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Lecture Outline

• Feature tracking

Based on slides by Derek Hoiem, also partially 
based on sources by C. Tomasi, T. Kanade and T. 
Svoboda

• Intro to Covariance Matrices
• Simultaneous Localization and Mapping

– Based on slides by William Green (then at Drexel)
– See also “An Introduction to the Kalman Filter” by Greg 

Welch and Gary Bishop 
http://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf
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Feature Matching

• Given a feature in I, how to find the best 
match in J?

• So far we have searched for best match by 
testing all possible translations by integer 
number of pixels
– Restricted to be purely horizontal in stereo 

case
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Kanade-Lucas-Tomasi Tracking

• Bruce D. Lucas and Takeo Kanade. An iterative image 
registration technique with an application to stereo 
vision. In Proceedings of the 7th International 
Conference on Artificial Intelligence, pages 674–679, 
August 1981.

• Carlo Tomasi and Takeo Kanade. Detection and tracking 
of point features. Technical Report CMU-CS-91-132, 
Carnegie Mellon University, April 1991.

• Jianbo Shi and Carlo Tomasi. Good features to track. In 
IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR), pages 593–600, 1994.

• Code: http://www.ces.clemson.edu/~stb/klt/
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Camera Motion
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Object Motion
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Feature Tracking
• Challenges
– Figure out which features can be tracked

– Efficiently track across frames

– Some points may change appearance over 
time (e.g., due to rotation, moving into 
shadows, etc.)

– Drift: small errors can accumulate as 
appearance model is updated

– Points may appear or disappear: need to be 
able to add/delete tracked points
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Feature Tracking

• Given two subsequent frames, estimate the point 
translation

• Key assumptions of Lucas-Kanade Tracker
• Brightness constancy:  projection of the same point looks the 

same in every frame

• Small motion: points do not move very far

• Spatial coherence: points move like their neighbors

I(x,y,t) I(x,y,t+1)
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• Brightness Constancy Equation:

The Brightness Constancy Constraint

tyx IvIuItyxItvyuxI +×+×+»+++ ),,()1,,(

),(),,( 1, +++= tvyuxItyxI
Take Taylor expansion of I(x+u, y+v, t+1) at (x,y,t) to linearize the right side:

I(x,y,t) I(x,y,t+1)

0»+×+× tyx IvIuIHence,

Image derivative along x

[ ] 0IvuI t
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Difference over frames
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• Brightness Constancy Equation:

The Brightness Constancy Constraint

tyx IvIuItyxItvyuxI +×+×+»+++ ),,()1,,(

),(),,( 1, +++= tvyuxItyxI
Take Taylor expansion of I(x+u, y+v, t+1) at (x,y,t) to linearize the right side:

I(x,y,t) I(x,y,t+1)

0»+×+× tyx IvIuIHence,

Image derivative along x

[ ] 0IvuI t
T =+×Ñ®

I(x +u, y+ v, t +1)− I(x, y, t) = Ix ⋅u+ Iy ⋅ v+ It

Difference over frames
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Taylor Expansion
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• How many equations and unknowns per pixel?

The component of the motion perpendicular to the 
gradient (i.e., parallel to the edge) cannot be measured

edge

(u,v)

(u’,v’)

gradient

(u+u’,v+v’)

If (u, v) satisfies the equation, 
so does (u+u’, v+v’ ) if

•One equation (this is a scalar equation!), two unknowns (u,v)

[ ] 0IvuI t
T =+×Ñ

[ ] 0'v'uI T =×Ñ

Can we use this equation to recover image motion (u,v) at 
each pixel?
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The Brightness Constancy Constraint



The Aperture Problem

Actual motion
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The Aperture Problem

Perceived motion
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The Barber Pole Illusion

http://en.wikipedia.org/wiki/Barberpole_illusion 16
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The Barber Pole Illusion

http://en.wikipedia.org/wiki/Barberpole_illusion 17
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Solving the  Ambiguity…

• How to get more equations for a pixel?

• Spatial coherence constraint

• Assume the pixel’s neighbors have the same (u,v)
– If we use a 5x5 window, that gives us 25 equations per pixel
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• Least squares problem:

Solving the  Ambiguity…
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Matching Patches across Images
• Overconstrained linear system

The summations are over all pixels in the K x K window

Least squares solution for d given by
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Conditions for Solvability
Optimal (u, v) satisfies Lucas-Kanade equation

Does this remind you of anything?

