
CS 532: 3D Computer Vision
4th Set of Notes

1

Lecture Outline

• Binocular Stereo
– Matching criteria

• Confidence for stereo
• Stereo beyond the Winner-Take-All algorithm

Based on slides by R. Szeliski, P. Fua, S. Seitz,
M. Bleyer and R. Zabih

2

Stereo Matching

Slides by Rick Szeliski, Pascal
Fua and P. Mordohai

3

4

Stereo Matching

• What are some possible algorithms?
– match “features” and interpolate
– match edges and interpolate
– match all pixels with windows (coarse-fine)
– use optimization:

• iterative updating
• dynamic programming
• energy minimization (regularization, stochastic)
• graph algorithms

5

Basic Stereo Algorithm

For each epipolar line
For each pixel in the left image

• compare with every pixel on same epipolar line in right image

• pick pixel with minimum match cost
Improvement: match windows

Disparity

• Disparity d is the difference between the x
coordinates of corresponding pixels in the
left and right image

d=xL-xR

• Disparity is inversely proportional to depth

6

7

Stereo Reconstruction

f

x x’

baseline

z

C C’

X

f

Naïve Stereo Algorithm

• For each pixel p of the left image:
– Compare color of p against the color of each pixel on

the same horizontal scanline in the right image
– Select the pixel of most similar color as matching

point

8

Window-Based Matching

• Instead of matching single pixels, center a
small window on a pixel and match the
whole window in the right image

9

Window-Based Matching
• the disparity dp of a pixel p in the left image is computed as

• where
– argmin returns the value at which the function takes a minimum
– dmax is a parameter defining the maximum disparity (search

range)
– Wp is the set of all pixels inside the window centered on p
– c(p,q) is a function that computes the color difference between a

pixel p of the left and a pixel q of the right image

10

Cost/Score Curve

11

NCC

Cost/Score Curve

12

Results

• The window size is a crucial parameter

13

Challenges
• Ill-posed inverse problem

– Recover 3-D structure from 2-D information

• Difficulties
– Uniform regions
– Half-occluded pixels
– Repeated patterns

14

Untextured Regions

15

Aperture Problem

• There needs to be a certain amount of
texture with vertical orientation

16

Repetitive Patterns

17

Effects of these Problems

18

Foreground Fattening

• By using a window as matching primitive,
we have made an implicit smoothness
assumption:
– All pixels within the window are assumed to

have the same disparity

• This leads to a systematic error in regions
close to disparity discontinuities

19

Foreground Fattening
• Background regions close to disparity discontinuities tend

to be erroneously assigned to the foreground disparity

20

Foreground Fattening

21

Large vs. Small Windows

• Large windows are better for:
– Untextured Regions
– Aperture Problem
– Repetitive Patterns

• Small windows reduce:
– Foreground Fattening Effect

• Problem:
– There is no ‘optimal’ window size that can

handle all these problems at once

22

Why?

Pixel Dissimilarity
• Sum of Squared Differences of intensities (SSD)

• Sum of Absolute Differences of intensities (SAD)

• Zero-mean Normalized Cross-correlation (NCC)

ܦܵܵ ,ݔ ;ݕ ݀ ൌ ෍ 	
௫ᇲ,௬ᇲ ∈୒ ௫,௬

ሾܫ௅ ,ᇱݔ ᇱݕ െ ᇱݔோሺܫ െ ݀, ᇱሻሿଶݕ

ܦܣܵ ,ݔ ;ݕ ݀ ൌ ෍ ,ᇱݔ௅ሺܫ| ᇱሻݕ െ ோܫ ᇱݔ െ ݀, ᇱݕ |
௫ᇲ,௬ᇲ ∈୒ ௫,௬

23

Shiftable Windows

• Avoid having using
matching windows
that straddle two
surfaces
– Disparity will not be

constant for all pixels
• Shift the window

around the
reference pixel
– Keep the one with

min cost (max NCC)

24

Rod-shaped Filters

• Instead of square windows aggregate cost
in rod-shaped shiftable windows

• Search for one that minimizes the cost
(assume that it is an iso-disparity curve)

25

Alternative Dissimilarity Measures
• Rank and Census transforms
• Rank transform:

– Define window containing R pixels around each pixel
– Count the number of pixels with lower intensities than center pixel in

the window
– Replace intensity with rank (0..R-1)
– Compute SAD on rank-transformed

images

• Census transform:
– Use bit string, defined by neighbors,

instead of scalar rank

• Robust against illumination changes

26

Locally Adaptive Support

Apply weights to contributions of
neighboring pixels according to similarity
and proximity

