
Basic Data Structures

Stacks, Queues, & Lists
Amortized analysis
Trees

Elementary Data Structures 2

The Stack ADT (§2.1.1)
The Stack ADT stores
arbitrary objects
Insertions and deletions
follow the last-in first-out
scheme
Think of a spring-loaded
plate dispenser
Main stack operations:
� push(object): inserts an

element
� object pop(): removes and

returns the last inserted
element

Auxiliary stack
operations:
� object top(): returns the

last inserted element
without removing it

� integer size(): returns the
number of elements
stored

� boolean isEmpty():
indicates whether no
elements are stored

Elementary Data Structures 3

Applications of Stacks

Direct applications
� Page-visited history in a Web browser
� Undo sequence in a text editor
� Chain of method calls in the Java Virtual

Machine or C++ runtime environment
Indirect applications
� Auxiliary data structure for algorithms
� Component of other data structures

Elementary Data Structures 4

Array-based Stack (§2.1.1)

A simple way of
implementing the
Stack ADT uses an
array
We add elements
from left to right
A variable t keeps
track of the index of
the top element
(size is t+1)

S
0 1 2 t

…

Algorithm pop():
if isEmpty() then

throw EmptyStackException
else
t ← t − 1
return S[t + 1]

Algorithm push(o)
if t = S.length − 1 then

throw FullStackException
else
t ← t + 1
S[t] ← o

Elementary Data Structures 5

Growable Array-based
Stack (§1.5)

In a push operation, when
the array is full, instead of
throwing an exception, we
can replace the array with
a larger one
How large should the new
array be?
� incremental strategy:

increase the size by a
constant c

� doubling strategy: double
the size

Algorithm push(o)
if t = S.length − 1 then

A ← new array of
size …

for i ← 0 to t do
A[i] ← S[i]
S ← A

t ← t + 1
S[t] ← o

Elementary Data Structures 6

Comparison of the
Strategies

We compare the incremental strategy and
the doubling strategy by analyzing the total
time T(n) needed to perform a series of n
push operations
We assume that we start with an empty
stack represented by an array of size 1
We call amortized time of a push operation
the average time taken by a push over the
series of operations, i.e., T(n)/n

Elementary Data Structures 7

Analysis of the
Incremental Strategy

We replace the array k = n/c times
The total time T(n) of a series of n push
operations is proportional to

n + c + 2c + 3c + 4c + … + kc =
n + c(1 + 2 + 3 + … + k) =

n + ck(k + 1)/2
Since c is a constant, T(n) is O(n + k2), i.e.,
O(n2)
The amortized time of a push operation is O(n)

Elementary Data Structures 8

Direct Analysis of the
Doubling Strategy

We replace the array k = log2 n
times
The total time T(n) of a series
of n push operations is
proportional to

n + 1 + 2 + 4 + 8 + …+ 2k =
n + 2k + 1 −1 = 2n −1

T(n) is O(n)
The amortized time of a push
operation is O(1)

geometric series

1

2

1
4

8

Elementary Data Structures 9

The accounting method determines the amortized
running time with a system of credits and debits
We view a computer as a coin-operated device requiring
1 cyber-dollar for a constant amount of computing.

Accounting Method Analysis
of the Doubling Strategy

� We set up a scheme for charging operations. This is
known as an amortization scheme.

� The scheme must give us always enough money to
pay for the actual cost of the operation.

� The total cost of the series of operations is no more
than the total amount charged.

(amortized time) ≤ (total $ charged) / (# operations)

Elementary Data Structures 10

Amortization Scheme for
the Doubling Strategy

Consider again the k phases, where each phase consisting of twice
as many pushes as the one before.
At the end of a phase we must have saved enough to pay for the
array-growing push of the next phase.
At the end of phase i we want to have saved i cyber-dollars, to pay
for the array growth for the beginning of the next phase.

0 2 4 5 6 731

$ $ $ $
$ $ $ $

0 2 4 5 6 7 8 9 113 10 12 13 14 151

$
$

• We charge $3 for a push. The $2 saved for a regular push are
“stored” in the second half of the array. Thus, we will have
2(i/2)=i cyber-dollars saved at then end of phase i.
• Therefore, each push runs in O(1) amortized time; n pushes run
in O(n) time.