When is this solvable?  I.e., what are good points to 
track?
• ATA should be invertible 
• ATA should not be too small due to noise

– eigenvalues l1 and l2 of ATA should not be too small
• ATA should be well-conditioned

– l1/ l2 should not be too large (l1 = largest eigenvalue)

Criteria for Harris corner detector 
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• Eigenvectors and eigenvalues of ATA 
relate to edge direction and magnitude 
• The eigenvector associated with the larger 

eigenvalue points in the direction of fastest 
intensity change

• The other eigenvector is orthogonal to it

M = ATA is the second moment matrix !
(Harris corner detector…)
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Low-texture region

– gradients have small magnitude
– small l1, small l2
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Edge

– gradients very large or very small
– large l1, small l2
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High-texture Region

– gradients are different, large magnitudes
– large l1, large l2
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The Aperture Problem Resolved

Actual motion
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The Aperture Problem Resolved

Perceived motion
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Revisiting the small motion assumption

• Is this motion small enough?
– Probably not—it’s much larger than one pixel (2nd

order terms dominate)
– How might we solve this problem?

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003



Dealing with Larger Motion: 
Iterative Refinement

1. Initialize (x’,y’) = (x,y)
2. Compute (u,v) by

3. Shift window by (u, v): x’=x’+u; y’=y’+v;
4. Recalculate It
5. Repeat steps 2-4 until change is small
• Use interpolation for subpixel values

2nd moment matrix for feature 
patch in first image displacement

It = I(x’, y’, t+1) - I(x, y, t) 

Original (x,y) position
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Reduce the resolution!

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003



image It-1 image I

Gaussian pyramid of image It-1 Gaussian pyramid of image I

image Iimage It-1 u=10 pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels

Coarse-to-fine optical flow estimation

slides from
Bradsky and Thrun 



image Iimage J

Gaussian pyramid of image It-1 Gaussian pyramid of image I

image Iimage It-1

Coarse-to-fine optical flow 
estimation

run iterative L-K

run iterative L-K

warp & upsample

.

.

.

slides from
Bradsky and Thrun 



image Iimage J

Gaussian pyramid of image 1 (t) Gaussian pyramid of image 2 (t+1)

image 2image 1

Dealing with Larger Motion: 
Coarse-to-Fine Registration

run iterative L-K

run iterative L-K

upsample

.

.

.
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Shi-Tomasi Feature Tracker
• Find good features using eigenvalues of second-

moment matrix (e.g., Harris detector or threshold on 
the smallest eigenvalue)
– Key idea: “good” features to track are the ones whose 

motion can be estimated reliably

• Track from frame to frame with Lucas-Kanade
– This amounts to assuming a translation model for 

frame-to-frame feature movement

• Check consistency of tracks by affine registration to 
the first observed instance of the feature
– Affine model is more accurate for larger displacements
– Comparing to the first frame helps to minimize drift
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Tracking Example
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Summary of KLT tracking

• Find a good point to track (Harris corners)

• Use intensity second moment matrix and 
difference across frames to find displacement

• Iterate and use coarse-to-fine search to deal with 
larger movements

• When creating long tracks, check appearance of 
registered patch against appearance of initial 
patch to find points that have drifted
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Covariance
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Covariance

• Covariance is a numerical measure  that 
shows how much two random variables 
change together

• Positive covariance: if one increases, the 
other is likely to increase

• Negative covariance: …
• More precisely: the covariance is a measure 

of the linear dependence between the two 
variables
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Covariance Example

Relationships between the returns of different stocks
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Scatter plot I Scatter Plot II



Correlation Coefficient

• One may be tempted to conclude that if 
the covariance is larger, the relationship 
between two variables is stronger (in the 
sense that they have stronger linear 
relationship)

• The correlation coefficient is defined as:
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Correlation Coefficient

• The correlation coefficient, unlike covariance, is 
a measure of dependence free of scales of 
measurement of Yij and Yik

• By definition, correlation must take values 
between −1 and 1

• A correlation of 1 or −1 is obtained when there is 
a perfect linear relationship between the two 
variables
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Covariance Matrix
• For the vector of repeated measures, Yi = (Yi1, 

Yi2, ..., Yin), we define the covariance matrix, 
Cov(Yi):

• It is a symmetric, square matrix
42



Variance and Confidence Intervals

• Single Gaussian (normal) random variable
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Multivariate Normal Density

– The multivariate normal density in d dimensions is:

where:
x = (x1, x2, …, xd)t

µ = (µ1, µ2, …, µd)t mean vector
S = d×d covariance matrix
|S| and S-1 are the determinant and inverse respectively
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Confidence Intervals: 
Multi-Variate Case

