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Lecture Outline

» Feature tracking

Based on slides by Derek Hoiem, also partially
based on sources by C. Tomasi, T. Kanade and T.
Svoboda

* Intro to Covariance Matrices
« Simultaneous Localization and Mapping

— Based on slides by William Green (then at Drexel)

— See also “An Introduction to the Kalman Filter” by Greg
Welch and Gary Bishop

http://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf



Feature Matching

 Given a feature in |, how to find the best
match in J7

* So far we have searched for best match by
testing all possible translations by integer
number of pixels

— Restricted to be purely horizontal in stereo
case



Kanade-Lucas-Tomasi Tracking

« Bruce D. Lucas and Takeo Kanade. An iterative image
registration technique with an application to stereo
vision. In Proceedings of the 7th International
Conference on Artificial Intelligence, pages 674-679,
August 1981.

« Carlo Tomasi and Takeo Kanade. Detection and tracking
of point features. Technical Report CMU-CS-91-132,
Carnegie Mellon University, April 1991.

« Jianbo Shi and Carlo Tomasi. Good features to track. In

IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 593-600, 1994.

« Code: http://www.ces.clemson.edu/~stb/klt/



Camera Motion




Object Motion
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Feature Tracking

» Challenges
— Figure out which features can be tracked
— Efficiently track across frames

— Some points may change appearance over
time (e.g., due to rotation, moving into
shadows, etc.)

— Drift: small errors can accumulate as
appearance model is updated

— Points may appear or disappear: need to be
able to add/delete tracked points



Feature Tracking

0/ Q, °

N o
o—r z o .
I(x.,1) I(x,p,t+1)

* Given two subsequent frames, estimate the point
translation

« Key assumptions of Lucas-Kanade Tracker

« Brightness constancy: projection of the same point looks the
same in every frame
« Small motion: points do not move very far

« Spatial coherence: points move like their neighbors



The Brightness Constancy Constraint

(z,y)
O\dlsplacement = (u,v)

o
(z +u,y+v)

l(X,y,1) l(x,y,t+1)

* Brightness Constancy Equation:
I(x,y,t)=1(x+u,y+v,t+1)

Take Taylor expansion of [(x+u, y+v, t+1) at (x,y,t) to linearize the right side:

Image derivative along x Difference over frames

I(x+u,y+v,t+)=I(x,y,0) =1 -u+1 -v+1I,

Hence, I, -u+1,-v+1,~0 —VI-[uv] +1 =0



The Brightness Constancy Constraint

(z,y)
O\dlsplacement = (u,v)

o
(z +u,y+v)

l(X,y,1) l(x,y,t+1)

* Brightness Constancy Equation:
I(x,y,t)=1(x+u,y+v,t+1)

Take Taylor expansion of [(x+u, y+v, t+1) at (x,y,t) to linearize the right side:

Image derivative along x Difference over frames

I(x+u,y+v,t+)=I(x,y,t)=1_u+1l v+l

Hence, I, -u+1,-v+1,~0 —VI-[uv] +1 =0



f(a) +

Taylor Expansion

f(z)
f'(a) f"(a) ,  f"(a) :
T (x —a)+ 5t (w—a)2+T(z—a)3+~-
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The Brightness Constancy Constraint

Can we use this equation to recover image motion (u,v) at
each pixel?
VI-lu v]' +I, =0
 How many equations and unknowns per pixel?

*One equation (this is a scalar equation!), two unknowns (u,v)

The component of the motion perpendicular to the
gradient (i.e., parallel to the edge) cannot be measured

If (u, v) satisfies the equation, gradient
so does (u+u’, v+v' ) if

VI-Ju' v] =0




The Aperture Problem

\ Actual motion
14



The Aperture Problem

Perceived motion



The Barber Pole lllusion

/,

http://en.wikipedia.org/wiki/Barberpole illusion 16



http://en.wikipedia.org/wiki/Barberpole_illusion

The Barber Pole lllusion

http://en.wikipedia.org/wiki/Barberpole illusion 17



http://en.wikipedia.org/wiki/Barberpole_illusion

Solving the Ambiguity...

 How to get more equations for a pixel?
« Spatial coherence constraint

Assume the pixel’s neighbors have the same (u,v)
— If we use a 5x5 window, that gives us 25 equations per pixel

0 = Ii(p;) + VI(p;) - [w V]

- Ix(p1) Iy(p1) - Ii(p1) |
I:(p2)  Iy(p2) [ u } — | Lip2)
_ f:v(I;25) fy(1;25) _ _ ft(1;25) _




Solving the Ambiguity...

