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Priority Queues
Sell 100 IBM $122
Sell 300 IBM $120
Buy 500 IBM $119
Buy 400 IBM $118
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Priority Queue ADT
A priority queue stores a 
collection of items
An item is a pair
(key, element)
Main methods of the Priority 
Queue ADT
 insertItem(k, o)

inserts an item with key k 
and element o

 removeMin()
removes the item with 
smallest key and returns its 
element

Additional methods
 minKey()

returns, but does not 
remove, the smallest key of 
an item

 minElement()
returns, but does not 
remove, the element of an 
item with smallest key

 size(), isEmpty()
Applications:
 Standby flyers
 Auctions
 Stock market
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Total Order Relation
Keys in a priority 
queue can be 
arbitrary objects 
on which an order 
is defined
Two distinct items 
in a priority queue 
can have the 
same key

Mathematical concept 
of total order relation ≤
 The comparison rule is 

defined for every pair x
and y.

 Reflexive property:
x ≤ x

 Antisymmetric property:
x ≤ y ∧ y ≤ x ⇒ x = y

 Transitive property:
x ≤ y ∧ y ≤ z ⇒ x ≤ z
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Comparator ADT
A comparator encapsulates 
the action of comparing two 
objects according to a given 
total order relation
A generic priority queue 
uses an auxiliary 
comparator
The comparator is external 
to the keys being compared
When the priority queue 
needs to compare two keys, 
it uses its comparator

Methods of the Comparator 
ADT, all with Boolean 
return type
 isLessThan(x, y)
 isLessThanOrEqualTo(x,y)
 isEqualTo(x,y)
 isGreaterThan(x, y)
 isGreaterThanOrEqualTo(x,y)
 isComparable(x)
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Sorting with a Priority Queue
We can use a priority 
queue to sort a set of 
comparable elements
1. Insert the elements one 

by one with a series of 
insertItem(e, e) 
operations

2. Remove the elements in 
sorted order with a series 
of removeMin() operations

The running time of this 
sorting method depends on 
the priority queue 
implementation

Algorithm PQ-Sort(S, C)
Input sequence S, comparator C
for the elements of S
Output sequence S sorted  in 
increasing order according to C
P ← priority queue with 

comparator C
while ¬S.isEmpty ()

e ← S.remove (S. first ())
P.insertItem(e, e)

while ¬P.isEmpty()
e ← P.removeMin()
S.insertLast(e)
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Sequence-based Priority Queue
Implementation with an 
unsorted sequence
 Store the items of the 

priority queue in a list-based 
sequence, in arbitrary order

Performance:
 insertItem takes O(1) time 

since we can insert the item 
at the beginning or end of 
the sequence

 removeMin, minKey and 
minElement take O(n) time 
since we have to traverse 
the entire sequence to find 
the smallest key 

Implementation with a 
sorted sequence
 Store the items of the 

priority queue in a 
sequence, sorted by key

Performance:
 insertItem takes O(n) time 

since we have to find the 
place where to insert the 
item

 removeMin, minKey and 
minElement take O(1) time 
since the smallest key is at 
the beginning of the 
sequence
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Selection-Sort
Selection-sort is the variation of PQ-sort where the 
priority queue is implemented with an unsorted 
sequence
Running time of Selection-sort:
1. Inserting the elements into the priority queue with n

insertItem operations takes O(n) time
2. Removing the elements in sorted order from the priority 

queue with n removeMin operations takes time 
proportional to

1 + 2 + …+ n
Selection-sort runs in O(n2) time 
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Insertion-Sort
Insertion-sort is the variation of PQ-sort where the 
priority queue is implemented with a sorted 
sequence
Running time of Insertion-sort:

