CS 532: 3D Computer Vision Lecture 8

Joint Depth Estimation and View Selection

Depthmap Estimation

Image

Depthmap

Depthmap Estimation

Projection into 3D space

3D point cloud

Background

Reference image

Source image

Challenges

Reference image

211 Source images (only 10 are shown)

Challenges

Reference image

Illumination variation

Scene resolution difference

Occlusion

Prior Works

Use images taken under a controlled environment · Yoon et al. PAMI 2006, Hirschmüller et al. CVPR 2005, Bleyer et al. BMVC 2012, Lu et al. CVPR 2013, Wang et al. CVPR 2014, ... •

Reconstruction from Internet photo collections •

Goesele et al. ICCV 2007

Prior Works

- Use images taken under a controlled environment
 - Yoon et al. PAMI 2006, Hirschmüller et al. CVPR 2005, Bleyer et al. BMVC 2012, Lu et al. CVPR 2013, Wang et al. CVPR 2014, ...
- Reconstruction from Internet photo collections •
 - Goesele et al. ICCV 2007
- Pixel level view selection and depth estimation
 - Strecha et al., CVPR 2006

Reference image

depthmap

Source images

View selection (mask)

Pixel Level Image Selection

Reference image

Source images

Pixel Level Image Selection

Reference image

Source images

Pixel Level Image Selection

Reference image

Source images

Our Method Overview

Image Selection–Smoothness Term

Source image

Reference image

• Random depth initialization

Random depth

- Depth propagations
 - EM style depth estimation and view selection
 - Propagations in four directions

- Each row column is independent

• Random depthmap initialization

Reference image

Random depthmap

Our method

• Left to right propagation

Our method

• Propagations in other directions

Our method

Four kinds of propagations to generate depthmap: •

Experiments Compare results with best-K stereo •

Completeness: percentage of pixels with errors less than 2 cm

Ground truth

Our result

K=3

Experiments

Compare with other methods

Dataset	Fountain-P11		Herzjesu-P9	
Error threshold	2cm	10cm	2cm	10cm
Our method	0.769	0.929	0.650	0.844
LC	0.754	0.930	0.649	0.848
FUR	0.731	0.838	0.646	0.836
ZAH	0.712	0.832	0.220	0.501
TYL	0.732	0.822	0.658	0.852

Percentage of pixels with errors less than a threshold (2 or 10 cm)

LC: Hu et al. 3DIMPVT 2012 FUR: Furkawa et al. PAMI, 2010 ZAH: Zaharescu et al. PAMI 2011 TYL: Tylecek et al. Int'l Journal of VR 2010

Buddha (212 images)

Source images

Our method

Goesele's method

Runtime: on average 47.3 secs/image

Mt. Rushmore (206 images)

Source images

Our method

Goesele's method

Heightmap Representation for Depthmap Fusion

Real-time Stereo Estimation Problem:

- highly noisy depth estimates
- no depth estimates

Robust stereo fusion process

- Heightmap 2.5D representation
- Every heightmap pixel is treated independently

Robust stereo fusion process

- Enforces vertical facades
- One continuous surface, no holes
- Fast to compute, easy to store $O(n^2)$ instead of $O(n^3)$

Related Work

- Space carving
 - Kutulakos and Seitz 2000
- Graph cuts
 Vogiatzis et al. 2005
- Level set
 - Faugeras and Keriven 1998
- Convex
 - Zach et al. 2007

Layout

- Vertical direction
 - vanishing point
 - camera constraints (Szeliski 2005, Snavely et al. 2006)

Video

Photo Collections

Vertical Surfaces Gallup et al. 3DPVT 2010

Input Depthmaps

Heightmap (Top-Down View) the brighter the higher

3D Model Geometry

Textured 3D Model

N-Layer Heightmap

- Generalize to n-layer heightmap
- Each layer is a transition from full/empty or empty/full

- Compute layer positions with dynamic programming
- Use model selection (BIC) to determine number of layers
Related Work

Cornelis et al. 2006

Furukawa et al. 2010

Sinha et al. 2009

Gallup et al. 2010

Probabilistic Occupancy Introduced in robotics: Margaritis and Thrun 1998

Random Variables O – binary, occupancy of voxel $Z=\{Z_i\}$ – continuous, depth measurements for i=1...k depth maps

Probabilistic Occupancy

 $P(Z_i|O)$

Measurement Model

$$P(Z_i|S, O) = P(Z_i|S) = \begin{cases} \mathcal{N}(S, \sigma)|_{Z_i} & \text{if inliner} \\ \mathcal{U}(z_{min}, z_{max})|_{Z_i} & \text{if outlier} \\ = \rho \mathcal{N}(S, \sigma)|_{Z_i} + (1 - \rho) \mathcal{U}(z_{min}, z_{max})|_{Z_i} \end{cases}$$

