
NP-Completeness 1

Chapter 13: NP-Completeness
x1 x3x2x1 x4x3x2 x4

11

12

13 21

22

23 31

32

33

NP-Completeness 2

Outline and Reading
P and NP (§13.1)
NP-completeness (§13.2)
Some NP-complete problems (§13.3)
Approximation Algorithms for NP-
Complete Problems (§13.4)
Optional: Backtracking and Branch-and-
Bound (§13.4)

NP-Completeness 3

Running Time Revisited
Input size, n
 To be exact, let n denote the number of bits in a nonunary

encoding of the input
All the polynomial-time algorithms studied so far in this
course run in polynomial time using this definition of
input size.
 Exception: any pseudo-polynomial time algorithm

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

NP-Completeness 4

Dealing with Hard Problems
What to do when we find a problem
that looks hard…

I couldn’t find a polynomial-time algorithm;
I guess I’m too dumb.

(cartoon inspired by [Garey-Johnson, 79])

NP-Completeness 5

Dealing with Hard Problems
Sometimes we can prove a strong lower
bound… (but not usually)

I couldn’t find a polynomial-time algorithm,
because no such algorithm exists!

(cartoon inspired by [Garey-Johnson, 79])

NP-Completeness 6

Dealing with Hard Problems
NP-completeness let’s us show
collectively that a problem is hard.

I couldn’t find a polynomial-time algorithm,
but neither could all these other smart people.

(cartoon inspired by [Garey-Johnson, 79])

NP-Completeness 7

Polynomial-Time
Decision Problems

To simplify the notion of “hardness,” we will
focus on the following:
 Polynomial-time as the cut-off for efficiency
 Decision problems: output is 1 or 0 (“yes” or “no”)

 Examples:
 Does a given graph G have an Euler tour?
 Does a text T contain a pattern P?
 Does an instance of 0/1 Knapsack have a solution with

benefit at least K?
 Does a graph G have an MST with weight at most K?

NP-Completeness 8

Problems and Languages
A language L is a set of strings defined over some
alphabet Σ
Every decision algorithm A defines a language L
 L is the set consisting of every string x such that A outputs

“yes” on input x.
 We say “A accepts x’’ in this case

 Example:
 If A determines whether or not a given graph G has an

Euler tour, then the language L for A is all graphs with
Euler tours.

NP-Completeness 9

The Complexity Class P

A complexity class is a collection of languages
P is the complexity class consisting of all languages
that are accepted by polynomial-time algorithms
For each language L in P there is a polynomial-time
decision algorithm A for L.
 If n=|x|, for x in L, then A runs in p(n) time on input x.
 The function p(n) is some polynomial

NP-Completeness 10

The Complexity Class NP
We say that an algorithm is non-deterministic if it
uses the following operation:
 Choose(b): chooses a bit b non-deterministically (0 or 1)
 Can be used to choose an entire string y (with |y| choices)

We say that a non-deterministic algorithm A accepts
a string x if there exists some sequence of choose
operations that causes A to output “yes” on input x.
NP is the complexity class consisting of all languages
accepted by polynomial-time non-deterministic
algorithms.

NP-Completeness 11

NP example
Problem: Decide if a graph has an MST of weight K

Algorithm:
1. Non-deterministically choose a set T of n-1 edges
2. Test that T forms a spanning tree
3. Test that T has weight at most K

Analysis: Testing takes O(n+m) time, so this
algorithm runs in polynomial time.

NP-Completeness 12

The Complexity Class NP
Alternate Definition

We say that an algorithm B verfies the acceptance
of a language L if and only if, for any x in L, there
exists a certificate y such that B outputs “yes” on
input (x,y).
NP is the complexity class consisting of all languages
verified by polynomial-time algorithms.

We know: P is a subset of NP.
Major open question: P=NP?
Most researchers believe that P and NP are different.

NP-Completeness 13

NP example (2)
Problem: Decide if a graph has an MST of weight K

Verification Algorithm:
1. Use as a certificate, y, a set T of n-1 edges
2. Test that T forms a spanning tree
3. Test that T has weight at most K

Analysis: Verification takes O(n+m) time, so this
algorithm runs in polynomial time.

NP-Completeness 14

Equivalence of the
Two Definitions

Suppose A is a non-deterministic algorithm
Let y be a certificate consisting of all the outcomes of the

choose steps that A uses
We can create a verification algorithm that uses y instead of

A’s choose steps
 If A accepts on x, then there is a certificate y that allows us to

verify this (namely, the choose steps A made)
 If A runs in polynomial-time, so does this verification

algorithm
Suppose B is a verification algorithm

Non-deterministically choose a certificate y
Run B on y
If B runs in polynomial-time, so does this non-deterministic
algorithm

NP-Completeness 15

An Interesting Problem

NOT

OR

AND

Logic Gates:
Inputs:

0
1

0

1

1
1

1

1

Output:

0

1

0 0 1

A Boolean circuit is a circuit of AND, OR, and NOT
gates; the CIRCUIT-SAT problem is to determine if
there is an assignment of 0’s and 1’s to a circuit’s
inputs so that the circuit outputs 1.

