
Basic Data Structures

Priority Queues, Heaps,
Dictionaries, and Hash
Tables

10/16/2015 3:31 PM Priority Queues 2

Priority Queues
Sell 100 IBM $122
Sell 300 IBM $120
Buy 500 IBM $119
Buy 400 IBM $118

10/16/2015 3:31 PM Priority Queues 3

Priority Queue ADT
A priority queue stores a
collection of items
An item is a pair
(key, element)
Main methods of the Priority
Queue ADT
 insertItem(k, o)

inserts an item with key k
and element o

 removeMin()
removes the item with
smallest key and returns its
element

Additional methods
 minKey()

returns, but does not
remove, the smallest key of
an item

 minElement()
returns, but does not
remove, the element of an
item with smallest key

 size(), isEmpty()
Applications:
 Standby flyers
 Auctions
 Stock market

10/16/2015 3:31 PM Priority Queues 4

Total Order Relation
Keys in a priority
queue can be
arbitrary objects
on which an order
is defined
Two distinct items
in a priority queue
can have the
same key

Mathematical concept
of total order relation ≤
 The comparison rule is

defined for every pair x
and y.

 Reflexive property:
x ≤ x

 Antisymmetric property:
x ≤ y ∧ y ≤ x ⇒ x = y

 Transitive property:
x ≤ y ∧ y ≤ z ⇒ x ≤ z

10/16/2015 3:31 PM Priority Queues 5

Comparator ADT
A comparator encapsulates
the action of comparing two
objects according to a given
total order relation
A generic priority queue
uses an auxiliary
comparator
The comparator is external
to the keys being compared
When the priority queue
needs to compare two keys,
it uses its comparator

Methods of the Comparator
ADT, all with Boolean
return type
 isLessThan(x, y)
 isLessThanOrEqualTo(x,y)
 isEqualTo(x,y)
 isGreaterThan(x, y)
 isGreaterThanOrEqualTo(x,y)
 isComparable(x)

10/16/2015 3:31 PM Priority Queues 6

Sorting with a Priority Queue
We can use a priority
queue to sort a set of
comparable elements
1. Insert the elements one

by one with a series of
insertItem(e, e)
operations

2. Remove the elements in
sorted order with a series
of removeMin() operations

The running time of this
sorting method depends on
the priority queue
implementation

Algorithm PQ-Sort(S, C)
Input sequence S, comparator C
for the elements of S
Output sequence S sorted in
increasing order according to C
P ← priority queue with

comparator C
while ¬S.isEmpty ()

e ← S.remove (S. first ())
P.insertItem(e, e)

while ¬P.isEmpty()
e ← P.removeMin()
S.insertLast(e)

10/16/2015 3:31 PM Priority Queues 7

Sequence-based Priority Queue
Implementation with an
unsorted sequence
 Store the items of the

priority queue in a list-based
sequence, in arbitrary order

Performance:
 insertItem takes O(1) time

since we can insert the item
at the beginning or end of
the sequence

 removeMin, minKey and
minElement take O(n) time
since we have to traverse
the entire sequence to find
the smallest key

Implementation with a
sorted sequence
 Store the items of the

priority queue in a
sequence, sorted by key

Performance:
 insertItem takes O(n) time

since we have to find the
place where to insert the
item

 removeMin, minKey and
minElement take O(1) time
since the smallest key is at
the beginning of the
sequence

10/16/2015 3:31 PM Priority Queues 8

Selection-Sort
Selection-sort is the variation of PQ-sort where the
priority queue is implemented with an unsorted
sequence
Running time of Selection-sort:
1. Inserting the elements into the priority queue with n

insertItem operations takes O(n) time
2. Removing the elements in sorted order from the priority

queue with n removeMin operations takes time
proportional to

1 + 2 + …+ n
Selection-sort runs in O(n2) time

10/16/2015 3:31 PM Priority Queues 9

Insertion-Sort
Insertion-sort is the variation of PQ-sort where the
priority queue is implemented with a sorted
sequence
Running time of Insertion-sort:

