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Structure From Motion



Lecture Outline

• Structure from Motion

• Sources:
– Slides by R. Szeliski, S. Seitz, N. Snavely. S. Lazebnik, 

M. Hebert, S. Choudhary
– Visual Odometry by D. Nister, O. Naroditsky, J. Bergen 

(2006)
– Parallel Tracking and Mapping by G. Klein and D. 

Murray (2007)
– Visual SLAM: Why filter? by H. Strasdat, J.M.M. 

Montiel, A.J. Davison (2012)
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Structure from Motion

• Reconstruct 
– Scene geometry 
– Camera motion 4

Unknown
camera
viewpoints



Input: Feature Tracks
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• Detect good features
– corners, line segments

• Find correspondences between frames
– Lucas & Kanade-style motion estimation
– window-based correlation



Structure from Motion
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• Given many points in correspondence across 
several images, {(uij,vij)}, simultaneously 
compute the 3D location xi and camera (or 
motion) parameters (K, R j, tj)

• Two main variants: calibrated, and 
uncalibrated (sometimes associated with 
Euclidean and projective reconstructions)



Number of Constraints
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• How many points do we need to match?
• 2 frames:

(R,t): 5 dof + 3n point locations 
4n point measurements  n  5

• k frames:
6(k–1)-1 + 3n  2kn

• always want to use many more

=> why 5 dof for 2 cameras and 6(k-1)-1 for k cameras?



Bundle Adjustment

• What makes this non-linear minimization 
hard?
–many parameters: potentially slow
– poorer conditioning (high correlation)
– potentially lots of outliers
– gauge (coordinate) freedom
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Structure from Motion
• Given a set of corresponding points in two or more 

images, compute the camera parameters and the 3D point 
coordinates

Camera 1
Camera 2 Camera 3

R1,t1 R2,t2
R3,t3

?
? ?

?
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Structure from Motion
• Given: m images of n fixed 3D points 

• xij = Pi Xj , i = 1, … , m,    j = 1, … , n  

• Problem: estimate m projection matrices Pi and 
n 3D points Xj from the mn correspondences xij

x1j

x2j

x3j

Xj

P1

P2

P3
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Structure from Motion Ambiguity
• If we scale the entire scene by some factor k 

and, at the same time, scale the camera 
matrices by the factor of 1/k, the projections of 
the scene points in the image remain exactly the 
same:

It is impossible to recover the absolute scale of the scene!
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Structure from Motion Ambiguity

• More generally: if we transform the scene using a 
transformation Q and apply the inverse transformation to 
the camera matrices, then the images do not change

  QXPQPXx -1
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Types of Ambiguity
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• With no constraints on the camera calibration matrix or on the 
scene, we get a projective reconstruction

• Need additional information to upgrade the reconstruction to 
affine, similarity, or Euclidean 13



Projective Ambiguity
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Projective Ambiguity
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Affine Ambiguity
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Affine Ambiguity
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Similarity Ambiguity
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Similarity Ambiguity
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Structure from Motion: 
Affine Cameras
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Structure from Motion
• Let’s start with affine cameras (the math is 

easier)

center at
infinity
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Orthographic Projection
• Special case of perspective projection

– Distance from center of projection to image plane is infinite

– Projection matrix:

Image World
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Orthographic Projection

Parallel Projection

Affine Cameras
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Affine Cameras
• A general affine camera combines the effects of 

an affine transformation of the 3D space, 
orthographic projection, and an affine 
transformation of the image:

Affine projection is a linear mapping + translation 
in inhomogeneous coordinates
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Affine Structure from Motion
• Given: m images of n fixed 3D points:

•  xij = Ai Xj + bi ,     i = 1,… , m,  j = 1, … , n  

• Problem: use the mn correspondences x ij  to estimate m 
projection matrices Ai and translation vectors b i, 
and n points X j 

• The reconstruction is defined up to an arbitrary affine 
transformation Q (12 degrees of freedom):

• We have 2mn knowns and 8m + 3n unknowns (minus 
12 dof for affine ambiguity)

• Thus, we must have 2mn >= 8m + 3n – 12
• For two views, we need four point correspondences
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Affine Structure from Motion

• Centering: subtract the centroid of the image points

• For simplicity, assume that the origin of the world 
coordinate system is at the centroid of the 3D points