« Least squares problem:

| I:(p1) Iy(p1) | - Ii(p1) |
I(p2)  Iy(p2) { u ] _ | 1(p2) A d=b
: : v : 265x2 2x1 25x1
Ix(p2s) Iy(p2s) | Ii(p2s) |




Matching Patches across Images

« Qverconstrained linear system

| I:(p1) Iy(p1) | - Ii(p1) |
I(p2)  Iy(p2) { u ] _ | 1(p2) A d=b
: : v : 265x2 2x1 25x1
Ix(p2s) Iy(p2s) | Ii(p2s) |

Least squares solution for d given by (ATA) d= Alb

Do Aply ) Ixdy w | | ey
Do Izly ) Iyly v | > Iyly

AT A Alp

The summations are over all pixels in the K x K window



Conditions for Solvability

Optimal (u, v) satisfies Lucas-Kanade equation

Sl SELIy [ [u] _ [ S
// SLly Sy || v |~ | Sk

AT A Al

When is this solvable? l.e., what are good points to
track?
« ATA should be invertible
« ATA should not be too small due to noise
— eigenvalues X, and A, of ATA should not be too small
« ATA should be well-conditioned
— M/ Ay should not be too large (A4 = largest eigenvalue)

N Does this remind you of anything?
Criteria for Harris corner detector



M = ATA is the second moment matrix !
(Harris corner detector...)

Lly Y Il I,
ATA = [%ley %Iy[z] =2 [ I, ] [l I,] = Y- vI(vD)"

« Eigenvectors and eigenvalues of ATA

relate to edge direction and magnitude

* The eigenvector associated with the larger
eigenvalue points in the direction of fastest
iIntensity change

« The other eigenvector is orthogonal to it



Low-texture region

Svi(vn!
— gradients have small magnitude
— small A4, small A,

23



Svivn?t
— gradients very large or very small
— large A4, small A,

24



High-texture Region

Svivn?t
— gradients are different, large magnitudes
— large A4, large A,

25



The Aperture Problem Resolved

\ Actual motion
26



The Aperture Problem Resolved

\:erceived motion



Revisiting the small motion assumption

 Is this motion small enough?

— Probably not—it's much larger than one pixel (2"
order terms dominate)

— How might we solve this problem?
* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003



1.

Dealing with Larger Motion:
lterative Refinement

Original (x,y) position
Initialize (X’,y’) = (X,y) |
Compute (u,v) by L=itey, o) -1 3, 9

2"d moment matrix for feature \
patch in first image displacement

. Shift window by (u, v): x"=x’"+u; y’'=y’+v;
. Recalculate /,
. Repeat steps 2-4 until change is small

Use interpolation for subpixel values



Reduce the resolution!

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003



Coarse-to-fine optical flow estimation

I
A
1y
Iy
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1
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slides from / VN
Bradsky and Thrun

u=1.25 pixels

u=2.5 pixels

u=>5 pixels

Gaussian pyramid of image I+ Gaussian pyramid of image I



Coarse-to-fine optical flow
estimation
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— Fun iterative L-K _-

slides from
Bradsky and Thrun

1

1

1

1

! \

1

1 \

warp & upsample

A\ 4

Gaussian pyramid of image I

Gaussian pyramid of image I



-

Dealing with Larger Motion:
oarse-to-Fine Registration

1
1
1

I
R
1
1

Gaussian pyramid of image 2 (t+1)
33

Gaussian pyramid of image 1 (t)



Shi-Tomasi Feature Tracker

* Find good features using eigenvalues of second-
moment matrix (e.g., Harris detector or threshold on
the smallest eigenvalue)

— Key idea: “good” features to track are the ones whose
motion can be estimated reliably

 Track from frame to frame with Lucas-Kanade

— This amounts to assuming a translation model for
frame-to-frame feature movement

* Check consistency of tracks by affine registration to
the first observed instance of the feature

— Affine model is more accurate for larger displacements
— Comparing to the first frame helps to minimize drift



Tracking Example

Figure 1: Three frame details from Woody Allen’s
Manhattan. The details are from the 1st, 11th, and
21st frames of a subsequence from the movie.

=nE s
= = =

Figure 2: The traffic sign windows from frames
1,6,11,16,21 as tracked (top), and warped by the com-
puted deformation matrices (bottom).

35



Summary of KL T tracking

Find a good point to track (Harris corners)

Use intensity second moment matrix and
difference across frames to find displacement

lterate and use coarse-to-fine search to deal with
larger movements

When creating long tracks, check appearance of
registered patch against appearance of initial
patch to find points that have drifted



Covariance



Covariance

Covariance is a numerical measure that
shows how much two random variables

change together
cov(X,Y)=E [(X - E[X])(Y - E[Y])],
cov(X,Y) = — (2 — B(X))(y: — E(Y)).