1. Inserting the elements into the priority queue with n
insertItem operations takes time proportional to

1 + 2 + …+ n
2. Removing the elements in sorted order from the priority

queue with a series of n removeMin operations takes
O(n) time

Insertion-sort runs in O(n2) time

10/16/2015 3:31 PM Priority Queues 10

In-place Insertion-sort
Instead of using an
external data structure,
we can implement
selection-sort and
insertion-sort in-place
A portion of the input
sequence itself serves as
the priority queue
For in-place insertion-sort
 We keep sorted the initial

portion of the sequence
 We can use

swapElements instead of
modifying the sequence

5 4 2 3 1

5 4 2 3 1

4 5 2 3 1

2 4 5 3 1

2 3 4 5 1

1 2 3 4 5

1 2 3 4 5

10/16/2015 3:31 PM Priority Queues 11

What is a heap (§2.4.3)
A heap is a binary tree
storing keys at its internal
nodes and satisfying the
following properties:
 Heap-Order: for every

internal node v other than
the root,
key(v) ≥ key(parent(v))

 Complete Binary Tree: let h
be the height of the heap
 for i = 0, … , h − 1, there are

2i nodes of depth i
 at depth h − 1, the internal

nodes are to the left of the
external nodes

2

65

79

The last node of a heap
is the rightmost internal
node of depth h − 1

last node

10/16/2015 3:31 PM Priority Queues 12

Height of a Heap (§2.4.3)
Theorem: A heap storing n keys has height O(log n)
Proof: (we apply the complete binary tree property)
 Let h be the height of a heap storing n keys
 Since there are 2i keys at depth i = 0, … , h − 2 and at least one key

at depth h − 1, we have n ≥ 1 + 2 + 4 + … + 2h−2 + 1
 Thus, n ≥ 2h−1 , i.e., h ≤ log n + 1

1

2

2h−2

1

keys
0

1

h−2

h−1

depth

10/16/2015 3:31 PM Priority Queues 13

Heaps and Priority Queues
We can use a heap to implement a priority queue
We store a (key, element) item at each internal node
We keep track of the position of the last node
For simplicity, we show only the keys in the pictures

(2, Sue)

(6, Mark)(5, Pat)

(9, Jeff) (7, Anna)

10/16/2015 3:31 PM Priority Queues 14

Insertion into a
Heap (§2.4.3)

Method insertItem of the
priority queue ADT
corresponds to the
insertion of a key k to
the heap
The insertion algorithm
consists of three steps
 Find the insertion node z

(the new last node)
 Store k at z and expand z

into an internal node
 Restore the heap-order

property (discussed next)

2

65

79

insertion node
2

65

79 1

z

z

10/16/2015 3:31 PM Priority Queues 15

Upheap
After the insertion of a new key k, the heap-order property may be
violated
Algorithm upheap restores the heap-order property by swapping k
along an upward path from the insertion node
Upheap terminates when the key k reaches the root or a node
whose parent has a key smaller than or equal to k
Since a heap has height O(log n), upheap runs in O(log n) time

2

15

79 6z

1

25

79 6z

10/16/2015 3:31 PM Priority Queues 16

Removal from a Heap (§2.4.3)
Method removeMin of
the priority queue ADT
corresponds to the
removal of the root key
from the heap
The removal algorithm
consists of three steps
 Replace the root key with

the key of the last node w
 Compress w and its

children into a leaf
 Restore the heap-order

property (discussed next)

2

65

79

last node

w

7

65

9
w

10/16/2015 3:31 PM Priority Queues 17

Downheap
After replacing the root key with the key k of the last node, the
heap-order property may be violated
Algorithm downheap restores the heap-order property by
swapping key k along a downward path from the root
Upheap terminates when key k reaches a leaf or a node whose
children have keys greater than or equal to k
Since a heap has height O(log n), downheap runs in O(log n) time

