Search Trees 13

Height of an AVL Tree
Fact: The height of an AVL tree storing n keys is O(log n).
Proof: Let us bound n(h): the minimum number of internal
nodes of an AVL tree of height h.
We easily see that n(1) = 1 and n(2) = 2
For n > 2, an AVL tree of height h contains the root node,
one AVL subtree of height n-1 and another of height n-2.
That is, n(h) = 1 + n(h-1) + n(h-2)
Knowing n(h-1) > n(h-2), we get n(h) > 2n(h-2). So
n(h) > 2n(h-2), n(h) > 4n(h-4), n(h) > 8n(n-6), … (by induction),
n(h) > 2in(h-2i). Now let i=(floor of h/2) -1 Then
we get: n(h) > 2 h/2-1

Taking logarithms: h < 2log n(h) +2
Thus the height of an AVL tree is O(log n)

3

4 n(1)

n(2)

Search Trees 14

Insertion in an AVL Tree
Insertion is as in a binary search tree
Always done by expanding an external node.
Example: 44

17 78

32 50 88

48 62

54
w

b=x

a=y

c=z

44

17 78

32 50 88

48 62

before insertion after insertion

Search Trees 15

Trinode Restructuring
let (a,b,c) be an inorder listing of x, y, z
perform the rotations needed to make b the topmost node of
the three

b=y

a=z

c=x
T0

T1

T2 T3

b=y

a=z c=x

T0 T1 T2 T3

c=y

b=x

a=z

T0

T1 T2

T3 b=x

c=ya=z

T0 T1 T2 T3

case 1: single rotation
(a left rotation about a)

case 2: double rotation
(a right rotation about c,
then a left rotation about a)

(other two cases
are symmetrical)

Search Trees 16

Insertion Example, continued

88

44

17 78

32 50

48 62

2

5

1

1

3

4

2

1

54

1

T0
T2

T3

x

y

z

2

3

4

5

6
7

1

88

44

17

7832 50

48

62
2

4

1

1

2 2

3

1
54

1

T0 T1

T2

T3

x

y z

unbalanced...

...balanced
1

2
3

4

5

6

7

T1

Search Trees 17

Restructuring
(as Single Rotations)

Single Rotations:

T0
T1

T2

T3

c = x
b = y

a = z

T0 T1 T2

T3

c = x
b = y

a = z
single rotation

T3
T2

T1

T0

a = x
b = y

c = z

T3T2T1

T0

a = x
b = y

c = z
single rotation

Search Trees 18

Restructuring
(as Double Rotations)

double rotations:

double rotationa = z

b = x
c = y

T0
T2

T1

T3 T0

T2
T3T1

a = z
b = x

c = y

double rotationc = z

b = x
a = y

T0
T2

T1

T3 T0

T2
T3 T1

c = z
b = x

a = y

Search Trees 19

Removal in an AVL Tree
Removal begins as in a binary search tree, which
means the node removed will become an empty
external node. Its parent, w, may cause an imbalance.
Example:

44

17

7832 50

8848

62

54

44

17

7850

8848

62

54

before deletion of 32 after deletion

Search Trees 20

Rebalancing after a Removal
Let z be the first unbalanced node encountered while travelling
up the tree from w. Also, let y be the child of z with the larger
height, and let x be the child of y with the larger height.
We perform restructure(x) to restore balance at z.
As this restructuring may upset the balance of another node
higher in the tree, we must continue checking for balance until
the root of T is reached

44

17

7850

8848

62

54

w

c=x

b=y

a=z

44

17

78

50 88

48

62

54

Search Trees 21

Running Times for
AVL Trees

a single restructure is O(1)
 using a linked-structure binary tree

find is O(log n)
 height of tree is O(log n), no restructures needed

insert is O(log n)
 initial find is O(log n)
 Restructuring up the tree, maintaining heights is O(log n)

remove is O(log n)
 initial find is O(log n)
 Restructuring up the tree, maintaining heights is O(log n)

Search Trees 22

Bouned-Depth Search Trees

9

10 142 5 7

Search Trees 23

Outline and Reading
Bounded-Depth Search Trees
Multi-way search tree (§3.3.1)
 Definition
 Search

(2,4) tree (§3.3.2)
 Definition
 Search
 Insertion
 Deletion

Search Trees 24

Multi-Way Search Tree
A multi-way search tree is an ordered tree such that
 Each internal node has at least two children and stores d −1

key-element items (ki, oi), where d is the number of children
 For a node with children v1 v2 … vd storing keys k1 k2 … kd−1

 keys in the subtree of v1 are less than k1
 keys in the subtree of vi are between ki−1 and ki (i = 2, …, d − 1)
 keys in the subtree of vd are greater than kd−1

 The leaves store no items and serve as placeholders
11 24

2 6 8 15

30

27 32

Search Trees 25

Multi-Way Inorder Traversal
We can extend the notion of inorder traversal from binary trees
to multi-way search trees
Namely, we visit item (ki, oi) of node v between the recursive
traversals of the subtrees of v rooted at children vi and vi + 1
An inorder traversal of a multi-way search tree visits the keys in
increasing order

11 24

2 6 8 15

30

27 32

1 3 5 7 9 11 13 19

15 17

2 4 6 14 18

8 12

10

16

Search Trees 26

Multi-Way Searching
Similar to search in a binary search tree
A each internal node with children v1 v2 … vd and keys k1 k2 … kd−1
 k = ki (i = 1, …, d − 1): the search terminates successfully
 k < k1: we continue the search in child v1
 ki−1 < k < ki (i = 2, …, d − 1): we continue the search in child vi
 k > kd−1: we continue the search in child vd