Positiye _covariar)ce: If one increases, the
other is likely to increase

Negative covariance: ...

More precisely: the covariance is a measure
of the /inear dependence between the two
variables

38



Covariance Example

Relationships between the returns of different stocks

Stock A return

% %
k %k %k
%k %k
Scatter plot I
% %
*x Stock B
return

Stock C Return

Scatter Plot 11
%
k %k %k
Stock D
%k %k
return




Correlation Coefficient

* One may be tempted to conclude that if
the covariance is larger, the relationship
between two variables is stronger (in the
sense that they have stronger linear

relationship)
 The correlation coefficient is defined as:

L [(YI} — /1.;}')(}:'13, — :U‘L‘H

50k

Pik =



Correlation Coefficient

L [(YI} — /1.;}')(}:'13, — :U‘L‘H

50k

Pik =

* The correlation coefficient, unlike covariance, is
a measure of dependence free of scales of
measurement of Y; and Y

* By definition, correlation must take values
between -1 and 1

« A correlation of 1 or —1 is obtained when there is
a perfect linear relationship between the two
variables



Covariance Matrix

* For the vector of repeated measures, Y; = (Y,
Yi, ..., Yi), we define the covariance matrix,
Cov(Y)):

Yi1 Var(Y;1) Cov(Y;1,Yie) -+ Cov(Y;i.Yin)
coo| Y | L | CovWaYi)  Var(Y) - Cov(Vi Vi)
Yo, Cov(Yi.Yi) Cov(Vin. Vi) -+ Var(Yi,)
2
0-1 0-1‘2 *r O1n
B 021 03 -+ 0o

2
On1t Onp2 - On

where Cov (Yj;.Yir) = ojir = o1 = Cov(Yip, Yij).

* |tis a symmetric, square matrix



00 01 02 03 04

Variance and Confidence Intervals

Single Gaussian (normal) random variable

34.1% | 34.1%

1 (x—p)°

2 2
p(x) = e ** =N(uo0")
\/ZG

1 —
09 | ﬁ: 8:2%:(1):(2) —
08 | 55-3:3228:‘5’ ]
07 }
06 |
05}
04}
03 }
02 }
0.1
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Multivariate Normal Density

— The multivariate normal density in d dimensions is:

1

P(x)=—— I/Zexp[—l(x—u)’l"(x—ﬂ)}
(2r )""? |2 2

where:
X = (X1, X9, ey Xg)!

= (uq, U, .., LUg)t Mean vector
> = dxd covariance matrix

|~| and X-1 are the determinant and inverse respectively

P(x) is larger for smaller exponents!



Confidence Intervals:
Multi-Variate Case

« Same concept: how large is the area that
contains X% of samples drawn from the
distribution

« Confidence intervals are ellipsoids for normal
distribution

Process 2 - 99.73% confidence region Process 2 - 95% confidence region
70 85 89 90 70 85 89 90

|
‘ alii® -
o -4
x

o
s 84
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Confidence Intervals:

Multi-Variate Case

 Increasing X%, increases the size of the
ellipsoids, but not their orientation and aspect
ratio

46



The Multi-Variate Normal Density

* 2 is positive semi definite (x* 2x>=0)
— If xt2x =0 for non-zero x then det(2)=0. This
case is not interesting, p(x) is not defined
» Two or more parameters are linearly
dependent

* So we will assume 2 is positive definite
(Xt 2x >0)

« If X is positive definite then so is -



Confidence Intervals:
Multi-Variate Case

 Covariance matrix T Xnanmes oz

.’/‘r
determines the AR
shape P ARraxy

:;i [ e

/l g
.
n'/ ‘ / B . B
{
.
|||. .‘:o | .
\ * ‘ . X,.\ / : n{ e,

e

‘e . ’. | |II
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Confidence Intervals:
Multi-Variate Case
e Case l: 2 =071

« All variables are uncorrelated and have equal
variance

 Confidence intervals are circles

49



Confidence Intervals:
Multi-Variate Case

« Case ll: 2’diagonal, with unequal elements

« All variables are uncorrelated but have different
variances

» Confidence intervals are axis-aligned
ellipsoids

=
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Confidence Intervals:
Multi-Variate Case

« Case lll: X arbitrary

» Variables may be correlated and have different
variances

» Confidence intervals are arbitrary

ellipsoids

51



Intro to SLAM



Visual SLAM

Parallel, Real-Time VSLAM

IROS 2010




Introduction

SLAM Obijective

« Place a robot in an unknown location in an unknown
environment and have the robot incrementally build a
map of this environment while simultaneously using this
map to compute vehicle location

« A solution to SLAM was seen as the “Holy Grail”

— Would enable robots to operate in an environment without a
priori knowledge of obstacle locations

A little more than 10 years ago it was shown that a
solution is possible!