1. Inserting the elements into the priority queue with n
insertItem operations takes time proportional to

1 + 2 + …+ n
2. Removing the elements in sorted order from the priority 

queue with  a series of n removeMin operations takes 
O(n) time

Insertion-sort runs in O(n2) time 
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In-place Insertion-sort
Instead of using an 
external data structure, 
we can implement 
selection-sort and 
insertion-sort in-place
A portion of the input 
sequence itself serves as 
the priority queue
For in-place insertion-sort
 We keep sorted the initial 

portion of the sequence
 We can use 

swapElements instead of 
modifying the sequence

5 4 2 3 1

5 4 2 3 1

4 5 2 3 1

2 4 5 3 1

2 3 4 5 1

1 2 3 4 5

1 2 3 4 5
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What is a heap (§2.4.3)
A heap is a binary tree 
storing keys at its internal 
nodes and satisfying the 
following properties:
 Heap-Order: for every 

internal node v other than 
the root,
key(v) ≥ key(parent(v))

 Complete Binary Tree: let h
be the height of the heap
 for i = 0, … , h − 1, there are 

2i nodes of depth i
 at depth h − 1, the internal 

nodes are to the left of the 
external nodes

2

65

79

The last node of a heap 
is the rightmost internal 
node of depth h − 1

last node
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Height of a Heap (§2.4.3)
Theorem: A heap storing n keys has height O(log n)
Proof: (we apply the complete binary tree property)
 Let h be the height of a heap storing n keys
 Since there are 2i keys at depth i = 0, … , h − 2 and at least one key 

at depth h − 1, we have n ≥ 1 + 2 + 4 + … + 2h−2 + 1
 Thus, n ≥ 2h−1 , i.e., h ≤ log n + 1

1

2

2h−2

1

keys
0

1

h−2

h−1

depth
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Heaps and Priority Queues
We can use a heap to implement a priority queue
We store a (key, element) item at each internal node
We keep track of the position of the last node
For simplicity, we show only the keys in the pictures

(2, Sue)

(6, Mark)(5, Pat)

(9, Jeff) (7, Anna)
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Insertion into a 
Heap (§2.4.3)

Method insertItem of the 
priority queue ADT 
corresponds to the 
insertion of a key k to 
the heap
The insertion algorithm 
consists of three steps
 Find the insertion node z

(the new last node)
 Store k at z and expand z 

into an internal node
 Restore the heap-order 

property (discussed next)

2

65

79

insertion node
2

65

79 1

z

z
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Upheap
After the insertion of a new key k, the heap-order property may be 
violated
Algorithm upheap restores the heap-order property by swapping k
along an upward path from the insertion node
Upheap terminates when the key k reaches the root or a node 
whose parent has a key smaller than or equal to k
Since a heap has height O(log n), upheap runs in O(log n) time

2

15

79 6z

1

25

79 6z
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Removal from a Heap (§2.4.3)
Method removeMin of 
the priority queue ADT 
corresponds to the 
removal of the root key 
from the heap
The removal algorithm 
consists of three steps
 Replace the root key with 

the key of the last node w
 Compress w and its 

children into a leaf
 Restore the heap-order 

property (discussed next)

2

65

79

last node

w

7

65

9
w
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Downheap
After replacing the root key with the key k of the last node, the 
heap-order property may be violated
Algorithm downheap restores the heap-order property by 
swapping key k along a downward path from the root
Upheap terminates when key k reaches a leaf or a node whose 
children have keys greater than or equal to k
Since a heap has height O(log n), downheap runs in O(log n) time

7

65

9
w

5

67

9
w
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Updating the Last Node
The insertion node can be found by traversing a path of O(log n) 
nodes
 While the current node is a right child, go to the parent node
 If the current node is a left child, go to the right child
 While the current node is internal, go to the left child

Similar algorithm for updating the last node after a removal
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Heap-Sort (§2.4.4)

Consider a priority 
queue with n items 
implemented by means 
of a heap
 the space used is O(n)
 methods insertItem and 

removeMin take O(log n) 
time

 methods size, isEmpty, 
minKey, and minElement
take time O(1) time

Using a heap-based 
priority queue, we can 
sort a sequence of n
elements in O(n log n) 
time
The resulting algorithm 
is called heap-sort
Heap-sort is much 
faster than quadratic 
sorting algorithms, such 
as insertion-sort and 
selection-sort
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Vector-based Heap 
Implementation (§2.4.3)