NP-Completeness 16

CIRCUIT-SAT is in NP

NOT

OR

AND

Logic Gates:
Inputs:

0
1

0

1

1
1

1

1

Output:

0

1

0 0 1

Non-deterministically choose a set of inputs and the
outcome of every gate, then test each gate’s I/O.

NP-Completeness 17

NP-Completeness
A problem (language) L is NP-hard if every
problem in NP can be reduced to L in
polynomial time.
That is, for each language M in NP, we can
take an input x for M, transform it in
polynomial time to an input x’ for L such that
x is in M if and only if x’ is in L.
L is NP-complete if it’s in NP and is NP-hard.

NP poly-time L

NP-Completeness 18

Problem Reduction
A language M is polynomial-time reducible to a
language L if an instance x for M can be transformed in
polynomial time to an instance x’ for L such that x is in M
if and only if x’ is in L.
 Denote this by M→L.

A problem (language) L is NP-hard if every problem in
NP is polynomial-time reducible to L.
A problem (language) is NP-complete if it is in NP and
it is NP-hard.
CIRCUIT-SAT is NP-complete:
 CIRCUIT-SAT is in NP
 For every M in NP, M → CIRCUIT-SAT.

Inputs:

0
1

0

1

1
1

1

1

Output:

0

1

0 0 1

NP-Completeness 19

Transitivity of Reducibility
If A → B and B → C, then A → C.
 An input x for A can be converted to x’ for B, such that x is in A

if and only if x’ is in B. Likewise, for B to C.
 Convert x’ into x’’ for C such that x’ is in B iff x’’ is in C.
 Hence, if x is in A, x’ is in B, and x’’ is in C.
 Likewise, if x’’ is in C, x’ is in B, and x is in A.
 Thus, A → C, since polynomials are closed under composition.

Types of reductions:
 Local replacement: Show A → B by dividing an input to A

into components and show how each component can be
converted to a component for B.

 Component design: Show A → B by building special
components for an input of B that enforce properties needed
for A, such as “choice” or “evaluate.”

NP-Completeness 20

SAT
A Boolean formula is a formula where the
variables and operations are Boolean (0/1):
 (a+b+¬d+e)(¬a+¬c)(¬b+c+d+e)(a+¬c+¬e)
 OR: +, AND: (times), NOT: ¬

SAT: Given a Boolean formula S, is S
satisfiable, that is, can we assign 0’s and 1’s
to the variables so that S is 1 (“true”)?
 Easy to see that CNF-SAT is in NP:

 Non-deterministically choose an assignment of 0’s and
1’s to the variables and then evaluate each clause. If
they are all 1 (“true”), then the formula is satisfiable.

NP-Completeness 21

SAT is NP-complete
Reduce CIRCUIT-SAT to SAT.
 Given a Boolean circuit, make a variable for every

input and gate.
 Create a sub-formula for each gate, characterizing

its effect. Form the formula as the output variable
AND-ed with all these sub-formulas:
 Example: m((a+b)↔e)(c↔¬f)(d↔¬g)(e↔¬h)(ef↔i)…

Inputs:

a
b

c

e

f
i

d

m

Output:

h

k

g j n

The formula is satisfiable
if and only if the
Boolean circuit
is satisfiable.

NP-Completeness 22

Clique
A clique of a graph G=(V,E) is a subgraph C that is
fully-connected (every pair in C has an edge).
CLIQUE: Given a graph G and an integer K, is there a
clique in G of size at least K?

CLIQUE is in NP: non-deterministically choose a
subset C of size K and check that every pair in C has
an edge in G.

This graph has
a clique of size 5

NP-Completeness 23

CLIQUE is NP-Complete

G’G

Reduction from VERTEX-COVER.
A graph G has a vertex cover of size K if and only if
it’s complement has a clique of size n-K.

NP-Completeness 24

Some Other
NP-Complete Problems

SET-COVER: Given a collection of m sets, are
there K of these sets whose union is the
same as the whole collection of m sets?
 NP-complete by reduction from VERTEX-COVER

SUBSET-SUM: Given a set of integers and a
distinguished integer K, is there a subset of
the integers that sums to K?
 NP-complete by reduction from VERTEX-COVER

NP-Completeness 25

Some Other
NP-Complete Problems

0/1 Knapsack: Given a collection of items with
weights and benefits, is there a subset of weight
at most W and benefit at least K?
 NP-complete by reduction from SUBSET-SUM

Hamiltonian-Cycle: Given an graph G, is there a
cycle in G that visits each vertex exactly once?
 NP-complete by reduction from VERTEX-COVER

Traveling Saleperson Tour: Given a complete
weighted graph G, is there a cycle that visits each
vertex and has total cost at most K?
 NP-complete by reduction from Hamiltonian-Cycle.

