
CS 532: 3D Computer Vision 
4th Set of Notes
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Lecture Outline

• Binocular Stereo
– Matching criteria

• Confidence for stereo
• Stereo beyond the Winner-Take-All algorithm

Based on slides by R. Szeliski, P. Fua, S. Seitz, 
M. Bleyer and R. Zabih
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Stereo Matching

Slides by Rick Szeliski, Pascal 
Fua and P. Mordohai
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Stereo Matching

• What are some possible algorithms?
– match “features” and interpolate
– match edges and interpolate
– match all pixels with windows (coarse-fine)
– use optimization:

• iterative updating
• dynamic programming
• energy minimization (regularization, stochastic)
• graph algorithms
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Basic Stereo Algorithm

For each epipolar line
For each pixel in the left image

• compare with every pixel on same epipolar line in right image

• pick pixel with minimum match cost
Improvement:  match windows



Disparity

• Disparity d is the difference between the x 
coordinates of corresponding pixels in the 
left and right image

d=xL-xR

• Disparity is inversely proportional to depth
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Stereo Reconstruction
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Naïve Stereo Algorithm

• For each pixel p of the left image:
– Compare color of p against the color of each pixel on 

the same horizontal scanline in the right image
– Select the pixel of most similar color as matching 

point
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Window-Based Matching

• Instead of matching single pixels, center a 
small window on a pixel and match the 
whole window in the right image
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Window-Based Matching
• the disparity dp of a pixel p in the left image is computed as

• where
– argmin returns the value at which the function takes a minimum
– dmax is a parameter defining the maximum disparity (search 

range)
– Wp is the set of all pixels inside the window centered on p
– c(p,q) is a function that computes the color difference between a 

pixel p of the left and a pixel q of the right image
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Cost/Score Curve

11

NCC



Cost/Score Curve
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Results

• The window size is a crucial parameter
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Challenges
• Ill-posed inverse problem

– Recover 3-D structure from 2-D information

• Difficulties
– Uniform regions
– Half-occluded pixels
– Repeated patterns
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Untextured Regions
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Aperture Problem

• There needs to be a certain amount of 
texture with vertical orientation
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Repetitive Patterns
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Effects of these Problems
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Foreground Fattening

• By using a window as matching primitive, 
we have made an implicit smoothness 
assumption:
– All pixels within the window are assumed to 

have the same disparity

• This leads to a systematic error in regions 
close to disparity discontinuities
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Foreground Fattening
• Background regions close to disparity discontinuities tend 

to be erroneously assigned to the foreground disparity
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Foreground Fattening
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Large vs. Small Windows

• Large windows are better for:
– Untextured Regions
– Aperture Problem
– Repetitive Patterns

• Small windows reduce:
– Foreground Fattening Effect

• Problem:
– There is no ‘optimal’ window size that can 

handle all these problems at once
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Why?



Pixel Dissimilarity
• Sum of Squared Differences of intensities (SSD)

• Sum of Absolute Differences of intensities (SAD)

• Zero-mean Normalized Cross-correlation (NCC)
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Shiftable Windows

• Avoid having using 
matching windows 
that straddle two 
surfaces
– Disparity will not be 

constant for all pixels
• Shift the window 

around the 
reference pixel 
– Keep the one with 

min cost (max NCC)
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Rod-shaped Filters

• Instead of square windows aggregate cost 
in rod-shaped shiftable windows

• Search for one that minimizes the cost 
(assume that it is an iso-disparity curve)
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Alternative Dissimilarity Measures
• Rank and Census transforms 
• Rank transform:

– Define window containing R pixels around each pixel
– Count the number of pixels with lower intensities than center pixel in 

the window
– Replace intensity with rank (0..R-1)
– Compute SAD on rank-transformed 

images

• Census transform: 
– Use bit string, defined by neighbors, 

instead of scalar rank

• Robust against illumination changes
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Locally Adaptive Support

Apply weights to contributions of 
neighboring pixels according to similarity
and proximity
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Locally Adaptive Support