We can represent a heap with n
keys by means of a vector of 
length n + 1
For the node at rank i
 the left child is at rank 2i
 the right child is at rank 2i + 1

Links between nodes are not 
explicitly stored
The leaves are not represented
The cell at rank 0 is not used
Operation insertItem corresponds 
to inserting at rank n + 1
Operation removeMin corresponds 
to removing at rank n
Yields in-place heap-sort

2

65

79

2 5 6 9 7
1 2 3 4 50
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Merging Two Heaps
We are given two two 
heaps and a key k
We create a new heap 
with the root node 
storing k and with the 
two heaps as subtrees
We perform downheap 
to restore the heap-
order property 

7

3

58

2

64

3

58

2

64

2

3

58

4

67
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We can construct a heap 
storing n given keys in 
using a bottom-up 
construction with log n
phases
In phase i, pairs of 
heaps with 2i −1 keys are 
merged into heaps with 
2i+1−1 keys

Bottom-up Heap 
Construction

2i −1 2i −1

2i+1−1
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Example

1516 124 96 2023

25

1516

5

124

11

96

27

2023



10/16/2015 3:31 PM Priority Queues 24

Example (contd.)

25

1516

5

124

11

96

27

2023

15

2516

4

125

6

911

23

2027
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Example (contd.)
7

15

2516

4

125

8

6

911

23

2027

4

15

2516

5

127

6

8

911

23

2027
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Example (end)
4

15

2516

5

127

10

6

8

911

23

2027

5

15

2516

7

1210

4

6

8

911

23

2027
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Analysis
We visualize the worst-case time of a downheap with a proxy path 
that goes first right and then repeatedly goes left until the bottom 
of the heap (this path may differ from the actual downheap path)
Since each node is traversed by at most two proxy paths, the total 
number of nodes of the proxy paths is O(n)
Thus, bottom-up heap construction runs in O(n) time 
Bottom-up heap construction is faster than n successive insertions 
and speeds up the first phase of heap-sort
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Dictionaries and Hash Tables
∅

∅

0
1
2
3
4 451-229-0004

981-101-0002
025-612-0001
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Dictionary ADT (§2.5.1)
The dictionary ADT models a 
searchable collection of key-
element items
The main operations of a 
dictionary are searching, 
inserting, and deleting items
Multiple items with the same 
key are allowed
Applications:
 address book
 credit card authorization
 mapping host names (e.g., 

cs16.net) to internet addresses 
(e.g., 128.148.34.101)

Dictionary ADT methods:
 findElement(k): if the 

dictionary has an item with 
key k, returns its element, 
else, returns the special 
element NO_SUCH_KEY 

 insertItem(k, o): inserts item 
(k, o) into the dictionary

 removeElement(k): if the 
dictionary has an item with 
key k, removes it from the 
dictionary and returns its 
element, else returns the 
special element 
NO_SUCH_KEY 

 size(), isEmpty()
 keys(), elements()
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Log File (§2.5.1)
A log file is a dictionary implemented by means of an unsorted 
sequence
 We store the items of the dictionary in a sequence (based on a 

doubly-linked lists or a circular array), in arbitrary order
Performance:
 insertItem takes O(1) time since we can insert the new item at the 

beginning or at the end of the sequence
 findElement and removeElement take O(n) time since in the worst 

case (the item is not found) we traverse the entire sequence to 
look for an item with the given key

The log file is effective only for dictionaries of small size or for 
dictionaries on which insertions are the most common 
operations, while searches and removals are rarely performed 
(e.g., historical record of logins to a workstation)
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Hash Functions and 
Hash Tables (§2.5.2) 

A hash function h maps keys of a given type to 
integers in a fixed interval [0, N − 1]
Example:

h(x) = x mod N
is a hash function for integer keys
The integer h(x) is called the hash value of key x

A hash table for a given key type consists of
 Hash function h
 Array (called table) of size N