Reaching an external node terminates the search unsuccessfully
Example: search for 30

11 24

2 6 8 15

30

27 32

Search Trees 27

(2,4) Tree
A (2,4) tree (also called 2-4 tree or 2-3-4 tree) is a multi-way
search with the following properties
 Node-Size Property: every internal node has at most four children
 Depth Property: all the external nodes have the same depth

Depending on the number of children, an internal node of a
(2,4) tree is called a 2-node, 3-node or 4-node

10 15 24

2 8 12 27 3218

Search Trees 28

Height of a (2,4) Tree
Theorem: A (2,4) tree storing n items has height O(log n)
Proof:
 Let h be the height of a (2,4) tree with n items
 Since there are at least 2i items at depth i = 0, … , h − 1 and no

items at depth h, we have
n ≥ 1 + 2 + 4 + … + 2h−1 = 2h − 1

 Thus, h ≤ log (n + 1)
Searching in a (2,4) tree with n items takes O(log n) time

1

2

2h−1

0

items
0

1

h−1

h

depth

Search Trees 29

Insertion
We insert a new item (k, o) at the parent v of the leaf reached by
searching for k
 We preserve the depth property but
 We may cause an overflow (i.e., node v may become a 5-node)

Example: inserting key 30 causes an overflow

27 32 35

10 15 24

2 8 12 18

10 15 24

2 8 12 27 30 32 3518

v

v

Search Trees 30

Overflow and Split
We handle an overflow at a 5-node v with a split operation:
 let v1 … v5 be the children of v and k1 … k4 be the keys of v
 node v is replaced nodes v' and v"

 v' is a 3-node with keys k1 k2 and children v1 v2 v3

 v" is a 2-node with key k4 and children v4 v5

 key k3 is inserted into the parent u of v (a new root may be created)
The overflow may propagate to the parent node u

15 24

12 27 30 32 3518
v

u

v1 v2 v3 v4 v5

15 24 32

12 27 3018
v'

u

v1 v2 v3 v4 v5

35
v"

Search Trees 31

Analysis of Insertion
Algorithm insertItem(k, o)

1. We search for key k to locate the
insertion node v

2. We add the new item (k, o) at node v

3. while overflow(v)
if isRoot(v)

create a new empty root above v
v ← split(v)

Let T be a (2,4) tree
with n items
 Tree T has O(log n)

height
 Step 1 takes O(log n)

time because we visit
O(log n) nodes

 Step 2 takes O(1) time
 Step 3 takes O(log n)

time because each split
takes O(1) time and we
perform O(log n) splits

Thus, an insertion in a
(2,4) tree takes O(log n)
time

Search Trees 32

Deletion
We reduce deletion of an item to the case where the item is at the
node with leaf children
Otherwise, we replace the item with its inorder successor (or,
equivalently, with its inorder predecessor) and delete the latter item
Example: to delete key 24, we replace it with 27 (inorder successor)

27 32 35

10 15 24

2 8 12 18

32 35

10 15 27

2 8 12 18

Search Trees 33

Underflow and Fusion
Deleting an item from a node v may cause an underflow, where
node v becomes a 1-node with one child and no keys
To handle an underflow at node v with parent u, we consider two
cases
Case 1: the adjacent siblings of v are 2-nodes
 Fusion operation: we merge v with an adjacent sibling w and move an

item from u to the merged node v'
 After a fusion, the underflow may propagate to the parent u

9 14

2 5 7 10

u

v
9

10 14

u

v'w
2 5 7

Search Trees 34

Underflow and Transfer
To handle an underflow at node v with parent u, we consider
two cases
Case 2: an adjacent sibling w of v is a 3-node or a 4-node
 Transfer operation:

1. we move a child of w to v
2. we move an item from u to v
3. we move an item from w to u

 After a transfer, no underflow occurs

4 9

6 82

u

vw
4 8

62 9

u

vw

Search Trees 35

Analysis of Deletion
Let T be a (2,4) tree with n items
 Tree T has O(log n) height

In a deletion operation
 We visit O(log n) nodes to locate the node from

which to delete the item
 We handle an underflow with a series of O(log n)

fusions, followed by at most one transfer
 Each fusion and transfer takes O(1) time

Thus, deleting an item from a (2,4) tree takes
O(log n) time

	Search Trees
	Ordered Dictionaries
	Binary Search (§3.1.1)
	Lookup Table (§3.1.1)
	Binary Search Tree (§3.1.2)
	Search (§3.1.3)
	Insertion (§3.1.4)
	Deletion (§3.1.5)
	Deletion (cont.)
	Performance (§3.1.6)
	AVL Trees
	AVL Tree Definition
	Height of an AVL Tree
	Insertion in an AVL Tree
	Trinode Restructuring
	Insertion Example, continued
	Restructuring 				(as Single Rotations)
	Restructuring 					(as Double Rotations)
	Removal in an AVL Tree
	Rebalancing after a Removal
	Running Times for AVL Trees
	Bouned-Depth Search Trees
	Outline and Reading
	Multi-Way Search Tree
	Multi-Way Inorder Traversal
	Multi-Way Searching
	(2,4) Tree
	Height of a (2,4) Tree
	Insertion
	Overflow and Split
	Analysis of Insertion
	Deletion
	Underflow and Fusion
	Underflow and Transfer
	Analysis of Deletion