27

Locally Adaptive Support

• Similarity in CIE Lab color space:

• Proximity: Euclidean distance

• Weights:

28

Locally Adaptive Support: Results

29

Implement SAD

30

Occlusion

• There are pixels that are only visible in one of the two
views (red pixels in the images)

• For occluded, pixels there exists no correspondence =>
We cannot estimate disparity

31

Effects of Occlusion

32

Approximate adaptive support
weight implementation

Left-Right Consistency
• Compute 2 disparity maps

– Using the left image as reference frame
– Using the right image as reference frame

• Left-right consistency check:
– For each pixel pl of the left view:
– Lookup pl’s matching point mr in the right view using the

left disparity map
– For the pixel mr, lookup its matching point ql in the left view

using the right disparity map
– If pl= ql the disparity is assumed to be correct
– Otherwise, the disparity is invalidated

• Check typically fails for
– Occluded pixels
– Mismatched pixels

33

Left-Right Consistency

34

Left-Right Consistency

35

Left-Right Consistency

36

Left-Right Consistency

37

Left-Right Consistency

38

Left-Right Consistency

39

Confidence Measures for
Stereo Matching

40

Cost Functions

• Functions of disparity d
– d=xL-xR

41

Ideal Cost Curve

42

Non-Ideal Cost Curves

43

Correspondence Uncertainty Measures

1. Matching Cost

2. Local Properties of the Cost Curve

3. Local Minima of the Cost Curve

4. The Entire Cost Curve

6. Consistency Between the Left and Right Disparity Maps

7. More…

44

Notation

c1 global minimum of the cost curve
c2 second smallest value of the cost curve
c2m second smallest value of the cost curve that is also

a local minimum

45

Matching Cost

Confidence

Simply using matching cost:
Low cost values correspond to high confidence
high cost values correspond to low confidence

46

Local Properties of the Cost Curve

Low curvature indicates flat region around minimum cost

47

Local Minima of the Cost Curve

Match is ambiguous if multiple strong candidates exist

48

The Entire Cost Curve

Tests for both flat regions and multiple strong candidates by
converting cost curve to probability function and measuring
the probability of the best match

49

Left-Right Consistency

LRC is not binary as before, but equal to difference of
corresponding disparities

50

Distinctiveness-based Confidence Measures

• Distinctiveness: Perceptual distance to the
most similar other point in the search window
in the reference image

51

Stereo
Beyond Winner-Take-All

52

53

Stereo with Non-Linear Diffusion

• Problem with traditional approach:
– gets confused near discontinuities

• Non-Linear Diffusion:
– use iterative (non-linear) aggregation to obtain

better estimate

54

Diffusion

• Average energy with neighbors + starting
value

• window diffusion
Requires appropriate stopping criteria to prevent excessive smoothing

55

Feature-based Stereo

• Match “corner” (interest) points

• Interpolate complete solution

56

Dynamic Programming

• 1-D cost function

57

Dynamic Programming

• Disparity space image and min. cost path

58

Dynamic Programming

• Sample result
(note horizontal
streaks)

59

Dynamic Programming

• Can we apply this trick in 2D as well?

dx,ydx-1,y

dx,y-1dx-1,y-1

No: dx,y-1 and dx-1,y may depend on different values of dx-1,y-1

60

Graph Cuts

• Solution technique for general 2D problem

a-expansion moves

initial solution

-expansion

-expansion

-expansion

-expansion

-expansion

-expansion

-expansion

In each a-expansion a given label “a” grabs space from other labels

For each move choose the expansion that gives the largest decrease in the energy:
binary optimization problem 61

Feature Extraction

Feature extraction: Corners

Why extract features?

• Motivation: panorama stitching
– We have two images – how do we combine

them?

64

Step 1: extract features

Step 2: match features

Why extract features?

• Motivation: panorama stitching
– We have two images – how do we combine

them?

Step 1: extract features

Step 2: match features

Step 3: align images

• Motivation: panorama stitching
– We have two images – how do we combine

them?

Why extract features?