The Localization Problem

« A map m of landmark locations is known a priori

« Take measurements of landmark location z, (i.e. distance
and bearing)

« Determine vehicle location x, based on z,
— Need filter if sensor is noisy

Xi. location of vehicle at time k

Ux: a control vector applied at N\
k-1 to drive the vehicle from '

™
Xk-1 1O Xi \* ' »

Z,. observation of a landmark »

. N
takel? at time k " | 2 e .\
Xk: history of states {x4, X, X3, P
. Xk} i ,. k+1 |
Uk: history of control inputs {u;, ; Ty F ; |
Uz, U, ..., U} B el m T~

m: set of all landmarks ( T ) *




The Mapping Problem

The vehicle locations XX are provided

Take measurements of landmark location z, (i.e. distance
and bearing)

Build map m based on z,
— Need filter if sensor is noisy

« Xk history of states {1, X, X, \Fw __
- Xk} ,
* 2z observation of a landmark St
taken at time k z,; e -\7
« m;: true location of it landmark L .
- m: set of all landmarks - e




Simultaneous Localization and Mapping

« From knowledge of observations Zk
« Determine vehicle location XX
« Build map m of landmark locations

Xi. location of vehicle at time k
U,. a control vector applied at k- S hom X

1 to drive the vehicle from ‘ J k42
Xk-1 1O X # d

m;: true location of it" landmark 7 z ¥
z,. observation of a landmark ’ x. \ / K '
taken at time k / L
Xk: history of states {X, X, X3, .., | X/ o o ﬁ : &
Xy} -_____,-;':--:'f':.__ e s ’
Uk: history of control inputs {uy, . \7 R
u-, Us, ..., Uk} '>.Z -y : ’
m: set of all landmarks

Z¥: history of all observations :

{z4, 25, ..., Z} '




Simultaneous Localization and Mapping

« Localization and mapping are coupled problems

« A solution can only be obtained if the localization and
mapping processes are considered together

’ j Xka
“ J_,——-""/.. R —— -
X1 Xy / el ﬁ =
Zk 1, .' ‘
e o



SLAM Fundamentals

* A vehicle with a known kinematic model moving through
an environment containing a population of landmarks
(process model)

« The vehicle is equipped with a sensor that can take
measurements of the relative location between any
individual landmark

e - J
Features and Landmarks — | '.

and the Veh|C|e |tse|f N - : L Vehicle-Feature Relative

- IS bl v Observation
5N % sy

(observation model)

Global Reference Frame

59



Process Model

For better understanding, a linear model of the vehicle is
assumed

If the state of the vehicle is given as x,(k) then the vehicle
model is

Xy(k+1) = Fy(k)xy(k) + u,(k+1) + w,(k+1)

where
— F (k) is the state transition matrix
— u, (k) is a vector of control inputs

— w, (k) is a vector of uncorrelated process noise errors with zero
mean and covariance Q, (k)

The state transition equation for the ith landmark is

pi(k+1) = pi(k) = p;
SLAM considers all landmarks stationary



Process Model

« The augmented state vector containing both the state of
the vehicle and the state of all landmark locations is

vy = koo el Pl



Observation Model

* Assuming the observation to be linear, the
observation model for the i landmark is given
as

z(k) = Hx(k) + vi(k)

* where

— Vvi(k) is a vector of uncorrelated observation errors
with zero mean and variance R;(k)

— H; is the observation matrix that relates the sensor
output z(k) to the state vector x(k) when observing
the it" landmark and is written as

I_i = [- _Iva 0.. O, Hpi’ 0.. O]
* Re-expressing the observation model
z(k) = Hyp - Hyx,(K) + vi(K)




Estimation Process

* Objective
— The state of the discrete-time process x, needs to be
estimated based on the measurement z,

— This is the exact definition of the Kalman filter

« Kalman Filter

— Recursively computes estimates of state x(k) which is
evolving according to the process and observation
models

— The filter proceeds in three stages
* Prediction

* Observation
» Update



Estimation Process

Prediction

 After initializing the filter (i.e. setting values for x(k)
and P(k)), a prediction is generated for

— The a priori state estimate
X(k+1|k)=F(k)x(k | k) +u(k)
— The a priori observation relative to the it landmark

2 (k+11k)=H.(k)X(k +1| k)

— The a priori state covariance (e.g. a measure of how
uncertain the states computed by the process model are)

Pk +1|k)=F(k)P(k | k)E" (k) +O(k)



Estimation Process

Observation

* Following the prediction, an observation z(k+1) of
the it" landmark is made using the observation
model