• Same concept: how large is the area that 
contains X% of samples drawn from the 
distribution

• Confidence intervals are ellipsoids for normal 
distribution
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Confidence Intervals: 
Multi-Variate Case

• Increasing X%, increases the size of the 
ellipsoids, but not their orientation and aspect 
ratio
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The Multi-Variate Normal Density

• Σ is positive semi definite (xt Σx>=0)
– If xt Σx =0 for non-zero x then det(Σ)=0. This 

case is not interesting, p(x) is not defined

ØTwo or more parameters are linearly 
dependent

• So we will assume Σ is positive definite 
(xt Σx >0)

• If Σ is positive definite then so is Σ-1

47O. Veksler



Confidence Intervals: 
Multi-Variate Case

• Covariance matrix 
determines the 
shape
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Confidence Intervals: 
Multi-Variate Case

• Case I: S = s2I
• All variables are uncorrelated and have equal 

variance

• Confidence intervals are circles
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Confidence Intervals: 
Multi-Variate Case

• Case II: S diagonal, with unequal elements
• All variables are uncorrelated but have different 

variances

• Confidence intervals are axis-aligned 
ellipsoids
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Confidence Intervals: 
Multi-Variate Case

• Case III: S arbitrary
• Variables may be correlated and have different 

variances

• Confidence intervals are arbitrary 
ellipsoids
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Intro to SLAM
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Visual SLAM
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Introduction

SLAM Objective

• Place a robot in an unknown location in an unknown 
environment and have the robot incrementally build a 
map of this environment while simultaneously using this 
map to compute vehicle location

• A solution to SLAM was seen as the “Holy Grail”
– Would enable robots to operate in an environment without a 

priori knowledge of obstacle locations

• A little more than 10 years ago it was shown that a 
solution is possible!
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The Localization Problem
• A map m of landmark locations is known a priori

• Take measurements of landmark location zk (i.e. distance 
and bearing)

• Determine vehicle location xk based on zk

– Need filter if sensor is noisy

55

• xk: location of vehicle at time k

• uk: a control vector applied at 
k-1 to drive the vehicle from 
xk-1 to xk

• zk: observation of a landmark 
taken at time k

• Xk: history of states {x1, x2, x3, 
…, xk}

• Uk: history of control inputs {u1, 
u2, u3, …, uk}

• m: set of all landmarks



The Mapping Problem

• The vehicle locations Xk are provided

• Take measurements of landmark location zk (i.e. distance 
and bearing)

• Build map m based on zk

– Need filter if sensor is noisy
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• Xk: history of states {x1, x2, x3, 
…, xk}

• zk: observation of a landmark 
taken at time k

• mi: true location of ith landmark

• m: set of all landmarks



Simultaneous Localization and Mapping

• From knowledge of observations Zk

• Determine vehicle location Xk

• Build map m of landmark locations

57

• xk: location of vehicle at time k
• uk: a control vector applied at k-

1 to drive the vehicle from 
xk-1 to xk

• mi: true location of ith landmark
• zk: observation of a landmark 

taken at time k
• Xk: history of states {x1, x2, x3, …, 

xk}
• Uk: history of control inputs {u1, 

u2, u3, …, uk}
• m: set of all landmarks
• Zk: history of all observations 

{z1, z2, …, zk}



Simultaneous Localization and Mapping

• Localization and mapping are coupled problems

• A solution can only be obtained if the localization and 
mapping processes are considered together
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SLAM Fundamentals
• A vehicle with a known kinematic model moving through 

an environment containing a population of landmarks 
(process model)

• The vehicle is equipped with a sensor that can take 
measurements of the relative location between any 
individual landmark 
and the vehicle itself 
(observation model)
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Process Model

• For better understanding, a linear model of the vehicle is 
assumed

• If the state of the vehicle is given as xv(k) then the vehicle 
model is

xv(k+1) = Fv(k)xv(k) + uv(k+1) + wv(k+1)

• where
– Fv(k) is the state transition matrix

– uv (k) is a vector of control inputs

– wv (k) is a vector of uncorrelated process noise errors with zero 
mean and covariance Qv(k)

• The state transition equation for the ith landmark is
pi(k+1) = pi(k) = pi

• SLAM considers all landmarks stationary
60



Process Model

• The augmented state vector containing both the state of 
the vehicle and the state of all landmark locations is

