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The Stack ADT (§2.1.1)
The Stack ADT stores 
arbitrary objects
Insertions and deletions 
follow the last-in first-out 
scheme
Think of a spring-loaded 
plate dispenser
Main stack operations:
� push(object): inserts an 

element
� object pop(): removes and 

returns the last inserted 
element

Auxiliary stack 
operations:
� object top(): returns the 

last inserted element 
without removing it

� integer size(): returns the 
number of elements 
stored

� boolean isEmpty(): 
indicates whether no 
elements are stored
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Applications of Stacks

Direct applications
� Page-visited history in a Web browser
� Undo sequence in a text editor
� Chain of method calls in the Java Virtual 

Machine or C++ runtime environment
Indirect applications
� Auxiliary data structure for algorithms
� Component of other data structures
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Array-based Stack (§2.1.1)

A simple way of 
implementing the 
Stack ADT uses an 
array
We add elements 
from left to right
A variable t keeps 
track of the index of 
the top element 
(size is t+1)

S
0 1 2 t

…

Algorithm pop():
if isEmpty() then

throw EmptyStackException
else 
t ← t − 1
return S[t + 1]

Algorithm push(o)
if t = S.length − 1 then

throw FullStackException
else 
t ← t + 1
S[t] ← o
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Growable Array-based 
Stack (§1.5)

In a push operation, when 
the array is full, instead of 
throwing an exception, we 
can replace the array with 
a larger one
How large should the new 
array be?
� incremental strategy: 

increase the size by a 
constant c

� doubling strategy: double 
the size

Algorithm push(o)
if t = S.length − 1 then

A ← new array of
size …

for i ← 0 to t do
A[i] ← S[i]
S ← A

t ← t + 1
S[t] ← o
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Comparison of the 
Strategies

We compare the incremental strategy and 
the doubling strategy by analyzing the total 
time T(n) needed to perform a series of n
push operations
We assume that we start with an empty 
stack represented by an array of size 1
We call amortized time of a push operation 
the average time taken by a push over the 
series of operations, i.e.,  T(n)/n
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Analysis of the 
Incremental Strategy

We replace the array k = n/c times
The total time T(n) of a series of n push 
operations is proportional to

n + c + 2c + 3c + 4c + … + kc =
n + c(1 + 2 + 3 + … + k) =

n + ck(k + 1)/2
Since c is a constant, T(n) is O(n + k2), i.e., 
O(n2)
The amortized time of a push operation is O(n)
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Direct Analysis of the 
Doubling Strategy

We replace the array k = log2 n 
times
The total time T(n) of a series 
of n push operations is 
proportional to

n + 1 + 2 + 4 + 8 + …+ 2k =
n + 2k + 1 −1 = 2n −1

T(n) is O(n)
The amortized time of a push 
operation is O(1)

geometric series

1

2

1
4

8
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The accounting method determines the amortized 
running time with a system of credits and debits
We view a computer as a coin-operated device requiring 
1 cyber-dollar for a constant amount of computing.

Accounting Method Analysis 
of the Doubling Strategy

� We set up a scheme for charging operations. This is 
known as an amortization scheme.

� The scheme must give us always enough money to 
pay for the actual cost of the operation.

� The total cost of the series of operations is no more 
than the total amount charged.

(amortized time) ≤ (total $ charged) / (# operations)
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Amortization Scheme for 
the Doubling Strategy

Consider again the k phases, where each phase consisting of twice 
as many pushes as the one before.
At the end of a phase we must have saved enough to pay for the 
array-growing push of the next phase.
At the end of phase i we want to have saved i cyber-dollars, to pay 
for the array growth for the beginning of the next phase.

0 2 4 5 6 731

$ $ $ $
$ $ $ $

0 2 4 5 6 7 8 9 113 10 12 13 14 151

$
$

• We charge $3 for a push. The $2 saved for a regular push are 
“stored” in the second half of the array. Thus, we will have 
2(i/2)=i cyber-dollars saved at then end of phase i.
• Therefore, each push runs in O(1) amortized time; n pushes run 
in O(n) time.
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The Queue ADT (§2.1.2)
The Queue ADT stores arbitrary 
objects
Insertions and deletions follow 
the first-in first-out scheme
Insertions are at the rear of the 
queue and removals are at the 
front of the queue
Main queue operations:
� enqueue(object): inserts an 

element at the end of the 
queue

� object dequeue(): removes and 
returns the element at the front 
of the queue

Auxiliary queue 
operations:
� object front(): returns the 

element at the front without 
removing it

� integer size(): returns the 
number of elements stored

� boolean isEmpty(): indicates 
whether no elements are 
stored

Exceptions
� Attempting the execution of 

dequeue or front on an 
empty queue throws an 
EmptyQueueException
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Applications of Queues

Direct applications
� Waiting lines
� Access to shared resources (e.g., printer)
� Multiprogramming

Indirect applications
� Auxiliary data structure for algorithms
� Component of other data structures
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Singly Linked List
A singly linked list is a 
concrete data structure 
consisting of a sequence 
of nodes
Each node stores
� element
� link to the next node

next

elem node

A B C D

∅
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Queue with a Singly Linked List
We can implement a queue with a singly linked list
� The front element is stored at the first node
� The rear element is stored at the last node

The space used is O(n) and each operation of the 
Queue ADT takes O(1) time

f

r

∅

nodes

elements
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List ADT (§2.2.2)

The List ADT models a 
sequence of positions
storing arbitrary objects
It allows for insertion 
and removal in the 
“middle” 
Query methods:
� isFirst(p), isLast(p)

Accessor methods:
� first(), last()
� before(p), after(p)