Elementary Data Structures 11

The Queue ADT (§2.1.2)
The Queue ADT stores arbitrary
objects
Insertions and deletions follow
the first-in first-out scheme
Insertions are at the rear of the
queue and removals are at the
front of the queue
Main queue operations:
� enqueue(object): inserts an

element at the end of the
queue

� object dequeue(): removes and
returns the element at the front
of the queue

Auxiliary queue
operations:
� object front(): returns the

element at the front without
removing it

� integer size(): returns the
number of elements stored

� boolean isEmpty(): indicates
whether no elements are
stored

Exceptions
� Attempting the execution of

dequeue or front on an
empty queue throws an
EmptyQueueException

Elementary Data Structures 12

Applications of Queues

Direct applications
� Waiting lines
� Access to shared resources (e.g., printer)
� Multiprogramming

Indirect applications
� Auxiliary data structure for algorithms
� Component of other data structures

Elementary Data Structures 13

Singly Linked List
A singly linked list is a
concrete data structure
consisting of a sequence
of nodes
Each node stores
� element
� link to the next node

next

elem node

A B C D

∅

Elementary Data Structures 14

Queue with a Singly Linked List
We can implement a queue with a singly linked list
� The front element is stored at the first node
� The rear element is stored at the last node

The space used is O(n) and each operation of the
Queue ADT takes O(1) time

f

r

∅

nodes

elements

Elementary Data Structures 15

List ADT (§2.2.2)

The List ADT models a
sequence of positions
storing arbitrary objects
It allows for insertion
and removal in the
“middle”
Query methods:
� isFirst(p), isLast(p)

Accessor methods:
� first(), last()
� before(p), after(p)

Update methods:
� replaceElement(p, o),

swapElements(p, q)
� insertBefore(p, o),

insertAfter(p, o),
� insertFirst(o),

insertLast(o)
� remove(p)

Elementary Data Structures 16

Doubly Linked List
A doubly linked list provides a natural
implementation of the List ADT
Nodes implement Position and store:
� element
� link to the previous node
� link to the next node

Special trailer and header nodes

prev next

elem

trailerheader nodes/positions

elements

node

Elementary Data Structures 17

Trees (§2.3)
In computer science, a
tree is an abstract model
of a hierarchical
structure
A tree consists of nodes
with a parent-child
relation
Applications:
� Organization charts
� File systems
� Programming

environments

Computers”R”Us

Sales R&DManufacturing

Laptops DesktopsUS International

Europe Asia Canada

Elementary Data Structures 18

Tree ADT (§2.3.1)
We use positions to abstract
nodes
Generic methods:
� integer size()
� boolean isEmpty()
� objectIterator elements()
� positionIterator positions()

Accessor methods:
� position root()
� position parent(p)
� positionIterator children(p)

Query methods:
� boolean isInternal(p)
� boolean isExternal(p)
� boolean isRoot(p)

Update methods:
� swapElements(p, q)
� object replaceElement(p, o)

Additional update methods
may be defined by data
structures implementing the
Tree ADT

Elementary Data Structures 19

Preorder Traversal (§2.3.2)
A traversal visits the nodes of a
tree in a systematic manner
In a preorder traversal, a node is
visited before its descendants
Application: print a structured
document

Make Money Fast!

1. Motivations References2. Methods

2.1 Stock
Fraud

2.2 Ponzi
Scheme1.1 Greed 1.2 Avidity 2.3 Bank

Robbery

1

2

3

5

4 6 7 8

9

Algorithm preOrder(v)
visit(v)
for each child w of v

preorder (w)

Elementary Data Structures 20

Postorder Traversal (§2.3.2)
In a postorder traversal, a
node is visited after its
descendants
Application: compute space
used by files in a directory and
its subdirectories

Algorithm postOrder(v)
for each child w of v

postOrder (w)
visit(v)

cs16/

homeworks/ todo.txt
1Kprograms/

DDR.java
10K

Stocks.java
25K

h1c.doc
3K

h1nc.doc
2K

Robot.java
20K

9

3

1

7

2 4 5 6

8

Elementary Data Structures 21

Binary Trees (§2.3.3)
A binary tree is a tree with the
following properties:
� Each internal node has two

children
� The children of a node are an

ordered pair
We call the children of an internal
node left child and right child
Alternative recursive definition: a
binary tree is either
� a tree consisting of a single node,

or
� a tree whose root has an ordered

pair of children, each of which is a
binary tree

Applications:
� arithmetic expressions
� decision processes
� searching

A

B C

F GD E

H I

Elementary Data Structures 22

Arithmetic Expression Tree
Binary tree associated with an arithmetic expression
� internal nodes: operators
� external nodes: operands

Example: arithmetic expression tree for the
expression (2 × (a − 1) + (3 × b))

+

××

−2

a 1

3 b

Elementary Data Structures 23

Decision Tree
Binary tree associated with a decision process
� internal nodes: questions with yes/no answer
� external nodes: decisions

Example: dining decision

Want a fast meal?