* An Iinnovation and innovation covariance matrix are

calculated

— Innovation is the discrepancy between the actual
measurement z, and the predicted measurement 2(k)

vk+l) =z (k+1)=Z2 (k+1|k)
S (k+1)=H (k)P(k+1|k)H" (k) + R (k +1)



Estimation Process

Update

* The state estimate and corresponding state
estimate covariance are then updated according to

Rk+11k+1) =Rk +1|k)+W (k+1)v.(k +1)

Pk+1|k+1)=Pk+1|k)-W.(k+1)S(k +D)W" (k+1)

* where the gain matrix W,(k+1) is given by

W(k+1)=Pk+1|k)H (k)S ' (k+1)



Kalman Filter

Developed by Rudolph E. Kalman in 1960

A set of mathematical equations that provides
an efficient computational (recursive) means
to estimate the state of a process

It supports estimations of
— Past states

— Present states

— Future states

and can do so when the nature of the
modeled system is unknown!



Kalman Filter Properties

* Given all measurements up to current time,
the Kalman filter algorithm is the optimal

Minimum Mean Squared Error (MMSE)
estimator of the state

 Provided that:

— initial state is Gaussian with known mean and
covariance;

— process and observations models are linear;

— and no_ise terms are uncorre_lated, white,
Gaussian, zero mean and with known
covariances.



Discrete Kalman Filter

Process Model

* Assumes true state at time k evolves from
state (k-1) according to
X(k) = F x(k-1) + G u(k-1) + w(k)
* where
— F is the state transition model (A matrix)
— G is the control input matrix (B matrix)

— w(k) is the process noise which is assumed to be
white and have a normal probability distribution

p(w) ~ N(0,Q)



Discrete Kalman Filter

Observation Model

« At time k, a measurement z(k) of the true
state x(k) is made according to

z(k) = H x(k) + v(k)
 where

— H is the observation matrix and relates the
measurement z(k) to the state vector x(k)

— v(k) is the observation noise which is assumed to
be white and have a normal probability
distribution

p(w) ~ N(O,R)



Discrete Kalman Filter

Algorithm
 Recursive

— Only the estimated state from the previous time step and
the current measurement are needed to compute the
estimate for the current state

« The state of the filter is represented by two variables
— X(k): estimate of the state at time k

— P(k|k): error covariance matrix (a measure of the estimated
accuracy of the state estimate)

* The filter has two distinct stages

— Predict (a nd ObServe) / H\‘
— Update Predict Update



Discrete Kalman Filter (Notation 1)

Prediction

Predicted state x(k|k=1) ¥ F(k)x(k=1|k=1)+ B(k)u(k-1)
Predicted covarigree{P (k |k -1) = F(K)P(k-1|k-DF (k)" + O (k)

ODbservation

Innovation Y(ky=z(k)-H (k)x(k|k-1)
Innovation covarignce S(ky= H(k)P(k |k - 1)H(k)f + R(k)

Update Not the same variable!!

Optimal Kalman|gain K (k)= P(k |k - 1)H (k)" S (k)™!
Updated state x(k|k)=x(k|k-1)+ K(k)Vy (k)
Updated covariance Pk k)= -K(kYH (k)P (k|k-1)
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Discrete Kalman Filter (Notation 2)

Prediction

Predicted state x(k)” = F(k)x(k=1)+ Bu(k 1)
Predicted estimate covariance P (k) = FP (k- 1)F' + O

Observation

Innovation V(k)=z(k)-Hx(k)
Innovation covariance S(ky=HP (k) H '+ R

Update

Optimal Kalman gain K (k)= P(k) HS (k)™
Updated state estimate x(k)=x(k) + K(k)y(k)
Updated estimate covariance P(k)y=(-K((k)YH)P(k)

73



Kalman Filter (Alternate Notation)

X, = Axp_+Bup_+wp_q,

Zp = Hx,+v,.

Time Update (“Predict™)

Measurement Update (“Correct™)

(1) Project the state ahead

(2) Project the error covariance ahead

P, = AP,_,AT+Q

Initial estimates for X, _, and P; _,

(1) Compute the Kalman gain
_ p HT(HP.HT -1
K, = P,HT(HP,HT + R)
(2) Update estimate with measurement zz

(3) Update the error covariance




Kalman Filter Example

« Estimate a scalar random constant (e.g. voltage )

« - Measurements are corrupted by 0.1 volt RMS white
noise

015

R,
Sl /v K

05+

055

06

_DEE 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 S0
tirme



Kalman Filter Example

Process Model
« Governed by the linear difference equation

x(k)=Fx(k=1)+Gu(k-1)+w(k)

