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RANSAC 

Slides by R. Hartley, A. Zisserman 
and M. Pollefeys 
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Robust Estimation 

•  What if set of matches contains gross outliers? 
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RANSAC 
Objective 

 Robust fit of model to data set S which contains outliers 
Algorithm 
(i)  Randomly select a sample of s data points from S and 

instantiate the model from this subset. 
(ii)  Determine the set of data points Si which are within a 

distance threshold t of the model.  The set Si is the 
consensus set of samples and defines  the inliers of S. 

(iii)  If the subset of Si is greater than some threshold T, re-
estimate the model using all the points in Si and terminate 

(iv)  If the size of Si is less than T, select a new subset and 
repeat the above. 

(v)  After N trials the largest consensus set Si is selected, and 
the model is re-estimated using all the points in the 
subset Si 
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How Many Samples? 

 Choose N so that, with probability p, at least one random 
sample is free from outliers. e.g. p=0.99 

( ) ( )( )sepN −−−= 11log/1log

( )( ) pe
Ns −=−− 111

proportion of outliers e 
s 5% 10% 20% 25% 30% 40% 50% 
2 2 3 5 6 7 11 17 
3 3 4 7 9 11 19 35 
4 3 5 9 13 17 34 72 
5 4 6 12 17 26 57 146 
6 4 7 16 24 37 97 293 
7 4 8 20 33 54 163 588 
8 5 9 26 44 78 272 1177 
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Sampling Inlier Data point 

Sampling All-Inlier Set 

Sampling  Contaminated Set 



Acceptable Consensus Set 

•  Typically, terminate when inlier ratio reaches expected 
ratio of inliers 

( )neT −= 1
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Adaptively Determining the Number of Samples 

 e is often unknown a priori, so pick worst case, e.g. 50%, 
and adapt if more inliers are found, e.g. 80% would yield 
e=0.2  

 
–  N=∞, sample_count =0 

–  While N >sample_count repeat 
•  Choose a sample and count the number of inliers 

•  Set e=1-(number of inliers)/(total number of points) 

•  Recompute N from e 
•  Increment the sample_count by 1 

–  Terminate 
( ) ( )( )( )sepN −−−= 11log/1log
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Other robust algorithms 

•  RANSAC maximizes number of inliers 

•  LMedS minimizes median error 

•  Not recommended: case deletion, iterative 
least-squares, etc. 
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Automatic Computation of H 

Objective 
 Compute homography between two images 

Algorithm 
(i)   Interest points: Compute interest points in each image 
(ii)   Putative correspondences: Compute a set of interest 

point matches based on some similarity measure 
(iii)   RANSAC robust estimation: Repeat for N samples 

 (a) Select 4 correspondences and compute H 
 (b) Calculate the distance d⊥ for each putative match 
 (c) Compute the number of inliers consistent with H (d⊥<t) 
 Choose H with most inliers  

(iv)  Optimal estimation: re-estimate H from all inliers by 
minimizing ML cost function with Levenberg-Marquardt 

(v)  Guided matching: Determine more matches using 
prediction by computed H 

Optionally iterate last two steps until convergence 10 



Determine Putative Correspondences 

•  Compare interest points 
Similarity measure: 

–  SAD, SSD, ZNCC in small neighborhood 

•  If motion is limited, only consider interest points with 
similar coordinates 
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Example: robust computation 

Interest points 
(500/image) 
(640x480) 
 

Putative correspondences (268) 
(Best match,SSD<20) 
Outliers (117) 
(t=1.25 pixel; 43 iterations) 

Inliers (151) 
 
Final inliers (262) 

#in 1-e adapt. N 

6 2% 20M 
10 3% 2.5M 
44 16% 6,922 
58 21% 2,291 
73 26% 911 

151 56% 43 
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Radial Distortion and 
Undistortion 

Slides by R. Hartley, A. Zisserman 
and M. Pollefeys 
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short and long focal length 

Radial Distortion 
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Correction of distortion 

Choice of the distortion function and center 

Computing the parameters of the distortion function 
(i)  Minimize with additional unknowns 
(ii)  Straighten lines 
(iii)  … 
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Typical Undistortion Model 
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Why Undistort? 



Two-View Geometry 

Slides by R. Hartley, A. Zisserman and M. Pollefeys 
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(i)   Correspondence geometry: Given an image point x in the first 
image, how does this constrain the position of the corresponding 
point x’ in the second image? 

(ii)  Camera geometry (motion): Given a set of corresponding image 
points {xi ↔x’i}, i=1,…,n, what are the cameras P and P’ for the 
two views? 

