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Lecture Outline

• Large-scale Structure from Motion
– Image collections

• Multi-view Stereo part I

• Sources:
– Slides by R. Szeliski, S. Seitz, N. Snavely, D. 

Gallup, C. Hernandez, G. Vogiatzis, 
Y. Furukawa, M. Bleyer
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Structure from Motion from large Image 
Collections

• Given many images, how can we 
a) figure out where they were all taken from?
b) build a 3D model of the scene?
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Photo Tourism

4



Input
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First Step: How to Get Correspondences?

• Feature detection and matching
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Feature detection

Detect features using SIFT [Lowe, IJCV 2004] in all 
images
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Feature Detection
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Feature Matching
Match features between each pair of images
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Feature Matching
Refine matching using RANSAC to estimate fundamental 
matrix between each pair
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Image Connectivity Graph

(graph layout produced using  the Graphviz toolkit: http://www.graphviz.org/)
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Structure from motion

Camera 1

Camera 2

Camera 3

R1,t1

R2,t2

R3,t3

X1

X4

X3

X2

X5

X6

X7

minimize

g(R, T, X)

p1,1

p1,2

p1,3

non-linear least squares
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Problem Size

• What are the variables? 
• How many variables per camera?
• How many variables per point?

• Trevi Fountain collection
    466 input photos
 + > 100,000 3D points
      = very large optimization problem 
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Incremental Structure from Motion

To help get good initializations for all of the parameters of the system, reconstruct 
the scene incrementally, starting from two photographs and the points they observe 14



Incremental Structure from Motion
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Photo Explorer
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Navigation Controls

• Free-flight navigation
• Object-based browsing
• Relation-based browsing
• Overhead map
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Object-based Browsing
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Object-based browsing

• Visibility
• Resolution
• Head-on view
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Relation-based Browsing

Zoom in

Zoom out

Move left Move right

Find all details Find all zoom outs

Find all similar images
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Relation-based browsing

is to the 
left of

is detail of

is a zoom 
out ofImage A Image C

Image D

Image B
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Rendering
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Rendering



Multi-View Stereo
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Representations (coming soon)

• Depth maps
• Point clouds
• Surface patches
• Level sets
• Voxels grids
• Meshes
• …
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Plane Sweeping Stereo

• True multi-view stereo
• Define family of planes that sweep depth 

range of interest
• For each pixel, generate and evaluate 

depth hypotheses by intersecting its ray 
with planes
– Compute cost/score function to measure 

“photo-consistency”
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Limitation of Plane Sweeping
• Assumes that all surfaces are planes 

which are fronto-parallel to the camera
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Limitation of Plane Sweeping
• Cannot handle slanted planes
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Multi-way Plane Sweeping
• Solutions:

– Detect planes in the scene and sweep parallel to them
– Or, sweep in a few directions which are often 

sufficient
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Depth Map Fusion

• Fuse depth maps to improve accuracy and minimize 
violations of visibility constraints
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Depth Map Fusion
• Depth maps from plane sweeping are noisy

– No occlusion handling
– No consistency across views

• Use multiple depth estimates to:
– Correct errors
– Reduce redundancy in the model

• Minimize occlusions and free-space violations
– Occluded depth estimates are too far from the 

camera
– Depth estimates violating free space of other 

surfaces are too close
42



Inputs

• Depth maps from plane sweeping
• Confidence maps (optionally)
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Render depth map of target views to reference view and fuse them according 
to visibility constraints and confidence 45



Input depth maps

Depth maps rendered
on reference view

Confidence maps rendered on reference view 46



Reference Camera

Render Depth Maps to Reference View

47



Reference Camera
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Reference Camera
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Reference Camera
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Reference Camera
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Reference Camera
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Reference Camera

C

C’

C”

Support is calculated for every depth hypothesis within 
range determined by geometric uncertainty 53



Reference Camera
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Reference Camera

55



Reference Camera
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Reference Camera
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Reference Camera