• After centering, each normalized point x ij is related to the 
3D point Xi by
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• 2mn data (measurement) matrix:
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C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: 
A factorization method. IJCV, 9(2):137-154, November 1992. 27
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Factorizing the Measurement Matrix
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• Singular value decomposition of D:
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Factorizing the Measurement Matrix



• Singular value decomposition of D:
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Factorizing the Measurement Matrix
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Factorizing the Measurement Matrix



This decomposition minimizes
|D-MS|2
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Factorizing the Measurement Matrix



Affine Ambiguity

• The decomposition is not unique. We get the same D 
by using any 3×3 matrix C and applying the 
transformations M → MC, S →C-1S

• That is because we have only an affine transformation 
and we have not enforced any Euclidean constraints 
(like forcing the image axes to be perpendicular, for 
example)
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Algorithm Summary

• Given: m images and n features x ij

• For each image i, center the feature coordinates
• Construct a 2m × n measurement matrix D:

– Column j contains the projection of point j in all views
– Row i contains one coordinate of the projections of all 

the n points in image i
• Factorize D:

– Compute SVD: D = U W VT

– Create U3 by taking the first 3 columns of U
– Create V3 by taking the first 3 columns of V
– Create W3 by taking the upper left 3 × 3 block of W

• Create the motion and shape matrices:
– M = U3W3½  and S = W3½ V3T (or M = U3 and S = W3V3T)

• Eliminate affine ambiguity
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Reconstruction Results

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: 
A factorization method. IJCV, 9(2):137-154, November 1992. 
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Structure from Motion: 
Perspective Cameras
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Projective Structure from Motion
• Given: m images of n fixed 3D points 

• xij = Pi Xj , i = 1, … , m,    j = 1, … , n  

• Problem: estimate m projection matrices Pi and 
n 3D points Xj from the mn correspondences xij

x1j

x2j

x3j

Xj

P1

P2

P3
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Projective Structure from Motion
• Given: m images of n fixed 3D points 

• zij xij = Pi Xj , i = 1,… , m,    j = 1, … , n  

• Problem: estimate m projection matrices P i and 
n 3D points X j from the mn correspondences x ij

• With no calibration info, cameras and points 
can only be recovered up to a 4x4 projective 
transformation Q:

• X → QX, P → PQ-1

• We can solve for structure and motion when 
• 2mn >= 11m +3n – 15

• For two cameras, at least 7 points are needed
39



Projective SFM: Two-camera Case

• Compute fundamental matrix F between 
the two views

• First camera matrix: [I|0]

• Second camera matrix: [A|b]

• Then b is the epipole (FTb = 0), A = –[b×]F
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Sequential Structure from Motion

•Initialize motion from two 
images using fundamental 
matrix

•Initialize structure by 
triangulation

•For each additional view:
–Determine projection matrix 

of new camera using all the 
known 3D points that are visible 
in its image – calibration 

ca
m

er
as

points
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Sequential Structure from Motion
•Initialize motion from two images using 
fundamental matrix

•Initialize structure by triangulation

•For each additional view:
– Determine projection matrix of new 

camera using all the known 3D points 
that are visible in its image – calibration 

– Refine and extend structure: compute 
new 3D points, 
re-optimize existing points that are also 
seen by this camera – triangulation 

ca
m

er
as

points
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Sequential Structure from motion
•Initialize motion from two images using 
fundamental matrix

•Initialize structure by triangulation

•For each additional view:
– Determine projection matrix of new 

camera using all the known 3D points 
that are visible in its image – calibration 

– Refine and extend structure: compute 
new 3D points, 
re-optimize existing points that are also 
seen by this camera – triangulation 

•Refine structure and motion: bundle 
adjustment
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m

er
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points
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Bundle Adjustment
• Non-linear method for refining structure and motion
• Minimizing reprojection error
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Self-calibration

• Self-calibration (auto-calibration) is the process of 
determining intrinsic camera parameters directly from 
uncalibrated images

• For example, when the images are acquired by a 
single moving camera, we can use the constraint that 
the intrinsic parameter matrix remains fixed for all the 
images
– Compute initial projective reconstruction and find 3D 

projective transformation matrix Q such that all camera 
matrices are in the form Pi = K [Ri | ti]

• Can use constraints on the form of the calibration 
matrix: zero skew

• Can use vanishing points
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Triangulation

More formulations exist
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Triangulation: Linear Solution