• The state transition model for the complete system is now

• where
– Ipi is the dim(pi) x dim(pi) identity matrix

– 0pi is the dim(pi) null vector
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Observation Model
• Assuming the observation to be linear, the 

observation model for the ith landmark is given 
as

z(k) = Hix(k) + vi(k)
• where
– vi(k) is a vector of uncorrelated observation errors 

with zero mean and variance Ri(k)
– Hi is the observation matrix that relates the sensor 

output zi(k) to the state vector x(k) when observing 
the ith landmark and is written as

Hi = [-Hv, 0 … 0, Hpi, 0 … 0]
• Re-expressing the observation model

z(k) = Hpip - Hvxv(k) + vi(k)
62



Estimation Process
• Objective
– The state of the discrete-time process xk needs to be 

estimated based on the measurement zk

– This is the exact definition of the Kalman filter

• Kalman Filter
– Recursively computes estimates of state x(k) which is 

evolving according to the process and observation 
models

– The filter proceeds in three stages
• Prediction

• Observation

• Update

63



Estimation Process
Prediction

• After initializing the filter (i.e. setting values for !𝑥(k) 
and P(k)), a prediction is generated for
– The a priori state estimate

– The a priori observation relative to the ith landmark

– The a priori state covariance (e.g. a measure of how 
uncertain the states computed by the process model are)
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Estimation Process
Observation

• Following the prediction, an observation zi(k+1) of 
the ith landmark is made using the observation 
model

• An innovation and innovation covariance matrix are 
calculated
– Innovation is the discrepancy between the actual 

measurement zk and the predicted measurement �̂�(k) 
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Estimation Process
Update

• The state estimate and corresponding state 
estimate covariance are then updated according to

• where the gain matrix Wi(k+1) is given by
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Kalman Filter

• Developed by Rudolph E. Kalman in 1960
• A set of mathematical equations that provides 

an efficient computational (recursive) means 
to estimate the state of a process

• It supports estimations of
– Past states
– Present states
– Future states

• and can do so when the nature of the 
modeled system is unknown!

67



Kalman Filter Properties

• Given all measurements up to current time, 
the Kalman filter algorithm is the optimal 
Minimum Mean Squared Error (MMSE) 
estimator of the state

• Provided that:
– initial state is Gaussian with known mean and 

covariance;
– process and observations models are linear;
– and noise terms are uncorrelated, white, 

Gaussian, zero mean and with known 
covariances.
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Discrete Kalman Filter

Process Model
• Assumes true state at time k evolves from 

state (k-1) according to
x(k) = F x(k-1) + G u(k-1) + w(k)

• where
– F is the state transition model (A matrix)
– G is the control input matrix (B matrix)
– w(k) is the process noise which is assumed to be 

white and have a normal probability distribution
p(w) ~ N(0,Q)
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Discrete Kalman Filter

Observation Model
• At time k, a measurement z(k) of the true 

state x(k) is made according to
z(k) = H x(k) + v(k)

• where
– H is the observation matrix and relates the 

measurement z(k) to the state vector x(k)
– v(k) is the observation noise which is assumed to 

be white and have a normal probability 
distribution

p(w) ~ N(0,R)
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Discrete Kalman Filter

Algorithm
• Recursive

– Only the estimated state from the previous time step and 
the current measurement are needed to compute the 
estimate for the current state

• The state of the filter is represented by two variables
– x(k): estimate of the state at time k
– P(k|k): error covariance matrix (a measure of the estimated 

accuracy of the state estimate)
• The filter has two distinct stages

– Predict (and observe)
– Update

71



Discrete Kalman Filter (Notation 1)
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Discrete Kalman Filter (Notation 2)
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Kalman Filter (Alternate Notation)
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Kalman Filter Example

• Estimate a scalar random constant (e.g. voltage )

• – Measurements are corrupted by 0.1 volt RMS white 
noise
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Kalman Filter Example

Process Model

• Governed by the linear difference equation

• with a measurement
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Kalman Filter Example
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Extended Kalman Filter
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Extended Kalman Filter
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Motion Tracking Example
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Simple Robot Model
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Simple Robot Model

82



Observation Model
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EKF
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EKF
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EKF
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SLAM Example – Single 
Landmark
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Robot Process Model
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Objective

• Based on system inputs, V and γ (with 
sensor feedback, i.e. optical encoders) at 
time k, estimate the vehicle position at 
time (k+1)
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Landmark Process Model
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Overall System Process Model
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Observation Model
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The Estimation Process
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The Estimation Process
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The Estimation Process
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The Estimation Process
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The Estimation Process
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SLAM Example 2 – Multiple 
Landmarks
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Overall System Process Model
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Observation Model
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The Estimation Process
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The Estimation Process
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The Estimation Process
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The Estimation Process
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The Estimation Process
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The Estimation Process
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