(iii)  Scene geometry (structure): Given corresponding image points 
xi ↔x’i  and cameras P, P’, what is the position of (their pre-
image) X in space? 

Three questions: 
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C, C’, x, x’ and X are coplanar 

The Epipolar Geometry 
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What if only C,C’,x are known? 

The Epipolar Geometry 
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All points on π project on l and l’ 
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The Epipolar Geometry 



Family of planes π and lines l and l’  
Intersection in e and e’ 
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The Epipolar Geometry 



epipoles e, e’ 
= intersection of baseline with image plane  
= projection of projection center in other image 
= vanishing point of camera motion direction 

an epipolar plane = plane containing baseline (1-D family) 

an epipolar line = intersection of epipolar plane with image 
 (always come in corresponding pairs) 
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The Epipolar Geometry 



Example: Converging Cameras 
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(simple for stereo → rectification) 

Example: Motion Parallel to Image Plane 
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e 

e’ 

Example: Forward Motion 
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The Fundamental Matrix F 

algebraic representation of epipolar geometry  

l'x!

 we will see that mapping is a (singular) correlation 
(i.e. projective mapping from points to lines) 
represented by the fundamental matrix F 
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correspondence condition 

0Fxx'T =

 The fundamental matrix satisfies the condition that for 
any pair of corresponding points x↔x’ in the two 
images 

( )0l'x'T =
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The Fundamental Matrix F 



F is the unique 3x3 rank 2 matrix that 
satisfies x’TFx=0 for all x↔x’  

(i)   Transpose: if F is fundamental matrix for (P,P’), then FT is 
fundamental matrix for (P’,P) 

(ii)   Epipolar lines: l’=Fx & l=FTx’ 
(iii)   Epipoles: on all epipolar lines, thus e’TFx=0, ∀x ⇒e’TF=0, 

similarly Fe=0 
(iv)   F has 7 d.o.f. , i.e. 3x3-1(homogeneous)-1(rank2) 
(v)   F is a correlation, projective mapping from a point x to a line 

l’=Fx (not a proper correlation, i.e. not invertible) 
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The Fundamental Matrix F 



Two View Geometry Computation: Linear Algorithm 

0Fxx'T =

separate known from unknown 

0'''''' 333231232221131211 =++++++++ fyfxffyyfyxfyfxyfxxfx

[ ][ ] 0,,,,,,,,1,,,',',',',',' T
333231232221131211 =fffffffffyxyyyxyxyxxx

(data) (unknowns) 

(linear) 

0Af =

0f
1''''''

1'''''' 111111111111
=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

nnnnnnnnnnnn yxyyyxyxyxxx

yxyyyxyxyxxx
!!!!!!!!!

For every match (m,m´): 
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Benefits from having F 

•  Given a pixel in one image, the 
corresponding pixel has to lie on epipolar 
line 

•  Search space reduced from 2-D to 1-D 
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simplify stereo matching  
by warping the images 

Apply projective transformation so that epipolar lines 
correspond to horizontal scanlines 

e 

e 

map epipole e to (1,0,0) 

try to minimize image distortion 

problem when epipole in (or close to) the image 

He
0
0
1
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

Image Pair Rectification 
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Planar Rectification 

Bring two views  
to standard stereo setup 
(moves epipole to ∞) 
(not possible when in/close to image) 

(standard approach) 
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The Essential Matrix 
~fundamental matrix for calibrated cameras (remove K) 

[ ] ×× == t]R[RRtE T

0x̂E'x̂ T =

FKK'E T=

( ) x'K'x̂ x;Kx̂ -1-1 ==

5 d.o.f. (3 for R; 2 for t up to scale) 

E is an essential matrix if and only if two singular values  
are equal (and the third=0) 

T0)VUdiag(1,1,E =
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Four Possible Solutions from E 

Given E and setting the first camera matrix P = [I | 0], there are four possible solutions for P’ 
(only one solution, however, where a reconstructed point is in front of both cameras) 
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Fundamental Matrix 
Estimation 
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Epipolar Geometry: Basic Equation 

0Fxx'T =

separate known from unknown 

0'''''' 333231232221131211 =++++++++ fyfxffyyfyxfyfxyfxxfx

[ ][ ] 0,,,,,,,,1,,,',',',',',' T
333231232221131211 =fffffffffyxyyyxyxyxxx

(data) (unknowns) 
(linear) 

0Af =

0f
1''''''

1'''''' 111111111111
=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

nnnnnnnnnnnn yxyyyxyxyxxx

yxyyyxyxyxxx
!!!!!!!!!
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The Singularity Constraint 