• Generally, rays Cx 
and C’x’ will not 
exactly intersect

• Can solve via SVD, 
finding a least 
squares solution to a 
system of equations
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Triangulation: Linear Solution

Given P, P’, x, x’
1. Precondition points and 

projection matrices
2. Create matrix A
3. [U, S, V] = svd(A)
4.  X = V(:, end)

Pros and Cons
• Works for any number of 

corresponding images
• Not projectively invariant 
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Triangulation: Non-linear Solution

• Minimize projected error while satisfying
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Triangulation: Non-linear Solution

• Minimize projected error while satisfying

• Solution is a 6-degree polynomial of t, 
minimizing 
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Bundle Adjustment
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Bundle Adjustment 

• Refines a visual reconstruction to produce 
jointly optimal  3D structure and viewing 
parameters

• ‘Bundle’ refers to the bundle of light rays 
leaving each 3D feature and converging 
on each camera center. 
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Reprojection Error
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Notation
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Objective Function

• Minimization of weighted sum of squared 
error ( SSE ) cost function:
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Optimization Techniques

• Gradient Descent Method
• Newton-Raphson Method
• Gauss – Newton Method
• Levenberg – Marquardt  Method
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Gradient Descent Method
• A first-order optimization algorithm. 
• To find a local minimum of a function using 

gradient descent, one takes steps proportional to 
the negative of the gradient of the function at the 
current point. 

• It is robust when x is far from optimum but has 
poor final convergence

)( 11   kkk xfxx 
While k<kmax 
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Newton – Raphson Method

• Second order optimization method
• Newton's method can often converge 

remarkably quickly, especially if the 
iteration begins "sufficiently near" the 
solution
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Newton – Raphson Method

59



Gauss – Newton Method

• The Gauss–Newton algorithm is a method 
used to solve non-linear least squares 
problems
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Gauss – Newton Method

• For well-parameterized  bundle problems 
under an outlier-free least squares cost 
model evaluated near the cost minimum, 
the Gauss-Newton approximation is 
usually very accurate
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Levenberg – Marquardt Algorithm
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General Implementation Issues
• Exploit the problem structure

– See reduced camera matrices below

• Use factorization effectively
• Use stable local parameterizations
• Scaling and preconditioning
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SfM in large areas, limited image overlap Highly overlapping images in small area



Additional Material and Software

• Open Source Structure-from-Motion 
tutorial at CVPR 2015
– http://www.kitware.com/cvpr2015-tutorial.html

• Advanced notes on bundle adjustment
• Tutorials on several popular open source 

SfM packages
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“Visual Odometry for Ground 
Vehicle Applications” by

David Nister, Oleg Naroditsky 
and James Bergen (2006)
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Visual Odometry

• Focus on high accuracy and real-time 
performance

• One important conclusion: stereo cameras 
are necessary to avoid drift and enable 
long term deployment
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VO Steps

• Detect Harris corners in each frame
• Do not track them using KLT, but extract in 

each frame separately
– Use NCC in 11x11 windows

• Do bundle adjustment in sliding window 
mode often
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Monocular Pipeline

1. Track features over a certain number of frames. Estimate the 
relative poses between three of the frames using the 5-point 
algorithm and preemptive RANSAC followed by iterative refinement.

2. Triangulate the observed feature tracks into 3D points using the first 
and last observation on each track and optimal triangulation 
according to directional error. If this is not the first time through the 
loop, estimate the scale factor between the present reconstruction 
and the previous camera trajectory with another preemptive 
RANSAC procedure. Put the present reconstruction in the 
coordinate system of the previous one.

3. Track for a certain additional number of frames. Compute the pose 
of the camera with respect to the known 3D points using the 3-point 
algorithm and preemptive RANSAC followed by iterative refinement.

4. Re-triangulate the 3D points using the first and last observations on 
their image track. Repeat from Step 3 a certain number of times.

5. Repeat from Step 1 a certain number of times.
6. Insert a firewall and repeat from Step 1.
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The 5-point Algorithm

• Computes relative camera pose given a minimal number 
of 5 correspondences
– Up to 10 real solutions

• Intrinsics must be known
• Code available at http://vis.uky.edu/~stewe/FIVEPOINT/
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The 3-point Algorithm

• A.k.a. the Perspective 3 Point problem (Haralick 
et al. 2004)

• Estimate camera pose given images of three 
known 3D points
– Up to 4 real solutions
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Stereo Pipeline

1. Match feature points between the left and right images of the 
stereo pair. Triangulate the observed matches into 3D 
points.