Surface Formation Model

$$P(S|O) = \begin{cases} 1/(z_{max} - z_{min}) & \text{if } S < z_p - \epsilon \\ (1 - z_p/(z_{max} - z_{min})/\epsilon & \text{if } z_p - \epsilon \le S \le z_p \\ 0 & \text{if } S > z_p \end{cases}$$

occupancy likelihood slice

 $L(O_m|Z)$

Heightmap Computation $C_{1...k}(m) = C_k(m) + \min C_{1...k-1}(m')$ $+ \frac{1}{2} \ln |Z|$ if m \neq m' User sets maximum number of layers. Model selection determines if less are needed.

 $L(O_m|Z)$

Heightmap Result

photos and depthmaps

1 vs 3 Layers

Heightmap Layers

Layer 1

Layer 2

Layer 3

Implementation

Implemented in CUDA

 Computes 100x100(x100) heightmap from 50 depthmaps in 70ms on Nvidia GTX 285

Results from Video

Input Videos

3D Reconstruction

Results from Photo Collections

Input Photos

3D Reconstruction

Conclusion

- Heightmap Advantages
 - less memory: $O(n^2)$ instead of $O(n^3)$
 - parallel: each heightmap pixel independent
 - compact storage
 - vertical surfaces
- Disadvantages
 - Cannot capture all detail

Lecture Outline

- Multi-view Stereo part II
 - Slides by G. Vogiatzis and L. Zhang
 - Paper by A. Collet et al. (2015)
- Introduction to Computational Geometry
- Convex Hulls
 - David M. Mount, CMSC 754: Computational Geometry lecture notes, Department of Computer Science, University of Maryland, Spring 2012
 - Slides by:
 - B. Gartner, M. Hoffman and E. Welzl (ETH)
 - M. van Kreveld (Utrecht University)
 - P. Indyk and J.C. Yang (MIT)

Extracting a Surface from Photo-consistency

- Vogiatzis et al. (PAMI 2007)
- Divide the space in voxels
- Compute the photo-consistency of each voxel
 By robustly combining all pairwise NCC scores
- Problem: find a minimum cost surface that separates interior from exterior of the object
- Add term that favors large volume, otherwise solution collapses to a point

How to Solve?

Graph Cut

Minimum Cut

Three Equivalent Representations

Extracting the Surface

- Marching cubes algorithm can extract isosurfaces
 - Matlab: [tri, pts] = isosurface(V)
 - Where V is a binary volume of 0s and 1s

Shape from silhouettes

Automatic 3D Model Construction for Turn-Table Sequences, A.W. Fitzgibbon, G. Cross, and A. Zisserman, SMILE 1998

Visual Hull: A 3D Example

Results

Results

Volumetric Stereo

- Determine occupancy, "color" of points in V
- Slides by L. Zhang

Discrete Formulation: Voxel Coloring

Goal: Assign RGBA values to voxels in V *photo-consistent* with images

Complexity and Computability

Reconstruction from Silhouettes (C=2)

- Approach:
 - Back-project each silhouette
 - Intersect back-projected volumes

Volume Intersection

Reconstruction Contains the True Scene

- But is generally not the same
- In the limit (all views) we get visual hull
 - > Complement of all lines that do not intersect S

Color voxel black if on silhouette in every image

- O(?), for M images, N³ voxels
- Don't have to search 2^{N^3} possible scenes!

Results (Franco and Boyer, PAMI 2009)

Properties of Volume Intersection

Pros

- Easy to implement, fast
- Accelerated via octrees

Cons

- No concavities
- Reconstruction is not photo-consistent
- Requires identification of silhouettes

Space Carving

Space Carving Algorithm

- Initialize to a volume V containing the true scene
- Choose a voxel on the current surface
- Project to visible input images
- Carve if not photo-consistent
- Repeat until convergence

Which Shape do You Get?

The Photo Hull is the UNION of all photo-consistent scenes in V

- It is a photo-consistent scene reconstruction
- Tightest possible bound on the true scene

Results (Kutulakos and Seitz, IJCV 2000)

Free-Viewpoint Video

Alvaro Collet, Ming Chuang, Pat Sweeney, Don Gillett, Dennis Evseev, David Calabrese, Hugues Hoppe, Adam Kirk, Steve Sullivan Microsoft Corporation SIGGRAPH 2015

Pipeline

Reconstruction

PMVS: system by Furukawa and Ponce, we saw last week PSR: Poisson Surface Reconstruction (last slide last week)

Adaptive Level of Detail

Synthesized Viewpoints

Synthesized Viewpoints