7

65

9
w

5

67

9
w

10/16/2015 3:31 PM Priority Queues 18

Updating the Last Node
The insertion node can be found by traversing a path of O(log n)
nodes
 While the current node is a right child, go to the parent node
 If the current node is a left child, go to the right child
 While the current node is internal, go to the left child

Similar algorithm for updating the last node after a removal

10/16/2015 3:31 PM Priority Queues 19

Heap-Sort (§2.4.4)

Consider a priority
queue with n items
implemented by means
of a heap
 the space used is O(n)
 methods insertItem and

removeMin take O(log n)
time

 methods size, isEmpty,
minKey, and minElement
take time O(1) time

Using a heap-based
priority queue, we can
sort a sequence of n
elements in O(n log n)
time
The resulting algorithm
is called heap-sort
Heap-sort is much
faster than quadratic
sorting algorithms, such
as insertion-sort and
selection-sort

10/16/2015 3:31 PM Priority Queues 20

Vector-based Heap
Implementation (§2.4.3)

We can represent a heap with n
keys by means of a vector of
length n + 1
For the node at rank i
 the left child is at rank 2i
 the right child is at rank 2i + 1

Links between nodes are not
explicitly stored
The leaves are not represented
The cell at rank 0 is not used
Operation insertItem corresponds
to inserting at rank n + 1
Operation removeMin corresponds
to removing at rank n
Yields in-place heap-sort

2

65

79

2 5 6 9 7
1 2 3 4 50

10/16/2015 3:31 PM Priority Queues 21

Merging Two Heaps
We are given two two
heaps and a key k
We create a new heap
with the root node
storing k and with the
two heaps as subtrees
We perform downheap
to restore the heap-
order property

7

3

58

2

64

3

58

2

64

2

3

58

4

67

10/16/2015 3:31 PM Priority Queues 22

We can construct a heap
storing n given keys in
using a bottom-up
construction with log n
phases
In phase i, pairs of
heaps with 2i −1 keys are
merged into heaps with
2i+1−1 keys

Bottom-up Heap
Construction

2i −1 2i −1

2i+1−1

10/16/2015 3:31 PM Priority Queues 23

Example

1516 124 96 2023

25

1516

5

124

11

96

27

2023

10/16/2015 3:31 PM Priority Queues 24

Example (contd.)

25

1516

5

124

11

96

27

2023

15

2516

4

125

6

911

23

2027

10/16/2015 3:31 PM Priority Queues 25

Example (contd.)
7

15

2516

4

125

8

6

911

23

2027

4

15

2516

5

127

6

8

911

23

2027

10/16/2015 3:31 PM Priority Queues 26

Example (end)
4

15

2516

5

127

10

6

8

911

23

2027

5

15

2516

7

1210

4

6

8

911

23

2027

10/16/2015 3:31 PM Priority Queues 27

Analysis
We visualize the worst-case time of a downheap with a proxy path
that goes first right and then repeatedly goes left until the bottom
of the heap (this path may differ from the actual downheap path)
Since each node is traversed by at most two proxy paths, the total
number of nodes of the proxy paths is O(n)
Thus, bottom-up heap construction runs in O(n) time
Bottom-up heap construction is faster than n successive insertions
and speeds up the first phase of heap-sort

10/16/2015 3:31 PM Priority Queues 28

Dictionaries and Hash Tables
∅

∅

0
1
2
3
4 451-229-0004

981-101-0002
025-612-0001

10/16/2015 3:31 PM Priority Queues 29

Dictionary ADT (§2.5.1)
The dictionary ADT models a
searchable collection of key-
element items
The main operations of a
dictionary are searching,
inserting, and deleting items
Multiple items with the same
key are allowed
Applications:
 address book
 credit card authorization
 mapping host names (e.g.,

cs16.net) to internet addresses
(e.g., 128.148.34.101)