_ . I State doesn’t change (F=1)
xX(k) = x(k=1)+w(k) No control input (u=0)

 with a measurement

z(k) = Hx(k)+v(k)

M tis of stat
z(k)=x(k)+v(k) w=— castrement s of tate

76



Kalman Filter Example

eeeeeeee

true

aaaaaa




Extended Kalman Filter

Xp = f(Xp_pUp_ s We_q), Zp = h(x,ve),

et

,\'kz .rk -+ A(Xk_l —..\’k_ 1) -+ W"'Vk_l >

=+ H(x—xp)+ V.

et

in Ifi
AL, = (G -150)s Wy, o = U (%t 1, 0),
ol ah[,] ~
H . o4 = [l] }-,0 , V i, j —_ . (Xk,O).
[, /] ax[j]( e 0) L5, /] IV i

78



Extended Kalman Filter

Xp = f(Xp_ U 15 Wi 1) Z;p = h(x, vp),

Measurement Update (“Correct™)

. 13 10t
Time Update (“Predict™) (1) Compute the Kalman gain

(1) Project the state ahead _ p T - 11T T\~!
° ! K, = P;HT(HP,HT + V,R,VT)
Y= f(X_pup_1,0)

(2) Update estimate with measurement z;
~ . - A o~ - N
(2) Project the error covariance ahead X, = X+ K k(*"k _ h(xk’ 0 ))
Py = APy _ 1A]Z + W, 0, _ IW}{ (3) Update the error covariance

Initial estimates for X; _, and P, _,



Motion Tracking Example



Simple Robot Model

Kinematic Equations

x=Vcos@ )

y=Vsmn6

} Non-linear!




Simple Robot Model

Kinematic Equations f(x,u,w)

x(k+1)] || x(k)+ AtV (k)cosO(k)

y=Vsin | e | )+ A )sindc

6" t2n¢ 01| || gy MV ) angh)

x=Vcos@

20r

Assumptions

System inputs 14}
— Velocity (assumed constant, vel=3) g
— Steering angle (¢) ]
At is fixed and equal to 1

L=1

10 iterations (N=10)

(=] ] N [a7] {us]
T T T T

0 2 4 B g 10 12 14 16 18 20
% [meters)
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Observation Model

Measurements are taken from an overhead camera, and thus x, y, and 6
can be measured directly

x(k)+v,
z(k) = h(x(k),v(k)) =—> z(k)=|y(k)+v,
)
i O(k)+v, |
20 160
sys model sys model g
18 \ measure d 140 - measured /
1B+ N\ S
120 - -
14+ )
100
_12r —
é‘ 10 % 80
) © e}
B+
40+
4r /]
0 = 1 /1/ 1 —_ﬂl 1 1 L 1 I} 0 1
0 2 4 6 8 10 12 14 16 18 20 9
X [meters]




Prediction

(k) = f(X(k=1),u(k -1),0)

EKF

P(k)” = F(k)P(k ~DF k) + W (k)O(k - I)W_(k)T

(e +1) = f(x).ulh). wk)) =

F(k)=

h

,

,

o
&

oy
s

00
S

o
d;

o,

00
s

Ox

oy

00

1
0
0

x(k)+ AtV (k)cosO(k)

v(k)+ AtV (k)smO(k)

o)+ AtV (k) tang(k)

0
1
0

—V 'sinf |
V cos®
1

W(k) =

—

!

from robot model

Need to calculate Jacobians!

9% 9 9
aW\' aWr 8W6
o9 9 9,
aW\' aWr 8W0
U9 I s
ow, ow, ow,

o o O

o o O

o o O
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Kalman Gain

EKF

K (k) = P(kY J, ()" (J,(0)P(R)"J, ()" +V ()R (k)" )

2(k) = h(x(k), v(k)) =

J/,(k)=

oh,

oh,

oh,

Ox
oh,

oy
oh,

00
oh,

ox
oh

3

oy
oh

3

00
oh,

ox

oy

00

~

> | Need to calculate Jacobians!

x(k)+v,
vk +v,
| O(k)+v, |
E
B ] a"\ 8")' a‘,@
o0 Vi) = ch, o©oh, Oh,
B O 1 O a"\ 5"’.1' 6“,9
001 oh, oh, oh,
8‘ ,\ 6{"_1' a‘,@

SO =

oS = O

—_— O O
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EKF

Measurement Update

X(k)=%(k) +K(k)(z(k)-H)
P(k) = (I = K(k).J,,(k))P(k)"

20r 160
sys model sys model
181 measured 1401 measured g
filtered filtered -
16 |
120