When implementing a dictionary with a hash table, 
the goal is to store item (k, o) at index i = h(k)
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Example
We design a hash table for 
a dictionary storing items 
(SSN, Name), where SSN 
(social security number) is a 
nine-digit positive integer
Our hash table uses an 
array of size N = 10,000 and 
the hash function
h(x) = last four digits of x

∅

∅

∅

∅

0
1
2
3
4

9997
9998
9999

…
451-229-0004

981-101-0002

200-751-9998

025-612-0001
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Hash Functions (§ 2.5.3)

A hash function is 
usually specified as the 
composition of two 
functions:
Hash code map:

h1: keys → integers
Compression map:

h2: integers → [0, N − 1]

The hash code map is 
applied first, and the 
compression map is 
applied next on the 
result, i.e., 

h(x) = h2(h1(x))
The goal of the hash 
function is to  
“disperse” the keys in 
an apparently random 
way
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Hash Code Maps (§2.5.3)
Memory address:
 We reinterpret the memory 

address of the key object as 
an integer (default hash code 
of all Java objects)

 Good in general, except for 
numeric and string keys

Integer cast:
 We reinterpret the bits of the 

key as an integer
 Suitable for keys of length 

less than or equal to the 
number of bits of the integer 
type (e.g., byte, short, int 
and float in Java)

Component sum:
 We partition the bits of 

the key into components 
of fixed length (e.g., 16 
or 32 bits) and we sum 
the components 
(ignoring overflows)

 Suitable for numeric keys 
of fixed length greater 
than or equal to the 
number of bits of the 
integer type (e.g., long 
and double in Java)
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Hash Code Maps (cont.)
Polynomial accumulation:
 We partition the bits of the 

key into a sequence of 
components of fixed length 
(e.g., 8, 16 or 32 bits)

a0 a1 … an−1
 We evaluate the polynomial

p(z) = a0 + a1 z + a2 z2 + … 
… + an−1zn−1

at a fixed value z, ignoring 
overflows

 Especially suitable for strings 
(e.g., the choice z = 33 gives 
at most 6 collisions on a set 
of 50,000 English words)

Polynomial p(z) can be 
evaluated in O(n) time 
using Horner’s rule:
 The following 

polynomials are 
successively computed, 
each from the previous 
one in O(1) time

p0(z) = an−1

pi (z) = an−i−1 + zpi−1(z)
(i = 1, 2, …, n −1)

We have p(z) = pn−1(z) 
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Compression 
Maps (§2.5.4)

Division:
 h2 (y) = y mod N
 The size N of the 

hash table is usually 
chosen to be a prime 

 The reason has to do 
with number theory 
and is beyond the 
scope of this course

Multiply, Add and 
Divide (MAD):
 h2 (y) = (ay + b) mod N
 a and b are 

nonnegative integers 
such that

a mod N ≠ 0
 Otherwise, every 

integer would map to 
the same value b
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Collision Handling 
(§ 2.5.5)

Collisions occur when 
different elements are 
mapped to the same 
cell
Chaining: let each 
cell in the table point 
to a linked list of 
elements that map 
there

Chaining is simple, 
but requires 
additional memory 
outside the table

∅

∅
∅

0
1
2
3
4 451-229-0004 981-101-0004

025-612-0001
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Linear Probing (§2.5.5)
Open addressing: the 
colliding item is placed in a 
different cell of the table
Linear probing handles 
collisions by placing the 
colliding item in the next 
(circularly) available table cell
Each table cell inspected is 
referred to as a “probe”
Colliding items lump together, 
causing future collisions to 
cause a longer sequence of 
probes