Dictionary ADT methods:
 findElement(k): if the

dictionary has an item with
key k, returns its element,
else, returns the special
element NO_SUCH_KEY

 insertItem(k, o): inserts item
(k, o) into the dictionary

 removeElement(k): if the
dictionary has an item with
key k, removes it from the
dictionary and returns its
element, else returns the
special element
NO_SUCH_KEY

 size(), isEmpty()
 keys(), elements()

10/16/2015 3:31 PM Priority Queues 30

Log File (§2.5.1)
A log file is a dictionary implemented by means of an unsorted
sequence
 We store the items of the dictionary in a sequence (based on a

doubly-linked lists or a circular array), in arbitrary order
Performance:
 insertItem takes O(1) time since we can insert the new item at the

beginning or at the end of the sequence
 findElement and removeElement take O(n) time since in the worst

case (the item is not found) we traverse the entire sequence to
look for an item with the given key

The log file is effective only for dictionaries of small size or for
dictionaries on which insertions are the most common
operations, while searches and removals are rarely performed
(e.g., historical record of logins to a workstation)

10/16/2015 3:31 PM Priority Queues 31

Hash Functions and
Hash Tables (§2.5.2)

A hash function h maps keys of a given type to
integers in a fixed interval [0, N − 1]
Example:

h(x) = x mod N
is a hash function for integer keys
The integer h(x) is called the hash value of key x

A hash table for a given key type consists of
 Hash function h
 Array (called table) of size N

When implementing a dictionary with a hash table,
the goal is to store item (k, o) at index i = h(k)

10/16/2015 3:31 PM Priority Queues 32

Example
We design a hash table for
a dictionary storing items
(SSN, Name), where SSN
(social security number) is a
nine-digit positive integer
Our hash table uses an
array of size N = 10,000 and
the hash function
h(x) = last four digits of x

∅

∅

∅

∅

0
1
2
3
4

9997
9998
9999

…
451-229-0004

981-101-0002

200-751-9998

025-612-0001

10/16/2015 3:31 PM Priority Queues 33

Hash Functions (§ 2.5.3)

A hash function is
usually specified as the
composition of two
functions:
Hash code map:

h1: keys → integers
Compression map:

h2: integers → [0, N − 1]

The hash code map is
applied first, and the
compression map is
applied next on the
result, i.e.,

h(x) = h2(h1(x))
The goal of the hash
function is to
“disperse” the keys in
an apparently random
way

10/16/2015 3:31 PM Priority Queues 34

Hash Code Maps (§2.5.3)
Memory address:
 We reinterpret the memory

address of the key object as
an integer (default hash code
of all Java objects)

 Good in general, except for
numeric and string keys

Integer cast:
 We reinterpret the bits of the

key as an integer
 Suitable for keys of length

less than or equal to the
number of bits of the integer
type (e.g., byte, short, int
and float in Java)

Component sum:
 We partition the bits of

the key into components
of fixed length (e.g., 16
or 32 bits) and we sum
the components
(ignoring overflows)

 Suitable for numeric keys
of fixed length greater
than or equal to the
number of bits of the
integer type (e.g., long
and double in Java)

10/16/2015 3:31 PM Priority Queues 35

Hash Code Maps (cont.)
Polynomial accumulation:
 We partition the bits of the

key into a sequence of
components of fixed length
(e.g., 8, 16 or 32 bits)

a0 a1 … an−1
 We evaluate the polynomial

p(z) = a0 + a1 z + a2 z2 + …
… + an−1zn−1

at a fixed value z, ignoring
overflows

 Especially suitable for strings
(e.g., the choice z = 33 gives
at most 6 collisions on a set
of 50,000 English words)

Polynomial p(z) can be
evaluated in O(n) time
using Horner’s rule:
 The following

polynomials are
successively computed,
each from the previous
one in O(1) time

p0(z) = an−1

pi (z) = an−i−1 + zpi−1(z)
(i = 1, 2, …, n −1)