Reference Camera

Visibility Constraints

A has its free space violated by F
A

F

Free-space violations occur on rays of target views
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Visibility Constraints
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Reference Camera

F is occluded by B

F

B

Occlusions occur on rays of the reference view



• Add confidence values of all supporting depth 
hypotheses
• Fused depth is weighted average of supporting 

depths

• Decrease confidence if there are visibility 
violations

Confidence Updates
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Hypothesis Selection

• Select blended hypothesis with the highest confidence for 
each pixel

• The number of supporting depth candidates is also 
considered

• Holes are filled by median filtering
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Experimental Results

Final fused depth maps are evaluated in terms of absolute errors 
and relative errors
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Comparison With State of the Art

Relative error of Herz-Jesu-P8Relative error of fountain-P11

LC: Hu and Mordohai, 2012.
FUR: Y. Furukawa and J. Ponce, 2010.
ZAH: A. Zaharescu, E. Boyer, and R. P. Horaud, 2011.
TYL: R. Tylecek and R. Sara, 2010.
JAN: M. Jancosek and T. Pajdla, 2011.



Representations

• Depth maps
• Point clouds
• Surface patches
• Level sets
• Voxels grids
• Meshes
• …

65



Depth Maps

• Compact representation
– 3D quantities (points) can be indexed via pixel coordinates
– Easy to determine neighborhood relationships and connectivity
– Plane sweeping can be done very efficiently on GPUs

• Enable straightforward visibility estimation
• Viewpoint dependent

– Does not allow more than one layer (2 ½ D representation)
– Viewpoint cannot be altered without revealing holes

• Depth maps are no consistent after fusion
– They are redundant when they are consistent…
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The Visibility Problem

• Which points are visible in which images?
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Inverse Visibility
known images

Unknown SceneKnown Scene

Forward Visibility
known scene



Patch-based MVS (PMVS)

Y. Furukawa and J. Ponce (PAMI 2010)
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What is a Patch?

• Patch consists of
– Position (x, y, z)

– Normal (nx, ny, nz)

– Extent (radius)

• Tangent plane approximation

Extent

Position

Normal
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What is a Patch?

• Patch consists of
– Position (x, y, z)
– Normal (nx, ny, nz)
– Extent (radius)

• Tangent plane approximation

Extent

Position

Normal

Mesh

Patch
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Why Patches?

• Flexible
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Why Patches?

• Flexible           Hard to enforce regularization  
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Why Patches?

• Flexible           Hard to enforce regularization  

9x9 pixels 9x9 pixels

matches

matches

Do not match
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Why Patches?

• Flexible           Hard to enforce regularization  

Regularization not really necessary

because

9x9 pixels

Local image patch is descriptive enough
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Why Patches?

• Pure 3d data w/o interpolation

Scene analysis from
pure 3d data

Meshing w/
smart interpolation

Image

Patches (pure 3d data)

Meshing w/
standard interpolation
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By the way…

• Depthmap-fusion
– is also “flexible”
– can also extract pure 3d data
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Patches vs. Multiple Depth Maps
(according to Y. Furukawa)

• Patches  Single global 3D model
Depthmaps  Multiple redundant 3D 
models

• Patches  Clean 3D points
Depthmaps  Noisy without merging

• Patches  Hard to compute fast
Depthmaps  Easy to compute fast
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Patch-based MVS

[Lhuillier and Quan,
PAMI 05]

[Furukawa and Ponce,
CVPR 07 and PAMI 2010]

[Habbecke and Kobbelt,
CVPR 07]
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Patch Definition

• Patch p is defined by
– Position c(p)
– Normal n(p)
– Visible images V(p)

• Extent is set so that
p is roughly 9x9 pixels
in V(p)

Extent

Position c(p)

Normal n(p)

Visible images V(p)

9x9 pixels
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Photo-consistency

• Photo-consistency N(I, J, p) of p between
two images I and J

I

J

I11

I12

Ixy: pixel color in image I
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Photo-consistency