14
_12r 100
p @
E 10+ g a0k
- @
= y,

B - 80 i ~ —__//

B 77

40 - //

4+ /

21 Y 20+ -.

0 -:i/' i 1 | 1 ! 1 | 0 1 1 1 1 1 ! I | P

0 2 10 12 14 16 18 20 0 1 2 3 4 5 6 7 8 9
% [meters] time [secs]
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SLAM Example - Single
Landmark



Robot Process Model

B Radar Location

Kinematic Equations

x=Vcosp )
) =1 sIn
Y v > Non-linear!
_ Vtany
I /
B f(x,u,w) B

x(k+1D) | | x(k)+ AtV (k)cosp(k)
pk+1) | =| y0k)+ AtV (k) sinp(k) |+ w(k)

(k-i—l) AiV(k)tan;/(k)
R _ _qo(k) + 7
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Objective

« Based on system inputs, V and y (with
sensor feedback, i.e. optical encoders) at
time k, estimate the vehicle position at

time (k+1)



Landmark Process Model

Therefore,

pi(k +1) = p,; (k)
{x (k+l)} {x,. (k)}
y(k+1D)| | y(k)

B Radar Location {)& (K + l)} {xl(k)}

nwk+D) | [ yi(k)

Recall that in the SLAM algorithm,
landmarks are assumed to be stationary.
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Overall System Process Model

Cx(k+ )] | X(R)+ AV (R)cosp(k) | [w (k)]
yk+1) | | YE)+AV(k)sinp(k) | | (k)
plh+1) | =| o)+ SO BIE |y
x,(k+1) xl(k)L 0

| nk+D ]| (k) Lo

Landmark 1: (3,4) >

]]]]]]]]



Observation Model

B Radar Location

z(k) = h(x(k),v(k))

The radar used in the experiment returns
the range r(k) and bearing 6,(k) to a
landmark i. Thus, the observation model is

r () = (x,—x (O + (v, — v, () +v,(k)

0.(k) = arctan Y, =, (k) —p(k)+v,(k)
x, —x, (k)
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The Estimation Process

Prediction

(k) = f(X(k=1),u(k =1),0)
P(k)” = F(k)P(k-=DEF (k) +Wk)O(k -D)W (k)"

LA A A A
ox oy O 8\1 8)1

o o o O =

0
1
0
0
0

[ x(k)+ AtV (k) coso(k) |
y(k)+ AtV (k) sing(k)
x(k +1) =| k) + 2V E) tany (5)
x; (k)
i (k)
—AtV(k)sing(k) 0 O]
AtV (k)cosp(k) 0 0
1 0 0
0 1 0
0 0 1]

_wx(k)_
w, (k)
+| w, (k)
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The Estimation Process

Prediction

(k) = f(X(k=1D,u(k=1)0)

P(ky =F(k)P(k=DF k) +Wk)O(k-DW (k)" -

o, o o o o

(Qw\ 0 W1. 0 W’(p 81’1/’_,(1 614;.1 1

o, o, o o O

6‘\4’\ 0 WT 0 M”(p 81"4}.1(1 aw’.‘ 1

W(k)= o, I 95 9 Y
N (Qw‘ 8w1 a"VV@ a’le aw,.‘l

P & Y U 9

(Qw\ 0 WT 0 W‘(p 61}1}3(1 aw‘.‘ i

o, of. of. o o

6‘\4‘\ 0 'Vﬂ. 0 W’(p (‘3%’_,(1 éw.‘ 1

oS o o O =

x(k+1)=

o o o = O

- x(l)+ AtV (k) coso(k) |
v(kE)+ AtV (k)sie(k)
o)+ AtV (k) tany (k)

x; (k)

n (k)

00 0
00 0
10 0
00 0
00 0
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The Estimation Process

Kalman Gain

K (k)= P(ky J, (k) (J, )Py T, (k)" +V (KRG (k) )

A e )
z(k)=| ' = Y +v(k)
L),- (k )} tanl[y ’ )j (k)_ J—g?)(k)
] x, —x(k) |
o b, Oh O Oh | [y A e RN
J. (k)= ¥y Op 0y ) _| r r
! ch, ch, Ch, oh, Oh, i~y Xx=X% 1 V=V
¥y Op o oy | L 7 7 7

where 7 =\/ (X, —x)"+(,— )




The Estimation Process

Kalman Gain

K (k)= P(kyJ, (k)" (7, (k) (kY™ T, (k)T +V ()R (k)T )

7.(k) \/(x,- _3,(‘.'(]()_)2 +(yi _)'*}(k)_)z
=2 -+ k
Z() L),.(k)} tanl[yi_y(/") ]—(Z)(k) +v(k)
i X, —x(k)~ _
"Oh oh
_|ov. v |_(L O
YO= o, an, {0 J
|V, O, |
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The Estimation Process

Measurement Update

x(k) = X(k)” + K (k)(=(k) - H(k))
P(k) = ([—K(k)Jh(k))P(k)_ K Innovation

z(k) i1s 10 fabricated
measurements of range
and bearing to landmark 1.