Characteristics of good features

• Repeatability
– The same feature can be found in several images despite geometric

and photometric transformations

• Saliency
– Each feature is distinctive

• Compactness and efficiency
– Many fewer features than image pixels

• Locality
– A feature occupies a relatively small area of the image; robust to

clutter and occlusion

Applications
• Feature points are used for:

– Image alignment
– 3D reconstruction
– Motion tracking
– Robot navigation
– Indexing and database retrieval
– Object recognition

Corner Detection: Basic Idea
• We should easily recognize the point by

looking through a small window
• Shifting a window in any direction should

give a large change in intensity

“edge”:
no change
along the edge
direction

“corner”:
significant
change in all
directions

“flat” region:
no change in
all directions

Corner Detection: Mathematics
Change in appearance of window W for a shift [u,v]:

I(x, y)
E(u, v)

E(3,2)





Wyx

yxIvyuxIvuE
),(

2)],(),([),(

Corner Detection: Mathematics

I(x, y)
E(u, v)

E(0,0)





Wyx

yxIvyuxIvuE
),(

2)],(),([),(

Change in appearance of window W for a shift [u,v]:

Corner Detection: Mathematics

We want to find out how this function behaves for small shifts

E(u, v)





Wyx

yxIvyuxIvuE
),(

2)],(),([),(

Change in appearance of window W for a shift [u,v]:

Corner Detection: Mathematics

• First-order Taylor approximation for small
motions [u, v]:

• Let’s plug this into E(u,v):
vIuIyxIvyuxI yx ),(),(



















Wyx
yyxx

Wyx
yx

Wyx
yx

Wyx

vIuvIIuIvIuI

yxIvIuIyxI

yxIvyuxIvuE

),(

2222

),(

2

),(

2

),(

2

2][

)],(),([

)],(),([),(

Corner Detection: Mathematics
The quadratic approximation can be written as

where M is a second moment matrix computed from image
derivatives:

  









v
u

MvuvuE),(





















yx
y

yx
yx

yx
yx

yx
x

III

III
M

,

2

,

,,

2

(the sums are over all the pixels in the window W)

• The surface E(u,v) is locally approximated by a quadratic
form. Let’s try to understand its shape.

• Specifically, in which directions
does it have the smallest/greatest
change?

Interpreting the second moment matrix











v
u

MvuvuE][),(

E(u, v)





















yx
y

yx
yx

yx
yx

yx
x

III

III
M

,

2

,

,,

2

First, consider the axis-aligned case (gradients are
either horizontal or vertical)

If either a or b is close to 0, then this is not a corner, so look for
locations where both are large.











b
a
0

0





















yx
y

yx
yx

yx
yx

yx
x

III

III
M

,

2

,

,,

2

Interpreting the second moment matrix

Consider a horizontal “slice” of E(u, v):

This is the equation of an ellipse.

const][







v
u

Mvu

Interpreting the second moment matrix

Consider a horizontal “slice” of E(u, v):

This is the equation of an ellipse.

RRM 







 

2

11

0
0




The axis lengths of the ellipse are determined by the
eigenvalues and the orientation is determined by R

direction of the
slowest change

direction of the
fastest change

(max)-1/2

(min)-1/2

const][







v
u

Mvu

Diagonalization of M:

Interpreting the second moment matrix

Quick Eigenvalue/Eigenvector
Review

The eigenvectors of a matrix A are the vectors x that satisfy:

The scalar  is the eigenvalue corresponding to x
– The eigenvalues are found by solving:

– In our case, A = H is a 2x2 matrix, so we have

– The solution:

Once you know , you find x by solving

Interpreting the eigenvalues

1

2

“Corner”
1 and 2 are large,
1 ≈ 2;
E increases in all
directions

1 and 2 are small;
E is almost constant
in all directions

“Edge”
1 >> 2

“Edge”
2 >> 1

“Flat”
region

Classification of image points using eigenvalues of M:

Corner response function

“Corner”
R > 0

“Edge”
R < 0

“Edge”
R < 0

“Flat”
region

|R| small

2
2121

2)()(trace)det(  MMR

α: constant (0.04 to 0.06)

The Harris corner detector
1. Compute partial derivatives at each pixel
2. Compute second moment matrix M in a

Gaussian window around each pixel:

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.”
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.





















yx
y

yx
yx

yx
yx

yx
x

IyxwIIyxw

IIyxwIyxw
M

,

2

,

,,

2

),(),(

),(),(

1. Compute partial derivatives at each pixel
2. Compute second moment matrix M in a

Gaussian window around each pixel
3. Compute corner response function R

The Harris corner detector

Harris Detector: Steps

Harris Detector: Steps
Compute corner response R

The Harris corner detector
1. Compute partial derivatives at each pixel
2. Compute second moment matrix M in a

Gaussian window around each pixel
3. Compute corner response function R
4. Threshold R
5. Find local maxima of response function

(non-maximum suppression)

Harris Detector: Steps
Find points with large corner response: R > threshold

Harris Detector: Steps
Take only the points of local maxima of R

Harris Detector: Steps