0Fe'T = 0Fe = 0detF = 2Frank =

T
333

T
222

T
111

T

3

2

1
VσUVσUVσUV

σ
σ

σ
UF ++=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
=

SVD from linearly computed F matrix (rank 3) 

T
222

T
111

T
2

1
VσUVσUV

0
σ

σ
UF' +=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
=

F
F'-FminCompute closest rank-2 approximation  
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The Singularity Constraint 
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0

1´´´´´´

1´´´´´´
1´´´´´´

33

32

31

23

22

21

13

12

11

222222222222

111111111111

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

f
f
f
f
f
f
f
f
f

yxyyyyxxxyxx

yxyyyyxxxyxx
yxyyyyxxxyxx

nnnnnnnnnnnn

!!!!!!!!!

~10000 ~10000 ~10000 ~10000 ~100 ~100 1 ~100 ~100 

! 
Orders of magnitude difference 
between column of data matrix 
→ least-squares yields poor results 

The NOT Normalized 8-point Algorithm 
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Transform image to [-1,1]x[-1,1] 

(0,0) 

(700,500) 

(700,0) 

(0,500) 

(1,-1) 

(0,0) 

(1,1) (-1,1) 

(-1,-1) 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

1

1
500
2

10
700
2

normalized least squares yields good results 

The Normalized 8-point Algorithm 
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Some Experiments 
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Some Experiments 
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( ) ( )∑ +
i

iiii dFd 2T2 x'F,xx,x'

(for all points!) 

Residual error: 

Some Experiments 
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Recommendations: 

1.  Do not use unnormalized algorithms 
 
2.  Quick and easy to implement: 8-point normalized 
 
3.  Better: enforce rank-2 constraint during minimization 

 
4.  Best: Maximum Likelihood Estimation   

(minimal parameterization, sparse implementation) 
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Robust Estimation 

•  What if set of matches contains gross outliers? 

49 



RANSAC 
Objective 

 Robust fit of model to data set S which contains outliers 
Algorithm 
(i)  Randomly select a sample of s data points from S and 

instantiate the model from this subset. 
(ii)  Determine the set of data points Si which are within a 

distance threshold t of the model.  The set Si is the 
consensus set of samples and defines  the inliers of S. 

(iii)  If the subset of Si is greater than some threshold T, re-
estimate the model using all the points in Si and terminate 

(iv)  If the size of Si is less than T, select a new subset and 
repeat the above. 

(v)  After N trials the largest consensus set Si is selected, and 
the model is re-estimated using all the points in the 
subset Si 
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How many samples? 
•  Choose t so probability for inlier is α (e.g. 0.9)   

–  Or empirically 

•  Choose N so that, with probability p, at least one random sample is 
free from outliers. e.g. p =0.99 

( ) ( )( )sepN −−−= 11log/1log
( )( ) pe

Ns −=−− 111

proportion of outliers e 
s 5% 10% 20% 25% 30% 40% 50% 
2 2 3 5 6 7 11 17 
3 3 4 7 9 11 19 35 
4 3 5 9 13 17 34 72 
5 4 6 12 17 26 57 146 
6 4 7 16 24 37 97 293 
7 4 8 20 33 54 163 588 
8 5 9 26 44 78 272 1177 
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Acceptable consensus set? 

•  Typically, terminate when inlier ratio reaches expected ratio of inliers 

( )neT −= 1
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Adaptively determining the number of 
samples 

 e is often unknown a priori, so pick worst case, e.g. 50%, and adapt 
if more inliers are found, e.g. 80% would yield e=0.2  

 
–  N=∞, sample_count =0 

–  While N >sample_count repeat 
•  Choose a sample and count the number of inliers 

•  Set e=1-(number of inliers)/(total number of points) 

•  Recompute N from e 
•  Increment the sample_count by 1 

–  Terminate 

( ) ( )( )sepN −−−= 11log/1log
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Step 1. Extract features 
Step 2. Compute a set of potential matches 
Step 3. do 

Step 3.1 select minimal sample (i.e. 7 matches) 
Step 3.2 compute solution(s) for F 
Step 3.3 determine inliers 

   until p(#inliers,#samples)>95% or 99% 

( ) samplesp #7 )1(1
matches#
inliers#−−=

#inliers 90% 80% 70% 60% 50% 

#samples 5 13 35 106 382 

Step 4. Compute F based on all inliers 
Step 5. Look for additional matches 
Step 6. Refine F based on all correct matches 

(generate  
hypothesis) 

(verify hypothesis) 

}

RANSAC for F Estimation 

54 



 restrict search range to neighborhood of epipolar line  
   (±1.5 pixels) 
 relax disparity restriction (along epipolar line) 