• Photo-consistency N(I, J, p) of p between
two images I and J

I

J
J11

J12

Ixy: pixel color in image I
Jxy: pixel color in image J
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Photo-consistency

• Photo-consistency N(I, J, p) of p between
two images I and J

I

J
J11

J12

Photo-consistency N(p) of p with 
visible images V(p) = {I1, I2, …, 
In}
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Reconstruct Patch p

• Given initial estimates 
of
– Position c(p)
– Normal n(p)
– Visible images V(p)

• Refine c(p) and n(p)

c(p)

n(p)
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Reconstruct Patch p

• Given initial estimates 
of
– Position c(p)
– Normal n(p)
– Visible images V(p)

• Refine c(p) and n(p)

1 DOF
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Reconstruct Patch p

• Given initial estimates 
of
– Position c(p)
– Normal n(p)
– Visible images V(p)

• Refine c(p) and n(p)

2 DOF
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Verify a Patch

• Textures may match by accident
• Photo-consistency must be reasonably 

high

• Verification process
– Keep only high photo-consistency images in 

V(p)
– Accept if |V(p)|≥3
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Update V(p)

V(p)={Image1, Image2, Image3, Image4}

Image2Image1

Image4 Image3

Specular
Highlights!
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Update V(p)

V(p)={Image1, Image2, Image3, Image4}

Image2Image1

Image4 Image3

Specular
Highlights!

N(Image1, Image2, p)=0.75

0.58

0.83 0.52

0.45

0.71
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Update V(p)

V(p)={Image1, Image2, Image3, Image4}

Image2Image1

Image4 Image3

Specular
Highlights!

N(Image1, Image2, p)=0.75

0.58

0.83

Sum = 2.16
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Update V(p)

V(p)={Image1, Image2, Image3, Image4}

Image2Image1

Image4 Image3

Specular
Highlights!

N(Image1, Image2, p)=0.75

0.52

0.71

Sum = 1.98Sum = 2.16
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Update V(p)

V(p)={Image1, Image2, Image3, Image4}

Image2Image1

Image4 Image3

Specular
Highlights!

0.52

Sum = 1.98Sum = 2.16

0.58

0.45

Sum = 1.55
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Update V(p)

V(p)={Image1, Image2, Image3, Image4}

Image2Image1

Image4 Image3

Specular
Highlights!

Sum = 1.98Sum = 2.16

0.45

Sum = 1.55

0.83

0.71

Sum = 1.99
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Update V(p)

V(p)={Image1, Image2, Image3, Image4}

Image2Image1

Image4 Image3

Specular
Highlights!

Sum = 1.98Sum = 2.16

Sum = 1.55Sum = 1.99
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Update V(p)

V(p)={Image1, Image2, Image3, Image4}

Image2Image1

Image4 Image3

Specular
Highlights!

Sum = 2.16
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Update V(p)

V(p)={Image1, Image2, Image3, Image4}

Image2Image1

Image4 Image3

Specular
Highlights!

Sum = 2.16
N(Image1, Image2, p)=0.75

Add Image2, because > 0.7
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Update V(p)

V(p)={Image1, Image2, Image3, Image4}

Image2Image1

Image4 Image3

Specular
Highlights!

Sum = 2.16

0.58

Remove Image3, because < 0.7
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Update V(p)

V(p)={Image1, Image2, Image3, Image4}

Image2Image1

Image4 Image3

Specular
Highlights!