How about coffee? On expense account?

Starbucks In ‘N Out Antoine's Denny’s

Yes No

Yes No Yes No

Elementary Data Structures 24

Properties of Binary Trees
Notation
n number of nodes
e number of

external nodes
i number of internal

nodes
h height

Properties:
� e = i + 1
� n = 2e − 1
� h ≤ i
� h ≤ (n − 1)/2
� e ≤ 2h

� h ≥ log2 e
� h ≥ log2 (n + 1) − 1

Elementary Data Structures 25

Inorder Traversal
In an inorder traversal a
node is visited after its left
subtree and before its right
subtree
Application: draw a binary
tree
� x(v) = inorder rank of v
� y(v) = depth of v

Algorithm inOrder(v)
if isInternal (v)

inOrder (leftChild (v))
visit(v)
if isInternal (v)

inOrder (rightChild (v))

3

1

2

5

6

7 9

8

4

Elementary Data Structures 26

Euler Tour Traversal
Generic traversal of a binary tree
Includes a special cases the preorder, postorder and inorder traversals
Walk around the tree and visit each node three times:
� on the left (preorder)
� from below (inorder)
� on the right (postorder)

+

×

−2

5 1

3 2

L
B

R×

Elementary Data Structures 27

Printing Arithmetic Expressions
Specialization of an inorder
traversal
� print operand or operator

when visiting node
� print “(“ before traversing left

subtree
� print “)“ after traversing right

subtree

Algorithm printExpression(v)
if isInternal (v)

print(“(’’)
inOrder (leftChild (v))

print(v.element ())
if isInternal (v)

inOrder (rightChild (v))
print (“)’’)

+

××

−2

a 1

3 b
((2 × (a − 1)) + (3 × b))

Elementary Data Structures 28

∅

Linked Data Structure for
Representing Trees (§2.3.4)

A node is represented by
an object storing
� Element
� Parent node
� Sequence of children

nodes
Node objects implement
the Position ADT

B

DA

C E

F

B

∅ ∅

A D F

∅

C

∅

E

Elementary Data Structures 29

Linked Data Structure for
Binary Trees

A node is represented by
an object storing
� Element
� Parent node
� Left child node
� Right child node

Node objects implement
the Position ADT

B

DA

C E

∅ ∅

∅ ∅ ∅ ∅

B

A D

C E

∅

Elementary Data Structures 30

Array-Based Representation of
Binary Trees

nodes are stored in an array

…

� let rank(node) be defined as follows:
� rank(root) = 1
� if node is the left child of parent(node),

rank(node) = 2*rank(parent(node))
� if node is the right child of parent(node),

rank(node) = 2*rank(parent(node))+1

1

2 3

6 74 5

10 11

A

HG

FE

D

C

B

J

	Basic Data Structures
	The Stack ADT (§2.1.1)
	Applications of Stacks
	Array-based Stack (§2.1.1)
	Growable Array-based Stack (§1.5)
	Comparison of the Strategies
	Analysis of the Incremental Strategy
	Direct Analysis of the Doubling Strategy
	Slide Number 9
	Amortization Scheme for the Doubling Strategy
	The Queue ADT (§2.1.2)
	Applications of Queues
	Singly Linked List
	Queue with a Singly Linked List
	List ADT (§2.2.2)
	Doubly Linked List
	Trees (§2.3)
	Tree ADT (§2.3.1)
	Preorder Traversal (§2.3.2)
	Postorder Traversal (§2.3.2)
	Binary Trees (§2.3.3)
	Arithmetic Expression Tree
	Decision Tree
	Properties of Binary Trees
	Inorder Traversal
	Euler Tour Traversal
	Printing Arithmetic Expressions
	Linked Data Structure for Representing Trees (§2.3.4)
	Linked Data Structure for Binary Trees
	Array-Based Representation of Binary Trees