We have p(z) = pn−1(z)

10/16/2015 3:31 PM Priority Queues 36

Compression
Maps (§2.5.4)

Division:
 h2 (y) = y mod N
 The size N of the

hash table is usually
chosen to be a prime

 The reason has to do
with number theory
and is beyond the
scope of this course

Multiply, Add and
Divide (MAD):
 h2 (y) = (ay + b) mod N
 a and b are

nonnegative integers
such that

a mod N ≠ 0
 Otherwise, every

integer would map to
the same value b

10/16/2015 3:31 PM Priority Queues 37

Collision Handling
(§ 2.5.5)

Collisions occur when
different elements are
mapped to the same
cell
Chaining: let each
cell in the table point
to a linked list of
elements that map
there

Chaining is simple,
but requires
additional memory
outside the table

∅

∅
∅

0
1
2
3
4 451-229-0004 981-101-0004

025-612-0001

10/16/2015 3:31 PM Priority Queues 38

Linear Probing (§2.5.5)
Open addressing: the
colliding item is placed in a
different cell of the table
Linear probing handles
collisions by placing the
colliding item in the next
(circularly) available table cell
Each table cell inspected is
referred to as a “probe”
Colliding items lump together,
causing future collisions to
cause a longer sequence of
probes

Example:
 h(x) = x mod 13
 Insert keys 18, 41,

22, 44, 59, 32, 31,
73, in this order

0 1 2 3 4 5 6 7 8 9 10 11 12

41 18 44 59 32 22 31 73
0 1 2 3 4 5 6 7 8 9 10 11 12

10/16/2015 3:31 PM Priority Queues 39

Search with Linear Probing
Consider a hash table A
that uses linear probing
findElement(k)
 We start at cell h(k)
 We probe consecutive

locations until one of the
following occurs
 An item with key k is

found, or
 An empty cell is found,

or
 N cells have been

unsuccessfully probed

Algorithm findElement(k)
i ← h(k)
p ← 0
repeat

c ← A[i]
if c = ∅

return NO_SUCH_KEY
else if c.key () = k

return c.element()
else

i ← (i + 1) mod N
p ← p + 1

until p = N
return NO_SUCH_KEY

10/16/2015 3:31 PM Priority Queues 40

Updates with Linear Probing
To handle insertions and
deletions, we introduce a
special object, called
AVAILABLE, which replaces
deleted elements
removeElement(k)
 We search for an item with

key k
 If such an item (k, o) is

found, we replace it with the
special item AVAILABLE and
we return element o

 Else, we return
NO_SUCH_KEY

insert Item(k, o)
 We throw an exception if

the table is full
 We start at cell h(k)
 We probe consecutive

cells until one of the
following occurs
 A cell i is found that is

either empty or stores
AVAILABLE, or

 N cells have been
unsuccessfully probed

 We store item (k, o) in
cell i

10/16/2015 3:31 PM Priority Queues 41

Double Hashing
Double hashing uses a
secondary hash function
d(k) and handles
collisions by placing an
item in the first available
cell of the series

(i + jd(k)) mod N
for j = 0, 1, … , N − 1
The secondary hash
function d(k) cannot
have zero values
The table size N must be
a prime to allow probing
of all the cells

Common choice of
compression map for the
secondary hash function:

d2(k) = q − k mod q
where
 q < N
 q is a prime

The possible values for
d2(k) are

1, 2, … , q

10/16/2015 3:31 PM Priority Queues 42

Consider a hash
table storing integer
keys that handles
collision with double
hashing
 N = 13
 h(k) = k mod 13
 d(k) = 7 − k mod 7

Insert keys 18, 41,
22, 44, 59, 32, 31,
73, in this order

Example of Double Hashing

0 1 2 3 4 5 6 7 8 9 10 11 12

31 41 18 32 59 73 22 44
0 1 2 3 4 5 6 7 8 9 10 11 12

k h (k) d (k) Probes
18 5 3 5
41 2 1 2
22 9 6 9
44 5 5 5 10
59 7 4 7
32 6 3 6
31 5 4 5 9 0
73 8 4 8