• Similarity in CIE Lab color space:

• Proximity: Euclidean distance

• Weights: 
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Locally Adaptive Support: Results
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Implement SAD
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Occlusion

• There are pixels that are only visible in one of the two 
views (red pixels in the images)

• For occluded, pixels there exists no correspondence => 
We cannot estimate disparity
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Effects of Occlusion
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Approximate adaptive support
weight implementation



Left-Right Consistency
• Compute 2 disparity maps

– Using the left image as reference frame
– Using the right image as reference frame

• Left-right consistency check:
– For each pixel pl of the left view:
– Lookup pl’s matching point mr in the right view using the 

left disparity map
– For the pixel mr, lookup its matching point ql in the left view 

using the right disparity map
– If pl= ql the disparity is assumed to be correct
– Otherwise, the disparity is invalidated

• Check typically fails for
– Occluded pixels
– Mismatched pixels
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Left-Right Consistency
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Left-Right Consistency
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Left-Right Consistency
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Left-Right Consistency
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Left-Right Consistency
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Left-Right Consistency
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Confidence Measures for 
Stereo Matching
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Cost Functions

• Functions of disparity d 
– d=xL-xR
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Ideal Cost Curve
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Non-Ideal Cost Curves
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Correspondence Uncertainty Measures

1. Matching Cost

2. Local Properties of the Cost Curve

3. Local Minima of the Cost Curve

4. The Entire Cost Curve

6. Consistency Between the Left and Right Disparity Maps

7. More…

44



Notation

c1 global minimum of the cost curve
c2 second smallest value of the cost curve
c2m second smallest value of the cost curve that is also

a local minimum
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Matching Cost

Confidence

Simply using matching cost:
Low cost values correspond to high confidence 
high cost values correspond to low confidence
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Local Properties of the Cost Curve

Low curvature indicates flat region around minimum cost
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Local Minima of the Cost Curve

Match is ambiguous if multiple strong candidates exist
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The Entire Cost Curve

Tests for both flat regions and multiple strong candidates by
converting cost curve to probability function and measuring
the probability of the best match
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Left-Right Consistency

LRC is not binary as before, but equal to difference of 
corresponding disparities
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Distinctiveness-based Confidence Measures

• Distinctiveness: Perceptual distance to the 
most similar other point in the search window 
in the reference image
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Stereo 
Beyond Winner-Take-All
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Stereo with Non-Linear Diffusion

• Problem with traditional approach:
– gets confused near discontinuities

• Non-Linear Diffusion:
– use iterative (non-linear) aggregation to obtain 

better estimate
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Diffusion

• Average energy with neighbors + starting 
value

• window diffusion
Requires appropriate stopping criteria to prevent excessive smoothing
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Feature-based Stereo

• Match “corner” (interest) points

• Interpolate complete solution
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Dynamic Programming

• 1-D cost function
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Dynamic Programming

• Disparity space image and min. cost path
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Dynamic Programming

• Sample result
(note horizontal
streaks)



59

Dynamic Programming

• Can we apply this trick in 2D as well?

dx,ydx-1,y

dx,y-1dx-1,y-1

No: dx,y-1 and dx-1,y may depend on different values of dx-1,y-1
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Graph Cuts

• Solution technique for general 2D problem



a-expansion moves

initial solution

-expansion

-expansion

-expansion

-expansion

-expansion

-expansion

-expansion

In each a-expansion a given label “a”  grabs space from other labels

For each move choose the expansion that gives the largest decrease in the energy: 
binary optimization problem 61



Feature Extraction



Feature extraction: Corners



Why extract features?

• Motivation: panorama stitching
– We have two images – how do we combine 

them?
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Step 1: extract features

Step 2: match features

Why extract features?

• Motivation: panorama stitching
– We have two images – how do we combine 

them?



Step 1: extract features

Step 2: match features

Step 3: align images

• Motivation: panorama stitching
– We have two images – how do we combine 

them?

Why extract features?