Update methods:
� replaceElement(p, o), 

swapElements(p, q) 
� insertBefore(p, o), 

insertAfter(p, o),
� insertFirst(o), 

insertLast(o)
� remove(p)



Elementary Data Structures 16

Doubly Linked List
A doubly linked list provides a natural 
implementation of the List ADT
Nodes implement Position and store:
� element
� link to the previous node
� link to the next node

Special trailer and header nodes

prev next

elem

trailerheader nodes/positions

elements

node
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Trees (§2.3)
In computer science, a 
tree is an abstract model 
of a hierarchical 
structure
A tree consists of nodes 
with a parent-child 
relation
Applications:
� Organization charts
� File systems
� Programming 

environments

Computers”R”Us

Sales R&DManufacturing

Laptops DesktopsUS International

Europe Asia Canada
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Tree ADT (§2.3.1)
We use positions to abstract 
nodes
Generic methods:
� integer size()
� boolean isEmpty()
� objectIterator elements()
� positionIterator positions()

Accessor methods:
� position root()
� position parent(p)
� positionIterator children(p)

Query methods:
� boolean isInternal(p)
� boolean isExternal(p)
� boolean isRoot(p)

Update methods:
� swapElements(p, q)
� object replaceElement(p, o)

Additional update methods 
may be defined by data 
structures implementing the 
Tree ADT
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Preorder Traversal (§2.3.2)
A traversal visits the nodes of a 
tree in a systematic manner
In a preorder traversal, a node is 
visited before its descendants 
Application: print a structured 
document

Make Money Fast!

1. Motivations References2. Methods

2.1 Stock
Fraud

2.2 Ponzi
Scheme1.1 Greed 1.2 Avidity 2.3 Bank

Robbery

1

2

3

5

4 6 7 8

9

Algorithm preOrder(v)
visit(v)
for each child w of v

preorder (w)



Elementary Data Structures 20

Postorder Traversal (§2.3.2)
In a postorder traversal, a 
node is visited after its 
descendants
Application: compute space 
used by files in a directory and 
its subdirectories

Algorithm postOrder(v)
for each child w of v

postOrder (w)
visit(v)

cs16/

homeworks/ todo.txt
1Kprograms/

DDR.java
10K

Stocks.java
25K

h1c.doc
3K

h1nc.doc
2K

Robot.java
20K

9

3

1

7

2 4 5 6

8
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Binary Trees (§2.3.3)
A binary tree is a tree with the 
following properties:
� Each internal node has two 

children
� The children of a node are an 

ordered pair
We call the children of an internal 
node left child and right child
Alternative recursive definition: a 
binary tree is either
� a tree consisting of a single node, 

or
� a tree whose root has an ordered 

pair of children, each of which is a 
binary tree

Applications:
� arithmetic expressions
� decision processes
� searching

A

B C

F GD E

H I
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Arithmetic Expression Tree
Binary tree associated with an arithmetic expression
� internal nodes: operators
� external nodes: operands

Example: arithmetic expression tree for the 
expression (2 × (a − 1) + (3 × b))

+

××

−2

a 1

3 b
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Decision Tree
Binary tree associated with a decision process
� internal nodes: questions with yes/no answer
� external nodes: decisions

Example: dining decision

Want a fast meal?

How about coffee? On expense account?

Starbucks In ‘N Out Antoine's Denny’s

Yes No

Yes No Yes No
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Properties of Binary Trees
Notation
n number of nodes
e number of 

external nodes
i number of internal 

nodes
h height

Properties:
� e = i + 1
� n = 2e − 1
� h ≤ i
� h ≤ (n − 1)/2
� e ≤ 2h

� h ≥ log2 e
� h ≥ log2 (n + 1) − 1
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Inorder Traversal
In an inorder traversal a 
node is visited after its left 
subtree and before its right 
subtree
Application: draw a binary 
tree
� x(v) = inorder rank of v
� y(v) = depth of v

Algorithm inOrder(v)
if isInternal (v)

inOrder (leftChild (v))
visit(v)
if isInternal (v)

inOrder (rightChild (v))

3
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2

5

6

7 9

8
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Euler Tour Traversal
Generic traversal of a binary tree
Includes a special cases the preorder, postorder and inorder traversals
Walk around the tree and visit each node three times:
� on the left (preorder)
� from below (inorder)
� on the right (postorder)

+

×

−2

5 1

3 2

L
B

R×
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Printing Arithmetic Expressions
Specialization of an inorder 
traversal
� print operand or operator 

when visiting node
� print “(“ before traversing left 

subtree
� print “)“ after traversing right 

subtree

Algorithm printExpression(v)
if isInternal (v)

print(“(’’)
inOrder (leftChild (v))

print(v.element ())
if isInternal (v)

inOrder (rightChild (v))
print (“)’’)

+

××

−2

a 1

3 b
((2 × (a − 1)) + (3 × b))
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∅

Linked Data Structure for 
Representing Trees (§2.3.4)

A node is represented by 
an object storing
� Element
� Parent node
� Sequence of children 

nodes
Node objects implement 
the Position ADT
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DA

C E
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Linked Data Structure for 
Binary Trees

A node is represented by 
an object storing
� Element
� Parent node
� Left child node
� Right child node

Node objects implement 
the Position ADT

B

DA

C E

∅ ∅

∅ ∅ ∅ ∅

B

A D

C E

∅
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Array-Based Representation of 
Binary Trees

nodes are stored in an array

…

� let rank(node) be defined as follows:
� rank(root) = 1
� if node is the left child of parent(node), 

rank(node) = 2*rank(parent(node))
� if node is the right child of parent(node), 

rank(node) = 2*rank(parent(node))+1

1

2 3

6 74 5

10 11
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