2. Track features for a certain number of frames. Compute the 
pose of the stereo rig with preemptive RANSAC followed by 
iterative refinement. The 3-point algorithm (considering the 
left image) is used as the hypothesis generator. The scoring 
and iterative refinement are based on reprojection errors in 
both frames of the stereo pair.

3. Repeat from Step 2 a certain number of times.
4. Triangulate all new feature matches using the observations 

in the left and right images. Repeat from Step 2 a certain 
number of times.

5. Re-triangulate all 3D points to set up a firewall. Repeat from 
Step 2.
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Advantages of Stereo System

• Fixed, known baseline sets and maintains 
global scale

• Avoids the difficult relative orientation step
– Instead, performs triangulation followed by 

pose estimation
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Results
• Remote controlled run in a 

parking lot. DGPS - Dark 
Blue. 

• Wheel encoders fused with 
gyro- Medium Red. 

• Visual odometry fused with 
gyro - Light Green
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Parallel Tracking and Mapping 
(PTAM)

• Probably most reliable solution for limited spaces 
(Klein and Murray 2007)
– http://www.robots.ox.ac.uk/~gk/PTAM/

• Tracking and Mapping are separated, and run in two 
parallel threads

• Mapping is based on keyframes, which are processed 
using batch techniques (Bundle Adjustment)

• The map is densely initialized from a stereo pair (5-
Point Algorithm)

• New points are initialized with an epipolar search
• Large numbers (thousands) of points are mapped
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The Map

• The map consists of a collection of M point features 
located in a world coordinate frame W 
– Each point feature represents a locally planar textured patch in the 

world
– Each point also has a unit patch normal and a reference to the 

patch source pixels

• The map also contains N keyframes: these are snapshots 
taken by the handheld camera at various points in time 
– Each keyframe has an associated camera-centered coordinate 

frame
– Each keyframe also stores a four level pyramid of greyscale 

images
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Tracking

1. A new frame is acquired from the camera, and a prior 
pose estimate is generated from a motion model

2. Map points are projected into the image according to 
the frame’s prior pose estimate

3. A small number (50) of the coarsest-scale features 
are searched for in the image

4. The camera pose is updated from these coarse 
matches

5. A larger number (1000) of points is re-projected and 
searched for in the image.

6. A final pose estimate for the frame is computed from 
all the matches found
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Mapping
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Results

• PTAM can easily track across multiple scales 
• Here, the map is initialized at the top-right scale 
• The user moves closer in and places a label, which is still 

accurately registered when viewed from far away
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Visual SLAM: Why Filter?
• H. Strasdat, J.M.M. Montiel, A.J. Davison (2012)
• The most accurate solutions to off-line Structure from 

Motion (SFM): extract as much correspondence 
information as possible and perform batch optimization

• Sequential methods for live video streams must 
approximate this to fit within fixed computational bounds. 

• Two quite different approaches that sparsify the problem 
in different ways:
– Filtering methods marginalize out past poses and summarize the 

information gained over time with a probability distribution
– Keyframe methods retain the optimization approach of global 

bundle adjustment, but select only a small number of past 
frames to process
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Visual SLAM: Why Filter?

• Filtering:
– All poses other than the current one are marginalized out after every frame
– Features, which may be measured again in the future, are retained
– The graph quickly becomes fully inter-connected, since every elimination of a 

past pose variable causes fill-in with new links between every pair of feature 
variables to which it was joined – poor scalability

• Bundle adjustment
– Solve the graph from scratch time after time as is grows, but sparsify it by 

removing all but a small subset of past poses
– The other poses, and all the measurements connected to them, are not 

marginalized out as in the filter, but simply discarded
– The graph has more elements but it remains sparsely inter-connected
– The ability to incorporate more feature measurements counters the information 

lost from the discarded frames

80
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Visual SLAM: Why Filter?

• Key question: does it make sense to summarize the 
information gained from historic poses and 
measurements by joint probability distributions in state 
space and propagate these through time (filtering), or to 
discard some of those measurements in such a way that 
repeated optimization from scratch becomes feasible 
(keyframe BA)?

• In analysis considering both monocular and stereo SLAM 
on various different scenes and motion patterns: 
keyframe bundle adjustment outperforms filtering 
– It gives the highest accuracy per unit of computing time
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