Example:
 h(x) = x mod 13
 Insert keys 18, 41, 

22, 44, 59, 32, 31, 
73, in this order

0 1 2 3 4 5 6 7 8 9 10 11 12

41 18 44 59 32 22 31 73
0 1 2 3 4 5 6 7 8 9 10 11 12
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Search with Linear Probing
Consider a hash table A
that uses linear probing
findElement(k)
 We start at cell h(k) 
 We probe consecutive 

locations until one of the 
following occurs
 An item with key k is 

found, or
 An empty cell is found, 

or
 N cells have been 

unsuccessfully probed 

Algorithm findElement(k)
i ← h(k)
p ← 0
repeat

c ← A[i]
if c = ∅

return NO_SUCH_KEY
else if c.key () = k

return c.element()
else

i ← (i + 1) mod N
p ← p + 1

until p = N
return NO_SUCH_KEY
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Updates with Linear Probing
To handle insertions and 
deletions, we introduce a 
special object, called 
AVAILABLE, which replaces 
deleted elements
removeElement(k)
 We search for an item with 

key k
 If such an item (k, o) is 

found, we replace it with the 
special item AVAILABLE and 
we return element o

 Else, we return 
NO_SUCH_KEY

insert Item(k, o)
 We throw an exception if 

the table is full
 We start at cell h(k) 
 We probe consecutive 

cells until one of the 
following occurs
 A cell i is found that is 

either empty or stores 
AVAILABLE, or

 N cells have been 
unsuccessfully probed

 We store item (k, o) in 
cell i
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Double Hashing
Double hashing uses a 
secondary hash function 
d(k) and handles 
collisions by placing an 
item in the first available 
cell of the series

(i + jd(k)) mod N
for j = 0,  1, … , N − 1
The secondary hash 
function d(k) cannot 
have zero values
The table size N must be 
a prime to allow probing 
of all the cells

Common choice of 
compression map for the 
secondary hash function: 

d2(k) = q − k mod q
where
 q < N
 q is a prime

The possible values for 
d2(k) are

1, 2, … , q
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Consider a hash 
table storing integer 
keys that handles 
collision with double 
hashing
 N = 13
 h(k) = k mod 13
 d(k) = 7 − k mod 7

Insert keys 18, 41, 
22, 44, 59, 32, 31, 
73, in this order

Example of Double Hashing

0 1 2 3 4 5 6 7 8 9 10 11 12

31 41 18 32 59 73 22 44
0 1 2 3 4 5 6 7 8 9 10 11 12

k h (k ) d (k ) Probes
18 5 3 5
41 2 1 2
22 9 6 9
44 5 5 5 10
59 7 4 7
32 6 3 6
31 5 4 5 9 0
73 8 4 8
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Performance of 
Hashing

In the worst case, searches, 
insertions and removals on a 
hash table take O(n) time
The worst case occurs when 
all the keys inserted into the 
dictionary collide
The load factor α = n/N 
affects the performance of a 
hash table
Assuming that the hash 
values are like random 
numbers, it can be shown 
that the expected number of 
probes for an insertion with 
open addressing is

1 / (1 − α)

The expected running 
time of all the dictionary 
ADT operations in a 
hash table is O(1)
In practice, hashing is 
very fast provided the 
load factor is not close 
to 100%
Applications of hash 
tables:
 small databases
 compilers
 browser caches
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Universal Hashing
(§ 2.5.6)

A family of hash functions 
is universal if, for any 
0<i,j<M-1, 

Pr(h(j)=h(k)) < 1/N.
Choose p as a prime 
between M and 2M.
Randomly select 0<a<p 
and 0<b<p, and define 
h(k)=(ak+b mod p) mod N

Theorem: The set of 
all functions, h, as 
defined here, is 
universal.
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Proof of Universality (Part 1)
Let f(k) = ak+b mod p
Let g(k) = k mod N
So h(k) = g(f(k)).
f causes no collisions:
 Let f(k) = f(j).
 Suppose k<j. Then
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So a(j-k) is a multiple of p
But both are less than p
So a(j-k) = 0. I.e., j=k. 
(contradiction)
Thus, f causes no collisions.
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Proof of Universality (Part 2)
If f causes no collisions, only g can make h cause 
collisions. 
Fix a number x. Of the p integers y=f(k), different from x, 
the number such that g(y)=g(x) is at most 
Since there are p choices for x, the number of h’s that will 
cause a collision between j and k is at most

There are p(p-1) functions h. So probability of collision is 
at most

Therefore, the set of possible h functions is universal.
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