10/16/2015 3:31 PM Priority Queues 43

Performance of
Hashing

In the worst case, searches,
insertions and removals on a
hash table take O(n) time
The worst case occurs when
all the keys inserted into the
dictionary collide
The load factor α = n/N
affects the performance of a
hash table
Assuming that the hash
values are like random
numbers, it can be shown
that the expected number of
probes for an insertion with
open addressing is

1 / (1 − α)

The expected running
time of all the dictionary
ADT operations in a
hash table is O(1)
In practice, hashing is
very fast provided the
load factor is not close
to 100%
Applications of hash
tables:
 small databases
 compilers
 browser caches

10/16/2015 3:31 PM Priority Queues 44

Universal Hashing
(§ 2.5.6)

A family of hash functions
is universal if, for any
0<i,j<M-1,

Pr(h(j)=h(k)) < 1/N.
Choose p as a prime
between M and 2M.
Randomly select 0<a<p
and 0<b<p, and define
h(k)=(ak+b mod p) mod N

Theorem: The set of
all functions, h, as
defined here, is
universal.

10/16/2015 3:31 PM Priority Queues 45

Proof of Universality (Part 1)
Let f(k) = ak+b mod p
Let g(k) = k mod N
So h(k) = g(f(k)).
f causes no collisions:
 Let f(k) = f(j).
 Suppose k<j. Then

p
p

bakbakp
p

bajbaj 






 +
−+=







 +
−+

p
p

bak
p

bajkja 














 +
−







 +
=−)(

So a(j-k) is a multiple of p
But both are less than p
So a(j-k) = 0. I.e., j=k.
(contradiction)
Thus, f causes no collisions.

10/16/2015 3:31 PM Priority Queues 46

Proof of Universality (Part 2)
If f causes no collisions, only g can make h cause
collisions.
Fix a number x. Of the p integers y=f(k), different from x,
the number such that g(y)=g(x) is at most
Since there are p choices for x, the number of h’s that will
cause a collision between j and k is at most

There are p(p-1) functions h. So probability of collision is
at most

Therefore, the set of possible h functions is universal.

  1/ −Np

 ()
N
ppNpp)1(1/ −

≤−

Npp
Npp 1

)1(
/)1(

=
−

−

	Basic Data Structures
	Priority Queues
	Priority Queue ADT
	Total Order Relation
	Comparator ADT
	Sorting with a Priority Queue
	Sequence-based Priority Queue
	Selection-Sort
	Insertion-Sort
	In-place Insertion-sort
	What is a heap (§2.4.3)
	Height of a Heap (§2.4.3)
	Heaps and Priority Queues
	Insertion into a Heap (§2.4.3)
	Upheap
	Removal from a Heap (§2.4.3)
	Downheap
	Updating the Last Node
	Heap-Sort (§2.4.4)
	Vector-based Heap Implementation (§2.4.3)
	Merging Two Heaps
	Bottom-up Heap Construction
	Example
	Example (contd.)
	Example (contd.)
	Example (end)
	Analysis
	Dictionaries and Hash Tables
	Dictionary ADT (§2.5.1)
	Log File (§2.5.1)
	Hash Functions and Hash Tables (§2.5.2)
	Example
	Hash Functions (§ 2.5.3)
	Hash Code Maps (§2.5.3)
	Hash Code Maps (cont.)
	Compression Maps (§2.5.4)
	Collision Handling (§ 2.5.5)
	Linear Probing (§2.5.5)
	Search with Linear Probing
	Updates with Linear Probing
	Double Hashing
	Example of Double Hashing
	Performance of Hashing
	Universal Hashing�(§ 2.5.6)
	Proof of Universality (Part 1)
	Proof of Universality (Part 2)