There is only one landmark
and it is incorporated into
the model from the start.

y [meters)

—#— robot pos (model)
robot pos (SLAM)

O landmark (true)
landmark (SLAM)

s

1 1 1 1 1 1 J
8 10 12 14 16 18 20
% [meters]
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SLAM Example 2 - Multiple
Landmarks



Overall System Process Model

C x(k+1) [ x(k)+ AtV (k)cos (k) | Cw (k)
y(k+1) v(k)+ AtV (k)sin p(k) w_ (k)
AtV (k) tany(k |
plk+1) | _| gty + SR
pl(l(?_'_l) p, (k) 0

_pN(k_'_l)_ i py (k) | L 0
Landmark 1: (3 4)
Landmark 2: (12,7) >
Landmark 3: (13,14) i




Observation Model

z(k) = h(x(k),v(k))

The radar used in the experiment returns
the range r(k) and bearing 6,(k) to a
landmark i. Thus, the observation model is

(k) = (x, = x, () + (3, = v, (k)] +v, (k)

0. (k)= arctan( Y, =¥, (k) ] —p(k)+v,(k)
B Radar Location x, —x,. (k)
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The Estimation Process

Prediction
(k) = f(X(k=1),u(k -1),0)
P(k)” = F(k)P(k=)F (k)" +W(k)Ok =)W (k)"

x(k+1)=

Initially, before landmarks are added

o(k)

x(k)+AtV(k)cosp(k)

v(k)+ AtV (k)sme(k)
N AtV (k) tany(k)

a Aol 1 0 —AV(k)sing(k) o, aw, W, |
F(k)zoéé Z: (;{;2):0 1 AtV (k)cospk) | Wi(k)= g} ;}; ;fv =0
4 ' . x v 1) 0

& & ép) ow, o, ow,

+w(k)

oS = O

—_— 0 O
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The Estimation Process

Kalman Gain

K (k) = Py J, (k) (J, () P(kY T, (k) +V ()R (k) )

z(k) ={

(k)|
o.(k)|

tan” [

Initially, before landmarks are added

oh

. Oh  Oh |

ax Oy

7= &

oh, o,

0p

OX

y

op

X—X.

1

Y=V

— r

}/'

Vi~V X=X

5

~

r

5

v

where 7 Z\/(x,. —x)’ +(, —y)2

0

—1

\/(X,- —3?(/()_)2 +(,V,- —f’(k)_)
Vi _)A’(k)_
x, —x(k)

2

)—é)(/f)

V(k)=

+v(k)

_% %_
ov. 6\;9

oh, on,

ov, v,



The Estimation Process

Measurement Update
%(k) = %(k)” + K (k)(z(k) - H(k))
P(k) = (I =K (k)J,(k))P(k)"

Now, if a landmark is observed at t(k+1),
the state model is updated

Cx(k+1)] [ XY+ AV (kyeosp(k) | T (k)T
y(k +1) v(k)+ AtV (k)sinp(k) w, (k)

ok +1) | = q)(k)+AIV(k)tan)/(k) +| w, (k)
x,(k+1) x, (k) 0
n(k+D] | v, (k) Lo

x,(k+1)=x(k)+rcos® nk+1)=y(k)+rsm6
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The Estimation Process

Prediction (2)

[ x(k)+ AtV (k) coso(k) |

+| w, (k)

v(k)+ Ar;’ g\; sin gog‘;

o | AfV(K)tany(k
i»(k)_ _ f()’(\'(k—l), L[(k _1)30) x(k+1)=| p(k)+ i
P(k) =F(k)P(k-)F (kY +W(ER)OUk—DW (k)" L »®

of 0
Fo=ocrp)
i O ]24\" x 2N ]

where N is the
number of landmarks

(k) ]
w, (k)
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The Estimation Process

Kalman Gain (2)

K(k)= P(k)‘Jh(k)T(Jh (k)P(k) J, (k) +V (kK)R(k)V (k)" )‘1

If observing the 15t landmark

4@%:5% 6%)0.”ﬂ

ox,y,p) O(x,y,

If observing the 2" landmark

Jh=—" o Iy o
ax,y,o) ax,.y,)

Must repeat for each landmark!!
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The Estimation Process

Measurement Update (2)

2(k)=%(k) +K(k)(z(k)- H(k))
P(k) =(I-K(k)J,(k))P(k)