NP-Completeness 26

Approximation Algorithms

NP-Completeness 27

Approximation Ratios
Optimization Problems
 We have some problem instance x that has many

feasible “solutions”.
 We are trying to minimize (or maximize) some cost

function c(S) for a “solution” S to x. For example,
 Finding a minimum spanning tree of a graph
 Finding a smallest vertex cover of a graph
 Finding a smallest traveling salesperson tour in a graph

An approximation produces a solution T
 T is a k-approximation to the optimal solution OPT

if c(T)/c(OPT) < k (assuming a min. prob.; a
maximization approximation would be the reverse)

NP-Completeness 28

Polynomial-Time Approximation
Schemes

A problem L has a polynomial-time
approximation scheme (PTAS) if it has
a polynomial-time (1+ε)-approximation
algorithm, for any fixed ε >0 (this value
can appear in the running time).
0/1 Knapsack has a PTAS, with a running
time that is O(n3/ ε). Please see §13.4.1 in
Goodrich-Tamassia for details.

NP-Completeness 29

Vertex Cover

A vertex cover of graph G=(V,E) is a subset W
of V, such that, for every (a,b) in E, a is in W or
b is in W.
OPT-VERTEX-COVER: Given an graph G, find a
vertex cover of G with smallest size.
OPT-VERTEX-COVER is NP-hard.

NP-Completeness 30

A 2-Approximation for
Vertex Cover

Every chosen edge e
has both ends in C
But e must be covered
by an optimal cover;
hence, one end of e
must be in OPT
Thus, there is at most
twice as many vertices
in C as in OPT.
That is, C is a 2-approx.
of OPT
Running time: O(m)

Algorithm VertexCoverApprox(G)
Input graph G
Output a vertex cover C for G
C ← empty set
H ← G
while H has edges

e ← H.removeEdge(H.anEdge())
v ← H.origin(e)
w ← H.destination(e)
C.add(v)
C.add(w)
for each f incident to v or w

H.removeEdge(f)
return C

NP-Completeness 31

Special Case of the Traveling
Salesperson Problem

OPT-TSP: Given a complete, weighted
graph, find a cycle of minimum cost that
visits each vertex.
 OPT-TSP is NP-hard
 Special case: edge weights satisfy the triangle

inequality (which is common in many
applications):
w(a,b) + w(b,c) > w(a,c)

a

b

c

5 4

7

NP-Completeness 32

A 2-Approximation for TSP
Special Case

Output tour T

Euler tour P of MST M

Algorithm TSPApprox(G)
Input weighted complete graph G,
satisfying the triangle inequality
Output a TSP tour T for G
M ← a minimum spanning tree for G
P ← an Euler tour traversal of M,

starting at some vertex s
T ← empty list
for each vertex v in P (in traversal order)

if this is v’s first appearance in P then
T.insertLast(v)

T.insertLast(s)
return T

NP-Completeness 33

A 2-Approximation for TSP
Special Case - Proof

Euler tour P of MST MOutput tour T Optimal tour OPT
(twice the cost of M) (at least the cost of MST M)(at most the cost of P)

The optimal tour is a spanning tour; hence |M|<|OPT|.
The Euler tour P visits each edge of M twice; hence |P|=2|M|
Each time we shortcut a vertex in the Euler Tour we will not increase the
total length, by the triangle inequality (w(a,b) + w(b,c) > w(a,c));
hence, |T|<|P|.
Therefore, |T|<|P|=2|M|<2|OPT|

	Chapter 13: NP-Completeness
	Outline and Reading
	Running Time Revisited
	Dealing with Hard Problems
	Dealing with Hard Problems
	Dealing with Hard Problems
	Polynomial-Time �Decision Problems
	Problems and Languages
	The Complexity Class P
	The Complexity Class NP
	NP example
	The Complexity Class NP Alternate Definition
	NP example (2)
	Equivalence of the �Two Definitions
	An Interesting Problem
	CIRCUIT-SAT is in NP
	NP-Completeness
	Problem Reduction
	Transitivity of Reducibility
	SAT
	SAT is NP-complete
	Clique
	CLIQUE is NP-Complete
	Some Other 				 NP-Complete Problems
	Some Other 				 NP-Complete Problems
	Approximation Algorithms
	Approximation Ratios
	Polynomial-Time Approximation Schemes
	Vertex Cover
	A 2-Approximation for Vertex Cover
	Special Case of the Traveling Salesperson Problem
	A 2-Approximation for TSP Special Case
	A 2-Approximation for TSP Special Case - Proof