Sum = 2.16

Add Image4, because > 0.7

0.83
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Algorithm Overview

#1. Feature detection
#2. Initial feature matching
#3. Patch expansion and filtering

Input image #1 #2 #3
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Feature Detection

• Extract local maxima of
– Harris corner detector (corners)
– Difference of Gaussian (blobs)
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Algorithm Overview

#1. Feature detection
#2. Initial feature matching
#3. Patch expansion and filtering

Input image #1 #2 #3
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Initial feature matching

Epipolar line

c(p):
n(p):
V(p):

p

c(p): triangulation
n(p):
V(p):

Image 1 Image 2
Image 3
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Initial feature matching

Epipolar line

c(p):
n(p):
V(p):

p

c(p): triangulation
n(p): parallel to Image1
V(p): {Image1, Image2}

Image 1 Image 2
Image 3
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Initial feature matching

Epipolar line

c(p):
n(p):
V(p):

p

c(p): triangulation
n(p): parallel to Image1
V(p): {Image1, Image2}

Image 1 Image 2
Image 3

If

c(p): triangulation
n(p): parallel to Image1
V(p): {Image1, Image2, Image3}

Add visible images
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c(p): refine
n(p): refine
V(p): {Image1, Image2, Image3}

Initial feature matching

Epipolar line

p

Image 1 Image 2
Image 3
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c(p): refine
n(p): refine
V(p): {Image1, Image2, Image3}

Initial feature matching

Epipolar line

p

Image 1 Image 2
Image 3
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Initial feature matching

Image 1 Image 2
Image 3

p

Verification
(update V(p) and check |V(p)|≥3)
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Initial feature matching

Image 1 Image 2
Image 3

Occupied

p
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Initial feature matching

Image 1 Image 2
Image 3

Occupied

Epipolar line

108



Initial feature matching

Image 1 Image 2
Image 3

Occupied

Epipolar line
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Initial feature matching

Image 1 Image 2
Image 3

Occupied

• Repeat for all image features
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Algorithm Overview

#1. Feature detection
#2. Initial feature matching
#3. Patch expansion and filtering

Input image #1 #2 #3
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Patch expansion

Occupied pixel

Image 3Image 1 Image 2
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Patch expansion

Image 3Image 1 Image 2

Pick a patch
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Patch expansion

Image 1

Pick a patch

Look for neighboring
empty pixels All occupied

Image 2 Image 3

Do nothing
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Patch expansion

Image 3Image 1 Image 2

Pick a patch
p
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Image 2

Patch expansion

Image 3Image 1

Identify neighboring
empty pixels

Pick a patch
p
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Image 2

Patch expansion

Image 3Image 1

Reconstruct a patch
visible in an empty pixel

c(q):

n(q):
V(q):

p q c(q): {tangent plane of p
          intersects w/ ray}
n(q):
V(q):
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Image 2

Patch expansion

Image 3Image 1

Reconstruct a patch
visible in an empty pixel

c(q):

n(q):
V(q):

p q c(q): {tangent plane of p
          intersects w/ ray}
n(q): n(p)
V(q): V(p)
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Image 2

Patch expansion

Image 3Image 1

Reconstruct a patch
visible in an empty pixel

p q c(q): refine

n(q): refine
V(q): V(p)

q
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Image 2

Patch expansion

Image 3Image 1

Reconstruct a patch
visible in an empty pixel

p c(q): refine

n(q): refine
V(q): V(p)

q

Patch verification!
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Image 3Image 2

Patch expansion

Image 1

Reconstruct a patch
visible in an empty pixel

p c(q): refine

n(q): refine
V(q): V(p)

q

Patch verification!
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Image 3Image 2

Patch expansion

Image 1

Repeat
•  for every patch
•  for every neighboring empty pixel

p q
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Patch filtering

• Visibility consistency

Image2 Image3 Image4
Image1 Image5

p1

p2
p3 p4 p5 p6

Filter out p1 if
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When p1 is an outlier, both V(p1) 
and N(p1) are expected to be small

 
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Limitations of MVS

• Works well for various objects and scenes
• Surfaces must be Lambertian and well-textured

• Problematic for architectural scenes
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Recent Literature

[Sinha et al.,
ICCV 2009]

[Zebedin et al.,
ECCV 2008]

[Furukawa et al.,
CVPR 2009]
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Poisson Surface Reconstruction
• Input: points with oriented normals (pointing outwards) 
• Output: dense, connected, triangle mesh

http://www.cs.jhu.edu/~misha/Code/PoissonRecon/Version8.0/  
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