Finding more matches 
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•  Degenerate cases 
–  Planar scene 

–  Pure rotation 

•  No unique solution 
–  Remaining DOF filled by noise 

–  Use simpler model (e.g. homography) 

•  Model selection (Torr et al., ICCV´98, Kanatani, Akaike) 

–  Compare H and F according to expected residual error 
(compensate for model complexity) 

Degenerate Cases 
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Stereo Matching 

Slides by Rick Szeliski, Pascal 
Fua and P. Mordohai 
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Stereo Matching 

•  Given two or more images of the same scene 
or object, compute a representation of its 
shape 

•  What are some possible applications? 

? 
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Stereo Matching 

•  Given two or more images of the same scene 
or object, compute a representation of its 
shape 

•  What are some possible representations? 
–  depth maps 

–  volumetric models 

–  3D surface models 

–  planar (or offset) layers 
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Stereo Matching 

•  What are some possible algorithms? 
– match “features” and interpolate 

– match edges and interpolate 

– match all pixels with windows (coarse-fine) 

– use optimization: 
•  iterative updating 

•  dynamic programming 
•  energy minimization (regularization, stochastic) 

•  graph algorithms 
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Rectification 

•  Project each image onto same plane, which is parallel to 
the baseline 

•  Resample lines (and shear/stretch) to place lines in 
correspondence, and minimize distortion 
 
 
 
 
 
 

•  Take rectification for granted in this course 
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Rectification 

BAD! 
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Rectification 

GOOD! 
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Finding Correspondences 
•  Apply feature matching criterion at all 

pixels simultaneously 
•  Search only over epipolar lines (many 

fewer candidate positions) 
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Basic Stereo Algorithm 

For each epipolar line 
 For each pixel in the left image 

•  compare with every pixel on same epipolar line in right image 

•  pick pixel with minimum match cost 
Improvement:  match windows 

 



Disparity 

•  Disparity d is the difference between the x 
coordinates of corresponding pixels in the 
left and right image 

d=xL-xR 

•  Disparity is inversely proportional to depth 

𝑍= ​𝑏𝑓/𝑑  
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Stereo Reconstruction 

 𝑍= ​𝑏𝑓/𝑑  
 

f 

x x’ 

baseline 

z 

C C’ 

X 

f 
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Finding Correspondences 

•  How do we determine correspondences? 
–  block matching or SSD (sum squared differences) 

 
 
 

–  d is the disparity (horizontal motion) 
 
 
 

•  How big should the neighborhood be? 
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Neighborhood size 
•  Smaller neighborhood: more details 
•  Larger neighborhood:  fewer isolated 

mistakes 
 
 
 
 
 
        w = 3       w = 20 



Challenges 
•  Ill-posed inverse problem 

– Recover 3-D structure from 2-D information 

•  Difficulties 
– Uniform regions 

– Half-occluded pixels 

– Repeated patterns 
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Pixel Dissimilarity 
•  Sum of Squared Differences of intensities (SSD) 

•  Sum of Absolute Differences of intensities (SAD) 

•  Zero-mean Normalized Cross-correlation (NCC) 
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SAD = 



Cost/Score Curve 
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NCC 



Cost/Score Curve 
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Fronto-Parallel Assumption 
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•  The disparity is assumed to be the same in 
the entire matching window 
– equivalent to assuming constant depth 



Shiftable Windows 

•  Avoid having using 
matching windows 
that straddle two 
surfaces 
– Disparity will not be 

constant for all pixels 
•  Shift the window 

around the 
reference pixel  
– Keep the one with 

min cost (max NCC) 
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Rod-shaped Filters 

•  Instead of square windows aggregate cost 
in rod-shaped shiftable windows 

•  Search for one that minimizes the cost 
(assume that it is an iso-disparity curve) 
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Alternative Dissimilarity Measures 

•  Rank and Census transforms  
•  Rank transform: 

–  Define window containing R pixels around each pixel 

–  Count the number of pixels with lower intensities than center pixel in 
the window 

–  Replace intensity with rank (0..R-1) 

–  Compute SAD on rank-transformed  
images 

•  Census transform:  
–  Use bit string, defined by neighbors,  

instead of scalar rank 

•  Robust against illumination changes 
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Locally Adaptive Support 

   Apply weights to contributions of 
neighboring pixels according to similarity 
and proximity 
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Locally Adaptive Support 

•  Similarity in CIE Lab color space: 

•  Proximity: Euclidean distance 

•  Weights:  
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Locally Adaptive Support: Results 
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