Characteristics of good features

• Repeatability
– The same feature can be found in several images despite geometric 

and photometric transformations 

• Saliency
– Each feature is distinctive

• Compactness and efficiency
– Many fewer features than image pixels

• Locality
– A feature occupies a relatively small area of the image; robust to 

clutter and occlusion



Applications  
• Feature points are used for:

– Image alignment 
– 3D reconstruction
– Motion tracking
– Robot navigation
– Indexing and database retrieval
– Object recognition



Corner Detection: Basic Idea
• We should easily recognize the point by 

looking through a small window
• Shifting a window in any direction should 

give a large change in intensity

“edge”:
no change 
along the edge 
direction

“corner”:
significant 
change in all 
directions

“flat” region:
no change in 
all directions



Corner Detection: Mathematics
Change in appearance of window W for a shift [u,v]:

I(x, y)
E(u, v)

E(3,2)
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Corner Detection: Mathematics

I(x, y)
E(u, v)

E(0,0)





Wyx

yxIvyuxIvuE
),(

2)],(),([),(

Change in appearance of window W for a shift [u,v]:



Corner Detection: Mathematics

We want to find out how this function behaves for small shifts

E(u, v)
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Change in appearance of window W for a shift [u,v]:



Corner Detection: Mathematics

• First-order Taylor approximation for small 
motions [u, v]:

• Let’s plug this into E(u,v):
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Corner Detection: Mathematics
The quadratic approximation can be written as

where M is a second moment matrix computed from image 
derivatives:
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(the sums are over all the pixels in the window W)



• The surface E(u,v) is locally approximated by a quadratic 
form. Let’s try to understand its shape.

• Specifically, in which directions 
does it have the smallest/greatest
change?

Interpreting the second moment matrix
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First, consider the axis-aligned case (gradients are 
either horizontal or vertical)

If either a or b is close to 0, then this is not a corner, so look for 
locations where both are large.
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Interpreting the second moment matrix



Consider a horizontal “slice” of E(u, v):

This is the equation of an ellipse.
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Interpreting the second moment matrix



Consider a horizontal “slice” of E(u, v):

This is the equation of an ellipse.
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



The axis lengths of the ellipse are determined by the 
eigenvalues and the orientation is determined by R

direction of the 
slowest change

direction of the 
fastest change

(max)-1/2

(min)-1/2
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Diagonalization of M:

Interpreting the second moment matrix



Quick Eigenvalue/Eigenvector 
Review

The eigenvectors of a matrix A are the vectors x that satisfy:

The scalar  is the eigenvalue corresponding to x
– The eigenvalues are found by solving:

– In our case, A = H is a 2x2 matrix, so we have

– The solution:

Once you know , you find x by solving



Interpreting the eigenvalues

1

2

“Corner”
1 and 2 are large,
1 ≈ 2;
E increases in all 
directions

1 and 2 are small;
E is almost constant 
in all directions

“Edge” 
1 >> 2

“Edge” 
2 >> 1

“Flat” 
region

Classification of image points using eigenvalues of M:



Corner response function

“Corner”
R > 0

“Edge” 
R < 0

“Edge” 
R < 0

“Flat” 
region

|R| small

2
2121

2 )()(trace)det(   MMR

α: constant (0.04 to 0.06)



The Harris corner detector
1. Compute partial derivatives at each pixel
2. Compute second moment matrix M in a 

Gaussian window around each pixel: 

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” 
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.
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1. Compute partial derivatives at each pixel
2. Compute second moment matrix M in a 

Gaussian window around each pixel 
3. Compute corner response function R

The Harris corner detector



Harris Detector: Steps



Harris Detector: Steps
Compute corner response R



The Harris corner detector
1. Compute partial derivatives at each pixel
2. Compute second moment matrix M in a 

Gaussian window around each pixel 
3. Compute corner response function R
4. Threshold R
5. Find local maxima of response function 

(non-maximum suppression)



Harris Detector: Steps
Find points with large corner response: R > threshold



Harris Detector: Steps
Take only the points of local maxima of R



Harris Detector: Steps


